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1 Solutions of M3-4A16 Assessed Problems # 1

Exercise 1.1 (The Lie group SOK(3))

(A) Consider the zero locus map in the space of 3× 3 real matrices,

SK = {U ∈ GL(3,R)|UTKU − K = 0} , (locus map).

Explain why SK is a manifold for K = KT ∈ GL(3,R). Hint: Is it a submersion?

Answer Following the hint in the problem statement, we begin by looking up the

definition of submersion:

Definition. A submersion is a smooth map between smooth manifolds whose deriva-
tive is everywhere surjective.

Next, we observe that the map SK is the zero locus, or zero level set, of the mapping

U → (UTKU −K) , (locus map)

In class, we learned that manifolds can arise as level sets

M =
{
x
∣∣fi(x) = 0, i = 1, . . . , k

}
, (locus map)

for a given set of smooth functions fi : Rn → R, i = 1, . . . , k.

As we discussed in class, if the gradients∇fi are linearly independent, or more generally
if the rank of {∇f(x)} is a constant r for all x, thenM is a smooth manifold of dimension
n− r. (The proof uses the implicit function theorem and was not discussed in class.)

In particular, if r = k = dimM , the map {fi} : Rn →M will be surjective.

Thus, the strategy suggested by the hint is to show that r = k = dimM , so that the
map SK will a submersion and hence a submanifold. �

This strategy of connecting submanifolds with zero loci of surjective maps leads us to
linearise the locus map. This is also part (C) of the problem. Thus, beginning the
proof of surjectivity of the locus map by linearising it in part (A) sets up the answer
to part (C), too, where one evaluates the linearisation at the identity.

Let U ∈ SK, and let δU be an arbitrary element of Rn×n. Then linearise to find

(U + δU)TK(U + δU)−K = (UTKU −K) + δUTKU + UTKδU +O(δU)2 .

We may conclude that SK is a submanifold of Rn×n if we can show that the linearization
of the locus map, namely the linear mapping defined by

L ≡ δU → δUTKU + UTKδU , Rn×n → Rn×n

has constant rank for all U ∈ SK.

Lemma. The linearization map L is onto the space of n× n of symmetric matrices.
Hence, it has constant rank and the original map is a submersion.

Proof.

• Both the original locus map and the image of L lie in the subspace of n× n sym-
metric matrices.

• Indeed, given U and any symmetric matrix S we can find δU such that

δUTKU + UTKδU = S .

Namely
δU = K−1U−TS/2 .
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• Thus, the linearization map L is onto the space of n× n of symmetric matrices.
That is, it has constant rank. This means the original locus map U → UKUT −K
to the space of symmetric matrices is a submersion.

N

(B) Assuming that SK is a manifold, prove that it is a matrix Lie group.

Answer The smooth manifold SK in the space GL(3,R) of real 3 × 3 matrices is

also a group, if it satisfies the group axioms. Then, being both a manifold and a matrix
group, it will be a matrix Lie group.

Knowing that matrix multiplication is associative, we check that SK satisfies the other
three defining properties of a group:

• Identity: I ∈ SK because ITKI = K.

• Inverse: U ∈ SK =⇒ U−1 ∈ SK because

K = U−T (UTKU)U−1 = U−T (K)U−1.

• Closed under multiplication: U, V ∈ SK =⇒ UV ∈ SK because

(UV )TKUV = V T (UTKU)V = V T (K)V = K.

Hence, SK is a subgroup of the matrix Lie group GL(3,R).

N

(C) Write the defining relation for the tangent space to SK at the identity, TISK.

Answer The tangent space TISK at the identity of the matrix Lie group SK defined

by SK = {U ∈ GL(n,R)|UKUT −K = 0} is the linear space of matrices A satisfying

ATK +KA = 0

Proof. Near the identity the defining condition for SK in part 1.1(a) expands to

(I + εAT +O(ε2))K(I + εA+O(ε2)) = K , for ε� 1 .

At linear order O(ε) one finds,

ATK +KA = 0 .

This relation defines the linear space of matrices A ∈ TISK. N

(D) Show that for any pair of matrices A,B ∈ TISK, the matrix commutator satisfies

[A,B] ≡ AB −BA ∈ TISK.

Answer Using [A,B]T = [BT , AT ], we check closure by a direct computation,

[BT , AT ]K +K[A,B] = BTATK −ATBTK +KAB −KBA
= BTATK −ATBTK −ATKB +BTKA

= BT (ATK +KA)−AT (BTK +KB) = 0 .

Hence, the tangent space of SK at the identity TISK is closed under the matrix com-
mutator [ · , · ].

N
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(E) Suppose the 3× 3 matrices A and K satisfy

AK +KAT = 0 .

Show that exp(At)K exp(AT t) = K for all t.

Answer Compute

d

dt

(
exp(At)K exp(AT t)

)
= exp(At)(AK +KAT ) exp(AT t) = 0

Hence, the relation exp(At)K exp(AT t) = K is preserved under this flow.

This result shows that the flow defined by exponentiation of matrices in TISK preserves
K, so it maps the manifold SK smoothly into itself.

Is it surprising?

Imagine how surprised you would have been at finding this result, if you did not al-
ready know that Lie group transformations arise by exponentiating the infinitesimal
transformations of their Lie algebras! N

(F) Define the following hat map from basis vectors (ê1, ê2, ê3) ∈ sK to basis vectors (e1, e2, e3) ∈ R3,

̂ : sK → R3 is defined by (Kê )ij = − εijkKklel = − cij lel = − [ei, ej ]K .

Under what conditions on K is the hat map ( ·̂ ) a linear isomorphism? (This is easy.)

Answer For this variant of the hat map to be a linear isomorphism, the matrix K

must be invertible. (The usual hat map is with K = Id.) N

(G) For any vectors x = xiei, y = yjej ∈ R3 with components xj , yk, where j, k = 1, 2, 3, show that
the Lie algebra structure [ei, ej ]K is represented on R3 by the vector product

[x,y]K = K(x× y) . (1)

Answer The result follows from the following direct substitution in components:

[x,y]lKel = xiyjcij
lel = xiyjεijkK

klel = (x× y)kK
klel .

N

(H) Compute the Euler-Poincaré equation on R3 for a Lagrangian ` : sK → R by using the hat map
representation of sK on R3 in equation (1).

Answer For u,v ∈ sK ∼= R3 and X ∈ s∗K
∼= R3∗ ∼= R3, one uses the Lie bracket on

the matrix Lie algebra sK in vector form with the R3 dot-product pairing to define its
ad and ad∗ operations by the formulas

〈X , [ u,v ]K〉 = 〈X , aduv〉 = 〈ad∗uX , v〉 (2)

= KX · (u× v) = (KX× u) · v .

In particular, the vector forms of aduv and ad∗uX are given explicitly by

aduv = K(u× v) and ad∗uX = −u× KX . (3)
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These vector forms of the ad and ad∗ operations will yield a vector form of the Euler-
Poincaré equation

d

dt

∂l

∂u
= ad∗u

∂l

∂u
,

for the dynamics obtained from Hamilton’s principle δS = 0 with S =
∫ b
a l(u) dt and

a Lagrangian l(u) : sK ∼= R3 → R by identifying X = ∂l/∂u ∈ s∗K in vector form.
Namely,

d

dt

∂l

∂u
= ad∗u

∂l

∂u
= −u×

(
K
∂l

∂u

)
.

N

(I) Legendre transform to the Hamiltonian side and compute the corresponding Lie-Poisson bracket
{F (X), H(X)}K for smooth real functions F,H : X ∈ R3 → R.

Answer The Legendre transform u→ X yields the Hamiltonian

H(X) = X · u− l(u) with dual relations X =
∂l

∂u
and u =

∂H

∂X
.

The Lie–Poisson bracket is defined on smooth functions F,H : s∗K → R as

{F, H}K :=

〈
X , ad∂H/∂X

∂F

∂X

〉
.

The corresponding Lie–Poisson dynamics is expressed in terms of the ad and ad∗ op-
erations by

dF

dt
= {F, H}K =

〈
X , ad∂H/∂X

∂F

∂X

〉
=

〈
ad∗∂H/∂XX ,

∂F

∂X

〉
= − ∂F

∂X
· ∂H
∂X
× KX .

Consequently, the Lie–Poisson dynamics expresses itself as coadjoint motion on s∗K ,
written in vector form as,

dX

dt
= {X, H}K = ad∗∂H/∂XX = − ∂H

∂X
× KX .

N

(J) Rewrite this Lie-Poisson bracket as a triple scalar product of gradients of smooth real functions
on R3 and find its Casimir(s) C : {C(x), H(x)}K = 0, for all H.

Answer By construction, the Lie-Poisson bracket, written as

{F, H}K = −KX · ∂F
∂X
× ∂H

∂X

conserves the quadratic form, CK = 1
2 X · KX, which is the (quadratic) Casimir for

the Lie-Poisson bracket {F, H}K. That is, {CK, H}K = 0 for any Hamiltonian H(X).
Any differentiable function Φ of CK is also a Casimir, since by the Leibniz rule for the
Lie-Poisson bracket we have

{Φ(CK), H}K = Φ′(CK){CK, H}K = 0 .

N
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(K) Compute the corresponding equations of motion for the Hamiltonian H = 1
2‖X‖

2. How are the
resulting equations related to Euler’s equations for rigid body motion?

Answer For H = 1
2‖X‖

2 the Lie=Poisson equation becomes

dX

dt
= {X, H}K = ad∗∂H/∂XX = − ∂H

∂X
× KX =⇒ dX

dt
= −X× KX .

Upon identifying X→ Π and K→ I−1, then KX→ I−1Π→ Ω in rigid body notation,
for which Euler’s equations are

dΠ

dt
= + Π× I−1Π

we see that coadjoint motion on s∗K with Hamiltonian H = 1
2‖X‖

2 is equivalent to
Euler rigid body on so(3)∗ with the roles of the Casimir and Hamiltonian exchanged,
so that the direction of time is reversed.

N
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Exercise 1.2 (Noether’s theorem)

(A) Gauge invariance Show that the Euler-Lagrange equations are unchanged under

L(q(t), q̇(t))→ L′ = L+
d

dt
γ(q(t), q̇(t)) ,

for any function γ : R6N = {(q, q̇) | q, q̇ ∈ R3N} → R.

Answer Hamilton’s principle for the difference is

0 = δ

∫ t2

t1

(
L(q(t), q̇(t))− L′(q(t), q̇(t))

)
dt = δ

[
γ(q(t), q̇(t))

]t2
t1

However, this vanishes for variations δq(t) that vanish at the endpoints in time. N

(B) Generalized coordinate theorem Show that the Euler-Lagrange equations are unchanged in
form under any smooth invertible mapping f : {q 7→ s}. That is, with

L(q(t), q̇(t)) = L̃(s(t), ṡ(t)) ,

show that
d

dt

(
∂L

∂q̇

)
− ∂L

∂q
= 0 ⇐⇒ d

dt

(
∂L̃

∂ṡ

)
− ∂L̃

∂s
= 0 .

Answer This just amounts to a change of notation, so it clearly holds. N

(C) How do the Euler-Lagrange equations transform under q(t) = r(t) + s(t), when r(t) and s(t) are
independent of each other?

Answer A sum of two separate Euler-Lagrange equations is obtained. N

(D) State and prove Noether’s theorem that each smooth symmetry of Hamilton’s principle implies a
conservation law for the corresponding Euler-Lagrange equations on the tangent space TM of a
smooth manifold M .

Answer In the family of smoothly deformed curves qs(t) = Q(q, t, s) with q0 =

Q(q, t, 0) = q(t) during the time interval t ∈ [t1, t2], the action S =
∫ t2
t1
L(q, q̇, t) dt

transforms to

S =

∫ t2

t1

L

(
Q(q, t, s),

dQ(q, t, s)

dτ(t, s)
, τ(t, s)

)
dτ(t, s) .

We denote

δq(t) =
d

ds

∣∣∣∣
s=0

Q(q, t, s) = ξ(q(t), t) , δt =
d

ds

∣∣∣∣
s=0

τ(t, s) = θ(t) ,

so that at linear order in s we have

Q(q, t, s) = q(t)+sξ(q, t) , τ(t, s) = t+sθ(t) ,
dQ(q, t, s)

dτ(t, s)
=
dq

dt
+s
(
ξ̇(q, t)−q̇θ̇

)
.

Here the dot-notation as in ξ̇(q, t) = ∂tξ + q̇∂qξ represents the total time derivative.
We could allow q-dependence in τ , but the result of the calculation would be morally
the same, after keeping track of total time derivatives.
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The variations in Hamilton’s principle proceed as follows,

0 = δS =
d

ds

∣∣∣∣
s=0

∫ t2

t1

L

(
Q(q, t, s),

dQ(q, t, s)

dτ(t, s)
, τ(t, s)

)
dτ(t, s)

=

∫ t2

t1

{〈∂L
∂q
, ξ(q, t)

〉
+
〈∂L
∂q̇
, ξ̇(q, t)− q̇θ̇

〉
+
∂L

∂t
θ + L(q, q̇, t)θ̇

}
dt

=

∫ t2

t1

〈
∂L

∂q
− d

dt

∂L

∂q̇
,
(
ξ(q, t)− q̇θ

)〉
dt+

[〈∂L
∂q̇
, ξ
〉
−
(〈∂L

∂q̇
, q̇
〉
− L

)
θ

]t2
t1

=

∫ t2

t1

〈
∂L

∂q
− d

dt

∂L

∂q̇
,
(
δq − q̇δt

)〉
dt+

[〈∂L
∂q̇
, δq
〉
−
(〈∂L

∂q̇
, q̇
〉
− L

)
δt

]t2
t1

with a few algebraic manipulations and integrations by parts in between the lines. (Of
course, these should be checked!)

Thus, stationarity δS = 0 by symmetry and the Euler-Lagrange equations

[L ]qa :=
d

dt

∂L

∂q̇
− ∂L

∂q
= 0

imply that the quantity

C(t, q, q̇) =
〈∂L
∂q̇
, δq
〉
−
(〈∂L

∂q̇
, q̇
〉
− L

)
δt (4)

=: 〈 p , δq 〉 − E δt , (5)

has the same value at every time along the solution path. That is, C(t, q, q̇) is a constant
of the motion. This is Noether’s theorem.

N

(E) Show that conservation of energy results from Noether’s theorem if, in Hamilton’s prin-
ciple, the variations of L(q(t), q̇(t)) are chosen as

δq(t) =
d

ds

∣∣∣∣
s=0

q(t, s) ,

corresponding to symmetry of the Lagrangian under reparametrisations of time t→ τ(t, s) so that
q(t)→ q(τ(t, s)) along a given curve q(t).

Answer For reparametrisations of time, δq vanishes and δt is a function of time

in the previous part; so stationarity of the action δS = 0 in the presence of time-
reparametrisation symmetry implies that the quantity

C(t, q, q̇) =

(〈∂L
∂q̇
, q̇
〉
− L

)
δt =: E(t, q, q̇) δt(t) , (6)

is a constant of motion along solutions of the Euler-Lagrange equations. This does not
yet imply conservation of the energy E. For that, δt must be a constant.

For simple translations in time, δq again vanishes and δt is a constant ; so stationarity
of the action δS = 0 in the presence of time-translation symmetry implies that the
energy

E(t, q, q̇) :=
〈∂L
∂q̇
, q̇
〉
− L , (7)

is a constant of motion along solutions of the Euler-Lagrange equations.

This energy is also the expression for the Legendre transform of the Lagrangian L(t, q, q̇).
N
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Exercise 1.3 (Examples: Geodesic motion 3X, Magnetic 3X and Spherical Pendulum 2X)

(i) For the following Lagrangians, determine which of them are hyperregular. (A Lagrangian is
hyperregular if its fibre derivative is invertible, so that the velocity may be expressed in terms of
the position and canonical momentum.)

(ii) Write the Euler-Lagrange for these equations.

(iii) For the hyperregular Lagrangians apply the Legendre transformation to determine the Hamilto-
nian and Hamilton’s canonical equations.

(A) The kinetic energy Lagrangian K(q, q̇) = 1
2gij(q)q̇

iq̇j with i, j = 1, 2, . . . , N , for a Riemannian
manifold Q with metric g, written as (Q, g).

Answer

(i) The fibre derivative in this case is FK(vq) = g(q)(vq, ·), for vq ∈ TqQ. In coordi-
nates, this is

FK(q, q̇) =

(
qi,

∂K

∂q̇i

)
= (qi, gij(q)q̇

j) =: (qi, pi),

This Lagrangian is hyperregular for invertible g(q); that is, when the metric is
nondegenerate. In that case, one may solve for the velocity in terms of position
and canonical momentum as

q̇i = (g−1(q))ijpj

(ii) The Euler-Lagrange equations for this Lagrangian produce the geodesic equa-
tions for the metric g, and are given (for finite dimensional Q in a local chart)
by

q̈i + Γijkq̇
j q̇k = 0, i = 1, . . . n,

where the three-index quantities

Γhjk =
1

2
ghl
(
∂gjl
∂qk

+
∂gkl
∂qj
−
∂gjk
∂ql

)
, with gihg

hl = δli ,

are the Christoffel symbols of the Levi-Civita connection on (Q, g) and ghl is
called the co-metric.
The calculation of these Euler-Lagrange equations, done in class, involves a step of
symmetrising by using vanishing trace Tr(SA) = 0 for the product of a symmetric
matrix with an antisymmetric one.

(iii) The Legendre transform of this Lagrangian yields the corresponding Hamiltonian

H =
1

2
pig

ij(q)pj

whose canonical equations are

q̇i =
∂H

∂pi
= gij(q)pj , ṗi = − ∂H

∂qi
= − pk

∂gkj(q)

∂qi
pj .

N

(B) L(q, q̇) =
(
gij(q)q̇

iq̇j
)1/2

(Is it possible to assume that L(q, q̇) = 1? Why?)

Answer
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(i) Fibre derivative
This Lagrangian is not hyperregular. Its fibre derivative begins well enough

∂L

∂q̇i
=

1√
gkl(q)q̇kq̇l

gij q̇
j

The difficulty is that this Lagrangian is homogeneous of degree one in the velocities.
Such functions satisfy Euler’s relation,

∂L

∂q̇i
q̇i − L = 0 .

This already spells trouble, because its Legendre transform produces a Hamiltonian
that vanishes identically

H = piq̇
i − L ≡ 0

Taking another derivative of the Euler’s relation yields

∂2L

∂q̇i∂q̇j
q̇j = 0

so the Hessian of this Lagrangian L with respect to the tangent vectors is sin-
gular (has zero determinant). This means the Legendre transformation for this
Lagrangian is not invertible.
A singular Lagrangian might become problematic in some situations. However,
there is a simple way of obtaining a regular Lagrangian from it whose trajectories,
as we shall see, are the same as those for the singular Lagrangian.
The Lagrangian function in this part of the problem is related to the Lagrangian
for geodesics in the previous part by

K(q, q̇) =
1

2
gij(q)q̇

iq̇j = 1
2L

2(q, q̇) .

Computing the Hessian with respect to the tangent vector yields the Riemannian
metric,

1

2

∂2L2

∂q̇i∂q̇j
= gij(q) .

The emergence of a Riemannian metric from the Hessian of the square of a ho-
mogenous function of degree 1 is the hallmark of Finsler geometry, of which
Riemannian geometry is a special case. Finsler geometry, however, is beyond our
present scope.

(ii) Euler-Lagrange equations

On setting
√
gkl(q)q̇kq̇l =: ‖q̇‖, the Euler-Lagrange equations become

d

dt

(
1

‖q̇‖
gij
dqj

dt

)
=

1

2‖q̇‖

(
dqk

dt

∂gkl
∂qi

dql

dt

)
On dividing by ‖q̇‖ and setting dτ := ‖q̇‖dt, this becomes

d

dτ

(
gij
dqj

dτ

)
=

1

2

(
dqk

dτ

∂gkl
∂qi

dql

dτ

)
,

which is again the geodesic equation, but now with a reparameterised time.

Assuming that L = ‖q̇‖ = 1 is not possible, because the value of ‖q̇‖ is not preserved
by the flow.
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(iii) Hamiltonian and canonical equations
Hamilton’s canonical equations are problematic for a Hamiltonian that vanishes
identically.

N

(C) L(q̇) = −
(

1− q̇ · q̇
)1/2

for q̇ ∈ R3.

Answer

(i) Fibre derivative

p =
∂L

∂q̇
=

q̇√
1− q̇ · q̇

=: γ q̇ =⇒ q̇ = ± p√
1 + p · p

so this Lagrangian is hyperregular, after making a choice of sign convention, that
p · q̇ > 0, for example; so that γ =

√
1 + p · p = 1/

√
1− q̇ · q̇.

(ii) Euler-Lagrange equations

d(γ q̇)

dt
= 0

(iii) Hamiltonian and canonical equations
The Hamiltonian for this system is

H = p · q̇− L =
√

1 + |p|2 = γ

and its canonical equations are

dq

dt
=
∂H

∂p
=

p√
1 + |p|2

,
dp

dt
= − ∂H

∂q
= 0

This is geodesic motion in R3 for a relativistic particle of unit rest mass.

N

(D) The Lagrangian for a free particle of unit mass relative to a moving frame is obtained by setting

L(q̇,q, t) =
1

2
‖q̇ + R(q)‖2

for a function R(q, t) which governs the space and time dependence of the moving frame velocity.
For example, a frame rotating with time-dependent frequency Ω(t) about the vertical axis ẑ is
obtained by choosing R(q, t) = q× Ω(t)ẑ.

Answer

(i) Fibre derivative
The fibre derivative gives a linear relation

p =
∂L

∂q̇
= q̇ + R(q)

so this Lagrangian is hyperregular.

(ii) Euler-Lagrange equations

d

dt
(q̇i +Ri(q)) = (q̇j +Rj(q))

∂Rj

∂qi
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or

q̈i = (Rj,i −Ri,j)q̇j +
∂

∂qi
(12 |R|

2)

In vector form, this is

q̈ = q̇× 2Ω +
∂

∂q
(12 |R|

2) with 2Ω :=
∂

∂q
×R(q)

and the terms on the right comprise the sum of the Coriolis and centrifugal forces.

(iii) Hamiltonian and canonical equations
The Hamiltonian for this system is

H = p · q̇− L = 1
2 |p|

2 − p ·R(q)

and its canonical equations are

dq

dt
=
∂H

∂p
= p−R(q) ,

dp

dt
= − ∂H

∂q
= pj

∂

∂q
Rj(q)

N

(E) The Lagrangian for a charged particle of mass m in a magnetic field B = curlA is

L(q, q̇) =
m

2
q̇ · q̇ +

e

c
q̇ ·A(q),

for constants m, e, c and prescribed function A(q).

How do the Euler-Lagrange equations for this Lagrangian differ from those of the previous part
for free motion in a moving frame with velocity e

mcA(q)?

Answer

(i) Fibre derivative
The fibre derivative gives a linear relation

p =
∂L

∂q̇
= mq̇ +

e

c
A(q)

so this Lagrangian is hyperregular.

(ii) Euler-Lagrange equations
In vector form, this is

q̈ =
e

mc
q̇×B(q) with B(q) :=

∂

∂q
×A(q)

and the terms on the right comprise the Lorentz force.

(iii) Hamiltonian and canonical equations
The Hamiltonian for this system is

H = p · q̇− L =
1

2m

∣∣∣p− e

c
A(q)

∣∣∣2
and its canonical equations are

dq

dt
=
∂H

∂p
=

1

m

(
p− e

c
A(q)

)
,

dp

dt
= − ∂H

∂q
=

e

mc

(
pj −

e

c
Aj(q)

) ∂
∂q

Aj(q)

These are the same equations as in the previous part, modulo the rela-
tion R = eA/mc and neglect of centrifugal force.

N
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(F) Let Q be the manifold R3 × S1 with variables (q, θ). Introduce the Lagrangian L : TQ ' TR3 ×
TS1 7→ R as

L(q, θ, q̇, θ̇) =
m

2
‖q̇‖2 +

e

2c

(
q̇ ·A(q) + θ̇

)2
.

The Lagrangian L is positive definite in (q̇, θ̇); so it may be regarded as the kinetic energy of a
metric.

(a) Interpret the motion as geodesic.

(b) Identify how the Euler-Lagrange equations for this Lagrangian differ from those of the pre-
vious part for a charged particle with mass moving in a magnetic field?

Answer

(i) Fibre derivative
in this example, we have two fibre derivatives that each give a linear relation

p =
∂L

∂q̇
= mq̇ +

e

c

(
q̇ ·A(q) + θ̇

)
A(q) = mq̇ + pθA(q)

pθ =
∂L

∂θ̇
=
e

c

(
q̇ ·A(q) + θ̇

)
so this Lagrangian is hyperregular.

(ii) Euler-Lagrange equations

q̈ =
pθ
m

q̇×B(q) with B(q) :=
∂

∂q
×A(q)

dpθ
dt

= 0

This is the same as the previous part, on setting pθ = e/c.

(iii) Hamiltonian and canonical equations
The Hamiltonian H associated to L by the Legendre transformation for this La-
grangian is

H(q, θ,p, pθ) = p · q̇ + pθθ̇ − L(q, q̇, θ, θ̇)

= p · 1

m
(p− pθA) + pθ(pθ −A · q̇)

− 1

2
m|q̇|2 − 1

2
p2θ

= p · 1

m
(p− pθA) +

1

2
p2θ

− pθA ·
1

m
(p− pθA)− 1

2m
|p− pθA|2

=
1

2m
|p− pθA|2 +

1

2
p2θ. (8)

Remarks

(a) This example provides an easy but fundamental illustration of the geometry of
(Lagrangian) reduction by symmetry. The canonical equations for the Hamil-
tonian H now reproduce Newton’s equations for the Lorentz force law, reinter-
preted as geodesic motion with respect to the metric defined by the Lagrangian
on the tangent bundle TQ ' TR3 × TS1.

(b) On the constant level set pθ = e/c, this Hamiltonian H is a function of only the
variables (q,p) and is equal (up to an additive constant) to the Hamiltonian
for charged particle motion under the Lorentz force.
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N

(G) Consider a Lagrangian containing a penalty that consistent with a constraint imposed by a La-
grange multiplier, π.

Lε(q, q̇) =
1

2
‖q̇‖2 − gez · q−

1

4ε
(1− ‖q‖2)2 +

1

ε
π(q · q̇)

for a particle with coordinates q ∈ R3, constants g, ε and vertical unit vector ez. Let γε(t) be the
curve in R3 obtained by solving the Euler-Lagrange equations for Lε with the initial conditions
q0 = γε(0), q̇0 = γ̇ε(0).

Show that

(a) In the limit
lim

g→0,ε→0
γε(t)

the motion is along is a great circle on the two-sphere S2, provided that the initial conditions
satisfy ‖q0‖2 = 1 and q0 · q̇0 = 0.

(b) For constant g > 0 the limit
lim
ε→0

γε(t)

recovers the dynamics of a spherical pendulum.

Answer

(i) Fibre derivative
The fibre derivative gives a linear relation

p =
∂L

∂q̇
= q̇ +

π

2
q

which is solvable for the velocity q̇(p, q) as q̇ = p− π q/2, but we do not know
the Lagrange multiplier, π.
This means the Lagrangian is not hyperregular.

(ii) Euler-Lagrange equations

q̈ = −gê3 +
1

ε
(π̇ − 1 + ‖q‖2)q . (9)

Imposing d
dt(q · q̇) = 0 yields

1

ε
(π̇ + 1− ‖q‖2) =

1

‖q‖2
(gê3 · q− ‖q̇‖2)

which only determines π(t) after the motion for q(t) is already obtained, from,

q̈ = −gê3 +
1

‖q‖2
(gê3 · q− ‖q̇‖2)q . (10)

This equation reduces to spherical pendulum motion when ‖q‖2 = 1. How-
ever, we know that the Lagrange multiplier π imposes d‖q‖2/dt = 0. So if we set
‖q‖2 = 1 initially, it’s value will be preserved. Therefore, the rest of the solution
of this problem follows the spherical pendulum solution.

(iii) Hamiltonian and canonical equations
The corresponding Hamiltonian is obtained by the Legendre transformation as,

H(q,p) = 1
2‖p−

π

ε
q‖2 + gê3 · q +

1

4ε
(1− ‖q‖2)2 , (11)
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in which the variable p is the momentum canonically conjugate to the radial posi-
tion q. The canonical equations on (1− ‖q‖2) = 0, are

q̇ = {q, H} =
∂H

∂p
= p− π

ε
q

ṗ = {p, H} = − ∂H
∂q

= −gê3 + (p− π

ε
q)
π

ε
+

1

ε
(1− ‖q‖2)q .

These equations are equivalent to the spherical pendulum equations for any value of ε.
Hence, items (a) and (b) above are answered by the spherical pendulum solution.

(iv) Two penalties, instead of a penalty and a constraint.
The story would have been different, if we had chosen the Lagrangian as

Lε(q, q̇) =
1

2
‖q̇‖2 − gez · q−

1

4ε
(1− ‖q‖2)2 − 1

2ε
(q · q̇)2 .

In this case, the fibre derivative is

p =
∂L

∂q̇
= q̇− 1

ε
(q · q̇)q =

(
Id− 1

ε
q⊗ q

)
· q̇

This relation can NOT be solved for the velocity as q̇(p, q) unless q · q̇ = 0, exactly.
Consequently, this Lagrangian is not hyperregular. N

(H) How does the motion in the previous part differ from that obtained via Hamilton’s principle for
the following Lagrangian?

Lε(q, q̇) =
1

2
‖q̇‖2 − gez · q− µ(1− ‖q‖2)

where µ is called a Lagrange multiplier and must be determined as part of the solution.

Answer See Exercise 1.6 about the spherical pendulum. N
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Exercise 1.4 (Poisson brackets)

(A) Show that the canonical Poisson bracket is bilinear, skew symmetric, satisfies the Jacobi identity
and acts as a derivation on products of functions in phase space.

Answer This is easy, but the last property requires tedious algebraic manipulation,

if one tries to do it directly. It can go much faster, if one first identifies Poisson brackets
with Hamiltonian vector fields by

XH = { · , H}

and uses the map
XFXGXH = −{F, {G, {H, · }}} ,

to get some clarity in the notation.

N

(B) Given two constants of motion, what does the Jacobi identity imply about additional constants of
motion associated with their Poisson bracket?

Answer The Poisson bracket of two constants of motion is another one. N

(C) Compute the Poisson brackets among the R3-valued functions

Ji = εijkqjpk

for (q,p) ∈ T ∗R3.

Answer

{Ji, Jj} = εijkJk

N

(D) Verify that Hamilton’s equations for the function

Jξ(q,p) = 〈J(z), ξ〉 = ξ · (q× p)

with z := (q,p) ∈ T ∗R3 and ξ ∈ R3 give infinitesimal rotations of q and p about the ξ-axis.

Answer The Hamiltonian vector field for Jξ is

XJξ := { · , Jξ} =
∂Jξ

∂p
· ∂
∂q
− ∂Jξ

∂q
· ∂
∂p

= ξ × q · ∂
∂q

+ ξ × p · ∂
∂p

,

whose coefficients are the infinitesimal rotations of q and p about the ξ-axis. N



D. D. Holm Solutions to M3-4A16 Assessed Problems # 1 Due 16 Nov 2011 16

1.4a Poisson brackets – revised question

(a) Show that the canonical Poisson bracket is bilinear, skew symmetric, satisfies the Jacobi identity
and acts as a derivation on products of functions in phase space.

Answer As before, or as a direct calculation. N

(b) Given two constants of motion, what does the Jacobi identity imply about additional constants
of motion associated with their Poisson bracket?

Answer

This is the Bruns theorem: Poisson brackets of constants of motion are conserved. N

(c) Compute the Poisson brackets among the R3-valued functions of (q,p) ∈ T ∗R3

Ji = εijkpjqk or J = p× q in vector notation.

Answer

{Ji, Jj} = − εijkJk .

N

(d) Answer the following questions about these Poisson brackets.

(i) Do the Poisson brackets {Jl, Jm} close among themselves?

Answer Yes, namely {Ji, Jj} = − εijkJk. N

(ii) Write the Poisson bracket {F (J), H(J)} for the restriction to functions of J = (J1, J2, J3).

Answer

{F (J), H(J)} = −J · ∂F
∂J
× ∂H

∂J
.

N

(iii) Write in vector notation the equation J̇ = {J, H(J)} for any Hamiltonian function H(J).

Answer

J̇ = {J, H(J)} = J× ∂H

∂J
N

(iv) Compute the dynamical equation for the Hamiltonian function

H(J) = Jξ = ξ · J

for any vector ξ ∈ R3. Interpret the solutions for this flow geometrically.

Answer

J̇ = {J, H(J)} = J× ∂H

∂J
= − ξ × J

This is clockwise rotation of vector J at angular frequency ξ. Since J = p× q, the
vectors p and q rotate the same way. That is, ṗ = − ξ × p and q̇ = − ξ × q. N
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Exercise 1.5 (Nambu Poisson brackets on R3)

(a) Show that for smooth functions c, f, h : R3 → R, the R3-bracket defined by

{f, h} = −∇c · ∇f ×∇h

satisfies the defining properties of a Poisson bracket. Is it also a derivation satisfying the Leibnitz
relation for a product of functions on R3? If so, why?

Answer The R3-bracket is plainly a skew-symmetric bilinear Leibniz operator. Its

Hamiltonian vector fields are divergence free vector fields in R3. These vector fields in
R3 satisfy the Jacobi identity under commutation. The identification of the R3-bracket
with its Hamiltonian vector fields shows that it satisfies Jacobi. This will be made
clearer below. N

(b) How is the R3-bracket related to the canonical Poisson bracket in the plane?

Answer The canonical Poisson bracket in the (x, y)-plane is given by the particular

choice of the R3-bracket
{f, h} = −∇z · ∇f ×∇h

N

(c) The Casimirs (or distinguished functions, as Lie called them) of a Poisson bracket satisfy

{c, h}(x) = 0 , for all h(x)

Part 5 verifies that the R3-bracket satisfies the defining properties of a Poisson bracket. What are
the Casimirs for the R3 bracket?

Answer Smooth functions of c are Casimirs for the R3-bracket given by

{f, h} = −∇c · ∇f ×∇h.

N

(d) Write the motion equation for the R3-bracket

ẋ = {x, h}

in vector form using gradients and cross products. Show that the corresponding Hamiltonian vector
field Xh = { · , h} has zero divergence.

Answer

ẋ = {x, h} = ∇c×∇h

The corresponding Hamiltonian vector field Xh = { · , h} has zero divergence because
the vector ∇c×∇h has zero divergence. (It’s a curl.) N

(e) Show that under the R3-bracket, the Hamiltonian vector fields Xf = { · , f}, Xh = { · , h} satisfy
the following anti-homomorphism that relates the commutation of vector fields to the R3-bracket
operation between smooth functions on R3,

[Xf , Xh] = −X{f,h}.

Hint: commutation of divergenceless vector fields does satisfy the Jacobi identity.
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Answer Lemma. The R3-bracket defined on smooth functions (C,F,H) by

{F,H} = −∇C · ∇F ×∇H

may be identified with the divergenceless vector fields by

[XG, XH ] = −X{G,H} , (12)

where [XG, XH ] is the Jacobi-Lie bracket of vector fields XG and XH .

Proof. Equation (12) may be verified by a direct calculation,

[XG, XH ] = XGXH −XHXG

= {G, · }{H, · } − {H, · }{G, · }
= {G, {H, · }} − {H, {G, · }}
= {{G, H}, · } = −X{G,H} .

Remark. The last step in the proof of the Lemma uses the Jacobi identity for the
R3-bracket, which follows from the Jacobi identity for divergenceless vector fields, since

XFXGXH = −{F, {G, {H, · }}}

N

(f) Show that the motion equation for the R3-bracket is invariant under a certain linear combination
of the functions c and h. Interpret this invariance geometrically.

Answer

∇(αc+ βh)×∇(γc+ εh) = ∇c×∇h for constants satisfying αε− βγ = 1.

Under such a (volume-preserving) transformation, the level sets change, but their inter-
sections remain invariant.

N
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mg

Figure 1: Spherical pendulum: x = R sin θ cosφ, y = R sin θ sin θ, z = −R cos θ.

Exercise 1.6 (Spherical pendulum)
A spherical pendulum of length L swings from a fixed point of support under the constant downward

force of gravity mg.
Use spherical coordinates with azimuthal angle 0 ≤ φ < 2π and polar angle 0 ≤ θ < π measured

from the downward vertical defined in terms of Cartesian coordinates by (note minus sign in z)

(A) Find its equations of motion according to the approaches of

(a) Newton,

(b) Lagrange and

(c) Hamilton.

Answer See Appendix A, Section A.1.2 of the text.

The Lagrangian approach

We use spherical coordinates with azimuthal angle 0 ≤ φ < 2π and polar angle 0 ≤
θ < π measured from the downward vertical defined in terms of Cartesian coordinates
by (note minus sign in z)

x = R sin θ cosφ ,

y = R sin θ sin θ ,

z = −R cos θ .

Kinetic energy In Cartesian coordinates, the kinetic energy is

T =
m

2
(ẋ2 + ẏ2 + ż2) .

Upon translating into spherical polar coordinates, the velocity components become

ẋ = Rθ̇ cos θ cosφ−Rφ̇ sin θ sinφ ,

ẏ = Rθ̇ cos θ sinφ−Rφ̇ sin θ cosφ ,

ż = Rθ̇ sin θ ,
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and the kinetic energy becomes

T =
mR2

2
(θ̇2 + φ̇2 sin2 θ) .

This is the standard form for the particle kinetic energy in spherical coordinates.

Potential energy The potential energy of the spherical pendulum is

V = mgz = −mgR cos θ .

Lagrangian Its Lagrangian is similar to Equation (??) for the rotating hoop:

L = T − V =
mR2

2
(θ̇2 + φ̇2 sin2 θ) +mgR cos θ .

θ equation: The Euler–Lagrange equation is

d

dt

∂L

∂θ̇
− ∂L

∂θ
= 0 ,

in which for the spherical pendulum Lagrangian,

∂L

∂θ̇
= mR2θ̇ ,

∂L

∂θ
= φ̇2mR2 sin θ cos θ −mgR sin θ .

Consequently, one finds the motion equation

mR2θ̈ − φ̇2mR2 sin θ cos θ +mgR sin θ = 0 .

φ equation: The Euler–Lagrange equation in φ is

d

dt

∂L

∂φ̇
− ∂L

∂φ
= 0 .

Consequently, one computes that

∂L

∂φ̇
= mR2φ̇ sin2 θ ,

∂L

∂φ
= 0 ,

d

dt

∂L

∂φ̇
=

d

dt
(mR2φ̇ sin2 θ) = 0 .

Thus, as guaranteed by Noether’s theorem, azimuthal symmetry of the Lagrangian
(that is, L being independent of φ) implies conservation of the azimuthal angular
momentum.

The Hamiltonian approach

One computes the canonical momenta and solves for velocities in terms of momenta
and coordinates as

Pθ =
∂L

∂θ̇
= mR2θ̇ , so θ̇ =

Pθ
mR2

,

Pφ =
∂L

∂φ̇
= mR2φ̇ sin2 θ , so φ̇ =

Pφ

mR2 sin2 θ
.
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The Hamiltonian is obtained by Legendre-transforming the Lagrangian as

H = Pθθ̇ + Pφφ̇− L

=
P 2
θ

2mR2
+

P 2
φ

2mR2 sin2 θ
−mgl cos θ .

This Hamiltonian has canonical motion equations,

Ṗθ = − ∂H
∂θ

= −mgl sin θ +
P 2
φ

mR2

cos θ

sin3 θ
,

Ṗφ = − ∂H
∂φ

= 0 .

The angular frequencies are recovered in their canonical form from the Hamiltonian as

θ̇ =
∂H

∂Pθ
=

Pθ
mR2

,

φ̇ =
∂H

∂Pφ
=

Pφ

mR2 sin2 θ
.

By Noether’s theorem, the azimuthal angular momentum Pφ is conserved because the
Lagrangian (and hence the Hamiltonian) of the spherical pendulum are independent
of φ. This symmetry also allows further progress toward characterising the spherical
pendular motion. In particular, the equilibria are azimuthally symmetric.

Substituting for φ̇2 in Equation (A) from (13) yields

mR2θ̈ = −mgR sin θ +
( Pφ

mR2 sin2 θ

)2
mR2 sin θ cos θ .

This may be rewritten in terms of an effective potential Veff (θ) as

θ̈ = −
∂Veff (θ)

∂θ
,

with

Veff (θ) = − (g/R) cos θ +
P 2
φ

2mR2 sin2 θ
.

This approach enables a phase-plane analysis in (θ, Pθ). Combining this with conser-
vation of energy defined as

E/(mR2) = θ̇2/2 + Veff (θ)

N

(B) Write the constrained Lagrangian for the L(x, ẋ) : TR3 → R as

L(x, ẋ) = 1
2 |ẋ|

2 − gê3 · x− 1
2µ(1− |x|2), (13)

in which the Lagrange multiplier µ constrains the motion to remain on the sphere S2 by enforcing
(1− |x|2) = 0 when it is varied in Hamilton’s principle.

(a) Compute the variations in Hamilton’s principle and write the Euler-Lagrange equations for
the spherical pendulum on TR3.

(b) Solve for the Lagrange multiplier by requiring that TS2 is preserved by this motion on TR3.

Answer
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(a) The corresponding Euler-Lagrange equations are

ẍ = −gê3 + µx . (14)

(b) This equation preserves both of the TS2 defining relations 1−|x|2 = 0 and x·ẋ = 0,
provided the Lagrange multiplier is given by

µ = gê3 · x− |ẋ|2 . (15)

Proof. Compute time derivatives of 1− |x|2 = 0 and x · ẋ = 0 and substitute the
motion equation (14) into the latter and solve for µ given by (15).

Remark Regroup (14) using (15) for µ to find an interpretation of the forces

ẍ = −g
(
ê3 − (ê3 · x)x

)
︸ ︷︷ ︸

Projects ê3 on TS1

+ (−|ẋ|2x)︸ ︷︷ ︸
Centripetal force

, (16)

where (ê3 − (ê3 · x)x) = ê3 · (Id − x ⊗ x) and (Id − x ⊗ x) · x = (1 − |x|2)x = 0,
because of the constraint.

N

(C) Find the Hamiltonian and its canonical equations.

Answer The fibre derivative of the constrained Lagrangian L in (13) is

y =
∂L

∂ẋ
= ẋ . (17)

The corresponding Hamiltonian is obtained by the Legendre transformation as,

H(x,y) = 1
2 |y|

2 + gê3 · x + 1
2(gê3 · x− |y|2)(1− |x|2) , (18)

in which the variable y is the momentum canonically conjugate to the radial position
x. The canonical equations on (1− |x|2) = 0, are

ẋ = {x, H} =
∂H

∂y
= y and ẏ = {y, H} = − ∂H

∂x
= −gê3 + (gê3 · x− |y|2)x . (19)

N

(D) A convenient choice of basis for the algebra of polynomials in (x,y) that are S1-invariant under
rotations about the 3-axis is given by

σ1 = x3 σ3 = y21 + y22 + y23 σ5 = x1y1 + x2y2
σ2 = y3 σ4 = x21 + x22, σ6 = x1y2 − x2y1

(a) Find the cubic relation that these S1-invariants satisfy and express the defining relations for
TS2 in terms of them.

(b) Use these relations to eliminate σ4 and σ5 in favour of {σ1, σ2, σ3, σ6} and find the cubic
relation satisfied among {σ1, σ2, σ3, σ6}.

Answer
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(a) These six S1-invariants satisfy the cubic algebraic relation

σ25 + σ26 = σ4(σ3 − σ22) . (20)

Hence, they also satisfy the positivity conditions

σ4 ≥ 0, σ3 ≥ σ22. (21)

In these variables, the defining relations for TS2 become

σ4 + σ21 = 1 and σ5 + σ1σ2 = 0 . (22)

(b) Using the relations in (22) to eliminate σ4 and σ5 from (20) yields the cubic relation

C(σ1, σ2, σ3, σ6) = σ22 + σ26 − σ3(1− σ21) = 0 (23)

Thus, the motion takes place on the following family of surfaces depending on
(σ1, σ2, σ3) ∈ R3 and parameterised by the conserved value of σ26 = J2

3 ,

σ3 =
σ22 + J2

3

1− σ21
. (24)

Vertical planar slices through the surface C = 0 are parabolic at σ1 = 0. They are
U-shaped at σ2 = 0 and diverging at σ21 = 1, unless σ6 = 0 = J3, in which case the
spherical pendulum swings in a single plane.

N

(E) (a) Find the Poisson bracket relations among the remaining quadratic invariant variables {σ1, σ2, σ3, σ6}
(b) Explain how this Poisson bracket is related to the R3-bracket.

Answer

(a) We begin by computing the Poisson bracket relations among the σ’s from their
definitions in terms of the canonically conjugate variables (x,y), before we insert
the relations (22).

{ · , · } σ1 σ2 σ3 σ4 σ5 σ6
σ1
σ2
σ3
σ4
σ5
σ6

0 1 2σ2 0 0 0
−1 0 0 0 0 0
− 2σ2 0 0 −2σ5 −2(σ3 − σ22) 0

0 0 2σ5 0 2σ4 0
0 0 2(σ3 − σ22) −2σ4 0 0
0 0 0 0 0 0

However, after the relations in (22) have been used to write σ4 and σ5 as functions
of σ1 and σ2, the remaining variables are no longer independent, and the Poisson
bracket relations among the quadratic invariant variables {σ1, σ2, σ3, σ6} must pre-
serve the C = 0 family of surfaces σ3 = F (σ1, σ2) parameterised by constant J3 in
equation (24). Consequently, up to a constant factor (that may be absorbed into
the unit of time, t) the Poisson bracket must be given by

{σi, σj} = − εijk
∂C

∂σk
. (25)

In components, this Poisson bracket is expressed as

{ · , · } σ1 σ2 σ3 σ6
σ1
σ2
σ3
σ6

0 1− σ21 2σ2 0
−1 + σ21 0 − 2σ1σ3 0
− 2σ2 2σ1σ3 0 0

0 0 0 0
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(b) The Poisson bracket amongst {σ1, σ2, σ3} defines an R3-bracket. (This part of the
question was just a clue to align people’s thinking for the rest.)

N

(F) Write their dynamics on TS2 in Hamiltonian form.

Answer In Hamiltonian form the dynamics on TS2 (which is preserved by the

motion) simplifies because the spherical pendulum Hamiltonian in (18) becomes linear
in the S1-invariants

H|TS2 = 1
2σ3 + gσ1 . (26)

Hence the dynamics becomes

σ̇i = {σi, H} = εijk
∂C

∂σj

∂H

∂σk

or explicitly,

σ̇1 = {σ1, H} = −σ2 , σ̇2 = {σ2, H} = σ1σ3 + g(1− σ21) , σ̇3 = {σ3, H} = 2gσ2 ,

and σ̇6 = {σ6, H} = 0 because the Poisson bracket with σ6 vanishes with all the other
S1-invariants. If in the previous equations of motion we restrict to a constant level
surface of H|TS2 , then σ3 may be eliminated from the equations in favour of H|TS2 and
we find

σ̇1 = {σ1, H} = −σ2 , σ̇2 = σ1(2H|TS2 − gσ1) + g(1− σ21)

Hence,

σ̈1 = −σ̇2 = −(2H|TS2)σ1 + 2gσ21 − g = − d

dσ1

(
H|TS2 σ21 −

3

2
gσ31 + gσ1

)
This is the particle in the cubic potential whose phase plane orbits are shaped like a
fish swimming to the left. N
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Exercise 1.7 (The Hopf map)
In coordinates (a1, a2) ∈ C2, the Hopf map C2/S1 → S3 → S2 is obtained by transforming to the

four quadratic S1-invariant quantities

(a1, a2)→ Qjk = aja
∗
k , with j, k = 1, 2 .

Let the C2 coordinates be expressed as

aj = qj + ipj

in terms of canonically conjugate variables satisfying the fundamental Poisson brackets

{qk, pm} = δkm with k,m = 1, 2.

(A) Compute the Poisson brackets {aj , a∗k} for j, k = 1, 2.

Answer The C2 coordinates aj = qj + ipj satisfy the Poisson bracket

{aj , a∗k} = −2i δjk , for j, k = 1, 2 .

N

(B) Is the transformation (q, p)→ (a, a∗) canonical? Explain why or why not.

Answer The transformation (q, p) 7→ (a, a∗) is indeed canonical. The constant (−2i)

is inessential for Hamiltonian dynamics, because it can be absorbed into the definition
of time.

N

(C) Compute the Poisson brackets among Qjk, with j, k = 1, 2.

Answer The quadratic S1 invariants on C2 given by Qjk = aja
∗
k satisfy the Poisson

bracket relations,

{Qjk , Qlm} = 2i (δklQjm − δjmQkl) , j, k, l,m = 1, 2 .

Thus, they do close among themselves, but they do not satisfy canonical Poisson bracket
relations.

N

(D) Make the linear change of variables,

X0 = Q11 +Q22 , X1 + iX2 = 2Q12 , X3 = Q11 −Q22 ,

and compute the Poisson brackets among (X0, X1, X2, X3).

Answer The quadratic S1 invariants (X0, X1, X2, X3) given by

X0 = Q11 +Q22 , X1 + iX2 = 2Q12 , X3 = Q11 −Q22 ,

may be expressed in terms of the aj , j = 1, 2 as

X2
0 = |a1|2 + |a2|2 , X1 + iX2 = 2a1a

∗
2 , X3 = |a1|2 − |a2|2 .

These satisfy the Poisson bracket relations,

{X0 , Xk} = 0 , {Xj , Xk} = − εjklXl

N
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(E) Express the Poisson bracket {F (X), H(X)} in vector form among functions F and H of X =
(X1, X2, X3).

Answer The Poisson bracket {F (X), H(X)} is given in vector form as

{F (X), H(X)} = −X · ∂F
∂X
× ∂H

∂X
.

It’s the same as the Poisson bracket for the rigid body.

N

(F) Show that the quadratic invariants (X0, X1, X2, X3) themselves satisfy a quadratic relation.

How is this relevant to the Hopf map?

Answer The quadratic invariants (X0, X1, X2, X3) satisfy the quadratic relation

X2
0 (X) = X2

1 +X2
2 +X2

3 = |X|2 .

This relation is relevant. It completes the Hopf map, because level sets of X0 are
spheres S2 ∈ S3. Moreover, it is relevant to the Poisson bracket in vector form above,
which may be written using this relation as

{F (X), H(X)} = − 1

2

∂X2
0

∂X
· ∂F
∂X
× ∂H

∂X
.

N


