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Where are we going in this course?

1. Euler–Poincaré equation

2. Rigid body

3. Spherical pendulum

4. Elastic spherical pendulum

5. Differential forms

e

These notes: Spherical pendulum
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What will we study about the spherical pendulum?

1. Newtonian, Lagrangian and Hamilto-
nian formulations of motion equation.

2. S1 symmetry and Noether’s theorem

3. Lie symmetry reduction

4. Reduced Poisson bracket in R3

5. Reduced Poisson bracket in R3

6. Nambu Hamiltonian form

7. Geometric solution interpretation

8. Geometric phase

1 Spherical pendulum

A spherical pendulum of unit length swings from a fixed point of support under the constant
acceleration of gravity g (Figure 2.7). This motion is equivalent to a particle of unit mass
moving on the surface of the unit sphere S2 under the influence of the gravitational (linear)
potential V (z) with z = ê3 · x. The only forces acting on the mass are the reaction from the
sphere and gravity. This system is often treated by using spherical polar coordinates and
the traditional methods of Newton, Lagrange and Hamilton. The present treatment of this
problem is more geometrical and avoids polar coordinates.

In these notes, the equations of motion for the spherical pendulum will be derived ac-
cording to the approaches of Lagrange and Hamilton on the tangent bundle TS2 of
S2 ∈ R3:

TS2 =
{

(x, ẋ) ∈ TR3 ' R6
∣∣ 1− |x|2 = 0, x · ẋ = 0

}
. (1.1)

After the Legendre transformation to the Hamiltonian side, the canonical equations
will be transformed to quadratic variables that are invariant under S1 rotations about
the vertical axis. This is the quotient map for the spherical pendulum.

Then the Nambu bracket in R3 will be found in these S1 quadratic invariant vari-
ables and the equations will be reduced to the orbit manifold, which is the zero level
set of a distinguished function called the Casimir function for this bracket. On the
intersections of the Hamiltonian with the orbit manifold, the reduced equations for the
spherical pendulum will simplify to the equations of a quadratically nonlinear oscillator.

The solution for the motion of the spherical pendulum will be finished by finding
expressions for its geometrical and dynamical phases.

The constrained Lagrangian We begin with the Lagrangian L(x, ẋ) : TR3 → R given
by

L(x, ẋ) = 1
2
|ẋ|2 − gê3 · x− 1

2
µ(1− |x|2), (1.2)
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g
Figure 1: Spherical pendulum moving under gravity on TS2 in R3.

in which the Lagrange multiplier µ constrains the motion to remain on the sphere S2 by
enforcing (1− |x|2) = 0 when it is varied in Hamilton’s principle. The corresponding Euler–
Lagrange equation is

ẍ = −gê3 + µx . (1.3)

This equation preserves both of the TS2 relations 1 − |x|2 = 0 and x · ẋ = 0, provided the
Lagrange multiplier is given by

µ = gê3 · x− |ẋ|2 . (1.4)

Remark 1.1. In Newtonian mechanics, the motion equation obtained by substituting (1.4)
into (1.3) may be interpreted as

ẍ = F · (Id− x⊗ x)− |ẋ|2x ,

where F = −gê3 is the force exerted by gravity on the particle,

T = F · (Id− x⊗ x)

is its component tangential to the sphere and, finally, −|ẋ|2x is the centripetal force for the
motion to remain on the sphere.

S1 symmetry and Noether’s theorem The Lagrangian in (1.2) is invariant under S1

rotations about the vertical axis, whose infinitesimal generator is δx = ê3×x. Consequently
Noether’s theorem, that each smooth symmetry of the Lagrangian in which an action prin-
ciple implies a conservation law for its Euler–Lagrange equations, implies in this case that
Equation (1.3) conserves

J3(x, ẋ) = ẋ · δx = x× ẋ · ê3 , (1.5)
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which is the angular momentum about the vertical axis.

Legendre transform and canonical equations The fibre derivative of the Lagrangian
L in (1.2) is

y =
∂L

∂ẋ
= ẋ . (1.6)

The variable y will be the momentum canonically conjugate to the radial position x, after
the Legendre transform to the corresponding Hamiltonian,

H(x,y) = 1
2
|y|2 + gê3 · x + 1

2
(gê3 · x− |y|2)(1− |x|2) , (1.7)

whose canonical equations on (1− |x|2) = 0 are

ẋ = y and ẏ = −gê3 + (gê3 · x− |y|2)x . (1.8)

This Hamiltonian system on T ∗R3 admits TS2 as an invariant manifold, provided the initial
conditions satisfy the defining relations for TS2 in (1.1). On TS2, Equations (1.8) conserve
the energy

E(x,y) = 1
2
|y|2 + gê3 · x (1.9)

and the vertical angular momentum

J3(x,y) = x× y · ê3 .

Under the (x,y) canonical Poisson bracket, the angular momentum component J3 generates
the Hamiltonian vector field

XJ3 = { · , J3} =
∂J3
∂y
· ∂
∂x
− ∂J3
∂x
· ∂
∂y

= ê3 × x · ∂
∂x

+ ê3 × y · ∂
∂y

, (1.10)

for infinitesimal rotations about the vertical axis ê3. Because of the S1 symmetry of the
Hamiltonian in (1.7) under these rotations, we have the conservation law,

J̇3 = {J3, H} = XJ3H = 0 .

1.1 Lie symmetry reduction

Algebra of invariants To take advantage of the S1 symmetry of the spherical pendulum,
we transform to S1-invariant quantities. A convenient choice of basis for the algebra of
polynomials in (x,y) that are S1-invariant under rotations about the third axis is given by

σ1 = x3 σ3 = y21 + y22 + y23 σ5 = x1y1 + x2y2
σ2 = y3 σ4 = x21 + x22 σ6 = x1y2 − x2y1

.
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Quotient map The transformation defined by

π : (x,y)→ {σj(x,y), j = 1, . . . , 6} (1.11)

is the quotient map TR3 → R6 for the spherical pendulum. Each of the fibres of the
quotient map π is an S1 orbit generated by the Hamiltonian vector field XJ3 in (1.10).

The six S1 invariants that define the quotient map in (1.11) for the spherical pendulum
satisfy the cubic algebraic relation

σ2
5 + σ2

6 = σ4(σ3 − σ2
2) . (1.12)

They also satisfy the positivity conditions

σ4 ≥ 0, σ3 ≥ σ2
2. (1.13)

In these variables, the defining relations (1.1) for TS2 become

σ4 + σ2
1 = 1 and σ5 + σ1σ2 = 0 . (1.14)

Perhaps not unexpectedly, since TS2 is invariant under the S1 rotations, it is also expressible
in terms of S1 invariants. The three relations in Equations (1.12)–(1.14) will define the orbit
manifold for the spherical pendulum in R6.

Reduced space and orbit manifold in R3 On TS2, the variables σj(x,y), j = 1, . . . , 6
satisfying (1.14) allow the elimination of σ4 and σ5 to satisfy the algebraic relation

σ2
1σ

2
2 + σ2

6 = (σ3 − σ2
2)(1− σ2

1) ,

which on expansion simplifies to

σ2
2 + σ2

6 = σ3(1− σ2
1) , (1.15)

where σ3 ≥ 0 and (1− σ2
1) ≥ 0. Restoring σ6 = J3, we may write the previous equation as

C(σ1, σ2, σ3; J
2
3 ) = σ3(1− σ2

1)− σ2
2 − J2

3 = 0 . (1.16)

This is the orbit manifold for the spherical pendulum in R3. The motion takes place on
the following family of surfaces depending on (σ1, σ2, σ3) ∈ R3 and parameterised by the
conserved value of J2

3 ,

σ3 =
σ2
2 + J2

3

1− σ2
1

. (1.17)

The orbit manifold for the spherical pendulum is a graph of σ3 over (σ1, σ2) ∈ R2, provided
1− σ2

1 6= 0. The two solutions of 1− σ2
1 = 0 correspond to the north and south poles of the

sphere. In the case J2
3 = 0, the spherical pendulum is restricted to the planar pendulum.
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Figure 2: The dynamics of the spherical pendulum in the space of S1 invariants (σ1, σ2, σ3) is recovered
by taking the union in R3 of the intersections of level sets of two families of surfaces. These surfaces are the
roughly cylindrical level sets of angular momentum about the vertical axis given in (1.17) and the (planar)
level sets of the Hamiltonian in (1.18). (Only one member of each family is shown in the figure here, although
the curves show a few of the other intersections.) On each planar level set of the Hamiltonian, the dynamics
reduces to that of a quadratically nonlinear oscillator for the vertical coordinate (σ1) given in Equation
(1.24).
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Reduced Poisson bracket in R3 When evaluated on TS2, the Hamiltonian for the
spherical pendulum is expressed in these S1-invariant variables by the linear relation

H = 1
2
σ3 + gσ1 , (1.18)

whose level surfaces are planes in R3. The motion in R3 takes place on the intersections
of these Hamiltonian planes with the level sets of J2

3 given by C = 0 in Equation (1.16).
Consequently, in R3-vector form, the motion is governed by the cross-product formula

σ̇ =
∂C

∂σ
× ∂H

∂σ
. (1.19)

In components, this evolution is expressed as

σ̇i = {σi, H} = εijk
∂C

∂σj

∂H

∂σk
with i, j, k = 1, 2, 3. (1.20)

The motion may be expressed in Hamiltonian form by introducing the following bracket
operation, defined for a function F of the S1-invariant vector σ = (σ1, σ2, σ3) ∈ R3,

{F,H} = − ∂C
∂σ
· ∂F
∂σ
× ∂H

∂σ
= − εijk

∂C

∂σi

∂F

∂σj

∂H

∂σk
. (1.21)

This is another example of the Nambu R3 bracket, which we learned earlier satisfies the defin-
ing relations to be a Poisson bracket. In this case, the distinguished function C(σ1, σ2, σ3; J

2
3 )

in (1.16) defines a level set of the squared vertical angular momentum J2
3 in R3 given by

C = 0. The distinguished function C is a Casimir function for the Nambu bracket in
R3. That is, the Nambu bracket in (1.21) with C obeys {C,H} = 0 for any Hamiltonian
H(σ1, σ2, σ3) : R3 → R. Consequently, the motion governed by this R3 bracket takes place
on level sets of J2

3 given by C = 0.

Poisson map Introducing the Nambu bracket in (1.21) ensures that the quotient map for
the spherical pendulum π : TR3 → R6 in (1.11) is a Poisson map. That is, the subspace
obtained by using the relations (1.14) to restrict to the invariant manifold TS2 produces a
set of Poisson brackets {σi, σj} for i, j = 1, 2, 3 that close amongst themselves. Namely,

{σi, σj} = εijk
∂C

∂σk
, (1.22)

with C given in (1.16). These brackets may be expressed in tabular form, as

{ · , · } σ1 σ2 σ3

σ1

σ2

σ3

0 1− σ2
1 2σ2

−1 + σ2
1 0 − 2σ1σ3

− 2σ2 2σ1σ3 0

.

In addition, {σi, σ6} = 0 for i = 1, 2, 3, since σ6 = J3 and the {σi
∣∣ i = 1, 2, 3} are all

S1-invariant under XJ3 in (1.10).
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Reduced motion: Restriction in R3 to Hamiltonian planes The individual compo-
nents of the equations of motion may be obtained from (1.20) as

σ̇1 = −σ2 , σ̇2 = σ1σ3 + g(1− σ2
1) , σ̇3 = 2gσ2 . (1.23)

Substituting σ3 = 2(H − gσ1) from Equation (1.18) and setting the acceleration of gravity
to be unity g = 1 yields

σ̈1 = 3σ2
1 − 2Hσ1 − 1 (1.24)

which has equilibria at σ±
1 = 1

3
(H ±

√
H2 + 3) and conserves the energy integral

1
2
σ̇2
1 + V (σ1) = E (1.25)

with the potential V (σ1) parameterised by H in (1.18) and given by

V (σ1) = −σ3
1 +Hσ2

1 + σ1 . (1.26)

Equation (1.25) is an energy equation for a particle of unit mass, with position σ1 and energy
E, moving in a cubic potential field V (σ1). For H = 0, its equilibria in the (σ1, σ̇1) phase
plane are at (σ1, σ̇1) = (±

√
3/3, 0), as sketched in Figure 3.

Each curve in the lower panel of Figure 3 represents the intersection in the reduced phase
space with S1-invariant coordinates (σ1, σ2, σ3) ∈ R3 of one of the Hamiltonian planes (1.18)
with a level set of J2

3 given by C = 0 in Equation (1.16). The critical points of the potential
are relative equilibria, corresponding to S1-periodic solutions. The case H = 0 includes the
homoclinic trajectory, for which the level set E = 0 in (1.25) starts and ends with zero
velocity at the north pole of the unit sphere.

1.2 Geometric phase for the spherical pendulum

We write the Nambu bracket (1.21) for the spherical pendulum as a differential form in R3,

{F,H} d3σ = dC ∧ dF ∧ dH , (1.27)

with oriented volume element d3σ = dσ1 ∧ dσ2 ∧ dσ3. Hence, on a level set of H we have the
canonical Poisson bracket

{f, h}dσ1 ∧ dσ2 = df ∧ dh =

(
∂f

∂σ1

∂h

∂σ2
− ∂f

∂σ2

∂h

∂σ1

)
dσ1 ∧ dσ2 (1.28)

and we recover Equation (1.24) in canonical form with Hamiltonian

h(σ1, σ2) = −
(

1
2
σ2
2 − σ3

1 +Hσ2
1 + σ1

)
= −

(
1
2
σ2
2 + V (σ1)

)
, (1.29)

which, not unexpectedly, is also the conserved energy integral in (1.25) for motion on level
sets of H.

For the S1 reduction considered in the present case, the canonical one-form is

pidqi = σ2 dσ1 +Hdψ , (1.30)
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Figure 3: The upper panel shows a sketch of the cubic potential V (σ1) in Equation (1.26)
for the case H = 0. For H = 0, the potential has three zeros located at σ1 = 0,±1 and
two critical points (relative equilibria) at σ1 = −

√
3/3 (centre) and σ1 = +

√
3/3 (saddle).

The lower panel shows a sketch of its fish-shaped saddle-centre configuration in the (σ1, σ̇1)
phase plane, comprising several level sets of E(σ1, σ̇1) from Equation (1.25) for H = 0.

where σ1 and σ2 are the symplectic coordinates for the level surface of H on which the
reduced motion takes place and ψ ∈ S1 is canonically conjugate to H.

Our goal is to finish the solution for the spherical pendulum motion by reconstructing
the phase ψ ∈ S1 from the symmetry-reduced motion in (σ1, σ2, σ3) ∈ R3 on a level set of
H. Rearranging Equation (1.30) gives

Hdψ = −σ2 dσ1 + pidqi . (1.31)

Thus, the phase change around a closed periodic orbit on a level set of H in the (σ1, σ2, ψ,H)
phase space decomposes into the sum of the following two parts:∮

H dψ = H ∆ψ = −
∮
σ2 dσ1︸ ︷︷ ︸

geometric

+

∮
pidqi︸ ︷︷ ︸

dynamic

. (1.32)

On writing this decomposition of the phase as

∆ψ = ∆ψgeom + ∆ψdyn , (1.33)
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one sees from (1.23) that

H∆ψgeom =

∮
σ2
2 dt =

∫∫
dσ1 ∧ dσ2 (1.34)

is the area enclosed by the periodic orbit on a level set of H. Thus the name geometric
phase for ∆ψgeom, because this part of the phase equals the geometric area of the periodic
orbit. The rest of the phase is given by

H∆ψdyn =

∮
pi dqi =

∫ T

0

(σ2σ̇1 +Hψ̇) dt . (1.35)

Hence, from the canonical equations σ̇1 = ∂h/∂σ2 and ψ̇ = ∂h/∂H with Hamiltonian h in
(1.29), we have

∆ψdyn =
1

H

∫ T

0

(
σ2
∂h

∂σ2
+H

∂h

∂H

)
dt

=
2T

H

(
h+

〈
V (σ1)

〉
− 1

2
H
〈
σ2
1

〉)
=

2T

H

(
h+

〈
V (σ1)

〉)
− T

〈
σ2
1

〉
, (1.36)

where T is the period of the orbit around which the integration is performed and the angle
brackets 〈 · 〉 denote time average.

The second summand ∆ψdyn in (1.33) depends on the Hamiltonian h = E, the orbital
period T , the value of the level set H and the time averages of the potential energy and σ2

1

over the orbit. Thus, ∆ψdyn deserves the name dynamic phase, since it depends on several
aspects of the dynamics along the orbit, not just its area.

This finishes the solution for the periodic motion of the spherical pendulum up to quadra-
tures for the phase. In addition there is a homoclinic trajectory corresponding to the stable
and unstable manifolds of the upward vertical equilibrium, which is determined easily by a
quadrature.

Next: the elastic spherical pendulum
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