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Figure 1: Geometric Mechanics has involved many great mathematicians!

What shall we study?

Hamilton: quaternions, AD, Ad, ad, Ad∗, ad∗ actions, variational principles

Lie: Groups of transformations that depend smoothly on parameters

Poincaré: Mechanics on Lie groups, SO(3), SU(2), Sp(2), SE(3) ' SO(3)sR3

Noether: Implications of symmetry in variational principles

Cartan: Lie transformations of differential forms and fluid flows
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Geometric Mechanics A34 deals with motion on smooth manifolds

The rest of this handout is meant to be a sort of un-alphabetized glossary, a list of words and
concepts that will be introduced and studied later in the course, defined and used succinctly here
in sentences.

Transformation theory

smooth manifold
tangent space
motion equation
vector field
diffeomorphism
flow
fixed point

equilibrium
linearisation
infinitesimal transformation
pull-back
push-forward
Jacobian matrix
directional derivative

tangent lift
commutator
differential, d
differential k-form
wedge product, ∧
Lie derivative, £Q

product rule

• Let M be a smooth manifold, dimM = n. That is, M is a smooth space that is locally Rn.

• The tangent space TM contains velocity vq = q̇(t) ∈ TqM , tangent to curve q(t) ∈M at point
q. The coordinates are (q, vq) ∈ TM .
Note, dimTM = 2n and subscript q reminds us that vq is an element of the tangent space at
the point q and that on TM we must keep track of base points.

The tangent space TM := ∪q∈MTqM is also called the tangent bundle of the manifold M .

The curve q̇(t) ∈ TM is called the tangent lift of the curve q(t) ∈M .

• A motion is defined as a smooth curve q(t) ∈ M parameterised by t ∈ R that solves the
motion equation, which is a system of differential equations

q̇(t) =
dq

dt
= f(q) ∈ TM , (1)

or in components

q̇i(t) =
dqi

dt
= f i(q) i = 1, 2, . . . , n , (2)

• The map f : q ∈M → f(q) ∈ TqM is a vector field.

According to standard theorems about differential equations that are not proven in this course,
the solution, or integral curve, q(t) exists, provided f is sufficiently smooth, which will always
be assumed to hold.

Vector fields can also be defined as differential operators that act on functions, as

d

dt
G(q) = q̇i(t)

∂G

∂qi
= f i(q)

∂G

∂qi
i = 1, 2, . . . , n, (sum on repeated indices) (3)

for any smooth function G(q) : M → R.

• To indicate the dependence of the solution of its initial condition q(0) = q0, we write the
motion as a smooth transformation

q(t) = φt(q0) .
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Because the vector field f is independent of time t, for any fixed value of t we may regard φt
as mapping from M into itself that satisfies the composition law

φt ◦ φs = φt+s

and
φ0 = Id .

Setting s = − t shows that φt has a smooth inverse. A smooth mapping that has a smooth
inverse is called a diffeomorphism. Geometric mechanics deals with diffeomorphisms.

• The smooth mapping φt : R×M →M that determines the solution φt ◦ q0 = q(t) ∈M of the
motion equation (1) with initial condition q(0) = q0 is called the flow of the vector field Q.

A point qe ∈M at which f(qe) = 0 is called a fixed point of the flow φt, or an equilibrium.

Vice versa, the vector field f is called the infinitesimal transformation of the mapping φt,
since

d

dt

∣∣∣∣
t=0

(φt ◦ q0) = f(q) .

That is, f(q) is the linearisation of the flow map φt at the point q ∈M .

More generally, the directional derivative of the function h along the vector field f is given
by the action of a differential operator, as

d

dt

∣∣∣∣
t=0

h ◦ φt =

[
∂h

∂φt

d

dt
(φt ◦ q0)

]
t=0

=
∂h

∂qi
q̇i =

∂h

∂qi
f i(q) =: Qh .

• Under a smooth change of variables q = c(r) the vector field Q in the expression Qh transforms
as

Q = f i(q)
∂

∂qi
7→ R = gj(r)

∂

∂rj
with gj(r)

∂ci

∂rj
= f i(q(r)) or g = c−1r f ◦ c , (4)

where cr is the Jacobian matrix of the transformation. That is,

(Qh) ◦ c = R(h ◦ c) .

We express the transformation between the vector fields as R = c∗Q and write this relation
as

(Qh) ◦ c =: c∗Q(h ◦ c) . (5)

The expression c∗Q is called the pull-back of the vector field Q by the map c. Two vector
fields are equivalent under a map c, if one is the pull-back of the other, and fixed points are
mapped into fixed points.

The inverse of the pull-back is called the push-forward. It is the pull-back by the inverse map.

• The commutator
QR−RQ =:

[
Q, R

]
of two vector fields Q and R defines another vector field. Indeed, if

Q = f i(q)
∂

∂qi
and R = gj(q)

∂

∂qj
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then [
Q, R

]
=

(
f i(q)

∂gj(q)

∂qi
− gi(q)∂f

j(q)

∂qi

)
∂

∂qj

because the second-order derivative terms cancel. By the pull-back relation (5)

c∗
[
Q, R

]
=
[
c∗Q, c∗R

]
(6)

under a change of variables defined by a smooth map, c. This means the definition of the
vector field commutator is independent of the choice of coordinates.1

• The differential of a smooth function f : M →M is defined as

df =
∂f

∂qi
dqi ,

in which the set dqi, i = 1, 2, . . . ,dimM , is called a differential basis set for the manifold M .

• Under a smooth change of variables s = φ ◦ q = φ(q) the differential of the composition of
functions d(f ◦ φ) transforms according to the chain rule as

df =
∂f

∂qi
dqi , d(f ◦ φ) =

∂f

∂φj(q)

∂φj

∂qi
dqi =

∂f

∂sj
dsj =⇒ d(f ◦ φ) = (df) ◦ φ (7)

That is, the differential d commutes with the pull-back φ∗ of a smooth transformation φ,

d(φ∗f) = φ∗df . (8)

In a moment, this pull-back formula will give us the rule for transforming differential forms
of any order.

• Differential k-forms on an n-dimensional manifold are defined in terms of the differential d
and the antisymmetric wedge product (∧) satisfying

dqi ∧ dqj = − dqj ∧ dqi , for i, j = 1, 2, . . . , n (9)

By using wedge product, any k-form α ∈ Λk on M may be written locally at a point q ∈ M
in the differential basis dqj as

αm = αi1...ik(m) dqi1 ∧ · · · ∧ dqik ∈ Λk , i1 < i2 < · · · < ik , (10)

where the sum over repeated indices is ordered, so that it must be taken over all ij satisfying
i1 < i2 < · · · < ik. Roughly speaking differential forms Λk are objects that can be integrated.
As we shall see, vector fields also act on differential forms in interesting ways.

• Pull-backs of other differential forms may be built up from their basis elements, the dqik .

By equation (8),

Theorem 1 (Pull-back of a wedge product). The pull-back of a wedge product of two differ-
ential forms is the wedge product of their pull-backs:

φ∗t (α ∧ β) = φ∗tα ∧ φ∗tβ . (11)

1Letting the map c depend smoothly on a parameter t as ct and taking the tangent to the relation c∗t
[
Q, R

]
=[

c∗tQ, c∗tR
]

at the identity t = 0 results in the Jacobi condition for the vector fields to form an algebra. The Jacobi
condition is discussed further below.
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Definition 1 (Lie derivative of a differential k-form). The Lie derivative of a differential
k-form Λk by a vector field Q is defined by linearising its flow φt around the identity t = 0,

£QΛk =
d

dt

∣∣∣∣
t=0

φ∗tΛ
k maps £QΛk 7→ Λk .

Hence, by equation (11), the Lie derivative satisfies the product rule for the wedge product.

Corollary 1 (Product rule for the Lie derivative of a wedge product).

£Q(α ∧ β) = £Qα ∧ β + α ∧£Qβ . (12)

Proof. Linearise (11) around the identity, t = 0, using the product rule for the derivative.

Variational principles

kinetic energy
Riemannian metric
Lagrangian

Hamilton’s principle
variational derivative
Legendre transformation

momentum
fibre derivative
pairing

• Define kinetic energy, KE : TM → R, via a Riemannian metric gq( · , · ) : TM × TM → R.

• Choose Lagrangian L : TM → R. (For example, one could choose L to be KE.)

• Hamilton’s principle is δS = 0 with S =
∫ b
a L(q, q̇)dt, where for a family of curves parame-

terised smoothly by (t, ε) the linearisation

δS =
d

dε

∣∣∣∣
ε=0

∫ b

a
L(q(t, ε), q̇(t, ε))dt

defines the variational derivative δS of S near the identity ε = 0. The variations in q are
assumed to vanish at endpoints in time, so that q(a, ε) = q(a) and q(b, ε) = q(b).

• Legendre transformation LT : (q, q̇) ∈ TM → (q, p) ∈ T ∗M defines momentum p as the fibre
derivative of L, namely

p :=
∂L(q, q̇)

∂q̇
∈ T ∗M .

The LT is invertible for q̇ = f(q, p), provided Hessian ∂2L(q, q̇)/∂q̇∂q̇ has nonzero determi-
nant. Note, dimT ∗M = 2n.

In terms of LT, the Hamiltonian H : T ∗M → R is defined by

H(q, p) = 〈p, q̇〉 − L(q, q̇)

in which the expression 〈p, q̇〉 in this calculation identifies a pairing 〈 · , · 〉 : T ∗M ×TM → R.

Taking the differential of this definition yields

dH = 〈Hp, dp〉+ 〈Hq, dq〉 = 〈dp, q̇〉+ 〈p− Lq̇, dq̇〉 − 〈Lq, dq〉

from which Hamilton’s principle δS = 0 for S =
∫ t1
t0
〈p, q̇〉 − H(q, p) dt produces Hamilton’s

canonical equations,
Hp = q̇ and Hq = −Lq = − ṗ .
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• Exercise: Show that Hamilton’s principle δS = 0 with S =
∫ b
a L(q, q̇)dt implies Euler-

Lagrange (EL) equations:

ṗ(q, q̇) =
d

dt

∂L(q, q̇)

∂q̇
=
∂L(q, q̇)

∂q
.

What are the results for δS = 0 with S =
∫ b
a 〈p, q̇〉 −H(q, p) dt?

• When L = KE = 1
2gq(q̇, q̇) =: 1

2‖q̇‖
2, the solution q(t) of the EL equations that passes from

point q(a) to q(b) is a geodesic with respect to the metric gq.

In mechanics the point q(b) is determined at time t = b from the solution q(t) to the initial
value problem for EL equations with q and q̇ specified at the initial time, e.g., at t = a.

It is also possible to phrase this as a boundary value problem in time, by specifying endpoint
positions q(a) and q(b) instead of the initial values of q and q̇.

Geometric Mechanics is exemplified by mechanics on Lie groups

This is a topic invented by H. Poincaré in 1901 [Po1901].

group
Lie group, G
identity element, e
Lie algebra, g
tangent vectors

conjugation map
Lie algebra bracket,
[ · , · ] : g× g→ g
Jacobi identity
basis vectors, ek ∈ g

structure constants
reduced Lagrangian
dual Lie algebra, g∗

dual basis, ek ∈ g∗

pairing, g∗ × g→ R

• A group is a set of elements with an associative binary product that has a unique inverse and
identity element.

• A Lie group G is a group that depends smoothly on a set of parameters in Rdim(G).

A Lie group is also a manifold, so it is an interesting arena for geometric mechanics.

• Choose the manifold M for mechanics as discussed above to be the Lie group G and denote
the identity element as the point e. The identity element e satisfies eg = g = ge for all g ∈ G,
where the group product denoted by concatenation.

• The Lie algebra g of the Lie group G is defined as the space of tangent vectors g ∼= TeG at
the identity e of the group.

The Lie algebra has a bracket operation [ · , · ] : g×g→ g, which it inherits from linearisation at
the identity e of the conjugation map h ·g = hgh−1 for g, h ∈ G. For this, one begins with the
conjugation map h(t) · g(s) = h(t)g(s)h(t)−1 for curves g(s), h(t) ∈ G, with g(0) = e = h(0).
One linearises at the identity, first in s to get the operation Ad : G × g → g and then in t
to get the operation ad : g × g → g, which yields the Lie bracket. The bracket operation is
antisymmetric [a, b] = −[b, a] and satisfies the Jacobi condition for a, b, c ∈ g,

[a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0 . (13)

The bracket operation among the basis vectors ek ∈ g with k = 1, 2, . . . ,dim(g) defines the
Lie algebra by its structure constants cij

k in (summing over repeated indices)

[ei , ej ] = cij
kek . (14)
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The requirement of skew-symmetry and the Jacobi condition put constraints on the structure
constants. These constraints are

– skew-symmetry
ckji = − ckij , (15)

– Jacobi identity
ckijc

m
lk + cklic

m
jk + ckjlc

m
ik = 0 . (16)

Conversely, any set of constants ckij that satisfy relations (15)–(16) defines a Lie algebra g.

Exercise: Prove that the Jacobi condition requires the relation (16).

Hint: the Jacobi condition involves summing three terms of the form

[ el , [ ei , ej ] ] = ckij [ el , ek] = ckijc
m
lkem .

Exercise: Prove that the Jacobi condition (13) arises from the linearisation of (6).

H. Poincaré’s contribution [Po1901].

To understand [Po1901], let’s begin by endowing the Lie algebra g with a constant Riemannian
metric K : g× g→ R and introducing two more definitions.

1. Define a reduced Lagrangian l : g → R and an associated variational principle δS = 0 with
S =

∫ b
a l(ξ)dt where ξ = ξkek ∈ g has components ξk in the set of basis vectors ek.

2. Define the dual Lie algebra g∗ by using the fibre derivative of the Lagrangian l : g→ R as

µ :=
∂l(ξ)

∂ξ
∈ g∗ .

The relation dl = 〈µ, dξ〉 defines a pairing 〈 · , · 〉 : g∗ × g → R. A natural dual basis for g∗

would satisfy 〈ej , ek〉 = δjk in this pairing and an element µ ∈ g∗ would have components in
this dual basis given by µ = µke

k, again with with k = 1, 2, . . . ,dim(g).

• Exercise:

(a) Show that Hamilton’s principle δS = 0 with S =
∫ b
a l(ξ)dt implies the Euler-Poincaré

(EP) equations:
d

dt
µi(ξ) =

d

dt

∂l(ξ)

∂ξi
= − cijkξjµk(ξ) ,

for variations given by δξ = η̇ + [ξ, η] with ξ, η ∈ g.

(b) Show that this variational formulation recovers Poincaré’s equations introduced in [Po1901].

• Exercise: The Lie algebra so(3) of the Lie group SO(3) of rotations in three dimensions
has structure constants cij

k = εij
k, where εij

k with i, j, k ∈ {1, 2, 3} is totally antisymmetric
under pairwise permutations of its indices, with ε12

3 = 1, ε21
3 = −1, etc.

(a) Identify the Lie bracket [a, b] of two elements a = aiei, b = bjej ∈ so(3) with the cross
product a× b of two vectors a,b ∈ R3 according to

(b) Show that this formula implies the Jacobi identity for the cross product of vectors in R3.
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This is no surprise because, that familiar cross product relation for vectors may be proven by
using the antisymmetric tensor εij

k.

[a, b] = [aiei, b
jej ] = aibjεij

kek = (a× b)kek .

(c) Show that for vectors in R3 the EP equation

µ̇i = −εijkξjµk

is equivalent to the vector equation for ξ,µ ∈ R3

µ̇ = − ξ × µ .

(d) Show that when the Lagrangian is given by the quadratic expression

l(ξ) =
1

2
‖ξ‖2K =

1

2
ξ ·Kξ =

1

2
ξiKijξ

j

for a symmetric constant Riemannian metric KT = K, then Euler’s equations for a rotating
rigid body are recovered.

(d) Identify the functional dependence of µ on ξ and give the physical meanings of the symbols
ξ,µ and K in Euler’s rigid body equations.
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