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Where are we going in this course?

1. Euler—Poincaré equation 4. Elastic spherical pendulum
2. Rigid body

3. Spherical pendulum 5. Differential forms

Where have we been so far?

e Mathematical setting for geometric mechanics, first on manifolds, then on (matrix) Lie
groups

— Manifold M ~,. R" e.g., n = 1 (scalars), n = m (m-vectors), n = m x m
(matrices),
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— Motion equation on TM: ¢(t) = f(q) = transformation theory (pullbacks and
all that)

— Hamilton’s principle for Lagrangian L : TM — R vector fields

x Euler—Lagrange equations on T*M
+* Hamilton’s canonical equations on T M

* Buler-Poincaré eqns on 7G ~ g* for reduced Lagrangian ¢ : g — R, e.g.,
rigid body.

NEWTON & LEIBNIZ — FERMAT

Least time, variations
Calculus
\ EULER & LAGRANGE — POISSON

/ N
Flow —— Motion _ /\ ,
Smooth ~ 7~ Optics

| Manifolds HAMILTON
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Symmetry CARTAN (SR + GR)

Figure 1: The fabric of geometric mechanics is woven by a network of fundamental contri-
butions by at least a dozen people to the dual fields of optics and motion.

1 Euler—Poincaré Theorem

The definition of an invariant (or symmetric) function under a group action is as follows:

Definition 1.1. Let G act on TG by left translation. A function F : TG — R s called left
wnvariant if and only if

F(h(g,9)) = F(g,9) for all (g,9) € TG,

where

h(gvg) = (gtheLg(h)) .
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If the Lagrangian is left invariant, then:
L(g.9) = L(g~"9,97'9) = L(e.g7"9) = L(e,§) for all (g,9) € TG,
where £ := g~'§. Note that in this case the Lagrangian satisfies

L(g,9) = L(e,§),

so it is independent of g.
This equation can be re-expressed as

d (dl L 0l
i (i) =5
where [ is defined to be the restriction of L to g:
l:g—R, (&) :=L(e) for all g € €.
The following theorem is now easily verified:

Theorem 1.1 (Euler—Poincaré reduction). Let G be a Lie group, L : TG — R a left-
invartant Lagrangian, and define the reduced Lagrangian,

Lig— R, U(§):=L(e§),
as the restriction of L to g. For a curve g(t) € G, let
§(t) = g(t) ' 9(t) = Ty Ly 9(t) € 9.
Then, the following four statements are equivalent:
(i) The variational principle .
5 [ L. ge)d =0
holds, for variations among paths (zm'th fized endpoints.
(ii) g(t) satisfies the FEuler—Lagrange equations for Lagrangian L defined on G.
(iii) The variational principle
6/bl(§(t))dt — 0

holds on g, using variations of the form 6§ = 1+ [, n], where n(t) is an arbitrary path
in g that vanishes at the endpoints, i.e. n(a) =0 = n(b).

(iv) The (left invariant) Euler—Poincaré equations hold:

ol _ .ol
atoe . Mg

where (adep, n) := (p, aden), for p € g* and &, n € g.



Notes for Geometric Mechanics: Rigid body DD Holm Oct—Nov 2011 4

Remark 1.1. A similar statement holds, with obvious changes for right-invari-
ant Lagrangian systems on T'G. In this case the Euler-Poincaré equations are given by:

d dl ol
o= 1.1
atoe | e (1.1)
with the opposite sign.
Exercise. [Components of ad;]
If = pie’, € = &le; and i = ey, with [e;, ex] = e and (¢, ;) = 67, show
that o
(adip)s = Epicty,
*
Reconstruction

The reconstruction of the solution g(t) of the Euler-Lagrange equations, with initial condi-
tions ¢(0) = go and ¢(0) = vy, is as follows: first, solve the initial value problem for the right
invariant Euler—Poincaré equations:

d dl L 0l . 1
T = adgE with  £(0) =& =g o -

Second, using the solution £(t) of the above, find the curve g(t) € G by solving the recon-
struction equation

g(t) = g(1)€(t)  with  g(0) = go,

which is a differential equation with time-dependent coefficients.

Exercise. Prove the Euler—Poincaré reduction Theorem 1.1. *

Exercise. Write out the proof of the Euler—Poincaré reduction theorem for right-
invariant Lagrangians and describe the corresponding reconstruction procedure.

*

Exercise. [Motion on SO(4)]

Write out the Euler-Poincaré equations in matrix form for a free rigid body fixed
at its centre of mass in a 4-dimensional space. Use the analogue of the ‘hat” map
for s0(4) and write the R® vector representation of the equations. *

Exercise. Consider the following action of a Lie group G on a product space
G x Y, where Y is some manifold:

(9, (h,y)) = (gh,y).

Let L : T(G xY) — R be invariant with respect to this action. Define [ :
g x TY — R as the restriction of L, i.e.

1&y,9) == L(e,&,y,9).
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Deduce the reduced Hamilton’s principle for [ and show that the equations of
motion are given by

da_ 0 dd_a
dtog e dtéy oy’
*
What will we investigate about the rigid body?
1. Euler-Poincaré equation in R3 5. Isospectral eigenvalue problem

2. Hamilton-Pontryagin matrix form 6. Hamiltonian forms
(both Lie-Poisson and Nambu)
3. Noether theorem (coadjoint motion)
7. Clebsch variational form

4. Manakov’s matrix commutator form (momentum map)

2 Lagrangian Euler—Poincaré form of rigid-body mo-
tion

In the absence of external torques, Euler’s equations for rigid-body motion in principal axis
coordinates are )
1 = (I — 13)2:0s,
Ly = (I3 — 1), (2.1)
L3 = (I — L),

or, equivalently, )
Q=10 x 2, (2.2)

where Q@ = (4,9, Q3) is the body angular velocity vector and 1 = diag([y, I3, I3) is the
moment of inertia tensor, which is diagonal in the principal axis frame of the rigid body.
The moment of inertia I defines the following quadratic form Ia-b associated to the bilinear
symmetric form for R? vectors a and b in the body’s principal axis frame,

(a, b) i / po(X)(a x X) - (b x X)d*X = Ta - b = a'T;} . (2.3)

Thus, the body’s distribution of mass density po(X) induces a Riemannian metric I for
lowering indices of vectors in the body frame. That is, I : R?® — R3" ~ R3. By the hat map
then I: s0(3) — s0(3)* ~ R3.

We ask whether Equations (2.1) may be expressed using Hamilton’s principle on R3. For
this, we will need to define the variational derivative of a functional S[(£2].



Notes for Geometric Mechanics: Rigid body DD Holm Oct—Nov 2011 6

Definition 2.1 (Variational derivative). The variational derivative of a functional S[(R] is
defined as its linearisation in an arbitrary direction 6§2 in the vector space of body angular
velocities. That 1s,

05[] :=lim

s—0 s dsls=0

S[Q+ 560 — S[Q]  d S[QHM::G_(SZ’(SQ%

where the new pairing, also denoted as (-, - ), is between the space of body angular velocities
and its dual, the space of body angular momenta.

Theorem 2.1 (Euler’s rigid-body equations).
Euler’s rigid-body equations are equivalent to Hamilton’s principle

5S(Q) =6 / b 1(Q)dt =0, (2.4)

in which the Lagrangian [(S2) appearing in the action integral S(Q2) = f;l(ﬂ) dt is
giwen by the kinetic energy in principal axis coordinates,

1 1 1
() =35(2,Q):=3710-Q=7 (L% + LO2 + 502), (2.5)
and variations of 2 are restricted to be of the form
N=E4+QxE, (2.6)

where E(t) is a curve in R? that vanishes at the endpoints in time.

Proof. Since [(2) = $(IQ, Q), and I is symmetric, one obtains

5/bl(ﬂ)dt - /b<]lﬂ,5ﬂ>dt
; 3
_ /<]IQ,E+Q><E>dt
_ /ab K— %m,5> + (19,9 E>} dt
t

_ /;<-%]IQ+]IQ><Q, E>dt+<m, E> '

la

Y

upon integrating by parts. The last term vanishes, because of the endpoint conditions,

S(a) = 0= E(b).

Since E is otherwise arbitrary, (2.4) is equivalent to

d
——(I2)+I2 x 2 =
CI9) + 10 x 2 =0,

which recovers Euler’s Equations (2.1) in vector form. N



Notes for Geometric Mechanics: Rigid body DD Holm Oct—Nov 2011 7

Proposition 2.1 (Derivation of the restricted variation).
The restricted variation in (2.6) arises via the following steps:

(i) Vary the definition of the body angular velocity, Q=0"10.
(i1) Take the time derivative of the variation, ==0"'0"
(iii) Use the equality of cross derivatives, O’ = d*O/dtds = O'".
(iv) Apply the hat map.
Proof. One computes directly that
"= (07'0)'=-07'0'07'0+ 070 =-20+07"0",
= (07'0))y =-07'007'0"+07 0" = -QE+ 070",

[ 2

On taking the difference, the cross derivatives cancel and one finds a variational formula
equivalent to (2.6),

RN
(i
RIN)

0'—2'—[0,2] with [0,5]:—0E- 20 (2.7

Under the bracket relation o
[Q, 2] =(QxE)”
for the hat map, this equation recovers the vector relation (2.6) in the form
Q' -—E=QxE. (2.8)
Thus, Euler’s equations for the rigid body in TR3,
IQ=IQ x Q, (2.9)

do follow from the variational principle (2.4) with variations of the form (2.6) derived from

~

the definition of body angular velocity §2. m

Remark 2.1. The body angular velocity is expressed in terms of the spatial angular velocity
by Q(t) = O (t)w(t). Consequently, the kinetic energy Lagrangian in (2.5) transforms as

1 1
I(Q) = 9 Q-1 = i Lspace (t)w = lspace(w) ,

where

Lopace (t) = O()IO™ () .

Exercise. Show that Hamilton’s principle for the action
b
S(w) = / Lupace (@) dt
a
yields conservation of spatial angular momentum

T = Lipace (H)w(2) .

Hint: First derive the formula dlg,uce = [€, Lpace] With right-invariant £ = 600k
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Exercise. (Noether’s theorem for the rigid body) What conservation law

does Noether’s theorem imply for the rigid-body Equations (2.2)7

Hint: Transform the endpoint terms arising on integrating the variation 4.5 by
parts in the proof of Theorem 2.1 into the spatial representation by setting & =

O~ '(t)T and Q@ = O~ (t)w.

*

Remark 2.2 (Reconstruction of O(t) € SO(3)).

O(t) = 0()Qt) ,

(O_IO)jk = ﬁjk = — Qieijk .

Equation (2.10) is the reconstruction formula for O(t) € SO(3).

Once the time dependence of Q(t) and hence ﬁ(t) is determined from the Euler equa-
tions, solving formula (2.10) as a linear differential equation with time-dependent coeffi-
cients yields the integral curve O(t) € SO(3) for the orientation of the rigid body.

The Euler solution is expressed in terms of the time-dependent angular velocity vector
in the body, 2. The body angular velocity vector SU(t) yields the tangent vector O(t) €
TowSO(3) along the integral curve in the rotation group O(t) € SO(3) by the relation

(2.10)

where the left-invariant skew-symmetric 3 X 3 matrix Q is defined by the hat map

(2.11)

2.1 Hamilton—Pontryagin constrained variations

Formula (2.7) for the variation Q) of the skew-symmetric matrix

Q=070

may be imposed as a constraint in Hamilton’s principle and thereby provide a variational
derivation of Euler’s Equations (2.1) for rigid-body motion in principal axis coordinates.
This constraint is incorporated into the matrix Euler equations, as follows.

Proposition 2.2 (Matrix Euler equations). Euler’s rigid-body equation may be written in

matrix form as

ol

i ol
5Q

-%_—“LH}MM =10 =

for the Lagrangian Z(Q) given by

Here, the bracket R R R
[Q, 10 := QII - 11O

denotes the commutator and (-, -) denotes the trace pairing, e.g.,

<H, SA2> =: %trace(HT(AZ).

(2.12)

(2.13)

(2.14)

(2.15)
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Remark 2.3. Note that the symmetric part of I1 does not contribute in the pairing and if
set equal to zero initially, it will remain zero.

Proposition 2.3 (Constrained variational principle).
The matriz Euler Equations (2.12) are equivalent to stationarity §S = 0 of the following
constrained action:

b
S5(Q,0,0,11) = /l(Q,0,0,H)dt (2.16)

_ /b [z(§)+<n, (0*10'—?2))] dt .

Remark 2.4. The integrand of the constrained action in (2.16) is similar to the formula for
the Legendre transform, but its functional dependence is different. This variational approach
is related to the classic Hamilton—Pontryagin principle for control theory. It has also
be used to develop algorithms for geometric numerical integrations of rotating motion.

Proof. The variations of S in formula (2.16) are given by

5S = /a{<§—é—n,5§>
+<5H,(0—10—9)>+<H,5(0—10)>}dt,

where . R o
5(07'0)=E"+[Q,Z], (2.17)
and Z = (0~160) from Equation (2.7).
Substituting for §(O~'0) into the last term of §S produces

[ (ms00)yar = [(n

[
+
)
[
~~—
QU
~

o\ |b
+<H,E> , (2.18)
a
where one uses the cyclic properties of the trace operation for matrices,
trace <HT = Q) = trace (Q 1 E) . (2.19)
Thus, stationarity of the Hamilton-Pontryagin variational principle for vanishing endpoint
conditions Z(a) = 0 = Z(b) implies the following set of equations:
ol N ~
—=1II, 0'0=Q, I =-[Q,1]. (2.20)
o0

These are the Euler rigid body equations in matrix form on SO(n). O
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Remark 2.5 (Interpreting the formulas in (2.20)).

The first formula in (2.20) defines the angular momentum matriz I1 as the fibre derivative
of the Lagrangian with respect to the angular velocity matriz Q. The second formula s
the reconstruction formula (2.10) for the solution curve O(t) € SO(3), given the solution
ﬁ(t) = 07'0. And the third formula is Euler’s equation for rigid-body motion in matriz
form.

Exercise. Use the fibre derivative relation to compute the Hamiltonian A(II)
via the Legendre transform,

h(IT) = (I1, Q) — 1(Q) (2.21)
then express the matrix Euler rigid body equations in Hamiltonian form as a
Poisson bracket relation. *

Answer. The Hamiltonian h(I) satisfies
oh ~ o ~
dh(Il) = (dll, — ) = (dII, Q) — (Il — —, dQ2
w < ’ 3H> < ’ > < 09’ >

ol Oh
o ol
The matrix Euler rigid body equations (2.20) are then expressed as

so that

o)

dIl oh
and a function f(II) has time derivative
d af [ oh
dt oIl’ | 011 (2.23)

—— (|55 S ) = {rnp.

The last expression defines the Lie- Poisson bracket, which inherits the Jacobi
property from the matrix commutator. A

Exercise. Use equation (2.21) to rewrite the Hamilton-Pontryagin varia-
tional principle (2.16) as 6.5 = 0 for the action

S(O7'0,1) = /b (( I,070) - h(n)) dt . (2.24)

Take the variations using (2.17) and recover the Hamiltonian form of the
matrix Euler rigid body equations (2.20). How does this compare with the

results for S = 0 with S = [*(p,4) — H(q, p) dt? *
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Exercise. Write the Lie-Poisson bracket in (2.23) in three dimensions for so(3)*
in R3 vector form by using the hat map. Thereby, discover the Nambu bracket

form of the rigid body equations. *
Answer. In R? vector form the Lie-Poisson bracket in (2.23) becomes
d of Oh 0 f
— £(1I) = =_1II. 2.2
/™ =~ o o ott an = {rnfa. @2
Euler’s equations are recovered by setting f(IT) = IT
dIl Ooh
== xI= {H, h}. (2.26)

If we write ¢(IT) = 3||TI||?, then the Lie-Poisson bracket in (2.25) may be ex-
pressed in Nambu bracket form,

d dc 0 f

—f(II) = — — : I 2.2

L Y ) ) (2.27)
which is the triple scalar product of gradients in IT.! A

Remark 2.6 (Interpreting the endpoint terms in (2.18)).

We transform the endpoint terms in (2.18), arising on integrating the variation .S by parts
in the proof of Theorem 2.1 into the spatial representation by setting é(t) =: O(t) gOfl(t)
and ﬁ(t) =: O(t)7(t)O~1(t), as follows:

<H,§>:trace<HT§):trace<7rTg>:<7r,§>. (2.28)
Thus, the vanishing of both endpoints for a constant infinitesimal spatial rotation ,;? =
(600™) = const implies
m(a) = m(b). (2.29)
This is Noether’s theorem for the rigid body.

Theorem 2.2 (Noether’s theorem for the rigid body).
Invariance of the constrained Hamilton—Pontryagin action under spatial rotations implies
conservation of spatial angular momentum,

7 = O OTI(E)O(t) = Adgy-1 TI(1). (2.30)
Proof.
%< T, §> — %< O~'I10, A> - %traee <HT 0*120)
d .

= %n —adgTl, Ado€),

§
H],o—1§0>:
d ~

dt<AdO 11, ’5> = <Ad51<%ﬂ—ad}%ﬂ>a§>- (2.31)

!The Lie-Poisson and Nambu brackets introduced by discovery in these two exercises will be discussed
further below.
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The proof of Noether’s theorem for the rigid body is already on the second line. However,
the last line gives a general result. O

Remark 2.7. The proof of Noether’s theorem for the rigid body when the constrained Hamilton—
Pontryagin action is invariant under spatial rotations also proves a general result in Fqua-

tion (2.31), with Q=070 for a Lie group O, that

d * * d *
£<Adof1ﬂ> == Adofl <%H - ad§H> (232)
This equation will be useful in the remainder of the text. In particular, it provides the solution
of a differential equation defined on the dual of a Lie algebra. Namely, for a Lie group O

with Lie algebra o, the equation for Il € o* and Q=0"10¢€0

%H —adgll =0 has solution 1I(t) = Adg,yT, (2.33)

in which the constant m € 0* is obtained from the initial conditions.

Ad;(t)n":‘_—’/" * k

=== T
];67 Adq(t;}.s \\\

)
ra " g G
Equivariant
J(0)| Momentum Map| J(¢)
Adl -
g* 9®~! g ~T"G/G

2.2 Manakov’s formulation of the SO(n) rigid body

Proposition 2.4 (Manakov [Man1976]). Euler’s equations for a rigid body on SO(n) take
the matriz commutator form,

dM

E:[M,Q] with M = AQ + QA | (2.34)

where the n x n matrices M, Q are skew-symmetric (forgoing superfluous hats) and A is
symmetric.

Proof. Manakov’s commutator form of the SO(n) rigid-body Equations (2.34) follows as the
Euler-Lagrange equations for Hamilton’s principle 65 = 0 with S = [ [ dt for the Lagrangian

1
| = —5tr(QAQ),
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where Q = OO € so(n) and the n x n matrix A is symmetric. Taking matrix variations
in Hamilton’s principle yields

b b
552_%/ (50 (AQ + QA)) dt:—%/ (50 M) dt

after cyclically permuting the order of matrix multiplication under the trace and substituting
M = AQ + QA. Using the variational formula (2.17) for 6Q2 now leads to

b
0S5 = —%/ tr((E+ Q= —-2Q)M) dt.

Integrating by parts and permuting under the trace then yields the equation

b
55 = %/tr(E(M+QM—MQ))dt.

Finally, invoking stationarity for arbitrary = implies the commutator form (2.34). ]

2.3 DMatrix Euler—Poincaré equations

Manakov’s commutator form of the rigid-body equations recalls much earlier work by Poincaré
[Po1901], who also noticed that the matrix commutator form of Euler’s rigid-body equations
suggests an additional mathematical structure going back to Lie’s theory of groups of trans-
formations depending continuously on parameters. In particular, Poincaré [Po1901] remarked
that the commutator form of Euler’s rigid-body equations would make sense for any Lie al-
gebra, not just for so(3). The proof of Manakov’s commutator form (2.34) by Hamilton’s
principle is essentially the same as Poincaré’s proof in [Po1901], which is translated into
English and discussed thoroughly in [JKLOR2011].

Theorem 2.3 (Matrix Euler-Poincaré equations).
The Euler-Lagrange equations for Hamilton’s principle §S = 0 with S = [1(Q) dt may
be expressed in matriz commutator form,

dM ol

— =M, Q th M = — 2.

= M Q] 59 (2.35)
for any Lagrangian 1(Q), where Q = g~'¢g € g and g is the matriz Lie algebra of any
matriz Lie group G.

Proof. The proof here is the same as the proof of Manakov’s commutator formula via
Hamilton’s principle, modulo replacing O~1O € so(n) with ¢g7'¢ € g. O

Remark 2.8. Poincaré’s observation leading to the matriz FEuler—Poincaré Equation (2.35)
was reported in two pages with no references [Po1901]. The proof above shows that the matriz
Euler—Poincaré equations possess a natural variational principle. Note that if Q = g~ 'g € g,
then M = §1/6Q) € g*, where the dual is defined in terms of the matriz trace pairing.
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Exercise. Retrace the proof of the variational principle for the Euler-Poincaré
equation, replacing the left-invariant quantity ¢g—'¢ with the right-invariant quan-
tity gg—. *

2.4 An isospectral eigenvalue problem for the SO(n) rigid body
The solution of the SO(n) rigid-body dynamics

dM
—- =M. Q] with M=AQ+0QA, (2.36)

for the evolution of the n x n skew-symmetric matrices M, €2, with constant symmetric
A, is given by a similarity transformation (later to be identified as coadjoint motion),

M(t) = O(t)" " M(0)O(t) =: Adp)M(0),
with O(t) € SO(n) and Q := O~'O(t). Consequently, the evolution of M(t) is isospec-
tral. This means that

e The initial eigenvalues of the matrix M (0) are preserved by the motion; that is,
d\/dt =0 in
M@)y(t) = Ao(t)
provided its eigenvectors ) € R™ evolve according to

U(t) = O(t)"'4(0).

The proof of this statement follows from the corresponding property of similarity
transformations.

e [ts matrix invariants are preserved:

d
—tr(M = MNd)E =
ttr( Ald) 0,

for every non-negative integer power K.

This is clear because the invariants of the matrix M may be expressed in terms of
its eigenvalues; but these are invariant under a similarity transformation.

Proposition 2.5. Isospectrality allows the quadratic rigid-body dynamics (2.36) on
SO(n) to be rephrased as a system of two coupled linear equations: the eigenvalue prob-
lem for M and an evolution equation for its eigenvectors v, as follows:

Mp=X\p and =—Qp, with Q=07'0(t).
Proof. Applying isospectrality in the time derivative of the first equation yields
(M + [, M) + (M — \d) (@) + Q) = 0.

Now substitute the second equation to recover the SO(n) rigid-body dynamics (2.36). [
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3 Hamiltonian form of rigid-body motion

The Legendre transform of the Lagrangian (2.5) in the variational principle (2.4) for
Euler’s rigid-body dynamics (2.9) on R? will reveal its well-known Hamiltonian formulation.

Definition 3.1 (Legendre transformation).
The Legendre transformation FL: R® — R3* ~ R? is defined by the fibre derivative,

FUQ) = 5 =

IT.

The Legendre transformation defines the body angular momentum by the variations
of the rigid body’s reduced Lagrangian with respect to the body angular velocity. For the
Lagrangian in (2.4), the R? components of the body angular momentum are

ol

0 = IOy = —
(2 1 (] 8Q27

i=1,2,3. (3.1)

3.1 Hamiltonian form and Poisson bracket

Definition 3.2 (Dynamical systems in Hamiltonian form).
A dynamical system on a manifold M

x(t)=F(x), xe M,
15 said to be in Hamiltonian form, if it can be expressed as
x(t)={x,H}, for H:M—R,

in terms of a Poisson bracket operation {-, -} among smooth real functions F(M): M — R
on the manifold M,

{3 F(M) x F(M) — F(M),
so that F = {F , H} for any F € F(M).

Definition 3.3 (Poisson bracket).
A Poisson bracket operation {-, -} is defined as possessing the following properties:

o [t is bilinear.

o [t is skew-symmetric, {F, H} = —{H, F}.

e [t satisfies the Leibniz rule (product rule),
{FG,H}={F,H}G+ F{G, H},

for the product of any two functions F' and G on M.
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e [t satisfies the Jacobt identity,
{F G, H}}+{G {H, F}}+{H,{F, G}} =0, (3.2)

for any three functions F', G and H on M.

Remark 3.1. This definition of a Poisson bracket does not require it to be the standard
canonical bracket in position q and conjugate momentum p, although it does include that
case as well.

3.2 Lie—Poisson Hamiltonian rigid-body dynamics

Let
h(IT) :=11-Q2 —[(2), (3.3)

in terms of the vector dot product on R3. Hence, one finds the expected expression for the
rigid-body Hamiltonian

1 m I3 12

h=_-T1.-T'I:= -1+ 24 2. 3.4

2 21 * 21 + 213 (34)
The Legendre transform [FI for this case is a diffeomorphism, so one may solve for the body
angular velocity as the derivative of the reduced Hamiltonian with respect to the body
angular momentum, namely,

oh
o1l

Hence, the reduced Euler-Lagrange equations for [ may be expressed equivalently in angular
momentum vector components in R?® and Hamiltonian h as

d 8h

="' =9. (3.5)

This expression suggests we introduce the following rigid-body Poisson bracket on func-
tions of the IT’s:

{fhY(ID) = 0. (g;; m) (3.6)

For the Hamiltonian (3.4), one checks that the Euler equations in terms of the rigid-body
angular momenta,
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that is, the equations .
II =TI x I"'1T, (3.8)

are equivalent to

f={fh}, with f=II.

3.3 Lie—Poisson bracket

The Poisson bracket proposed in (3.6) is an example of a Lie—Poisson bracket.

It satisfies the defining relations of a Poisson bracket for a number of reasons, not least
because it is the hat map to R? of the following bracket defined by the general form in
Equation (2.31) in terms of the so(3)* x so(3) pairing (-, -) in Equation (2.18). Namely,

dF d_ OF . OF
oF ~ OF
= sty ) = (. (9 )

)

where we have used the equation corresponding to (3.5) under the inverse of the hat map

~  OH
=30

and applied antisymmetry of the matrix commutator. Writing Equation (3.9) as

C;_f _ <n, {g_ﬁ, g_ﬁb . {F H} (3.10)

defines the Lie—Poisson bracket { -, -} on smooth functions (F, H) : so(3)* — R. This
bracket satisfies the defining relations of a Poisson bracket because it is a linear functional
of the commutator product of skew-symmetric matrices, which is bilinear, skew-symmetric,
satisfies the Leibniz rule (because of the partial derivatives) and also satisfies the Jacobi
identity.

These Lie—Poisson brackets may be written in tabular form as

{ Tyt } Hl H2 H3
T 0 —I3 II,
{HZ> HJ} - Hg H3 0 _Hl (311)
I3 -1, 1II 0

or, in index notation,

{Hi, Hj} = _eiijk = ﬁij . (312)
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Remark 3.2. The Lie—Poisson bracket in the form (3.10) would apply to any Lie algebra.
This Lie—Poisson Hamiltonian form of the rigid-body dynamics substantiates Poincaré’s ob-
servation in [Po1901] that the corresponding equations could have been written on the dual
of any Lie algebra by using the ad™ operation for that Lie algebra. See [JKLOR2011] for
more discussion.

The corresponding Poisson bracket in (3.6) in R3-vector form also satisfies the defining
relations of a Poisson bracket because it is an example of a Nambu bracket, to be discussed
next.

3.4 Nambu’s R? Poisson bracket

The rigid-body Poisson bracket (3.6) is a special case of the Poisson bracket for functions of
x € R3,

{f,h} =—=Vec-VfxVh. (3.13)
This bracket generates the motion
x ={x,h} =Vex Vh. (3.14)

For this bracket the motion takes place along the intersections of level surfaces of the func-
tions ¢ and h in R3. In particular, for the rigid body, the motion takes place along inter-
sections of angular momentum spheres ¢ = |x|?/2 and energy ellipsoids h = x - Ix. (See the
cover illustration of [MaRa1994].)

Exercise. Consider the Nambu R? bracket
{f,h} =—=Vec-VfxVh. (3.15)

Let ¢ = xT - Cx/2 be a quadratic form on R3, and let C be the associated
symmetric 3 X 3 matrix. Show by direct computation that this Nambu bracket
satisfies the Jacobi identity. *

Exercise. Find the general conditions on the function c¢(x) so that the R3
bracket
{f,h} =—=Vec-VfxVh

satisfies the defining properties of a Poisson bracket. Is this R? bracket also a
derivation satisfying the Leibniz relation for a product of functions on R3? If so,
why? *

Answer.
The bilinear skew-symmetric Nambu R? bracket yields the divergenceless vector field

Xon=1{-,h} = (Vex Vh)-V with div(Ve x Vh) =0.

Divergenceless vector fields are derivative operators that satisfy the Leibniz product rule.
They also satisfy the Jacobi identity for any choice of C? functions ¢ and h. Hence, the
Nambu R? bracket is a bilinear skew-symmetric operation satisfying the defining properties
of a Poisson bracket. A
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Theorem 3.1 (Jacobi identity). The Nambu R? bracket (3.15) satisfies the Jacobi identity.

Proof. The isomorphism Xy = { -, H} between the Lie algebra of divergenceless vector fields
and functions under the R?® bracket is the key to proving this theorem. The Lie derivative
among vector fields is identified with the Nambu bracket by

Lx.Xn = [Xa, Xu| = —Xcm -
Repeating the Lie derivative produces
Lxp(LxoXn) = [Xr, [ Xe, Xn]] = Xirie,my -

The result follows because both the left- and right-hand sides in this equation satisfy the
Jacobi identity. O

Exercise. How is the R? bracket related to the canonical Poisson bracket?

Hint: Restrict to level surfaces of the function ¢(x). *

Exercise. (Casimirs of the R? bracket) The Casimirs (or distinguished func-
tions, as Lie called them) of a Poisson bracket satisfy

{e,h}(x) =0, forall h(x).

Suppose the function ¢(x) is chosen so that the R? bracket (3.13) defines a proper
Poisson bracket. What are the Casimirs for the R? bracket (3.13)7 Why? *

Exercise. (Geometric interpretation of Nambu motion)

e Show that the Nambu motion equation (3.14)
x ={x,h} =Vecx Vh
for the R? bracket (3.13) is invariant under a certain linear combination

of the functions ¢ and h. Interpret this invariance geometrically.
e Show that the rigid-body equations (3.7) for

I = diag(1, 1/2, 1/3)

may be interpreted as intersections in R? of the spheres z? + 23 + 23 =

constant and the hyperbolic cylinders z? — 3 = constant, as in Fig. 3.4.

e Show that the rigid-body equations (3.7) may be written as
.I"l = — Q1a3T2X3 , I"Q = — Q203377 , fg = a10221%9 , (316)

with nonzero constants a;, as and az that satisfy 1/a; + 1/ay = 1/as.
Write these equations as a Nambu motion equation on R? of the form
(3.14). Interpret the solutions of Equations (3.16) geometrically as inter-
sections of orthogonal cylinders (elliptic or hyperbolic) for various values
and signs of ai, as and as, as in Fig. 3.4. *

Answer. X := (i1, &, 3)" = 1V (a12i+as23) x V(asx3+asx}), where (a1, az, az)
may be written in terms of (11, I, I3), when they satisfy 1/a; +1/ay = 1/a3. A
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Figure 2: Left: Rigid body motions, seen as intersections in R? of the sphere 22 + 22 + 22 =
constant and the hyperbolic cylinders z? — 2 = constant. Right: The same rigid body
motions, seen as intersections in R? of orthogonal elliptic cylinders.

3.5 Clebsch variational principle for the rigid body

Proposition 3.1 (Clebsch variational principle).
The Euler rigid-body Equations (2.2) on TR? are equivalent to the constrained varia-
tizonal principle,

b
5S(Q.Q.Q:P) = / I, Q, Q; P) di = 0, (3.17)

for a constrained action integral
b
sea@ - [1eQad (3.18)

:t[éQﬁQ+P(Q+QxQ)ﬁ

Remark 3.3 (Reconstruction as constraint).

e The first term in the Lagrangian (3.18),

1 1
1(2) = 5(1193 + L3 + 593) = éﬂT]IQ, (3.19)

is again the (rotational) kinetic energy of the rigid body.

e The second term in the Lagrangian (5.18) introduces the Lagrange multiplier P
which tmposes the constraint

Q+2xQ=0.




Notes for Geometric Mechanics: Rigid body DD Holm Oct—Nov 2011 21

This reconstruction formula has the solution

which satisfies

= —0Q) = —Q@t) x Q(t). (320)

Proof. The variations of S are given by

b6l ol ol
58 — /a(m-59+5—P-5P+m-5Q)dt

- /W(%—PxQ)-dQ
+5P.(Q+QxQ)—5Q-(P+QxP)]dt.

Thus, stationarity of this emplicit variational principle implies the following set of
equations:

H::;—é:PxQ, Q=-0xQ, P=—QxP. (3.21)

Euler’s form of the rigid-body equations emerges from these symmetric equations, upon
elimination of Q and P, as

ﬂ:PxQ+PxQ
= Qx(2xP)+Px(QxQ)
= —Ox(PxQ)=-Qx1II,

which are Euler’s equations for the rigid body in TR? when IT = IQ. O

Remark 3.4. The Clebsch variational principle for the rigid body is a natural approach in
developing geometric algorithms for numerical integrations of rotating motion.

Remark 3.5. The Clebsch approach is also a natural path across to the Hamiltonian formu-
lation of the rigid-body equations. This becomes clear in the course of the following exercise.

Exercise. Given that the canonical Poisson brackets in Hamilton’s approach are
{Qi, P} =6; and {Q;,Q;} =0={P, P},

what are the Poisson brackets for II=P x Q€ R3 in (3.21)? Show these Poisson
brackets recover the rigid-body Poisson bracket (3.6). *
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Answer. The components of the angular momentum IT = I in (3.21) are
I, = e PoQe
and their canonical Poisson brackets are (noting the similarity with the hat map)
{M, 1L} = {€arcPoQc , €6 PiQr} = — €aall; .

Consequently, the derivative property of the canonical Poisson bracket yields

{f,h}(m af AL ¢ on _ of oh (3.22)

z}a_l—lb - Eabcha_l—Iaa_l—Ib ’
which is indeed the Lie-Poisson bracket in (3.6) on functions of the IT’s. The correspondence
with the hat map noted above shows that this Poisson bracket satisfies the Jacobi 1dent1ty
as a result of the Jacobi identity for the vector cross product on R3.
Remark 3.6. This exercise proves that the map T*R?® — R3 given by I = P x Q € R3 in
(3.21) is Poisson. That is, the map takes Poisson brackets on one manifold into Poisson
brackets on another manifold. This is one of the properties of a momentum map.

Ady TS A g *

)
e — G
Equivariant
J(0)| Momentum Map| J(t)
Ad} -
g* 9~ g ~T*G/G

Definition: Cotangent lift (CL) momentum map The CL momentum map
J:T"M — g*
is defined for the Lie algebra action £y/(q) of & € g on ¢ in manifold M by the pairings

T (p.q) = <J(p,q),€>g*xg
- <<pq, 5M<q>>>:r*z\/1xTM

where p, € TyM is the momentum at position ¢ € M and &y(q) is the vector field
tangent to the flow of g(t) € G at q.

Proposition. J*(p,q) is the Hamiltonian for the infinitesimal action &y/(q) and its
cotangent lift.
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Proof.

. & - & dgMT
¢=1{¢,J*} =¢&u(g) and p—{p,J}——d—q-p

Example: Body angular momentum, G = SO(3) and M = R?

J(¢,p) =px¢q, (Body angular momentum J € so(3)* ~R?).

The Hamiltonian Jé(q,p) = p X q - £ generates the infinitesimal SO(3) rotations,

q(t)={a,J(q¢,p)} = —Exq(t), P(t)={p.J(a.p)}=—Expt),

for the canonical Poisson bracket { .y } These imply the Euler-Poincaré (EP) equation

for J(g,p) = p x q € so(3)* ~ R?
J'(t)=—Ex J(t) =adiJ for & € s0(3) and J € s0(3)".
Proof.

J'(t)=p'(t) x q+pxq1)
=—(Exp)xqg—px(§xq)
=—gx(px& —px(xq)

By Jacobi identity = £ X (¢ X p)
=—¢x ]
= ad;J

This calculation also illustrates the following.

Theorem. The CL momentum map J(p, q) is infinitesimally equivariant.

That is, the CL momentum map J(p, q) satisfies the EP equation, when (p, ¢) satisfy the
canonical equations for the Hamiltonian J*(p, q) = (p,, ar(q)). Consequently, (p,q) satisfy
the equations of motion for the canonical transformation ®4;) of 7*M and the momentum
map satisfies J'(t) = adJ, which is the infinitesimal (linearised) version of J(t) = AdJ(0).
To remind ourselves of the latter fact, we recall equation (2.32) in the present notation, as

%(Adgl(ﬂj) = Adyig ( %J —ad;J) =0.
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Exercise. The Euler—Lagrange equations in matrix commutator form of Man-
akov’s formulation of the rigid body on SO(n) are

dM
ra

where the n x n matrices M, §2 are skew-symmetric. Show that these equations
may be derived from Hamilton’s principle 65 = 0 with constrained action integral

S(Q,Q, P) = /abl(Q) +tr(PT Q- QQ)> dt,

for which M is the cotangent lift momentum map

o1, T
M=-5= §(P Q-Q P)
and @, P € SO(n) satisfy the following symmetric equations reminiscent of those
in (3.21), . .
Q=0 and P=PQ, (3.23)

as a result of the constraints.

Show that M satisfies the Euler-Poincaré equation

a
W:adQM:—[Q,M},

as it should, since it is a cotangent lift momentum map and those are equivariant.

*
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