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Where are we going in this course?

1. Euler–Poincaré equation

2. Rigid body

3. Spherical pendulum

4. Elastic spherical pendulum

5. Differential forms

e

Where have we been so far?

• Mathematical setting for geometric mechanics, first on manifolds, then on (matrix) Lie
groups

– Manifold M 'loc Rn e.g., n = 1 (scalars), n = m (m-vectors), n = m × m
(matrices),

1
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– Motion equation on TM : q̇(t) = f(q) =⇒ transformation theory (pullbacks and
all that)

– Hamilton’s principle for Lagrangian L : TM → R vector fields

∗ Euler–Lagrange equations on T ∗M

∗ Hamilton’s canonical equations on T ∗M

∗ Euler–Poincaré eqns on T ∗eG ' g∗ for reduced Lagrangian ` : g → R, e.g.,
rigid body.

	
  

Figure 1: The fabric of geometric mechanics is woven by a network of fundamental contri-
butions by at least a dozen people to the dual fields of optics and motion.

1 Euler–Poincaré Theorem

The definition of an invariant (or symmetric) function under a group action is as follows:

Definition 1.1. Let G act on TG by left translation. A function F : TG→ R is called left
invariant if and only if

F (h(g, ġ)) = F (g, ġ) for all (g, ġ) ∈ TG ,

where
h(g, ġ) := (gh, TeLg(ḣ)) .
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If the Lagrangian is left invariant, then:

L(g, ġ) = L(g−1g, g−1ġ) = L(e, g−1ġ) = L(e, ξ) for all (g, ġ) ∈ TG,

where ξ := g−1ġ. Note that in this case the Lagrangian satisfies

L(g, ġ) = L(e, ξ),

so it is independent of g.
This equation can be re-expressed as

d

dt

(
δl

δξ

)
= ad∗ξ

δl

δξ
,

where l is defined to be the restriction of L to g:

l : g→ R , l(ξ) := L(e, ξ) for all g ∈ ξ .

The following theorem is now easily verified:

Theorem 1.1 (Euler–Poincaré reduction). Let G be a Lie group, L : TG → R a left-
invariant Lagrangian, and define the reduced Lagrangian,

l : g→ R, l(ξ) := L(e, ξ) ,

as the restriction of L to g. For a curve g(t) ∈ G, let

ξ(t) = g(t)−1ġ(t) := Tg(t)Lg(t)−1 ġ(t) ∈ g .

Then, the following four statements are equivalent:

(i) The variational principle

δ

∫ b

a

L(g(t), ġ(t))dt = 0

holds, for variations among paths with fixed endpoints.

(ii) g(t) satisfies the Euler–Lagrange equations for Lagrangian L defined on G.

(iii) The variational principle

δ

∫ b

a

l(ξ(t))dt = 0

holds on g, using variations of the form δξ = η̇+ [ξ, η], where η(t) is an arbitrary path
in g that vanishes at the endpoints, i.e. η(a) = 0 = η(b).

(iv) The (left invariant) Euler–Poincaré equations hold:

d

dt

δl

δξ
= ad∗ξ

δl

δξ
,

where 〈ad∗ξµ, η〉 := 〈µ, adξη〉, for µ ∈ g∗ and ξ, η ∈ g.
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Remark 1.1. A similar statement holds, with obvious changes for right-invari-
ant Lagrangian systems on TG. In this case the Euler-Poincaré equations are given by:

d

dt

δl

δξ
= − ad∗ξ

δl

δξ
, (1.1)

with the opposite sign.

Exercise. [Components of ad∗ξµ]

If µ = µie
i, ξ = ξjej and η = ηkek, with [ej, ek] = cljkel and 〈ei, ej〉 = δji , show

that
(ad∗ξµ)k = ξjµic

i
jk .

F

Reconstruction

The reconstruction of the solution g(t) of the Euler–Lagrange equations, with initial condi-
tions g(0) = g0 and ġ(0) = v0, is as follows: first, solve the initial value problem for the right
invariant Euler–Poincaré equations:

d

dt

δl

δξ
= ad∗ξ

δl

δξ
with ξ(0) = ξ0 := g−1

0 v0 .

Second, using the solution ξ(t) of the above, find the curve g(t) ∈ G by solving the recon-
struction equation

ġ(t) = g(t)ξ(t) with g(0) = g0 ,

which is a differential equation with time-dependent coefficients.

Exercise. Prove the Euler–Poincaré reduction Theorem 1.1. F

Exercise. Write out the proof of the Euler–Poincaré reduction theorem for right-
invariant Lagrangians and describe the corresponding reconstruction procedure.

F

Exercise. [Motion on SO(4)]
Write out the Euler–Poincaré equations in matrix form for a free rigid body fixed
at its centre of mass in a 4-dimensional space. Use the analogue of the ‘hat’ map
for so(4) and write the R6 vector representation of the equations. F

Exercise. Consider the following action of a Lie group G on a product space
G× Y, where Y is some manifold:

(g , (h, y))→ (gh, y).

Let L : T (G × Y ) → R be invariant with respect to this action. Define l :
g× TY → R as the restriction of L, i.e.

l(ξ, y, ẏ) := L(e, ξ, y, ẏ).
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Deduce the reduced Hamilton’s principle for l and show that the equations of
motion are given by

d

dt

δl

δξ
= ad∗ξ

δl

δξ
,

d

dt

δl

δẏ
=
δl

δy
.

F

What will we investigate about the rigid body?

1. Euler–Poincaré equation in R3

2. Hamilton-Pontryagin matrix form

3. Noether theorem (coadjoint motion)

4. Manakov’s matrix commutator form

5. Isospectral eigenvalue problem

6. Hamiltonian forms
(both Lie-Poisson and Nambu)

7. Clebsch variational form
(momentum map)

2 Lagrangian Euler–Poincaré form of rigid-body mo-

tion

In the absence of external torques, Euler’s equations for rigid-body motion in principal axis
coordinates are

I1Ω̇1 = (I2 − I3)Ω2Ω3,

I2Ω̇2 = (I3 − I1)Ω3Ω1,

I3Ω̇3 = (I1 − I2)Ω1Ω2,

(2.1)

or, equivalently,
IΩ̇ = IΩ×Ω , (2.2)

where Ω = (Ω1,Ω2,Ω3) is the body angular velocity vector and I = diag(I1, I2, I3) is the
moment of inertia tensor, which is diagonal in the principal axis frame of the rigid body.
The moment of inertia I defines the following quadratic form Ia ·b associated to the bilinear
symmetric form for R3 vectors a and b in the body’s principal axis frame,

(a, b) :=

∫
B
ρ0(X)(a×X) · (b×X)d3X = Ia · b = aiIijbj . (2.3)

Thus, the body’s distribution of mass density ρ0(X) induces a Riemannian metric I for
lowering indices of vectors in the body frame. That is, I : R3 → R3∗ ' R3. By the hat map
then I : so(3)→ so(3)∗ ' R3.

We ask whether Equations (2.1) may be expressed using Hamilton’s principle on R3. For
this, we will need to define the variational derivative of a functional S[(Ω].
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Definition 2.1 (Variational derivative). The variational derivative of a functional S[(Ω] is
defined as its linearisation in an arbitrary direction δΩ in the vector space of body angular
velocities. That is,

δS[Ω] := lim
s→0

S[Ω + sδΩ]− S[Ω]

s
=
d

ds

∣∣∣
s=0

S[Ω + sδΩ]=:
〈 δS
δΩ

, δΩ
〉
,

where the new pairing, also denoted as 〈 · , · 〉, is between the space of body angular velocities
and its dual, the space of body angular momenta.

Theorem 2.1 (Euler’s rigid-body equations).
Euler’s rigid-body equations are equivalent to Hamilton’s principle

δS(Ω) = δ

∫ b

a

l(Ω) dt = 0, (2.4)

in which the Lagrangian l(Ω) appearing in the action integral S(Ω) =
∫ b
a
l(Ω) dt is

given by the kinetic energy in principal axis coordinates,

l(Ω) =
1

2
(Ω,Ω) :=

1

2
IΩ ·Ω =

1

2
(I1Ω2

1 + I2Ω2
2 + I3Ω2

3) , (2.5)

and variations of Ω are restricted to be of the form

δΩ = Ξ̇ + Ω×Ξ , (2.6)

where Ξ(t) is a curve in R3 that vanishes at the endpoints in time.

Proof. Since l(Ω) = 1
2
〈IΩ,Ω〉, and I is symmetric, one obtains

δ

∫ b

a

l(Ω) dt =

∫ b

a

〈
IΩ, δΩ

〉
dt

=

∫ b

a

〈
IΩ, Ξ̇ + Ω×Ξ

〉
dt

=

∫ b

a

[〈
− d

dt
IΩ,Ξ

〉
+
〈
IΩ,Ω×Ξ

〉]
dt

=

∫ b

a

〈
− d

dt
IΩ + IΩ×Ω, Ξ

〉
dt+

〈
IΩ, Ξ

〉∣∣∣tb
ta
,

upon integrating by parts. The last term vanishes, because of the endpoint conditions,

Ξ(a) = 0 = Ξ(b) .

Since Ξ is otherwise arbitrary, (2.4) is equivalent to

− d

dt
(IΩ) + IΩ×Ω = 0,

which recovers Euler’s Equations (2.1) in vector form.
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Proposition 2.1 (Derivation of the restricted variation).
The restricted variation in (2.6) arises via the following steps:

(i) Vary the definition of the body angular velocity, Ω̂ = O−1Ȯ.

(ii) Take the time derivative of the variation, Ξ̂ = O−1O ′.

(iii) Use the equality of cross derivatives, O ˙ ′ = d2O/dtds = O ′ .̇

(iv) Apply the hat map.

Proof. One computes directly that

Ω̂ ′ = (O−1Ȯ) ′ = −O−1O ′O−1Ȯ +O−1O ˙ ′ = − Ξ̂ Ω̂ +O−1O ˙ ′ ,

Ξ̂ ˙ = (O−1O ′) ˙ = −O−1ȮO−1O ′ +O−1O ′ ˙ = − Ω̂ Ξ̂ +O−1O ′ ˙ .

On taking the difference, the cross derivatives cancel and one finds a variational formula
equivalent to (2.6),

Ω̂ ′ − Ξ̂ ˙ =
[

Ω̂ , Ξ̂
]

with
[

Ω̂ , Ξ̂
]

:= Ω̂ Ξ̂− Ξ̂ Ω̂ . (2.7)

Under the bracket relation [
Ω̂ , Ξ̂

]
= (Ω×Ξ)̂

for the hat map, this equation recovers the vector relation (2.6) in the form

Ω ′ − Ξ̇ = Ω×Ξ . (2.8)

Thus, Euler’s equations for the rigid body in TR3,

IΩ̇ = IΩ×Ω , (2.9)

do follow from the variational principle (2.4) with variations of the form (2.6) derived from

the definition of body angular velocity Ω̂.

Remark 2.1. The body angular velocity is expressed in terms of the spatial angular velocity
by Ω(t) = O−1(t)ω(t). Consequently, the kinetic energy Lagrangian in (2.5) transforms as

l(Ω) =
1

2
Ω · IΩ =

1

2
ω · Ispace(t)ω =: lspace(ω) ,

where
Ispace(t) = O(t)IO−1(t) .

Exercise. Show that Hamilton’s principle for the action

S(ω) =

∫ b

a

lspace(ω) dt

yields conservation of spatial angular momentum

π = Ispace(t)ω(t) .

Hint: First derive the formula δIspace = [ξ, Ispace] with right-invariant ξ = δOO−1.F
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Exercise. (Noether’s theorem for the rigid body) What conservation law
does Noether’s theorem imply for the rigid-body Equations (2.2)?

Hint: Transform the endpoint terms arising on integrating the variation δS by
parts in the proof of Theorem 2.1 into the spatial representation by setting Ξ =
O−1(t)Γ and Ω = O−1(t)ω. F

Remark 2.2 (Reconstruction of O(t) ∈ SO(3)).
The Euler solution is expressed in terms of the time-dependent angular velocity vector
in the body, Ω. The body angular velocity vector Ω(t) yields the tangent vector Ȯ(t) ∈
TO(t)SO(3) along the integral curve in the rotation group O(t) ∈ SO(3) by the relation

Ȯ(t) = O(t)Ω̂(t) , (2.10)

where the left-invariant skew-symmetric 3× 3 matrix Ω̂ is defined by the hat map

(O−1Ȯ)jk = Ω̂jk = −Ωiεijk . (2.11)

Equation (2.10) is the reconstruction formula for O(t) ∈ SO(3).

Once the time dependence of Ω(t) and hence Ω̂(t) is determined from the Euler equa-
tions, solving formula (2.10) as a linear differential equation with time-dependent coeffi-
cients yields the integral curve O(t) ∈ SO(3) for the orientation of the rigid body.

2.1 Hamilton–Pontryagin constrained variations

Formula (2.7) for the variation Ω̂ of the skew-symmetric matrix

Ω̂ = O−1Ȯ

may be imposed as a constraint in Hamilton’s principle and thereby provide a variational
derivation of Euler’s Equations (2.1) for rigid-body motion in principal axis coordinates.
This constraint is incorporated into the matrix Euler equations, as follows.

Proposition 2.2 (Matrix Euler equations). Euler’s rigid-body equation may be written in
matrix form as

dΠ

dt
= −

[
Ω̂ , Π

]
with Π = IΩ̂ =

δl

δΩ̂
, (2.12)

for the Lagrangian l(Ω̂) given by

l =
1

2

〈
IΩ̂ , Ω̂

〉
. (2.13)

Here, the bracket [
Ω̂ , Π

]
:= Ω̂Π− ΠΩ̂ (2.14)

denotes the commutator and 〈 · , · 〉 denotes the trace pairing, e.g.,〈
Π , Ω̂

〉
=:

1

2
trace

(
ΠT Ω̂

)
. (2.15)
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Remark 2.3. Note that the symmetric part of Π does not contribute in the pairing and if
set equal to zero initially, it will remain zero.

Proposition 2.3 (Constrained v̇ariational ṗrinciple).
The matrix Euler Equations (2.12) are equivalent to stationarity δS = 0 of the following
constrained action:

S(Ω̂, O, Ȯ,Π) =

∫ b

a

l(Ω̂, O, Ȯ,Π) dt (2.16)

=

∫ b

a

[
l(Ω̂) +

〈
Π , (O−1Ȯ − Ω̂ )

〉]
dt .

Remark 2.4. The integrand of the constrained action in (2.16) is similar to the formula for
the Legendre transform, but its functional dependence is different. This variational approach
is related to the classic Hamilton–Pontryagin principle for control theory. It has also
be used to develop algorithms for geometric numerical integrations of rotating motion.

Proof. The variations of S in formula (2.16) are given by

δS =

∫ b

a

{〈 ∂l

∂Ω̂
− Π , δΩ̂

〉
+
〈
δΠ , (O−1Ȯ − Ω)

〉
+
〈

Π , δ(O−1Ȯ)
〉}

dt ,

where
δ(O−1Ȯ) = Ξ̂ ˙ +

[
Ω̂ , Ξ̂

]
, (2.17)

and Ξ̂ = (O−1δO) from Equation (2.7).

Substituting for δ(O−1Ȯ) into the last term of δS produces∫ b

a

〈
Π , δ(O−1Ȯ)

〉
dt =

∫ b

a

〈
Π , Ξ̂ ˙ + [ Ω̂ , Ξ̂ ]

〉
dt

=

∫ b

a

〈
− Π˙− [ Ω̂ , Π ] , Ξ̂

〉
dt

+
〈

Π , Ξ̂
〉∣∣∣b

a
, (2.18)

where one uses the cyclic properties of the trace operation for matrices,

trace
(

ΠT Ξ̂ Ω̂
)

= trace
(

Ω̂ ΠT Ξ̂
)
. (2.19)

Thus, stationarity of the Hamilton–Pontryagin variational principle for vanishing endpoint
conditions Ξ̂(a) = 0 = Ξ̂(b) implies the following set of equations:

∂l

∂Ω̂
= Π , O−1Ȯ = Ω̂ , Π˙ = −[ Ω̂ , Π ] . (2.20)

These are the Euler rigid body equations in matrix form on SO(n).
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Remark 2.5 (Interpreting the formulas in (2.20)).
The first formula in (2.20) defines the angular momentum matrix Π as the fibre derivative

of the Lagrangian with respect to the angular velocity matrix Ω̂. The second formula is
the reconstruction formula (2.10) for the solution curve O(t) ∈ SO(3), given the solution

Ω̂(t) = O−1Ȯ. And the third formula is Euler’s equation for rigid-body motion in matrix
form.

Exercise. Use the fibre derivative relation to compute the Hamiltonian h(Π)
via the Legendre transform,

h(Π) = 〈Π, Ω̂〉 − l(Ω̂) (2.21)

then express the matrix Euler rigid body equations in Hamiltonian form as a
Poisson bracket relation. F

Answer. The Hamiltonian h(Π) satisfies

dh(Π) =

〈
dΠ,

∂h

∂Π

〉
=
〈
dΠ, Ω̂

〉
−
〈

Π− ∂l

∂Ω̂
, dΩ̂

〉
so that

Π =
∂l

∂Ω̂
,

∂h

∂Π
= Ω̂

The matrix Euler rigid body equations (2.20) are then expressed as

dΠ

dt
= −

[
∂h

∂Π
, Π

]
(2.22)

and a function f(Π) has time derivative

d

dt
f(Π) = −

〈
∂f

∂Π
,

[
∂h

∂Π
, Π

]〉
= −

〈
Π,

[
∂f

∂Π
,
∂h

∂Π

]〉
=:
{
f, h

}
(Π) .

(2.23)

The last expression defines the Lie-Poisson bracket, which inherits the Jacobi
property from the matrix commutator. N

Exercise. Use equation (2.21) to rewrite the Hamilton–Pontryagin varia-
tional principle (2.16) as δS = 0 for the action

S(O−1Ȯ,Π) =

∫ b

a

(〈
Π , O−1Ȯ

〉
− h(Π)

)
dt . (2.24)

Take the variations using (2.17) and recover the Hamiltonian form of the
matrix Euler rigid body equations (2.20). How does this compare with the

results for δS = 0 with S =
∫ b
a
〈p, q̇〉 −H(q, p) dt? F
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Exercise. Write the Lie-Poisson bracket in (2.23) in three dimensions for so(3)∗

in R3 vector form by using the hat map. Thereby, discover the Nambu bracket
form of the rigid body equations. F

Answer. In R3 vector form the Lie-Poisson bracket in (2.23) becomes

d

dt
f(Π) = − ∂f

∂Π
· ∂h
∂Π
×Π = −Π · ∂f

∂Π
× ∂h

∂Π
=:
{
f, h

}
(Π) . (2.25)

Euler’s equations are recovered by setting f(Π) = Π

dΠ

dt
= − ∂h

∂Π
×Π =:

{
Π, h

}
. (2.26)

If we write c(Π) = 1
2
‖Π‖2, then the Lie-Poisson bracket in (2.25) may be ex-

pressed in Nambu bracket form,

d

dt
f(Π) = − ∂c

∂Π
· ∂f
∂Π
× ∂h

∂Π
=:
{
c, f, h

}
(Π) , (2.27)

which is the triple scalar product of gradients in Π.1 N

Remark 2.6 (Interpreting the endpoint terms in (2.18)).
We transform the endpoint terms in (2.18), arising on integrating the variation δS by parts

in the proof of Theorem 2.1 into the spatial representation by setting Ξ̂(t) =: O(t) ξ̂ O−1(t)

and Π̂(t) =: O(t)π̂(t)O−1(t), as follows:〈
Π , Ξ̂

〉
= trace

(
ΠT Ξ̂

)
= trace

(
πT ξ̂

)
=
〈
π , ξ̂

〉
. (2.28)

Thus, the vanishing of both endpoints for a constant infinitesimal spatial rotation ξ̂ =
(δOO−1) = const implies

π(a) = π(b) . (2.29)

This is Noether’s theorem for the rigid body.

Theorem 2.2 (Noether’s theorem for the rigid body).
Invariance of the constrained Hamilton–Pontryagin action under spatial rotations implies
conservation of spatial angular momentum,

π = O−1(t)Π(t)O(t) =: Ad∗O−1(t)Π(t). (2.30)

Proof.

d

dt

〈
π , ξ̂

〉
=

d

dt

〈
O−1ΠO , ξ̂

〉
=

d

dt
trace

(
ΠT O−1ξ̂O

)
=

〈 d

dt
Π +

[
Ω̂ , Π

]
, O−1ξ̂O

〉
= 0

=:
〈 d

dt
Π− ad∗

Ω̂
Π , AdO−1 ξ̂

〉
,

d

dt

〈
Ad∗O−1Π , ξ̂

〉
=

〈
Ad∗O−1

( d

dt
Π− ad∗

Ω̂
Π
)
, ξ̂
〉
. (2.31)

1The Lie-Poisson and Nambu brackets introduced by discovery in these two exercises will be discussed
further below.
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The proof of Noether’s theorem for the rigid body is already on the second line. However,
the last line gives a general result.

Remark 2.7. The proof of Noether’s theorem for the rigid body when the constrained Hamilton–
Pontryagin action is invariant under spatial rotations also proves a general result in Equa-
tion (2.31), with Ω̂ = O−1Ȯ for a Lie group O, that

d

dt

(
Ad∗O−1Π

)
= Ad∗O−1

( d

dt
Π− ad∗

Ω̂
Π
)
. (2.32)

This equation will be useful in the remainder of the text. In particular, it provides the solution
of a differential equation defined on the dual of a Lie algebra. Namely, for a Lie group O
with Lie algebra o, the equation for Π ∈ o∗ and Ω̂ = O−1Ȯ ∈ o

d

dt
Π− ad∗

Ω̂
Π = 0 has solution Π(t) = Ad∗O(t)π , (2.33)

in which the constant π ∈ o∗ is obtained from the initial conditions.

-

Equivariant
Momentum Map

T ∗G T ∗G
Φg(t)

?

J(t)

-
Ad∗g(t)−1

?

g∗ g∗ ' T ∗G/G

J(0)

e

2.2 Manakov’s formulation of the SO(n) rigid body

Proposition 2.4 (Manakov [Man1976]). Euler’s equations for a rigid body on SO(n) take
the matrix commutator form,

dM

dt
=
[
M , Ω

]
with M = AΩ + ΩA , (2.34)

where the n × n matrices M, Ω are skew-symmetric (forgoing superfluous hats) and A is
symmetric.

Proof. Manakov’s commutator form of the SO(n) rigid-body Equations (2.34) follows as the
Euler–Lagrange equations for Hamilton’s principle δS = 0 with S =

∫
l dt for the Lagrangian

l = −1

2
tr(ΩAΩ) ,
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where Ω = O−1Ȯ ∈ so(n) and the n × n matrix A is symmetric. Taking matrix variations
in Hamilton’s principle yields

δS = −1

2

∫ b

a

tr
(
δΩ (AΩ + ΩA)

)
dt = −1

2

∫ b

a

tr
(
δΩM

)
dt ,

after cyclically permuting the order of matrix multiplication under the trace and substituting
M := AΩ + ΩA. Using the variational formula (2.17) for δΩ now leads to

δS = −1

2

∫ b

a

tr
(
(Ξ˙ + ΩΞ− ΞΩ)M

)
dt .

Integrating by parts and permuting under the trace then yields the equation

δS =
1

2

∫ b

a

tr
(
Ξ ( Ṁ + ΩM −MΩ )

)
dt .

Finally, invoking stationarity for arbitrary Ξ implies the commutator form (2.34).

2.3 Matrix Euler–Poincaré equations

Manakov’s commutator form of the rigid-body equations recalls much earlier work by Poincaré
[Po1901], who also noticed that the matrix commutator form of Euler’s rigid-body equations
suggests an additional mathematical structure going back to Lie’s theory of groups of trans-
formations depending continuously on parameters. In particular, Poincaré [Po1901] remarked
that the commutator form of Euler’s rigid-body equations would make sense for any Lie al-
gebra, not just for so(3). The proof of Manakov’s commutator form (2.34) by Hamilton’s
principle is essentially the same as Poincaré’s proof in [Po1901], which is translated into
English and discussed thoroughly in [JKLOR2011].

Theorem 2.3 (Matrix Euler–Poincaré equations).
The Euler–Lagrange equations for Hamilton’s principle δS = 0 with S =

∫
l(Ω) dt may

be expressed in matrix commutator form,

dM

dt
=
[
M , Ω

]
with M =

δl

δΩ
, (2.35)

for any Lagrangian l(Ω), where Ω = g−1ġ ∈ g and g is the matrix Lie algebra of any
matrix Lie group G.

Proof. The proof here is the same as the proof of Manakov’s commutator formula via
Hamilton’s principle, modulo replacing O−1Ȯ ∈ so(n) with g−1ġ ∈ g.

Remark 2.8. Poincaré’s observation leading to the matrix Euler–Poincaré Equation (2.35)
was reported in two pages with no references [Po1901]. The proof above shows that the matrix
Euler–Poincaré equations possess a natural variational principle. Note that if Ω = g−1ġ ∈ g,
then M = δl/δΩ ∈ g∗, where the dual is defined in terms of the matrix trace pairing.
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Exercise. Retrace the proof of the variational principle for the Euler–Poincaré
equation, replacing the left-invariant quantity g−1ġ with the right-invariant quan-
tity ġg−1. F

2.4 An isospectral eigenvalue problem for the SO(n) rigid body

The solution of the SO(n) rigid-body dynamics

dM

dt
= [M , Ω ] with M = AΩ + ΩA , (2.36)

for the evolution of the n× n skew-symmetric matrices M, Ω, with constant symmetric
A, is given by a similarity transformation (later to be identified as coadjoint motion),

M(t) = O(t)−1M(0)O(t) =: Ad∗O(t)M(0) ,

with O(t) ∈ SO(n) and Ω := O−1Ȯ(t). Consequently, the evolution of M(t) is isospec-
tral. This means that

• The initial eigenvalues of the matrix M(0) are preserved by the motion; that is,
dλ/dt = 0 in

M(t)ψ(t) = λψ(t) ,

provided its eigenvectors ψ ∈ Rn evolve according to

ψ(t) = O(t)−1ψ(0) .

The proof of this statement follows from the corresponding property of similarity
transformations.

• Its matrix invariants are preserved:

d

dt
tr(M − λId)K = 0 ,

for every non-negative integer power K.

This is clear because the invariants of the matrix M may be expressed in terms of
its eigenvalues; but these are invariant under a similarity transformation.

Proposition 2.5. Isospectrality allows the quadratic rigid-body dynamics (2.36) on
SO(n) to be rephrased as a system of two coupled linear equations: the eigenvalue prob-
lem for M and an evolution equation for its eigenvectors ψ, as follows:

Mψ = λψ and ψ̇ = −Ωψ , with Ω = O−1Ȯ(t) .

Proof. Applying isospectrality in the time derivative of the first equation yields

( Ṁ + [ Ω,M ] )ψ + (M − λId)(ψ̇ + Ωψ) = 0 .

Now substitute the second equation to recover the SO(n) rigid-body dynamics (2.36).
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3 Hamiltonian form of rigid-body motion

The Legendre transform of the Lagrangian (2.5) in the variational principle (2.4) for
Euler’s rigid-body dynamics (2.9) on R3 will reveal its well-known Hamiltonian formulation.

Definition 3.1 (Legendre transformation).
The Legendre transformation Fl : R3 → R3∗ ' R3 is defined by the fibre derivative,

Fl(Ω) =
δl

δΩ
= Π .

The Legendre transformation defines the body angular momentum by the variations
of the rigid body’s reduced Lagrangian with respect to the body angular velocity. For the
Lagrangian in (2.4), the R3 components of the body angular momentum are

Πi = IiΩi =
∂l

∂Ωi

, i = 1, 2, 3. (3.1)

3.1 Hamiltonian form and Poisson bracket

Definition 3.2 (Dynamical systems in Hamiltonian form).
A dynamical system on a manifold M

ẋ(t) = F(x) , x ∈M ,

is said to be in Hamiltonian form, if it can be expressed as

ẋ(t) = {x, H} , for H : M 7→ R ,

in terms of a Poisson bracket operation {· , ·} among smooth real functions F(M) : M 7→ R
on the manifold M ,

{· , ·} : F(M)×F(M) 7→ F(M) ,

so that Ḟ = {F , H} for any F ∈ F(M).

Definition 3.3 (Poisson bracket).
A Poisson bracket operation {· , ·} is defined as possessing the following properties:

• It is bilinear.

• It is skew-symmetric, {F , H} = −{H , F}.

• It satisfies the Leibniz rule (product rule),

{FG , H} = {F , H}G+ F{G , H} ,

for the product of any two functions F and G on M .
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• It satisfies the Jacobi identity,

{F , {G , H}}+ {G , {H , F}}+ {H , {F , G}} = 0 , (3.2)

for any three functions F , G and H on M .

Remark 3.1. This definition of a Poisson bracket does not require it to be the standard
canonical bracket in position q and conjugate momentum p, although it does include that
case as well.

3.2 Lie–Poisson Hamiltonian rigid-body dynamics

Let
h(Π) := Π ·Ω− l(Ω) , (3.3)

in terms of the vector dot product on R3. Hence, one finds the expected expression for the
rigid-body Hamiltonian

h =
1

2
Π · I−1Π :=

Π2
1

2I1

+
Π2

2

2I2

+
Π2

3

2I3

. (3.4)

The Legendre transform Fl for this case is a diffeomorphism, so one may solve for the body
angular velocity as the derivative of the reduced Hamiltonian with respect to the body
angular momentum, namely,

∂h

∂Π
= I−1Π = Ω . (3.5)

Hence, the reduced Euler–Lagrange equations for l may be expressed equivalently in angular
momentum vector components in R3 and Hamiltonian h as

d

dt
(IΩ) = IΩ×Ω⇐⇒ Π̇ = Π× ∂h

∂Π
:= {Π, h} .

This expression suggests we introduce the following rigid-body Poisson bracket on func-
tions of the Π’s:

{f, h}(Π) := −Π ·
(
∂f

∂Π
× ∂h

∂Π

)
. (3.6)

For the Hamiltonian (3.4), one checks that the Euler equations in terms of the rigid-body
angular momenta,

Π̇1 =

(
1

I3

− 1

I2

)
Π2Π3 ,

Π̇2 =

(
1

I1

− 1

I3

)
Π3Π1 ,

Π̇3 =

(
1

I2

− 1

I1

)
Π1Π2 ,

(3.7)
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that is, the equations
Π̇ = Π× I−1Π , (3.8)

are equivalent to
ḟ = {f, h} , with f = Π .

3.3 Lie–Poisson bracket

The Poisson bracket proposed in (3.6) is an example of a Lie–Poisson bracket.
It satisfies the defining relations of a Poisson bracket for a number of reasons, not least

because it is the hat map to R3 of the following bracket defined by the general form in
Equation (2.31) in terms of the so(3)∗ × so(3) pairing 〈 · , · 〉 in Equation (2.18). Namely,

dF

dt
=

〈
d

dt
Π,

∂F

∂Π

〉
=

〈
ad∗

Ω̂
Π,

∂F

∂Π

〉
=

〈
Π, adΩ̂

∂F

∂Π

〉
=

〈
Π,

[
Ω̂,

∂F

∂Π

]〉
= −

〈
Π,

[
∂F

∂Π
,
∂H

∂Π

]〉
, (3.9)

where we have used the equation corresponding to (3.5) under the inverse of the hat map

Ω̂ =
∂H

∂Π

and applied antisymmetry of the matrix commutator. Writing Equation (3.9) as

dF

dt
= −

〈
Π,

[
∂F

∂Π
,
∂H

∂Π

]〉
=:
{
F, H

}
(3.10)

defines the Lie–Poisson bracket { · , · } on smooth functions (F,H) : so(3)∗ → R. This
bracket satisfies the defining relations of a Poisson bracket because it is a linear functional
of the commutator product of skew-symmetric matrices, which is bilinear, skew-symmetric,
satisfies the Leibniz rule (because of the partial derivatives) and also satisfies the Jacobi
identity.

These Lie–Poisson brackets may be written in tabular form as

{Πi, Πj} =

{ · , · } Π1 Π2 Π3

Π1

Π2

Π3

0 −Π3 Π2

Π3 0 −Π1

−Π2 Π1 0

(3.11)

or, in index notation,
{Πi , Πj} = −εijkΠk = Π̂ij . (3.12)
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Remark 3.2. The Lie–Poisson bracket in the form (3.10) would apply to any Lie algebra.
This Lie–Poisson Hamiltonian form of the rigid-body dynamics substantiates Poincaré’s ob-
servation in [Po1901] that the corresponding equations could have been written on the dual
of any Lie algebra by using the ad∗ operation for that Lie algebra. See [JKLOR2011] for
more discussion.

The corresponding Poisson bracket in (3.6) in R3-vector form also satisfies the defining
relations of a Poisson bracket because it is an example of a Nambu bracket, to be discussed
next.

3.4 Nambu’s R3 Poisson bracket

The rigid-body Poisson bracket (3.6) is a special case of the Poisson bracket for functions of
x ∈ R3,

{f, h} = −∇c · ∇f ×∇h . (3.13)

This bracket generates the motion

ẋ = {x, h} = ∇c×∇h . (3.14)

For this bracket the motion takes place along the intersections of level surfaces of the func-
tions c and h in R3. In particular, for the rigid body, the motion takes place along inter-
sections of angular momentum spheres c = |x|2/2 and energy ellipsoids h = x · Ix. (See the
cover illustration of [MaRa1994].)

Exercise. Consider the Nambu R3 bracket

{f, h} = −∇c · ∇f ×∇h . (3.15)

Let c = xT · Cx/2 be a quadratic form on R3, and let C be the associated
symmetric 3 × 3 matrix. Show by direct computation that this Nambu bracket
satisfies the Jacobi identity. F

Exercise. Find the general conditions on the function c(x) so that the R3

bracket
{f, h} = −∇c · ∇f ×∇h

satisfies the defining properties of a Poisson bracket. Is this R3 bracket also a
derivation satisfying the Leibniz relation for a product of functions on R3? If so,
why? F

Answer.
The bilinear skew-symmetric Nambu R3 bracket yields the divergenceless vector field

Xc,h = { · , h} = (∇c×∇h) · ∇ with div(∇c×∇h) = 0 .

Divergenceless vector fields are derivative operators that satisfy the Leibniz product rule.
They also satisfy the Jacobi identity for any choice of C2 functions c and h. Hence, the
Nambu R3 bracket is a bilinear skew-symmetric operation satisfying the defining properties
of a Poisson bracket. N
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Theorem 3.1 (Jacobi identity). The Nambu R3 bracket (3.15) satisfies the Jacobi identity.

Proof. The isomorphism XH = { · , H} between the Lie algebra of divergenceless vector fields
and functions under the R3 bracket is the key to proving this theorem. The Lie derivative
among vector fields is identified with the Nambu bracket by

LXG
XH = [XG, XH ] = −X{G,H} .

Repeating the Lie derivative produces

LXF
(LXG

XH) = [XF , [XG, XH ] ] = X{F,{G,H}} .

The result follows because both the left- and right-hand sides in this equation satisfy the
Jacobi identity.

Exercise. How is the R3 bracket related to the canonical Poisson bracket?

Hint: Restrict to level surfaces of the function c(x). F

Exercise. (Casimirs of the R3 bracket) The Casimirs (or distinguished func-
tions, as Lie called them) of a Poisson bracket satisfy{

c, h
}

(x) = 0 , for all h(x) .

Suppose the function c(x) is chosen so that the R3 bracket (3.13) defines a proper
Poisson bracket. What are the Casimirs for the R3 bracket (3.13)? Why? F

Exercise. (Geometric interpretation of Nambu motion)

• Show that the Nambu motion equation (3.14)

ẋ = {x, h} = ∇c×∇h

for the R3 bracket (3.13) is invariant under a certain linear combination
of the functions c and h. Interpret this invariance geometrically.

• Show that the rigid-body equations (3.7) for

I = diag(1, 1/2, 1/3)

may be interpreted as intersections in R3 of the spheres x2
1 + x2

2 + x2
3 =

constant and the hyperbolic cylinders x2
1 − x2

3 = constant, as in Fig. 3.4.

• Show that the rigid-body equations (3.7) may be written as

ẋ1 = − a1a3x2x3 , ẋ2 = − a2a3x3x1 , ẋ3 = a1a2x1x2 , (3.16)

with nonzero constants a1, a2 and a3 that satisfy 1/a1 + 1/a2 = 1/a3.
Write these equations as a Nambu motion equation on R3 of the form
(3.14). Interpret the solutions of Equations (3.16) geometrically as inter-
sections of orthogonal cylinders (elliptic or hyperbolic) for various values
and signs of a1, a2 and a3, as in Fig. 3.4. F

Answer. ẋ := (ẋ1, ẋ2, ẋ3)T = 1
4
∇(a1x

2
1+a3x

2
3)×∇(a2x

2
2+a3x

2
3), where (a1, a2, a3)

may be written in terms of (I1, I2, I3), when they satisfy 1/a1 + 1/a2 = 1/a3. N
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Figure 2: Left: Rigid body motions, seen as intersections in R3 of the sphere x2
1 + x2

2 + x2
3 =

constant and the hyperbolic cylinders x2
1 − x2

3 = constant. Right: The same rigid body
motions, seen as intersections in R3 of orthogonal elliptic cylinders.

3.5 Clebsch variational principle for the rigid body

Proposition 3.1 (Clebsch variational principle).
The Euler rigid-body Equations (2.2) on TR3 are equivalent to the constrained varia-
tional principle,

δS(Ω,Q, Q̇; P) = δ

∫ b

a

l(Ω,Q, Q̇; P) dt = 0, (3.17)

for a constrained action integral

S(Ω,Q, Q̇) =

∫ b

a

l(Ω,Q, Q̇) dt (3.18)

=

∫ b

a

1

2
Ω · IΩ + P ·

(
Q̇ + Ω×Q

)
dt .

Remark 3.3 (Reconstruction as constraint).

• The first term in the Lagrangian (3.18),

l(Ω) =
1

2
(I1Ω2

1 + I2Ω2
2 + I3Ω2

3) =
1

2
ΩT IΩ , (3.19)

is again the (rotational) kinetic energy of the rigid body.

• The second term in the Lagrangian (3.18) introduces the Lagrange multiplier P
which imposes the constraint

Q̇ + Ω×Q = 0 .
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This reconstruction formula has the solution

Q(t) = O−1(t)Q(0) ,

which satisfies

Q̇(t) = − (O−1Ȯ)O−1(t)Q(0)

= − Ω̂(t)Q(t) = −Ω(t)×Q(t) . (3.20)

Proof. The variations of S are given by

δS =

∫ b

a

( δl

δΩ
· δΩ +

δl

δP
· δP +

δl

δQ
· δQ

)
dt

=

∫ b

a

[( δl
δΩ
−P×Q

)
· δΩ

+ δP ·
(
Q̇ + Ω×Q

)
− δQ ·

(
Ṗ + Ω×P

)]
dt .

Thus, stationarity of this implicit variational principle implies the following set of
equations:

Π :=
δl

δΩ
= P×Q , Q̇ = −Ω×Q , Ṗ = −Ω×P . (3.21)

Euler’s form of the rigid-body equations emerges from these symmetric equations, upon
elimination of Q and P, as

Π̇ = Ṗ×Q + P× Q̇

= Q× (Ω×P) + P× (Q×Ω)

= −Ω× (P×Q) = −Ω×Π ,

which are Euler’s equations for the rigid body in TR3 when Π = IΩ.

Remark 3.4. The Clebsch variational principle for the rigid body is a natural approach in
developing geometric algorithms for numerical integrations of rotating motion.

Remark 3.5. The Clebsch approach is also a natural path across to the Hamiltonian formu-
lation of the rigid-body equations. This becomes clear in the course of the following exercise.

Exercise. Given that the canonical Poisson brackets in Hamilton’s approach are{
Qi, Pj

}
= δij and

{
Qi, Qj

}
= 0 =

{
Pi, Pj

}
,

what are the Poisson brackets for Π=P×Q∈R3 in (3.21)? Show these Poisson
brackets recover the rigid-body Poisson bracket (3.6). F
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Answer. The components of the angular momentum Π = IΩ in (3.21) are

Πa = εabcPbQc ,

and their canonical Poisson brackets are (noting the similarity with the hat map){
Πa,Πi

}
=
{
εabcPbQc , εijkPjQk

}
= − εailΠl .

Consequently, the derivative property of the canonical Poisson bracket yields{
f, h
}

(Π) =
∂f

∂Πa

{
Πa,Πi

} ∂h
∂Πb

= − εabcΠc
∂f

∂Πa

∂h

∂Πb

, (3.22)

which is indeed the Lie–Poisson bracket in (3.6) on functions of the Π’s. The correspondence
with the hat map noted above shows that this Poisson bracket satisfies the Jacobi identity
as a result of the Jacobi identity for the vector cross product on R3. N

Remark 3.6. This exercise proves that the map T ∗R3 → R3 given by Π = P ×Q ∈ R3 in
(3.21) is Poisson. That is, the map takes Poisson brackets on one manifold into Poisson
brackets on another manifold. This is one of the properties of a momentum map.

-

Equivariant
Momentum Map

T ∗G T ∗G
Φg(t)

?

J(t)

-
Ad∗g(t)−1

?

g∗ g∗ ' T ∗G/G

J(0)

e

Definition: Cotangent lift (CL) momentum map The CL momentum map

J : T ∗M 7→ g∗

is defined for the Lie algebra action ξM(q) of ξ ∈ g on q in manifold M by the pairings

Jξ(p, q) :=
〈
J(p, q), ξ

〉
g∗×g

=
〈〈
pq, ξM(q)

〉〉
T ∗M×TM

where pq ∈ T ∗qM is the momentum at position q ∈ M and ξM(q) is the vector field
tangent to the flow of g(t) ∈ G at q.

Proposition. Jξ(p, q) is the Hamiltonian for the infinitesimal action ξM(q) and its
cotangent lift.
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Proof.

q̇ =
{
q, Jξ

}
= ξM(q) and ṗ =

{
p, Jξ

}
= − dξM

dq

T

· p

Example: Body angular momentum, G = SO(3) and M = R3

J(q, p) = p× q,
(
Body angular momentum J ∈ so(3)∗ ' R3

)
.

The Hamiltonian Jξ(q, p) = p× q · ξ generates the infinitesimal SO(3) rotations,

q′(t) =
{
q, Jξ(q, p)

}
= − ξ × q(t), p′(t) =

{
p, Jξ(q, p)

}
= − ξ × p(t),

for the canonical Poisson bracket
{
· , ·

}
. These imply the Euler-Poincaré (EP) equation

for J(q, p) = p× q ∈ so(3)∗ ' R3

J ′(t) = − ξ × J(t) = ad∗ξJ for ξ ∈ so(3) and J ∈ so(3)∗ .

Proof.

J ′(t) = p′(t)× q + p× q′(t)
= −(ξ × p)× q − p× (ξ × q)
= −q × (p× ξ)− p× (ξ × q)

By Jacobi identity = ξ × (q × p)
= − ξ × J
= ad∗ξJ

This calculation also illustrates the following.

Theorem. The CL momentum map J(p, q) is infinitesimally equivariant.

That is, the CL momentum map J(p, q) satisfies the EP equation, when (p, q) satisfy the
canonical equations for the Hamiltonian Jξ(p, q) = 〈pq,ΦM(q)〉. Consequently, (p, q) satisfy
the equations of motion for the canonical transformation Φg(t) of T ∗M and the momentum
map satisfies J ′(t) = ad∗ξJ , which is the infinitesimal (linearised) version of J(t) = Ad∗g(t)J(0).
To remind ourselves of the latter fact, we recall equation (2.32) in the present notation, as

d

dt

(
Ad∗g−1(t)J

)
= Ad∗g−1(t)

( d

dt
J − ad∗ξJ

)
= 0.
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Exercise. The Euler–Lagrange equations in matrix commutator form of Man-
akov’s formulation of the rigid body on SO(n) are

dM

dt
=
[
M , Ω

]
,

where the n× n matrices M, Ω are skew-symmetric. Show that these equations
may be derived from Hamilton’s principle δS = 0 with constrained action integral

S(Ω, Q, P ) =

∫ b

a

l(Ω) + tr
(
P T
(
Q̇−QΩ

))
dt ,

for which M is the cotangent lift momentum map

M =
∂l

∂Ω
=

1

2
(P TQ−QTP )

and Q,P ∈ SO(n) satisfy the following symmetric equations reminiscent of those
in (3.21),

Q̇ = QΩ and Ṗ = PΩ , (3.23)

as a result of the constraints.

Show that M satisfies the Euler-Poincaré equation

dM

dt
= ad∗ΩM = −

[
Ω, M

]
,

as it should, since it is a cotangent lift momentum map and those are equivariant.

F
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