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1 M3-4-5A16 Assessed Problems # 1: Do 4 out of 5 problems

Exercise 1.1 (Poisson brackets for the Hopf map)

Figure 1: The Hopf map.

In coordinates (a1, a2) ∈ C2, the Hopf map C2/S1 → S3 → S2 is obtained by transforming to the
four quadratic S1-invariant quantities

(a1, a2)→ Qjk = aja
∗
k , with j, k = 1, 2 .

Let the C2 coordinates be expressed as

aj = qj + ipj

in terms of canonically conjugate variables satisfying the fundamental Poisson brackets

{qk, pm} = δkm with k,m = 1, 2.

(A) Compute the Poisson brackets {aj , a∗k} for j, k = 1, 2.

Answer The C2 coordinates aj = qj + ipj satisfy the Poisson bracket

{aj , a∗k} = −2i δjk , for j, k = 1, 2 .

Likewise
daj ∧ da∗j = −2i dqj ∧ dpj

N

(B) Is the transformation (q, p)→ (a, a∗) canonical? Explain why or why not.

Hint: a map (q, p)→ (Q,P ) whose Poisson bracket is {Q,P} = c{q, p} with a constant factor
c is still regarded as being canonical.

Answer The transformation (q, p) 7→ (a, a∗) is indeed canonical. The constant (−2i)

is inessential for Hamiltonian dynamics, because it can be absorbed into the definition
of time. N

(C) Compute the Poisson brackets among Qjk, with j, k = 1, 2.
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Answer The quadratic S1 invariants on C2 given by Qjk = aja
∗
k satisfy the Poisson

bracket relations,

{Qjk , Qlm} = 2i (δklQjm − δjmQkl) , j, k, l,m = 1, 2 .

Thus, they do close among themselves, but they do not satisfy canonical Poisson bracket
relations.

N

(D) Make the linear change of variables,

X0 = Q11 +Q22 , X1 + iX2 = 2Q12 , X3 = Q11 −Q22 ,

and compute the Poisson brackets among (X0, X1, X2, X3).

Answer The quadratic S1 invariants (X0, X1, X2, X3) given by

X0 = Q11 +Q22 , X1 + iX2 = 2Q12 , X3 = Q11 −Q22 ,

may be expressed in terms of the aj , j = 1, 2 as

X0 = |a1|2 + |a2|2 , X1 + iX2 = 2a1a
∗
2 , X3 = |a1|2 − |a2|2 .

These satisfy the Poisson bracket relations,

{X0 , Xk} = 0 , {Xj , Xk} = −4εjklXl

N

(E) Express the Poisson bracket {F (X), H(X)} in vector form among functions F and H of X =
(X1, X2, X3).

Answer The Poisson bracket {F (X), H(X)} is given in vector form as

{F (X), H(X)} = − 4X · ∂F
∂X
× ∂H

∂X
.

It’s the same as the Poisson bracket for the rigid body.

N

(F) Show that the quadratic invariants (X0, X1, X2, X3) themselves satisfy a quadratic relation.

How is this relevant to the Hopf map?

Answer The quadratic invariants (X0, X1, X2, X3) satisfy the quadratic relation

X2
0 (X) = X2

1 +X2
2 +X2

3 = |X|2 .

This relation is relevant. It completes the Hopf map, because level sets of X0 are
spheres S2 ∈ S3. Moreover, it is relevant to the Poisson bracket in vector form above,
which may be written using this relation as

{F (X), H(X)} = − 1

2

∂X2
0

∂X
· ∂F
∂X
× ∂H

∂X
.

N
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Exercise 1.2 (Motion on a sphere)

Figure 2: Motion on a sphere.

Motion on a sphere: Part 1, the constraint

Consider Hamilton’s principle for the following constrained Lagrangian on TR3,

L(q, q̇) =
1

2
‖q̇‖2 − µ

2

(
1− ‖q‖2

)
.

Here the quantity µ is called a Lagrange multiplier and must be determined as part of the solution.

Provide a geometric mechanics description of the dynamical system governed by this Lagrangian.
In particular, compute the following for it.

1. Fibre derivative

2. Euler-Lagrange equations

3. Hamiltonian and canonical equations

4. Discussion of solutions. In particular, show that the solutions really do describe motion on a
sphere. Do the initial conditions matter?

Answer

(i) Fibre derivative

This constrained Lagrangian is plainly hyperregular, because

p =
∂L

∂q̇
= q̇

which of course is an isomorphism.

(ii) Euler-Lagrange equations

q̈ = µq

The motion must preserve 1−‖q‖2 = 0 and its time derivative q · q̇ = 0 for the initial
condition q0 · v0 = 0. Hence one requires

d

dt
(q · q̇) = |q̇|2 + q · q̈ = 0 by which q̈ = µq implies µ = −‖q̇‖2/‖q‖2 .
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Hence, the Euler-Lagrange equation for this constrained Lagrangian is

q̈ = − ‖q̇‖
2

‖q‖2
q

The right side of this equation is the centripetal force, required for keeping the motion
on the sphere, given by the constraint 1− ‖q‖2 = 0.

(iii) Hamiltonian and canonical equations
The corresponding Hamiltonian is obtained by the Legendre transformation as,

H(q,p) =
1

2
‖p‖2 +

µ

2

(
1− ‖q‖2

)
, (1)

in which the variable p is the momentum canonically conjugate to the position q.
The canonical equations are

q̇ = {q, H} =
∂H

∂p
= p ,

ṗ = {p, H} = − ∂H
∂q

= µq ,

and we must re-determine µ = −‖q̇‖2/‖q‖2 as before.

(iv) The energy corresponding to this Hamiltonian, when evaluated on the constraint is
just the kinetic energy

E =
1

2
‖q̇‖2 +

µ

2

(
1− ‖q‖2

)
=

1

2
‖q̇‖2

and it is conserved, as may be checked from the equation of motion, which implies

d

dt
(log(‖q̇‖2‖q‖2) = 0

and the result follows since ‖q‖2 = 1 on the constraint.

The motion describes a great circle on S2, since

d

dt
(q× q̇) = q× q̈ = 0

that is,
q× q̇(t) = q0 × v0,

which says that q̇(t) is always in the plane perpendicular to q0 × v0 and moving on
the sphere if initially q0 · v0 = 0. Thus, since q(t) stays on the sphere in a plane
passing through the origin, it is a great circle, which is a geodesic on S2.

N
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Motion on a sphere: Part 2, the penalty
Provide the same kind of geometric mechanics description of the dynamical system governed by

the Lagrangian

Lε(q, q̇) =
1

2
‖q̇‖2 − 1

4ε
(1− ‖q‖2)2

for a particle with coordinates q ∈ R3 and constants ε > 0. For this, let γε(t) be the curve in R3 obtained
by solving the Euler-Lagrange equations for Lε with the initial conditions q0 = γε(0), v0 = γ̇ε(0). Show
that

lim
ε→0

γε(t) = γ0(t)

traverses a great circle on the two-sphere S2, provided that q0 has unit length and that q0 · v0 = 0.

Hint: go through the same first three steps as in the constrained case. Then use the conserved
energy to show that

1− ‖γε(t)‖2 → 0 as ε→ 0.

Answer

(i) Fibre derivative
The fibre derivative gives a linear relation

p =
∂L

∂q̇
= q̇

This means the Lagrangian is hyperregular.

(ii) Euler-Lagrange equations

q̈ =
1

ε
(1− ‖q‖2)q . (2)

Obviously this equation can only make sense if the ratio (1 − ‖q‖2)/ε converges as
ε→ 0. The conserved energy will help us deal with this issue in a moment.

(iii) Hamiltonian and canonical equations
The corresponding Hamiltonian is obtained by the Legendre transformation as,

H(q,p) =
1

2
‖p‖2 +

1

4ε
(1− ‖q‖2)2 , (3)

in which the variable p is the momentum canonically conjugate to the position q.
The canonical equations are

q̇ = {q, H} =
∂H

∂p
= p ,

ṗ = {p, H} = − ∂H
∂q

=
1

ε
(1− ‖q‖2)q ,

and the Hamiltonian H is conserved.

(iv) Discussion of motion and convergence in the limit as ε→ 0
The energy Eε for the Lagrangian Lε is conserved. In terms of the solution curve
γε(t) ∈ R3, this energy is expressed as

1

2
‖γ̇ε(t)‖2 +

1

4ε

(
1− ‖γε(t)‖2

)2
=

1

2
‖v0‖2.

In particular, this says that ‖γ̇ε(t)‖ ≤ ‖v0‖ for all t. Also, from the above equation
we conclude that

ε‖γ̇ε(t)‖2 +
1

2

(
1− ‖γε(t)‖2

)2
= ε‖v0‖2 .
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Therefore, ‖γ̇ε(t)‖2 ≤ ‖v0‖2 is bounded by its initial value, so taking the limit as
ε→ 0 gives ε‖γ̇ε(t)‖2 → 0. Consequently, the expression for energy gives

1− ‖γε(t)‖2 → 0 as ε→ 0,

that is, ‖ limε→0 γε(t)‖ = 1. Thus, limε→0 γε(t) = γ0(t) exists at any fixed time t and
lies on the unit sphere S2. It remains to check that Lagrange’s equations continue to
make sense in the limit as ε→ 0.

Inserting the conserved energy into Lagrange’s equations for this problem yields

γ̈ε =
1

ε
(1− ‖γε‖2)γε =

(√
‖v0‖2 − ‖γ̇ε‖2

)
γε =: F (γε, γ̇ε).

Since the equation γ̈ε = F (γε, γ̇ε) is smooth in ε as ε → 0, continuous dependence of
solutions on parameters (a general fact from theory of ordinary differential equations)
shows that γε does indeed converge as ε→ 0. Observe that

d

dt
(γε × γ̇ε) = γε × γ̈ε = 0

that is,
γε(t)× γ̇ε(t) = γε(0)× γ̇ε(0) = q0 × v0.

Thus,
γ0(t)× γ̇0(t) = q0 × v0,

which says that γ̇0(t) is always in the plane perpendicular to q0 × v0. Thus, since
γ0(t) stays on the sphere in a plane passing through the origin, it is a great circle,
which is a geodesic on S2.

N
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Exercise 1.3 (The free particle in H2: #1)

Figure 3: Geodesics on the Lobachevsky half-plane.

In Appendix I of Arnold’s book, Mathematical Methods of Classical Mechanics, page 303, we read.

EXAMPLE. We consider the upper half-plane y > 0 of the plane of complex numbers
z = x+ iy with the metric

ds2 =
dx2 + dy2

y2
.

It is easy to compute that the geodesics of this two-dimensional riemannian manifold are
circles and straight lines perpendicular to the x-axis. Linear fractional transformations
with real coefficients

z → az + b

cz + d
(4)

are isometric transformations of our manifold (H2), which is called the Lobachevsky
plane.1

Consider a free particle of mass m moving on H2. Its Lagrangian is the kinetic energy corresponding
to the Lobachevsky metric Namely,

L =
m

2

(
ẋ2 + ẏ2

y2

)
. (5)

(A) (1) Write the fibre derivatives of the Lagrangian (5) and

(2) compute its Euler-Lagrange equations.

These equations represent geodesic motion on H2.

(3) Evaluate the Christoffel symbols.

Answer

Fibre derivatives:
∂L

∂ẋ
=
mẋ

y2
=: px and

∂L

∂ẏ
=
mẏ

y2
=: py

Euler-Lagrange equations d
dt
∂L
∂ẋ = ∂L

∂x and d
dt
∂L
∂ẏ = ∂L

∂y yield, respectively:

d

dt

(
ẋ

y2

)
= 0 and

d

dt

(
ẏ

y2

)
= − ẋ

2 + ẏ2

y3
(6)

Expanding these equations yield the Christoffel symbols for the geodesic motion,

ẍ− 2

y
ẋẏ = 0 and ÿ+

1

y
ẋ2− 1

y
ẏ2 = 0 ⇐⇒ Γ1

12 = − 2

y
, Γ2

11 =
1

y
, Γ2

22 = − 1

y
.

N
1These isometric transformations of H2 have deep significance in physics. They correspond to the most general Lorentz

transformation of space-time.
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(B) Hint: The Lagrangian in (5) is invariant under the group of linear fractional transformations
with real coefficients. These have an SL(2,R) matrix representation[

a b
c d

]
· z =

az + b

cz + d
(7)

(1) Show that the quantities

u =
ẋ

y
and v =

ẏ

y
(8)

are invariant under a subgroup of these symmetry transformations.

(2) Specify this subgroup in terms of the representation (7).

Answer

The quantities (8) are invariant under a subgroup of translations and scalings.

Tτ : (x, y) 7→ (x+ τ, y) Flow of XT = ∂x, (δx, δy) = (1, 0), [XT , XS ] = XT .

Sσ : (x, y) 7→ (eσx, eσy) Flow of XS = x∂x + y∂y, (δx, δy) = (x, y).

These transformations are translations T along the x axis and scalings S centered at
(x, y) = (0, 0). They are represented by elements of (7) as

T =

[
1 b
0 1

]
and S =

[
a 0
0 1

]
That is, the transformations T and S are isometries of the metric ds2 = (dx2 +dy2)/y2

on H2 with T : a = 1 = d, c = 0, b 6= 0 and S : a 6= 0, b = 0 = c, d = 1.

N

(C) (1) Use the invariant quantities (u, v) in (8) as new variables in Hamilton’s principle.

Hint: the transformed Lagrangian is

`(u, v) =
m

2
(u2 + v2) .

(2) Find the corresponding conserved Noether quantities.

Answer

(1) The translations T along the x axis and scalings S centered at (x, y) = (0, 0) leave
invariant the quantities

u =
ẋ

y
and v =

ẏ

y
,

in terms of which the Lagrangian L in (5) reduces to

`(u, v) =
m

2
(u2 + v2) .

The reduced Hamilton’s principle in the variables u and v yields,

0 = δS = δ

∫ b

a
`(u, v) dt =

∫ b

a
m(uδu+ vδv) dt

= m

∫ b

a

u

y
(δẋ− uδy) +

v

y
(δẏ − vδy) dt

= −m
∫ b

a

(
d

dt

u

y

)
δx+

(
d

dt

v

y
+
u2 + v2

y

)
δy dt+m

[
u

y
δx+

v

y
δy

]b
a
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Thus, Hamilton’s principle recovers equations (6) in the variables u and v.

(2) Applying Noether’s theorem to the endpoint term in these variables yields conser-
vation of

CT =
u

y
, for (δx, δy) = (1, 0) translations,

and
CS =

ux

y
+ v for (δx, δy) = (x, y) scaling.

N

(D) Transform the Euler-Lagrange equations from x and y to the variables u and v that are invariant
under the symmetries of the Lagrangian.

Then:

(1) Show that the resulting system conserves the kinetic energy expressed in these variables.

(2) Discuss its integral curves and critical points in the uv plane.

(3) Show that the u and v equations can be integrated explicitly in terms of sech and tanh.

Hint: In the uv variables, the Euler-Lagrange equations for the Lagrangian (5) are expressed as

d

dt

u

y
= 0 and

d

dt

v

y
+
u2 + v2

y
= 0 .

Expanding these equations using u = ẋ/y and v = ẏ/y yields

u̇ = uv , v̇ = −u2 (9)

Answer

(1) Equations (9) imply conservation of the kinetic energy

`(u, v) =
m

2
(u2 + v2) = E

(2) The integral curves of the system of equations (9) in the uv plane are either critical
points along the axis u = 0, or they are heteroclinic connections between these points
that are semi-circles around the origin on level sets of the energy E.

The critical points at u = ẋ/y = 0 are relative equilibria of the system corresponding
to vertical motion on the xy plane. Those corresponding to “upward motion” (ẏ > 0)
are unstable and the ones corresponding to “downward motion” (ẏ < 0) are stable.

(3) The trial solutions u = tanh and v = sech quickly converge to the exact solutions
of the uv system.

N

(E) (1) Legendre transform the Lagrangian (5) to the Hamiltonian side, obtain the canonical equations
and

(2) derive the Poisson brackets for the variables u and v. Hint: {ypx, ypy} = ypx.

Answer

The equations of motion on the Hamiltonian formulation are defined by introducing
the momenta:

px =
∂L

∂ẋ
=
mẋ

y2
, py =

∂L

∂ẏ
=
mẏ

y2
,
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and the Hamiltonian

H =
y2

2m

(
p2x + p2y

)
.

One gets

ẋ =
y2px
m

ṗx = 0,

ẏ =
y2py
m

ṗy =
−y
m

(
p2x + p2y

)
.

(10)

By defining
u = ypx/m, v = ypy/m,

the Hamiltonian can be written as

H = h(u, v) =
1

2

(
u2 + v2

)
,

and the equations of motion (10) become, using {ypx, ypy} = ypx,

u̇ = uv v̇ = −u2. (11)

These equations are Hamiltonian with respect to the Lie-Poisson bracket

{u, v} = u,

and the reduced Hamiltonian h(u, v) in terms of the invariant variables. Namely,

u̇ = {u, h} = uv v̇ = {v, h} = −u2 .

N
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Exercise 1.4 (The free particle in H2: #2)

Figure 4: Geodesics on the Lobachevsky half-plane.

Consider the following pair of differential equations for (u, v) ∈ R2,

u̇ = uv , v̇ = −u2 . (12)

These equations have discrete symmetries under combined reflection and time reversal, (u, t) →
(−u,−t) and (v, t)→ (−v,−t). (This is called PT symmetry in the (u, v) plane.)

(A) Find 2×2 real matrices L and B for which the system (12) may be written as a Lax pair, namely,
as

dL

dt
= [L,B] .

Hint: a basis of 2× 2 real matrices is given by

σ1 =

[
0 1
1 0

]
, σ2 =

[
0 1
−1 0

]
, σ3 =

[
1 0
0 −1

]
.

Explain what the Lax pair relation means and determine a constant of the motion from it.

Hint: consider the similarity transformation L(t) = O−1(t)L(0)O(t).

Answer

We introduce two linear 2× 2 matrices, one symmetric (LT = L) and the other skew-
symmetric (BT = −B), as required for the commutator [L,B] to be symmetric:

L =

[
−v u
u v

]
= u

[
0 1
1 0

]
− v

[
1 0
0 −1

]
= uσ1 − vσ3,

B =
1

2

[
0 u
−u 0

]
=
u

2

[
0 1
−1 0

]
=
u

2
σ2.

Both matrices must be linear homogeneous, so that the commutator [L,B] and time
derivative dL

dt can match powers using (12). The sl(2,R) σ-matrices satisfy

[σ1, σ2] = 2σ3, [σ2, σ3] = 2σ1, and [σ3, σ1] = − 2σ2.

Thus, we find the Lax pair relation,

dL

dt
= u2σ3 + uv σ1 = [L, B] =

[
uσ1 − vσ3,

u

2
σ2

]
.

What the Lax pair relation means: isospectrality. The Lax pair relation implies
that

L(t) = O−1(t)L(0)O(t), where B = O−1Ȯ and O(t) ∈ SO(2).
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Thus, OL(t)O−1 = L(0) is conserved. That is, the flow generates a similarity transfor-
mation that conserves the initial spectrum of the 2× 2 symmetric matrix L(0). Such a
flow is said to be isospectral. The traceless matrix L(t) has one independent eigenvalue
and the system (12) has only one conserved quantity. The conserved quantity is the
determinant, detL(t) = detL(0).

N

(B) Write the system (12) as a double matrix commutator, dL
dt = [L, [L,N ] ]. In particular, find N

explicitly and explains what this means for the solutions. Hint: compute d
dt tr (LN).

Answer Substituting N :=

[
a 0
0 b

]
into dL

dt = [L, [L,N ] ] yields b − a =, so for

example we may set

N :=

[
1 0
0 2

]
.

What this means for the solutions: Gradient flow. The evolution by the double
bracket relation dL

dt = [L, [L,N ] ] is a gradient flow that preserves the spectrum of L
but decreases the quantity tr (LN) according to

d

dt
tr (LN) = − tr ([L, N ]T [L, N ]) ,

until L becomes diagonal and hence [L, N ] → 0, because N is diagonal. Thus, the
dynamics (12) becomes asymptotically steady as L tends to a diagonal matrix. This
means the system (12) must asymptotically approach a stable equilibria that is consis-
tent with its initial conditions and conservation laws. For the present case, substituting
the explicit forms of L and N yields

d

dt
tr (LN) =

1

2
v̇ = − 1

2
u2 = − tr ([L, N ]T [L, N ]) ,

which holds by (12) and thus checks the previous calculation. In the present case, it
will turn out that limt→∞ u(t) = 0, which will verify [L, N ] → 0, as the off-diagonal
parts of L will vanish asymptotically. N

(C) Find explicit solutions and discuss their motion and asymptotic behaviour:

(1) in time; and

(2) in the (u, v) phase plane. Hint: keep the tanh function in mind.

Answer

Keeping the tanh function in mind and recalling that

d tanh(ct)

dt
= c sech2(ct)

d sech(ct)

dt
= − c sech(ct) tanh(ct),

we find, for u(0) = c and v(0) = 0,

v(t) = −c tanh(ct) and u(t) = c sech(ct),

and of course we check, 2h = u2 + v2 = c2(tanh2 + sech2) = c2.

Motion and asymptotic behaviour.

(a) In time: We have limt→∞(u(t), v(t)) = (0,−c). Consequently, the quantity u(t)
falls exponentially with time, from u(0) toward the line of fixed points at u = 0,
while u(t) goes to a constant equal to −u(0).
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(b) In the (u, v) phase plane: Since h is conserved, the motion is along a family of
semi-circles, each parameterised by its radius c =

√
2h, as

u2 + v2 = c2 for u > 0 and u < 0 ,

lying in the upper and lower (u, v) half planes. These semi-circular motions are
mirror images, reflected across the line of fixed points at u = 0. The equations of
motion are PT -symmetric, so the fixed points along u = 0 in the (u, v) plane are
stable for v < 0, and unstable for v > 0.
Thus, the two families of semi-circular motion both connect the line of fixed points
at u = 0 to itself. One family of semi-circles lies in the upper half (u, v) plane, and
the other lies symmetrically placed to complete the circles in the lower half (u, v)
plane. The flows along each reflection-symmetric pair of semi-circles pass in the
same (negative) v direction, from v = c to v = −c.

N

(D) Explain why the solution behaviour found in the previous part is consistent with the behaviour
predicted by the double bracket relation.

Answer

This analysis is consistent with the conclusion from the double-bracket relation dL
dt =

[L, [L,N ] ] that the dynamics of L-matrix

L =

[
−v u
u v

]
asymptotically becomes steady. In fact, since limt→∞ u = 0 and limt→∞ v(t) = −c, the
L-matrix asymptotically diagonalises! N
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Exercise 1.5 (Nambu Poisson brackets on R3)

Figure 5: Motion along intersections of surfaces in R3.

(A) Show that for smooth functions c, f, h : R3 → R, the R3-bracket defined by

{f, h} = −∇c · ∇f ×∇h

satisfies the defining properties of a Poisson bracket. Is it also a derivation satisfying the Leibnitz
relation for a product of functions on R3? If so, why?

Answer The R3-bracket is plainly a skew-symmetric bilinear Leibniz operator. Its

Hamiltonian vector fields are divergence free vector fields in R3. These vector fields in
R3 satisfy the Jacobi identity under commutation. The identification of the R3-bracket
with its Hamiltonian vector fields shows that it satisfies Jacobi. This will be made
clearer below. N

(B) How is the R3-bracket related to the canonical Poisson bracket in the plane?

Answer The canonical Poisson bracket in the (x, y)-plane is given by the particular

choice of the R3-bracket
{f, h} = −∇z · ∇f ×∇h

N

(C) The Casimirs (or distinguished functions, as Lie called them) of a Poisson bracket satisfy

{c, h}(x) = 0 , for all h(x)

Part (E) provides additional hints to proving that the R3-bracket satisfies the defining properties
of a Poisson bracket. What are the Casimirs for the R3 bracket?

Answer Smooth functions of c are Casimirs for the R3-bracket given by

{f, h} = −∇c · ∇f ×∇h.

N
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(D) Write the motion equation for the R3-bracket

ẋ = {x, h}

in vector form using gradients and cross products. Show that the corresponding Hamiltonian
vector field Xh = { · , h} has zero divergence.

Answer

ẋ = {x, h} = ∇c×∇h
The corresponding Hamiltonian vector field Xh = { · , h} has zero divergence because
the vector ∇c×∇h has zero divergence, since it’s a curl. N

(E) Show that under the R3-bracket, the Hamiltonian vector fields Xf = { · , f}, Xh = { · , h} satisfy
the following anti-homomorphism that relates the commutation of vector fields to the R3-bracket
operation between smooth functions on R3,

[Xf , Xh] = −X{f,h}.

Hint: commutation of divergenceless vector fields does satisfy the Jacobi identity and for the
R3-bracket these vector fields are related to the Poisson bracket by

[XG, XH ] = XGXH −XHXG

= {G, · }{H, · } − {H, · }{G, · }
= {G, {H, · }} − {H, {G, · }} .

Answer Lemma. The R3-bracket defined on smooth functions (C,F,H) by

{F,H} = −∇C · ∇F ×∇H

may be identified with the divergenceless vector fields by

[XG, XH ] = −X{G,H} , (13)

where [XG, XH ] is the Jacobi-Lie bracket of vector fields XG and XH .

Proof. Equation (13) may be verified by a direct calculation,

[XG, XH ] = XGXH −XHXG

= {G, · }{H, · } − {H, · }{G, · }
= {G, {H, · }} − {H, {G, · }}
= {{G, H}, · } = −X{G,H} .

Remark. The last step in the proof of the Lemma uses the Jacobi identity for the
R3-bracket, which follows from the Jacobi identity for divergenceless vector fields, since

XFXGXH = −{F, {G, {H, · }}}

N

(F) Show that the motion equation for the R3-bracket is invariant under a certain linear combination
of the functions c and h. Interpret this invariance geometrically.

Answer

∇(αc+ βh)×∇(γc+ εh) = ∇c×∇h for constants satisfying αε− βγ = 1.

Under such a (volume-preserving) transformation, the level sets change, but their in-
tersections remain invariant.

N


