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Preface

Introduction to the 2nd edition

This is the text for a course in geometric mechanics taught by the au-
thor for undergraduates in their third year of mathematics at Impe-
rial College London. The course has now been taught five times, to
different groups of students with quite diverse interests and prepa-
ration. After each class, the students were requested to turn in a
response sheet on which they answered two questions.
These two questions were:
1. “What was this class about?” and
2. “What question about the class would you like to see pursued
further in the course?”

The answers to these questions helped the instructor keep the
lectures aligned with the interests and understanding of the stu-
dents, and it enfranchised the students because they themselves se-
lected the topics for many of the lectures. Responding to this writ-
ten dialogue with the class required the instructor to develop a flex-
ible approach that would allow a certain amount of shifting from
one topic to another, in response to the associations arising in the
minds of the students, but without losing sight of the fundamental
concepts. This flexibility seemed useful in keeping the students en-
gaged and meeting their diverse needs. It also showed the students
the breadth, power and versatility of geometric mechanics.

In an attempt to meet this need for flexibility in teaching, the
introduction of each chapter of the 2nd edition has been rewritten to

xv



xvi PREFACE

start at a rather elementary level that does not assume proficiency
with the previous material. This means the chapters are sufficiently
self-contained that the instructor may select the material of most
value to an individual class.

A brief history of geometric mechanics

The ideas underlying geometric mechanics first emerged in the prin-
ciples of optics formulated by Galileo, DesCartes, Fermat and Huy-
gens. These underlying ideas were developed in optics and particle
mechanics by Newton, Euler, Lagrange and Hamilton, with added
contributions from Gauss, Poisson, Jacobi, Riemann, Maxwell and
Lie, for example, then later by Poincaré, Noether, Cartan and others.
In many of these contributions, optics and mechanics held equal
sway.

Fermat’s principle (that the light ray passing from one point to
another in an optical medium takes the path of stationary optical
length) is complementary to Huygens principle (that a later wave
front emerges as the envelope of wavelets emitted from the present
wave front). Both principles are only models of reality, but they are
models in the best sense. Both are transcendent fabrications that in-
tuited the results of a later more fundamental principle (Maxwell’s
equations) and gave accurate predictions at the level of physical per-
ception in their time. Without being the full truth by being physi-
cally tenable themselves, they fulfilled the tasks for which they were
developed and they laid the foundations for more fundamental the-
ories. Light rays do not exist and points along a light wave do not
emit light. However, both principles work quite well in the design
of optical instruments! In addition, both principles are still inter-
esting now as the mathematical definitions of rays and wave fronts,
respectively, although neither one fully represents the physical prin-
ciples of optics.

The duality between tangents to stationary paths (Fermat) and
normals to wave fronts (Huygens) in classical optics corresponds
in geometric mechanics to the duality between velocities and mo-
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menta. This duality between ray paths and wave fronts may remind
us of the duality between complementary descriptions of particles
and waves in quantum mechanics. The bridge from the wave de-
scription to the ray description is crossed in the geometric-optical
high-wavenumber limit (k → ∞). The bridge from quantum me-
chanics to classical mechanics is crossed in another type of geometric-
optical limit (~ → 0) as Planck’s constant tends to zero. In this
course we arrive at the threshold of the bridge to quantum me-
chanics when we write the Bloch equations for the MASER and the
two-level qubit of quantum computing in Chapter 4, for example,
and the Maxwell-Bloch equations for self-induced transparency in
Chapter 6. Although we do not cross over this bridge, its presence
reminds us that the conceptual unity in the historical developments
of geometrical optics and classical mechanics is still of interest to-
day. Indeed, Hamilton’s formulations of optics and mechanics were
guiding lights in the development of the quantum mechanics of
atoms and molecules, especially the Hamilton-Jacobi equation dis-
cussed in Chapter 3, and the quantum version of the Hamiltonian
approach is still used today in scientific research on the interactions
of photons, electrons and beyond.

Building on the earlier work by Hamilton and Lie, in a series
of famous studies during the 1890s, Poincaré laid the geometric
foundations for the modern approach to classical mechanics. One
study by Poincaré addressed the propagation of polarised optical
beams. For us, Poincaré’s representation of the oscillating polarisa-
tion states of light as points on a sphere turns out to inform the ge-
ometric mechanics of nonlinearly coupled resonant oscillators. Fol-
lowing Poincaré, we shall represent the dynamics of coupled res-
onant oscillators as flows along curves on manifolds whose points
are resonantly oscillating motions. Such orbit manifolds are fibra-
tions (local factorisations) of larger spaces.

Lie symmetry is the perfect method for applying Poincaré’s ge-
ometric approach. In mechanics, a Lie symmetry is an invariance
of the Lagrangian or Hamiltonian under a Lie group; that is, under
a group of transformations that depend smoothly on a set of pa-
rameters. The effectiveness of Lie symmetry in mechanics is seen



xviii PREFACE

on the Lagrangian side in Noether’s theorem. Noether’s theorem
states that each Lie symmetry of the Lagrangian in Hamilton’s prin-
ciple of least action implies a conservation law. On the Hamilto-
nian side, Noether’s theorem states that each Lie symmetry of the
Hamiltonian summons a momentum map, which maps the canoni-
cal phase space to the dual of the Lie symmetry algebra. When the
Lie group is a symmetry of the Hamiltonian, the momentum map is
conserved and the dynamics is confined to its level sets. Of course,
there is much more geometry in this idea than the simple restriction
of the dynamics to a level set. In particular, restriction to level sets
of momentum maps culminates in the reduction of phase space to
manifolds whose points are orbits of symmetries. In some cases,
this geometric approach to the separation of motions may produce
complete integrability of the original problem.

The language of Lie groups, especially Lie derivatives, is needed
to take advantage of Poincaré’s geometrical framework for mechan-
ics. The text also provides an introduction to exterior differential
calculus; so that the student will have the language to go further
in geometric mechanics. The lessons here are only the first steps –
the road to geometric mechanics is long and scenic, even beautiful,
for those who may take it. It leads from finite to infinite dimen-
sions. Anyone taking this road will need these basic tools and the
language of Lie symmetries, in order to interpret the concepts that
will be met along the way.

The approach of the text

The text surveys a small section of the road to geometric mechanics,
by treating several examples in classical mechanics, all in the same
geometric framework. These example problems include:

• Fermat’s principle for ray optics to travelling waves propa-
gating by self-induced transparency (the Maxwell-Bloch equa-
tions);

• Bifurcations in the behaviour of resonant oscillators and po-
larised travelling wave pulses in optical fibres;
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• The bead sliding on a rotating hoop, the spherical pendulum
and the elastic spherical pendulum. The approximate solution
of the elastic spherical pendulum via a phase-averaged La-
grangian shares concepts with molecular oscillations of CO2

and with 2nd harmonic generation in nonlinear laser optics;

• Divergenceless vector fields and stationary patterns of fluid
flow on invariant surfaces.

In each case, the results of the geometric analysis eventually re-
duce to divergence free flow in R3 along intersections of level sur-
faces of constants of the motion. On these level surfaces, the mo-
tion is symplectic, as guaranteed by the Marsden-Weinstein theo-
rem [MaWe74].

How to read this book

The book is organised into six chapters and two appendices.

Chapter 1 treats Fermat’s principle for ray optics in refractive me-
dia as a detailed example that lays out the strategy of Lie sym-
metry reduction in geometric mechanics that will be applied
in the remainder of the text.

Chapter 2 summarises the contributions of Newton, Lagrange and
Hamilton to geometric mechanics. The key examples are the
rigid body and the spherical pendulum.

Chapter 3 discusses Lie symmetry reduction in the language of the
exterior calculus of differential forms. The main example is
ideal incompressible fluid flow.

Chapters 4, 5 and 6 illustrate the ideas laid out in the previous
chapters through a variety of applications. In particular, the
strategy of Lie symmetry reduction laid out in Chapter 1 in
the example of ray optics is applied to resonant oscillator dy-
namics in Chapter 4, then to the elastic spherical pendulum in
Chapter 5 and finally to a special case of the Maxwell-Bloch
equations for laser excitation of matter in Chapter 6.
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The two Appendices contain a compendium of example problems
which may be used as topics for homework and enhanced
coursework.

The first chapter treats Fermat’s principle for ray optics as an
example that lays out the strategy of Lie symmetry reduction for all
of the other applications of geometric mechanics discussed in the
course. This strategy begins by deriving the dynamical equations
from a variational principle and Legendre transforming from the
Lagrangian to the Hamiltonian formulation. Then the implications
of Lie symmetries are considered. For example, when the medium is
symmetric under rotations about the axis of optical propagation, the
corresponding symmetry of the Hamiltonian for ray optics yields a
conserved quantity called skewness, which was first discovered by
Lagrange.

The second step in the strategy of Lie symmetry reduction is to
transform to invariant variables. This transformation is called the
quotient map. In particular, the quotient map for ray optics is ob-
tained by writing the Hamiltonian as a function of the axisymmetric
invariants constructed from the optical phase space variables. This
construction has the effect of quotienting out the angular depen-
dence, as an alternative to the polar coordinate representation. The
transformation to axisymmetric variables in the quotient map takes
the four dimensional optical phase space into the three dimensional
real space R3. The image of the quotient map may be represented
as the zero level set of a function of the invariant variables. This
zero level set is called the orbit manifold, although in some cases
it may have singular points. For ray optics, the orbit manifold is a
two dimensional level set of the conserved skewness whose value
depends on the initial conditions, and each point on it represents a
circle in phase space corresponding to the orbit of the axial rotations.

In the third step, the canonical Poisson brackets of the axisym-
metric invariants with the phase space coordinates produce Hamil-
tonian vector fields, whose flows on optical phase space yield the
diagonal action of the symplectic Lie group Sp(2,R) on the optical
position and momentum. The Poisson brackets of the axisymmetric
invariants close among themselves as linear functions of these invari-
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ants, thereby yielding a Lie-Poisson bracket dual to the symplectic
Lie algebra sp(2,R), represented as divergenceless vector fields on
R3. The Lie-Poisson bracket reveals the geometry of the solution be-
haviour in axisymmetric ray optics as flows along the intersections
of the level sets of the Hamiltonian and the orbit manifold in the R3

space of axisymmetric invariants. This is coadjoint motion.

In the final step, the angle variable is reconstructed. This angle
turns out to be the sum of two parts: one part is called dynamic,
because it depends on the Hamiltonian. The other part is called
geometric and is equal to the area enclosed by the solution on the
orbit manifold.

The geometric-mechanics treatment of Fermat’s principle by Lie
symmetry reduction identifies two momentum maps admitted by
axisymmetric ray optics. The first is the map from optical phase
space (position and momentum of a ray on an image screen) to their
associated area on the screen. This phase-space area is Lagrange’s
invariant in axisymmetric ray optics; it takes the same value on each
image screen along the optical axis. The second momentum map
transforms from optical phase space to the bilinear axisymmetric in-
variants by means of the quotient map. Because this transformation
is a momentum map, the quotient map yields a valid Lie-Poisson
bracket among the bilinear axisymmetric invariants. The evolution
then proceeds by coadjoint motion on the orbit manifold.

Chapter 2 treats the geometry of rigid-body motion from the
viewpoints of Newton, Lagrange and Hamilton, respectively. This
is the classical problem of geometric mechanics, which makes a nat-
ural counterpoint to the treatment in Chapter 1 of ray optics by Fer-
mat’s principle. Chapter 2 also treats the Lie symmetry reduction of
the spherical pendulum. The treatments of the rigid body and the
spherical pendulum by these more familiar approaches also sets the
stage for the introduction of the flows of Hamiltonian vector fields
and their Lie-derivative actions on differential forms in Chapter 3.

The problem of a single, polarised, optical laser pulse propa-
gating as a travelling wave in an anisotropic, cubically nonlinear,
lossless medium is investigated in Chapter 4. This is a Hamilto-
nian system in C2 for the dynamics of two complex oscillator modes
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(the two polarisations). Since the two polarisations of a single op-
tical pulse must have the same natural frequency, they are in 1 : 1
resonance. An S1 phase invariance of the Hamiltonian for the in-
teraction of the optical pulse with the optical medium in which it
propagates will reduce the phase space to the Poincaré sphere, S2,
on which the problem is completely integrable. In Chapter 4, the
fixed points and bifurcations sequences of the phase portrait of this
system on S2 are studied as the beam intensity and medium param-
eters are varied. The corresponding Lie-symmetry reductions for
the n : m resonances is also discussed in detail.

Chapter 5 treats the swinging spring, or elastic spherical pendu-
lum, from the viewpoint of Lie-symmetry reduction. In this case,
averaging the Lagrangian for the system over its rapid elastic os-
cillations introduces the additional symmetry needed to reduce the
problem to an integrable Hamiltonian system. This reduction re-
sults in the three-wave surfaces in R3 and thereby sets up the frame-
work for predicting the characteristic feature of the elastic spherical
pendulum, which is the step-wise precession of its swing plane.

Chapter 6 treats the Maxwell-Bloch laser-matter equations for
self-induced transparency. The Maxwell-Bloch equations arise from
a variational principle obtained by averaging the Lagrangian for the
Maxwell-Schrödinger equations. As for the swinging spring, aver-
aging the Lagrangian introduces the Lie symmetry needed for re-
ducing the dimensions of the dynamics and thereby making it more
tractable. The various Lie-symmetry reductions of the real Maxwell-
Bloch equations to two dimensional orbit manifolds are discussed
and their corresponding geometric phases are determined in Chap-
ter 6.

Exercises are sprinkled liberally throughout the text, often with
hints or even brief explicit solutions. These are indented and marked
with F and N, respectively. Moreover, the careful reader will find
that many of the exercises are answered in passing somewhere later
in the text in a more developed context.
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Key theorems, results and remarks are placed
into frames (like this one).

Appendix A contains additional worked problems in geomet-
ric mechanics. These problems include a bead sliding on a rotat-
ing hoop, the spherical pendulum in polar coordinates, a charged
particle in a magnetic field and the Kepler problem. Appendix A
also contains descriptions of the dynamics of a rigid body coupled
to a flywheel, complex phase space, a single harmonic oscillator,
two resonant coupled oscillators and a cubically nonlinear oscilla-
tor, all treated from the viewpoint of geometric mechanics. Finally,
Appendix B contains ten potential homework problems whose so-
lutions are not given, but which we hope may challenge the serious
student.
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Chapter 1

Fermat’s ray optics

1.1 Fermat’s principle

Fermat

Fermat’s principle (1662) states that the
path between two points taken by a ray of
light leaves the optical length stationary un-
der variations in a family of nearby paths.

This principle accurately describes the
properties of light that is reflected by
mirrors, refracted at a boundary be-
tween different media, or transmitted
through a medium with a continuously
varying index of refraction. Fermat’s
principle defines a light ray and provides
an example that will guide us in recog-
nising the principles of geometric me-
chanics.

The optical length of a path r(s) taken by a ray of light in passing
from a pointA to a pointB in three-dimensional space is defined by

A :=
∫ B

A
n(r(s)) ds , (1.1.1)

1
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where n(r) is the index of refraction at the spatial point r ∈ R3 and

ds2 = dr(s) · dr(s) (1.1.2)

is the element of arc length ds along the ray path r(s) through that
point.

Definition 1.1.1 (Fermat’s principle for ray paths)
The path r(s) taken by a ray of light passing fromA toB in three-dimensional
space leaves the optical length stationary under variations in a family of
nearby paths r(s, ε) depending smoothly on a parameter ε. That is, the
path r(s) satisfies

δA = 0 with δA :=
d

dε

∣∣∣∣
ε=0

∫ B

A
n(r(s, ε)) ds , (1.1.3)

where the deviations of the ray path r(s, ε) from r(s) are assumed to vanish
when ε = 0, and to leave its endpoints fixed.

Fermat’s principle of stationary ray paths is dual to Huygens’ prin-
ciple (1678) of constructive interference of waves. According to Huy-
gens, among all possible paths from an object to an image, the waves
corresponding to the stationary path contribute most to the image
because of their constructive interference. Both principles are mod-
els that approximate more fundamental physical results derived from
Maxwell’s equations.

The Fermat and Huygens principles for geometric optics are also
foundational ideas in mechanics. Indeed, the founders of mechan-
ics, Newton, Lagrange and Hamilton all worked seriously in optics
as well. We start with Fermat and Huygens, whose works preceded
Newton’s Principia Mathematica by twenty five years, Lagrange’s
Méchanique Analytique by more than a century and Hamilton’s pa-
pers On a General Method in Dynamics, by more than 150 years.

After briefly discussing the geometric ideas underlying the
principles of Fermat and Huygens and using them to derive
and interpret the eikonal equation for ray optics, this chapter
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shows that Fermat’s principle naturally introduces Hamilton’s
principle for the Euler-Lagrange equations, as well as the con-
cepts of phase space, Hamiltonian formulation, Poisson brack-
ets, Hamiltonian vector fields, symplectic transformations and
momentum maps arising from reduction by symmetry.

In his time, Fermat discovered the geometric foundations of ray
optics. This is our focus in the chapter.

1.1.1 Three-dimensional eikonal equation

Stationary paths Consider the possible ray paths in Fermat’s prin-
ciple leading from a point A to a point B in 3D space as belonging
to a family of C2 curves r(s, ε) ∈ R3 depending smoothly on a real
parameter ε in an interval that includes ε = 0. This ε-family of paths
r(s, ε) defines a set of smooth transformations of the ray path r(s).
These transformations are taken to satisfy

r(s, 0) = r(s) , r(sA, ε) = r(sA) , r(sB, ε) = r(sB) . (1.1.4)

That is, ε = 0 is the identity transformation of the ray path and its
endpoints are left fixed. An infinitesimal variation of the path r(s)
is denoted by δr(s), defined by the variational derivative,

δr(s) :=
d

dε

∣∣∣∣
ε=0

r(s, ε) , (1.1.5)

where the fixed endpoint conditions in (1.1.4) imply δr(sA) = 0 =
δr(sB).

With these definitions, Fermat’s principle in Definition 1.1.1 im-
plies the fundamental equation for the ray paths, as follows.

Theorem 1.1.2 (Fermat’s principle and the eikonal equation)
Stationarity of the optical length, or action A, under variations of

the ray paths

0 = δA = δ

∫ B

A
n(r(s))

√
dr
ds
· dr
ds

ds , (1.1.6)
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defined using arclength parameter s, satisfying ds2 = dr(s) · dr(s) and
|ṙ| = 1, implies the equation for the ray path r ∈ R3 as

d

ds

(
n(r)

dr
ds

)
=
∂n

∂r
. (1.1.7)

In ray optics, this is called the eikonal equation.

1

Remark 1.1.3 (Invariance under reparameterisation)
The integral in (1.1.8) is invariant under reparameterisation of the ray
path. In particular, it is invariant under transforming r(s) → r(τ) from
arc-length ds to optical length dτ = n(r(s))ds. That is,∫ B

A
n(r(s))

√
dr
ds
· dr
ds

ds =
∫ B

A
n(r(τ))

√
dr
dτ
· dr
dτ

dτ , (1.1.8)

in which |dr/dτ |2 = n−2(r(τ)).

We now prove Theorem 1.1.2.
Proof. The equation for determining the ray path that satisfies the
stationary condition (1.1.8) may be computed by introducing the ε-
family of paths into the action A, then differentiating it with respect
to ε under the integral sign, setting ε = 0 and integrating by parts
with respect to s, as follows

0 = δ

∫ B

A
n(r(s))

√
ṙ · ṙ ds

=
∫ B

A

[
|ṙ|∂n
∂r
· δr +

(
n(r(s))

ṙ
|ṙ|

)
· δṙ
]
ds

=
∫ B

A

[
|ṙ|∂n
∂r
− d

ds

(
n(r(s))

ṙ
|ṙ|

)]
· δr ds ,

where we have exchanged the order of the derivatives in s and
ε, and used the homogeneous endpoint conditions in (1.1.4). We

1The term eikonal (from the Greek εικoναmeaning image) was introduced into
optics in [Br1895].
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choose the arclength variable ds2 = dr · dr, so that |ṙ| = 1 for
ṙ := dr/ds. (This means that d|ṙ|/ds = 0.) Consequently, the 3D
eikonal equation (1.1.7) emerges for the ray path r ∈ R3.

Remark 1.1.4 From the viewpoint of historical contributions in classical
mechanics, the eikonal equation (1.1.7) is the 3D

d

ds

(
∂L

∂ṙ

)
=
∂L

∂r
. (1.1.9)

arising from Hamilton’s principle

δA = 0 with A =
∫ B

A
L((r(s), ṙ(s)) ds

for the Lagrangian function

L((r(s), ṙ(s)) = n(r(s))
√

ṙ · ṙ , (1.1.10)

in Euclidean space.

Exercise. Verify that the same three-dimensional eikonal
equation (1.1.7) also follows from Fermat’s principle in
the form

0 = δA = δ

∫ B

A

1
2
n2(r(τ))

dr
dτ
· dr
dτ

dτ , (1.1.11)

after transforming to a new arc-length parameter τ given
by dτ = nds. F

Answer. Denoting r′(τ) = dr/dτ one computes,

0 = δA =
∫ B

A

ds

dτ

[
nds

dτ

∂n

∂r
− d

ds

(
nds

dτ
n
dr
ds

)]
· δr dτ ,

(1.1.12)
which agrees with the previous calculation upon repa-
rameterising dτ = nds. N
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Remark 1.1.5 (Finsler geometry and singular Lagrangians)
The Lagrangian function in (1.1.10) for the 3D eikonal equation (1.1.7)

L(r, ṙ) = n(r)
√
δij ṙiṙj , (1.1.13)

is homogeneous of degree 1 in ṙ. That is, L(r, λṙ) = λL(r, ṙ) for any
λ > 0. Homogeneous functions of degree 1 satisfy Euler’s relation,

ṙ · ∂L
∂ṙ
− L = 0 . (1.1.14)

Hence, Fermat’s principle may be written as stationarity of the inte-
gral

A =
∫ B

A
n(r(s)) ds =

∫ B

A
p · dr for the quantity p :=

∂L

∂ṙ
.

The quantity p defined here will be interpreted later as the canoni-
cal momentum for ray optics.

Taking another derivative of Euler’s relation (1.1.14) yields

∂2L

∂ṙi∂ṙj
ṙj = 0

so the Hessian of the Lagrangian L with respect to the tangent vec-
tors is singular (has zero determinant). A singular Lagrangian might
become problematic in some situations. However, there is a simple
way of obtaining a regular Lagrangian whose ray paths are the same
as those for the singular Lagrangian arising in Fermat’s principle.

The Lagrangian function in the integrand of action (1.1.11) is re-
lated to Fermat Lagrangian in (1.1.13) by

1
2n

2(r) δij ṙiṙj = 1
2L

2

Computing the Hessian with respect to the tangent vector yields the
Riemannian metric for the regular Lagrangian in (1.1.11),

1
2
∂2L2

∂ṙi∂ṙj
= n2(r) δij .

The emergence of a Riemannian metric from the Hessian of the
square of a homogenous function of degree 1 is the hallmark of
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Finsler geometry, of which Riemannian geometry is a special case.
Finsler geometry, however, is beyond our present scope. For more
discussion of the ideas underlying Finsler geometry, see, e.g., [Ru1959,
ChChLa1999].

In the present case, the variational principle for the regular La-
grangian in (1.1.11) leads to the same three-dimensional eikonal equa-
tion as that arising from Fermat’s principle in (1.1.8), but parame-
terised by optical length, rather than arc-length. This will be suffi-
cient for the purposes of studying ray trajectories because in geo-
metric optics one is only concerned with the trajectories of the the
ray paths in space, not their parameterisation.

Remark 1.1.6 (Newton’s Law form of the eikonal equation)
Reparameterising the ray path in terms of a variable dσ = n−1ds trans-
forms the eikonal equation (1.1.7) into the form of Newton’s Law

d2r
dσ2

=
1
2
∂n2

∂r
. (1.1.15)

Thus, in terms of the parameter σ ray trajectories are governed by Newto-
nian dynamics. Interestingly, thus equation has a conserved energy inte-
gral,

E =
1
2

∣∣∣∣ drdσ
∣∣∣∣2 − 1

2
n2(r) . (1.1.16)

Exercise. Propose various forms of the squared index
of refraction, e.g., cylindrically or spherically symmet-
ric, then solve the eikonal equation in Newtonian form
(3.2.17) for the ray paths and interpret the results as op-
tical devices, e.g., lenses.

What choices of the index of refraction lead to closed ray
paths? F

1.1.2 Three-dimensional Huygens wave fronts

Ray vector Fermat’s ray optics is complementary to Huygens’ wavelets.
According to the Huygens wavelet assumption, a level set of the
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wave front, S(r), moves along the ray vector, n(r), so that its incre-
mental change over a distance dr along the ray is given by

∇S(r) · dr = n(r) · dr = n(r) ds . (1.1.17)

The geometric relationship between wave fronts and ray paths is
illustrated in Figure 1.1.

Theorem 1.1.7 (Huygens-Fermat complementarity)
Fermat’s eikonal equation (1.1.7) follows from the Huygens wavelet equa-
tion (1.1.17)

∇S(r) = n(r)
dr
ds

(Huygens equation) (1.1.18)

by differentiating along the ray path.

Corollary 1.1.8 The wave front level sets S(r) = constant and the ray
paths r(s) are mutually orthogonal.

Proof. The corollary follows once equation (3.2.20) is proved, be-
cause∇S(r) is along the ray vector and is perpendicular to the level
set of S(r).
Proof. Theorem 1.1.7 may be proved by a direct calculation apply-
ing the operation

d

ds
=
dr
ds
· ∇ =

1
n
∇S · ∇

to Huygens equation (3.2.20). This yields the eikonal equation (1.1.7),
by the following reasoning:

d

ds

(
n
dr
ds

)
=

1
n
∇S · ∇(∇S) =

1
2n
∇|∇S|2 =

1
2n
∇n2 = ∇n .

In this chain of equations, the first step substitutes

d/ds = n−1∇S · ∇ .

The second step exchanges order of derivatives. The third step uses
the modulus of the Huygens equation (3.2.20) and invokes the prop-
erty that |dr/ds|2 = 1.
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ray

ray

0

1

2

Figure 1.1: Huygens wave front and one of its corresponding ray paths. The
wave fronts and ray paths form mutually orthogonal families of curves. The gra-
dient ∇S(r) is normal to the wave front and tangent to the ray through it at the
point r.

Corollary 1.1.9 The modulus of the Huygens equation (3.2.20)
yields

|∇S|2(r) = n2(r) (scalar eikonal equation) (1.1.19)

which follows because dr/ds = ŝ in equation (1.1.7) is a unit vector.

Remark 1.1.10 (The Hamilton-Jacobi equation)
Corollary 1.1.9 arises as an algebraic result in the present considerations.
However, it also follows at a more fundamental level from Maxwell’s equa-
tions for electrodynamics in the slowly varying amplitude approximation
of geometric optics, cf. [BoWo1965], Chapter 3. See Keller [Ke1962] for
the modern extension of geometric optics to include diffraction. The scalar
eikonal equation (1.1.19) is also known as the steady Hamilton-Jacobi
equation. The time dependent Hamilton-Jacobi equation (3.2.11) is dis-
cussed in Chapter 3.
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Theorem 1.1.11 (Ibn Sahl-Snell law of refraction)
The gradient in Huygens equation (3.2.20) defines the ray vector,

n = ∇S = n(r)̂s (1.1.20)

of magnitude |n| = n. Integration of this gradient around a closed path
vanishes, thereby yielding∮

P
∇S(r) · dr =

∮
P

n(r) · dr = 0 . (1.1.21)

Let’s consider the case in which the closed path P surrounds a boundary
separating two different media. If we let the sides of the loop perpendicu-
lar to the interface shrink to zero, then only the parts of the line integral
tangential to the interface path will contribute. Since these contributions
must sum to zero, the tangential components of the ray vectors must be
preserved. That is,

(n− n′)× ẑ = 0 , (1.1.22)

where the primes refer to the side of the boundary into which the ray is
transmitted, whose normal vector is ẑ. Now imagine a ray piercing the
boundary and passing into the region enclosed by the integration loop. If
θ and θ′ are the angles of incidence and transmission, measured from the
direction ẑ normal to the boundary, then preservation of the tangential
components of the ray vector means that

n sin θ = n′ sin θ′ . (1.1.23)

This is the Ibn Sahl-Snell law of refraction, credited to Ibn Sahl (984)
and Willebrord Snellius (1621). A similar analysis may be applied in the
case of a reflected ray to show that the angle of incidence must equal the
angle of reflection.

Remark 1.1.12 [Momentum form of Ibn Sahl-Snell law]
The phenomenon of refraction may be seen as a break in the di-
rection ŝ of the ray vector n(r(s)) = nŝ at a finite discontinuity
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Figure 1.2: Ray tracing version (left) and Huygens version (right) of the Ibn
Sahl-Snell law of refraction that n sin θ = n′ sin θ′. This law is implied in ray optics
by preservation of the components of the ray vector tangential to the interface.
According to Huygens principle the law of refraction is implied by slower wave
propagation in media of higher refractive index below the horizontal interface.

in the refractive index n = |n| along the ray path r(s). Accord-
ing to the eikonal equation (1.1.7) the jump (denoted by ∆) in
three-dimensional canonical momentum across the discontinu-
ity must satisfy

∆
(

∂L

∂(dr/ds)

)
× ∂n

∂r
= 0 .

This means the projections p and p′ of the ray vectors n(q, z)
and n′(q, z) which lie tangent to the plane of the discontinuity
in refractive index will be invariant. In particular, the lengths of
these projections will be preserved. Consequently,

|p| = |p′| implies n sin θ = n′ sin θ ′ at z = 0.

This is again the Ibn Sahl-Snell law, now written in terms of
canonical momentum.

Exercise. How do the canonical momenta differ in the
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two versions of Fermat’s principle in (1.1.8) and (1.1.11)?
Do their Ibn Sahl-Snell laws differ? Do their Hamilto-
nian formulations differ? F

Answer. The first stationary principle (1.1.8) gives n(r(s))dr/ds
for the optical momentum, while the second one (1.1.11)
gives its reparameterised version n2(r(τ))dr/dτ . Because
d/ds = nd/dτ , the values of the two versions of opti-
cal momentum agree in either parameterisation. Conse-
quently, their Ibn Sahl-Snell laws agree. N

Remark 1.1.13 As Newton discovered in his famous prism exper-
iment, the propagation of a Huygens wave front depends on the
light frequency, ω, through the frequency dependence n(r, ω) of the
index of refraction of the medium. Having noted this possibility
now, in what follows, we shall treat monochromatic light of fixed
frequency ω and ignore effects of frequency dispersion. We will also
ignore finite-wavelength effects such as interference and diffraction
of light. These effects were discovered in a sequence of pioneering
scientific investigations during the 350 years after Fermat.

1.1.3 Eikonal equation for axial ray optics

Most optical instruments are designed to possess a line of sight (or
primary direction of propagation of light) called the optical axis.
Choosing coordinates so that the z-axis coincides with the optical
axis expresses the arc-length element ds in terms of the increment
along the optical axis, dz, as

ds = [(dx)2 + (dy)2 + (dz)2]1/2

= [1 + ẋ2 + ẏ2]1/2 dz =
1
γ
dz , (1.1.24)

in which the added notation defines ẋ := dx/dz, ẏ := dy/dz and
γ := dz/ds.

For such optical instruments, formula (1.1.24) for the element
of arc length may be used to express the optical length in Fermat’s
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principle as an integral called the optical action,

A :=
∫ zB

zA

L(x, y, ẋ, ẏ, z) dz . (1.1.25)

Definition 1.1.14 (Trajectories and tangent vectors: tangent bundle)

The coordinates (x, y, ẋ, ẏ) ∈ R2 × R2 designate points along the ray
path through configuration space and the tangent space of possible vec-
tors along the ray trajectory. The position on a ray passing through an
image plane at a fixed value of z is denoted (x, y) ∈ R2. The notation
(x, y, ẋ, ẏ) ∈ TR2 ' R2 × R2 for the combined space of positions and
tangent vectors designates the tangent bundle of R2. The space TR2

consists of the union of all the position vectors (x, y) ∈ R2 and all the
possible tangent vectors (ẋ, ẏ) ∈ R2 at each position (x, y).

The integrand in the optical action A is expressed as L : TR2 ×
R→ R, or explicitly

L(x, y, ẋ, ẏ, z) = n(x, y, z)[1 + ẋ2 + ẏ2]1/2 =
n(x, y, z)

γ
.

This is the optical Lagrangian, in which

γ :=
1√

1 + ẋ2 + ẏ2
≤ 1 .

We may write the coordinates equivalently as (x, y, z) = (q, z) where
q = (x, y) is a vector with components in the plane perpendicular
to the optical axis at displacement z.

The possible ray paths from a point A to a point B in space
may be parameterised for axial ray optics as a family of C2 curves
q(z, ε) ∈ R2 depending smoothly on a real parameter ε in an inter-
val that includes ε = 0. The ε-family of paths q(z, ε) defines a set of
smooth transformations of the ray path q(z). These transformations
are taken to satisfy

q(z, 0) = q(z) , q(zA, ε) = q(zA) , q(zB, ε) = q(zB) , (1.1.26)
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so ε = 0 is the identity transformation of the ray path and its end-
points are left fixed. Define the variation of the optical action (1.1.25)
using this parameter as

δA = δ

∫ zB

zA

L(q(z), q̇(z))dz

:=
d

dε

∣∣∣∣
ε=0

∫ zB

zA

L(q(z, ε), q̇(z, ε))dz . (1.1.27)

In this formulation, Fermat’s principle is expressed as the sta-
tionary condition δA = 0 under infinitesimal variations of the path.
This condition implies the axial eikonal equation, as follows.

Theorem 1.1.15 (Fermat’s principle for axial eikonal equation)

Stationarity under variations of the action A,

0 = δA = δ

∫ zB

zA

L(q(z), q̇(z))dz , (1.1.28)

for the optical Lagrangian

L(q, q̇, z) = n(q, z)[1 + |q̇|2]1/2 =:
n

γ
, (1.1.29)

with
γ :=

dz

ds
=

1√
1 + |q̇|2

≤ 1 , (1.1.30)

implies the axial eikonal equation

γ
d

dz

(
n(q, z) γ

dq
dz

)
=
∂n

∂q
, with

d

ds
= γ

d

dz
. (1.1.31)

Proof. As in the derivation of the eikonal equation (1.1.7), differen-
tiating with respect to ε under the integral sign, denoting the varia-
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tional derivative as

δq(z) :=
d

dε

∣∣∣∣
ε=0

q(z, ε) , (1.1.32)

and integrating by parts produces the following variation of the op-
tical action,

0 = δA = δ

∫
L(q, q̇, z)dz (1.1.33)

=
∫ (

∂L

∂q
− d

dz

∂L

∂q̇

)
· δq dz +

[
∂L

∂q̇
· δq

]zB
zA

.

In the second line, one assumes equality of cross derivatives, qzε =
qεz evaluated at ε = 0, and thereby exchanges the order of deriva-
tives; so that

δq̇ =
d

dz
δq .

The endpoint terms vanish in the ensuing integration by parts, be-
cause δq(zA) = 0 = δq(zB). That is, the variation in the ray path
must vanish at the prescribed spatial points A and B at zA and zB
along the optical axis. Since δq is otherwise arbitrary, the principle
of stationary action expressed in equation (1.1.28) is equivalent to
the following equation, written in a standard form later made fa-
mous by Euler and Lagrange,

∂L

∂q
− d

dz

∂L

∂q̇
= 0 (Euler-Lagrange equation). (1.1.34)

After a short algebraic manipulation using the explicit form of the
optical Lagrangian in (1.1.29), the Euler-Lagrange equation (1.1.34)
for the light rays yields the eikonal equation (1.1.31), in which γ d/dz =
d/ds relates derivatives along the optical axis to derivatives in the
arc-length parameter.
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Exercise. Check that the eikonal equation (1.1.31) fol-
lows from the Euler-Lagrange equations (1.1.34) with La-
grangian (1.1.29). F

Corollary 1.1.16 (Noether’s theorem)
Each smooth symmetry of the Lagrangian in an action principle im-

plies a conservation law for its Euler-Lagrange equations.

Proof. In a stationary action principle δA = 0 for A =
∫
Ldz as

in (1.1.28) the Lagrangian L has a symmetry, if it is invariant under
the transformations q(z, 0)→ q(z, ε). In this case, stationary δA = 0
under the infinitesimal variations defined in (1.1.32) follows because
of this invariance of the Lagrangian, even if these variations did not
vanish at the endpoints in time. The variational calculation (1.1.33)

0 = δA =
∫ (

∂L

∂q
− d

dz

∂L

∂q̇

)
︸ ︷︷ ︸
Euler-Lagrange

· δq dz +
[
∂L

∂q̇
· δq

]zB
zA︸ ︷︷ ︸

Noether

(1.1.35)

then shows that along solution paths of the Euler-Lagrange equa-
tions (1.1.34) any smooth symmetry of the Lagrangian L implies[

∂L

∂q̇
· δq

]zB
zA

= 0.

Thus, the quantity δq · (∂L/∂q̇) is a constant of the motion (i.e., it is
constant along the solution paths of the Euler-Lagrange equations)
whenever δA = 0, because of the symmetry of the Lagrangian L in
the action A =

∫
Ldt.

Exercise. What does Noether’s theorem imply for sym-
metries of the action principle given by δA = 0 for the
following action?

A =
∫ zB

zA

L(q̇(z))dz

F
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Answer. In this case, ∂L/∂q = 0. This means the ac-
tion A is invariant under translations q(z)→ q(z)+ε for
any constant vector ε. Setting δq = ε in the Noether
theorem associates conservation of any component of
p := (∂L/∂q̇) with invariance of the action under spa-
tial translations in that direction. For this case, the con-
servation law also follows immediately from the Euler-
Lagrange equations (1.1.34). N

cool air

warm air

mirage

B
A

C

Figure 1.3: Fermat’s principle states that the ray path from an observer at A to a
point B in space is a stationary path of optical length. For example, along a sun-
baked road, the temperature of the air is warmest near the road and decreases with
height, so that the index of refraction, n, increases in the vertical direction. For an
observer at A, the curved path has the same optical path length as the straight line.
Therefore, he sees not only the direct line-of-sight image of the tree top at B, but
it also appears to him that the tree top has a mirror image at C. If there is no tree,
the observer sees a direct image of the sky and also its mirror image of the same
optical length, thereby giving the impression, perhaps sadly, that he is looking at
water, when there is none.

1.1.4 The eikonal equation for mirages

Air adjacent to a hot surface rises in temperature and becomes less
dense. Thus over a flat hot surface, such as a desert expanse or a
sun-baked roadway, air density locally increases with height and
the average refractive index may be approximated by a linear vari-
ation of the form

n(x) = n0(1 + κx) ,
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where x is the vertical height above the planar surface, n0 is the re-
fractive index at ground level, and κ is a positive constant. We may
use the eikonal equation (1.1.31) to find an equation for the approxi-
mate ray trajectory. This will be an equation for the ray height x as a
function of ground distance z of a light ray launched from a height
x0 at an angle θ0 with respect to the horizontal surface of the earth.

Distance along hot planar surface

D
ist

an
ce

 a
bo

ve
 h

ot
 p

la
na

r s
ur

fa
ce

Figure 1.4: Ray trajectories are diverted in a spatially varying medium whose
refractive index increases with height above a hot planar surface.

In this geometry, the eikonal equation (1.1.31) implies

1√
1 + ẋ2

d

dz

(
(1 + κx)√

1 + ẋ2
ẋ

)
= κ .

For nearly horizontal rays, ẋ2 � 1, and if the variation in refractive
index is also small then κx � 1. In this case, the eikonal equation
simplifies considerably to

d2x

dz2
≈ κ for κx� 1 and ẋ2 � 1 . (1.1.36)
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Thus, the ray trajectory is given approximately by

r(z) = x(z) x̂ + z ẑ

=
(κ

2
z2 + tan θ0z + x0

)
x̂ + z ẑ .

The resulting parabolic divergence of rays above the hot surface is
shown in Figure 1.4.

Exercise. Explain how the ray pattern would differ from
the rays shown in Figure 1.4 if the refractive index were
decreasing with height x above the surface, rather than
increasing. F

1.1.5 Paraxial optics and classical mechanics

Rays whose direction is nearly along the optical axis are called parax-
ial. In a medium whose refractive index is nearly homogeneous,
paraxial rays remain paraxial and geometric optics closely resem-
bles classical mechanics. Consider the trajectories of paraxial rays
through a medium whose refractive index may be approximated by

n(q, z) = n0 − ν(q, z) , with ν(0, z) = 0 and ν(q, z)/n0 � 1 .

Being nearly parallel to the optical axis, paraxial rays satisfy θ �
1 and |p|/n � 1; so the optical Hamiltonian (1.2.9) may then be
approximated by

H = −n
[
1− |p|

2

n2

]1/2

' −n0 +
|p|2

2n0
+ ν(q, z) .

The constant n0 here is immaterial to the dynamics. This calculation
shows the following.

Lemma 1.1.17 Geometric ray optics in the paraxial regime corresponds
to classical mechanics with a time dependent potential ν(q, z), upon iden-
tifying z ↔ t.
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Exercise. Show that the canonical equations for parax-
ial rays recover the mirage equation (1.1.36) when n =
ns(1 + κx) for κ > 0.

Explain what happens to the ray pattern when κ < 0.

F

1.2 Hamiltonian formulation of axial ray optics

Definition 1.2.1 (Canonical momentum)
The canonical momentum (denoted as p) associated to the ray path posi-
tion q in an image plane, or image screen, at a fixed value of z along the
optical axis is defined to be

p =
∂L

∂q̇
, with q̇ :=

dq
dz

. (1.2.1)

Remark 1.2.2 For the optical Lagrangian (1.1.29), the correspond-
ing canonical momentum for axial ray optics is found to be

p =
∂L

∂q̇
= nγ q̇ , which satisfies |p|2 = n2(1− γ2) . (1.2.2)

Figure 1.5 illustrates the geometrical interpretation of this momen-
tum for optical rays as the projection along the optical axis of the
ray onto an image plane.

From the definition of optical momentum (1.2.2), the correspond-
ing velocity q̇ = dq/dz is found as a function of position and mo-
mentum (q,p) as

q̇ =
p√

n2(q, z)− |p|2
. (1.2.3)

A Lagrangian admitting such an invertible relation between q̇ and
p is said to be non-degenerate (or hyperregular [MaRa1994]). More-
over, the velocity is real-valued, provided

n2 − |p|2 > 0 . (1.2.4)

The latter condition is explained geometrically, as follows.
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Object
Plane

Image
Plane

q
p n(q, z)

z

Figure 1.5: Geometrically, the momentum p associated to the coordinate q by
equation (1.2.1) on the image plane at z turns out to be the projection onto the
plane of the ray vector n(q, z) = ∇S = n(q, z)dr/ds passing through the point
q(z). That is, |p| = n(q, z)sinθ, where cosθ = dz/ds is the direction cosine of the
ray with respect to the optical z-axis.

1.2.1 Geometry, phase space and the ray path

Huygens’ equation (3.2.20) summons the following geometric pic-
ture of the ray path, as shown in Figure 1.5. Along the optical axis
(the z-axis) each image plane normal to the axis is pierced at a point
q = (x, y) by the ray vector, defined as

n(q, z) = ∇S = n(q, z)
dr
ds
.

The ray vector is tangent to the ray path and has magnitude n(q, z).
This vector makes an angle θ(z) with respect to the z-axis at the
point q. Its direction cosine with respect to the z-axis is given by

cos θ := ẑ · dr
ds

=
dz

ds
= γ . (1.2.5)

This definition of cos θ leads by (1.2.2) to

|p| = n sin θ and
√
n2 − |p|2 = n cos θ . (1.2.6)
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Thus, the projection of the ray vector n(q, z) onto the image plane
is the momentum p(z) of the ray. In three-dimensional vector nota-
tion, this is expressed as

Image
Plane

q

p n(q, z)

z
θ

θ

Figure 1.6: The canonical momentum p associated to the coordinate q by equa-
tion (1.2.1) on the image plane at z has magnitude |p| = n(q, z)sinθ, where
cosθ = dz/ds is the direction cosine of the ray with respect to the optical z-axis.

p(z) = n(q, z)− ẑ
(
ẑ · n(q, z)

)
. (1.2.7)

The coordinates (q(z),p(z)) determine each ray’s position and
orientation completely as a function of propagation distance z along
the optical axis.

Definition 1.2.3 (Optical phase space, or cotangent bundle)
The coordinates (q,p) ∈ R2 × R2 comprise the phase space of the ray
trajectory. Position on an image plane is denoted q ∈ R2. Phase space
coordinates are denoted (q,p) ∈ T ∗R2. The notation T ∗R2 ' R2 × R2

for phase space designates the cotangent bundle of R2. The space T ∗R2

consists of the union of all the position vectors q ∈ R2 and all the possible
canonical momentum vectors p ∈ R2 at each position q.
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Remark 1.2.4 The phase space T ∗R2 for ray optics is restricted to
the disc,

|p| < n(q, z) ,

so that cos θ in (1.2.6) remains real. When n2 = |p|2, the ray trajec-
tory is tangent to the image screen and is said to have grazing inci-
dence to the screen at a certain value of z. Rays of grazing incidence
are eliminated by restricting the momentum in the phase space for
ray optics to lie in a disc |p|2 < n2(q, z). This restriction implies that
the velocity will remain real, finite and of a single sign, which we
may choose to be positive (q̇ > 0) in the direction of propagation.

1.2.2 Legendre transformation

The passage from the description of the eikonal equation for ray
optics in variables (q, q̇, z) to its phase space description in variables
(q,p, z) is accomplished by applying the Legendre transformation
from the Lagrangian L to the Hamiltonian H , defined as,

H(q,p) = p · q̇− L(q, q̇, z) . (1.2.8)

For the Lagrangian (1.1.29) the Legendre transformation (1.2.8) leads
to the following optical Hamiltonian,

H(q,p) = nγ |q̇|2 − n/γ = −nγ = −
[
n(q, z)2 − |p|2

]1/2
, (1.2.9)

upon using formula (1.2.3) for the velocity q̇(z) in terms of the posi-
tion q(z) at which the ray punctures the screen at z and its canonical
momentum there p(z). Thus, in the geometric picture of canonical
screen optics in Figure 1.5, the component of the ray vector along
the optical axis is (minus) the Hamiltonian. That is,

ẑ · n(q, z) = n(q, z) cos θ = −H . (1.2.10)

Remark 1.2.5 The optical Hamiltonian in (1.2.9) takes real values,
so long as the phase space for ray optics is restricted to the disc
|p| ≤ n(q, z). The boundary of this disc is the zero level set of the
Hamiltonian, H = 0. Thus, flows that preserve the value of the
optical Hamiltonian will remain inside its restricted phase space.
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Theorem 1.2.6 The phase space description of the ray path follows
from Hamilton’s canonical equations, which are defined as

q̇ =
∂H

∂p
, ṗ = − ∂H

∂q
. (1.2.11)

With the optical Hamiltonian H(q,p) = −
[
n(q, z)2 − |p|2

]1/2 in
(1.2.9), these are

q̇ =
−1
H

p , ṗ =
−1
2H

∂n2

∂q
. (1.2.12)

Proof. Hamilton’s canonical equations are obtained by differenti-
ating both sides of the Legendre transformation formula (1.2.8) to
find

dH(q,p, z) = 0 · dq̇ +
∂H

∂p
· dp +

∂H

∂q
· dq +

∂H

∂z
· dz

=
(

p− ∂L

∂q̇

)
· dq̇ + q̇ · dp− ∂L

∂q
· dq− ∂L

∂z
dz .

The coefficient of (dq̇) vanishes in this expression by virtue of the
definition of canonical momentum. Vanishing of this coefficient is
required for H to be independent of q̇. Identifying the other coeffi-
cients yields the relations

∂H

∂p
= q̇ ,

∂H

∂q
= −∂L

∂q
= − d

dz

∂L

∂q̇
= − ṗ , (1.2.13)

and
∂H

∂z
= − ∂L

∂z
, (1.2.14)

in which ones uses the Euler-Lagrange equation to derive the sec-
ond relation. Hence, one finds the canonical Hamiltonian formulas
(1.2.11) in Theorem 1.2.6.
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Definition 1.2.7 (Canonical momentum)
The momentum p defined in (1.2.1) that appears with the position q in
Hamilton’s canonical equations (1.2.11) is called the canonical momen-
tum.

1.3 Hamiltonian form of optical transmission

Proposition 1.3.1 (Canonical bracket)
Hamilton’s canonical equations (1.2.11) arise from a bracket operation,

{
F, H

}
=
∂F

∂q
· ∂H
∂p
− ∂H

∂q
· ∂F
∂p

, (1.3.1)

expressed in terms of position q and momentum p.

Proof. One directly verifies,

q̇ =
{
q, H

}
=
∂H

∂p
and ṗ =

{
p, H

}
= − ∂H

∂q
.

Definition 1.3.2 (Canonically conjugate variables)
The components qi and pj of position q and momentum p satisfy{

qi, pj
}

= δij , (1.3.2)

with respect to the canonical bracket operation (1.3.1). Variables that sat-
isfy this relation are said to be canonically conjugate.

Definition 1.3.3 (Dynamical systems in Hamiltonian form) A dynam-
ical system on the tangent space TM of a space M

ẋ(t) = F(x) , x ∈M ,

is said to be in Hamiltonian form, if it can be expressed as

ẋ(t) = {x, H} , for H : M → R , (1.3.3)
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in terms of a Poisson bracket operation {· , ·}, which is a map among
smooth real functions F(M) : M → R on M ,

{· , ·} : F(M)×F(M)→ F(M) , (1.3.4)

so that Ḟ = {F , H} for any F ∈ F(M).

Definition 1.3.4 (Poisson bracket)
A Poisson bracket operation {· , ·} is defined as possessing the fol-
lowing properties:

1. It is bilinear,

2. skew symmetric, {F , H} = −{H , F},

3. satisfies the Leibnitz rule (product rule),

{FG , H} = {F , H}G+ F{G , H} ,

for the product of any two functions F and G on M , and

4. satisfies the Jacobi identity

{F , {G , H}}+ {G , {H , F}}+ {H , {F , G}} = 0 ,
(1.3.5)

for any three functions F , G and H on M .

Remark 1.3.5 Definition 1.3.4 of Poisson bracket certainly includes
the canonical Poisson bracket in (1.3.1) that produces Hamilton’s
canonical equations (1.2.11), in position q and conjugate momentum
p. However, this definition does not require the Poisson bracket to
be expressed in the canonical form (1.3.1).

Exercise. Show that the defining properties of a Pois-
son bracket hold for the canonical bracket expression in
(1.3.1). F
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Exercise. Compute the Jacobi identity (1.3.5) using the
canonical Poisson bracket (1.3.1) in one dimension for
F = p, G = q and H arbitrary. F

Exercise. What does the Jacobi identity (1.3.5) imply
about {F , G} when F and G are constants of motion,
so that {F , H} = 0 and {G , H} = 0 for a Hamiltonian
H?

F

Exercise. How do the Hamiltonian formulations differ
in the two versions of Fermat’s principle in (1.1.8) and
(1.1.11)? F

Answer.

The two Hamiltonian formulations differ, because the
Lagrangian in (1.1.8) is homogeneous of degree one in
its velocity, while the Lagrangian in (1.1.11) is homoge-
neous of degree two. Consequently, under the Legen-
dre transformation, the Hamiltonian in the first formu-
lation vanishes identically, while the other Hamiltonian
is quadratic in its momentum, namely, H = |p|2/(2n)2.
N

Definition 1.3.6 (Hamiltonian vector fields and flows) A
Hamiltonian vector field XF is a map from a function F ∈ F(M)
on space M with Poisson bracket { · , · } to a tangent vector on its
tangent space TM given by the Poisson bracket. When M is the
optical phase space T ∗R2, this map is given by the partial differential
operator obtained by inserting the phase space function F into the
canonical Poisson bracket,

XF = { · , F} =
∂F

∂p
· ∂
∂q
− ∂F

∂q
· ∂
∂p

.
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The solution x(t) = φFt x of the resulting differential equation,

ẋ(t) = {x , F} with x ∈M ,

yields the flow φFt : R ×M → M of the Hamiltonian vector field
XF on M . Assuming that it exists and is unique, the solution x(t) of
the differential equation is a curve on M parameterised by t ∈ R. The
tangent vector ẋ(t) to the flow represented by the curve x(t) at time t
satisfies

ẋ(t) = XFx(t) ,

which are the characteristic equations of the Hamiltonian vector
field on manifold M .

Remark 1.3.7 [Caution about caustics]
Caustics were discussed definitively in a famous unpublished pa-
per written by Hamilton in 1823 at the age of 18. Hamilton later
published what he called “supplements” to this paper in [Ha1830,
Ha1837]. The optical singularities discussed by Hamilton form in
bright caustic surfaces when light reflects off a curved mirror. In
the present context, we shall avoid caustics. Indeed, we shall avoid
reflection altogether and deal only with smooth Hamiltonian flows
in media whose spatial variation in refractive index is smooth. For
a modern discussion of caustics, see [Ar1994].

1.3.1 Translation invariant media

• If n = n(q), so that the medium is invariant under transla-
tions along the optical axis with coordinate z, then

ẑ · n(q, z) = n(q, z) cos θ = −H ,

in (1.2.10) is conserved. That is, the projection ẑ · n(q, z) of
the ray vector along the optical axis is constant in translation-
invariant media.
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• For translation-invariant media, the eikonal equation (1.1.31)
simplifies via the canonical equations (1.2.12) to Newtonian
dynamics,

q̈ = − 1
2H2

∂n2

∂q
for q ∈ R2 . (1.3.6)

• Thus, in translation-invariant media, geometric ray tracing for-
mally reduces to Newtonian dynamics in z, with a potential
−n2(q) and with “time” z rescaled along each path by the con-
stant value of

√
2H determined from the initial conditions for

each ray at the object screen at z = 0.

Remark 1.3.8 In media for which the index of refraction is not translation-
invariant, the optical Hamiltonian n(q, z) cos θ = −H is not gener-
ally conserved.

1.3.2 Axisymmetric, translation-invariant materials

In axisymmetric, translation-invariant media, the index of refrac-
tion may depend on the distance from the optical axis, r = |q|, but
does not depend on the azimuthal angle. As we have seen, transla-
tion invariance implies conservation of the optical Hamiltonian. Ax-
isymmetry implies yet another constant of motion. This additional
constant of motion allows the Hamiltonian system for the light rays
to be reduced to phase plane analysis. For such media, the index of
refraction satisfies

n(q, z) = n(r) , where r = |q| . (1.3.7)

Passing to polar coordinates (r, φ) yields

q = (x, y) = r(cosφ, sinφ) ,
p = (px, py)

= (pr cosφ− pφ sinφ/r, pr sinφ+ pφ cosφ/r) ,
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so that
|p|2 = p2

r + p2
φ/r

2 . (1.3.8)

Consequently, the optical Hamiltonian,

H = −
[
n(r)2 − p2

r − p2
φ/r

2
]1/2

, (1.3.9)

is independent of the azimuthal angle φ. This independence of angle
φ leads to conservation of its canonically conjugate momentum pφ,
whose interpretation will be discussed in a moment.

Exercise. Verify formula (1.3.9) for the optical Hamilto-
nian governing ray optics in axisymmetric, translation-
invariant media by computing the Legendre transforma-
tion. F

Answer. Fermat’s principle δS = 0 for S =
∫
Ldz an ax-

isymmetric, translation-invariant material may be writ-
ten in polar coordinates using the Lagrangian

L = n(r)
√

1 + ṙ2 + r2φ̇2 , (1.3.10)

from which one finds

pr =
∂L

∂ṙ
=

n(r)ṙ√
1 + ṙ2 + r2φ̇2

,

and
pφ
r

=
1
r

∂L

∂φ̇
=

n(r)rφ̇√
1 + ṙ2 + r2φ̇2

.

Consequently, the velocities and momenta are related by

1√
1 + ṙ2 + r2φ̇2

=

√
1−

p2
r + p2

φ/r
2

n2(r)
=
√

1− |p|2/n2(r) ,

which allows the velocities to be obtained from the mo-
menta and positions. The Legendre transformation (1.2.9),

H(r, pr, pφ) = ṙpr + φ̇pφ − L(r, ṙ, φ̇) ,
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then yields formula (1.3.9) for the optical Hamiltonian.
N

Exercise. Interpret the quantity pφ in terms of the vector
image-screen phase space variables p and q. F

Answer. The vector q points from the optical axis and
lies in the optical (x, y) or (r, φ) plane. Hence, the quan-
tity pφ may be expressed in terms of the vector image-
screen phase space variables p and q as

|p× q|2 = |p|2|q|2 − (p · q)2 = p2
φ . (1.3.11)

This may be obtained by using the relations

|p|2 = p2
r +

p2
φ

r2
, |q|2 = r2 and q · p = rpr .

One interprets pφ = p × q as the oriented area spanned
on the optical screen by the vectors q and p. N

Exercise. Show that Theorem 1.1.16 (Noether’s theorem)
implies conservation of the quantity pφ for the axisym-
metric Lagrangian (1.3.10) in polar coordinates. F

Answer. The Lagrangian (1.3.10) is invariant under φ→
φ + ε for constant ε. Noether’s theorem then implies
conservation of pφ = ∂L/∂φ̇. N

Exercise. What conservation law does Noether’s theo-
rem imply for the invariance of the Lagrangian (1.3.10)
under translations in time, t → t + ε for a real constant
ε ∈ R. F
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1.3.3 Hamiltonian optics in polar coordinates

Hamilton’s equations in polar coordinates are defined for axisym-
metric, translation-invariant media by the canonical Poisson brack-
ets with the optical Hamiltonian (1.3.9),

ṙ = {r, H} =
∂H

∂pr
= − pr

H
,

ṗr = {pr, H} = − ∂H
∂r

= − 1
2H

∂

∂r

(
n2(r)−

p2
φ

r2

)
,

φ̇ = {φ, H} =
∂H

∂pφ
= −

pφ
Hr2

, (1.3.12)

ṗφ = {pφ, H} = − ∂H
∂φ

= 0 .

In the Hamiltonian for axisymmetric ray optics (1.3.9), the constant
of the motion pφ may be regarded as a parameter that is set by the
initial conditions. Consequently, the motion governed by (1.3.12)
restricts to canonical Hamiltonian dynamics for r(z), pr(z) in a re-
duced phase space.

Remark 1.3.9 (An equivalent reduction)
Alternatively, the level sets of the Hamiltonian H = const and an-
gular momentum pφ = const may be regarded as two surfaces in R3

with coordinatesχ = (r, pr, pφ). In these R3 coordinates, Hamilton’s
equations (1.3.12) may be written as

χ̇(t) = −
∂pφ
∂χ
× ∂H

∂χ
with χ ∈ R3 . (1.3.13)

This means that the evolution in R3 with coordinates χ = (r, pr, pφ)
takes place along the intersections of the level sets of the constants
of motion pφ and H . On a level set of pφ the R3 equations (1.3.13)
restrict to the first two equations in the canonical system (1.3.12).

Remark 1.3.10 (Evolution of azimuthal angle)
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The evolution of the azimuthal angle, or phase, φ(z) in polar
coordinates for a given value of pφ decouples from the rest of the
equations in (1.3.12) and may be found separately, after solving the
canonical equations for r(z) and pr(z).

The polar canonical equation for φ(z) in (1.3.12) implies, for a
given orbit r(z), that the phase may be obtained as a quadrature,

∆φ(z) =
∫ z ∂H

∂pφ
dz = −

pφ
H

∫ z 1
r2(z)

dz , (1.3.14)

where pφ andH are constants of the motion. Because in this case the
integrand is a square, the polar azimuthal angle, or phase, ∆φ(z)
must either increase or decrease monotonically in axisymmetric ray
optics, depending on whether the sign of the conserved ratio pφ/H
is negative, or positive, respectively. Moreover, for a fixed value
of the ratio pφ/H , rays that are closer to the optical axis circulate
around it faster.

The reconstruction of the phase for solutions of Hamilton’s opti-
cal equations (1.3.12) for ray paths in an axisymmetric, translation-
invariant medium has some interesting geometric features for peri-
odic orbits in the radial (r, pr) phase plane.

1.3.4 Geometric phase for Fermat’s principle

One may decompose the total phase change around a closed peri-
odic orbit of period Z in the phase space of radial variables (r, pr)
into the sum of the following two parts:∮

pφ dφ = pφ∆φ = −
∮
pr dr︸ ︷︷ ︸

Geometric

+
∮

p · dq︸ ︷︷ ︸
Dynamic

. (1.3.15)

On writing this decomposition of the phase as

∆φ = ∆φgeom + ∆φdyn ,

one sees that

pφ∆φgeom =
1
H

∮
p2
rdz = −

∫∫
dpr ∧ dr (1.3.16)
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is the area enclosed by the periodic orbit in the radial phase plane.
Thus, the name: geometric phase for ∆φgeom, because this part of
the phase only depends on the geometric area of the periodic orbit.
The rest of the phase is given by

pφ∆φdyn =
∮

p · dq

=
∮ (

pr
∂H

∂pr
+ pφ

∂H

∂pφ

)
dz

=
−1
H

∮ (
p2
r +

p2
φ

r2

)
dz

=
1
H

∮ (
H2 − n2(|q(z)|)

)
dz

= ZH − Z

H

〈
n2
〉
, (1.3.17)

where the loop integral
∮
n2(|q(z)|)dz = Z〈n2〉 defines the average

〈n2〉 over the orbit of period Z of the squared index of refraction.
This part of the phase depends on the Hamiltonian, orbital period
and average of the squared index of refraction over the orbit. Thus,
the name: dynamic phase for ∆φdyn, because this part of the phase
depends on the dynamics of the orbit, not just its area.

1.3.5 Skewness

Definition 1.3.11 The quantity

pφ = p× q = ypx − xpy , (1.3.18)

is called the skewness function.2

Remark 1.3.12 By (1.3.12) the skewness is conserved for rays in ax-
isymmetric media.

2This is short notation for pφ = ẑ ·p×q. Scalar notation is standard for a vector
normal to a plane that arises as a cross product of vectors in the plane. Of course,
the notation for skewness S cannot be confused with the action S.
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Remark 1.3.13 Geometrically, the skewness given by the cross prod-
uct S = p×q is the area spanned on an image screen by the vectors
p and q. This geometric conservation law for screen optics was first
noticed by Lagrange in paraxial lens optics and it is still called La-
grange’s invariant in that field. On each screen, the angle, length
and point of intersection of the ray vector with the screen may vary.
However, the oriented area S = p × q will be the same on each
screen, for rays propagating in an axisymmetric medium. This is
the geometric meaning of Lagrange’s invariant.

Image
Plane

q

p

n(q, z)

z

Figure 1.7: The skewness S = p × q of a ray n(q, z) is an oriented area in
an image plane. For axisymmetric media, skewness is preserved as a function
of distance z along the optical axis. The projection ẑ · n(q, z) is also conserved,
provided the medium is invariant under translations along the optical axis.

Conservation of the skewness function pφ = p×q follows in the
reduced system (1.3.12) by computing

dpφ
dz

= {pφ, H} = − ∂H
∂φ

= 0 ,
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which vanishes because the optical Hamiltonian for an axisymmet-
ric medium is independent of the azimuthal angle φ about the opti-
cal axis.

Exercise. Check that Hamilton’s canonical equations for
ray optics (1.2.12) with the optical Hamiltonian (1.2.9)
conserve the skewness function pφ = p × q when the
refractive index satisfies (1.3.7). F

Remark 1.3.14 The values of the skewness function characterise the
various types of rays [Wo2004].

• Vanishing of p × q occurs for meridional rays, for which p ×
q = 0 implies that p and q are collinear in the image plane
(p ‖ q).

• On the other hand, pφ takes its maximum value for sagittal
rays, for which p · q = 0, so that p and q are orthogonal in the
image plane (p ⊥ q).

• Rays that are neither collinear nor orthogonal are said to be
skew rays.

Remark 1.3.15 (Sign conventions in optics and mechanics)
Unfortunately, the sign conventions differ between two fundamental ideas
that are mathematically the same. Namely, in optics the skewness that
characterises the rays is written in the 2D image plane as S = p × q,
while in mechanics the angular momentum of a particle with momentum
p at position q in 3D is written as L = q× p. When working in either of
these fields, it’s probably best to adopt the customs of the natives. However,
one must keep a sharp eye out for the difference in signs of rotations when
moving between these fields.

Exercise. (Phase plane reduction)
(1) Solve Hamilton’s canonical equations for axisymmet-
ric, translation invariant media in the case of an optical
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fibre with radially varying index of refraction in the fol-
lowing form:

n2(r) = λ2 + (µ− νr2)2 , λ, µ, ν = constants,

by reducing the problem to phase plane analysis. How
does the phase space portrait differ between pφ = 0 and
pφ 6= 0? What happens when ν changes sign?

(2) What regions of the phase plane admit real solutions?
Is it possible for a phase point to pass from a region with
real solutions to a region with complex solutions during
its evolution? Prove it.

(3) Compute the dynamic and geometric phases for a pe-
riodic orbit of period Z in the (r, pr) phase plane.

Hint: For pφ 6= 0 the problem reduces to a Duffing os-
cillator (Newtonian motion in a quartic potential) in a
rotating frame, up to a rescaling of time by the value of
the Hamiltonian on each ray “orbit”.

See [HoKo1991] for a discussion of optical ray chaos un-
der periodic perturbations of this solution. F

1.3.6 Lagrange invariant: Poisson bracket relations

Under the canonical Poisson bracket (1.3.1), the skewness function,
or Lagrange invariant,

S = pφ = ẑ · p× q = ypx − xpy , (1.3.19)

generates rotations of q and p jointly in the image plane. Both q
and p are rotated by the same angle φ around the optical axis ẑ. In
other words, the equation (dq/dφ, dp/dφ) = {(q,p) , S} defined by
the Poisson bracket,

d

dφ
= XS =

{
· , S

}
= q× ẑ · ∂

∂q
+ p× ẑ · ∂

∂p
, (1.3.20)

has the solution,(
q(φ)
p(φ)

)
=
(
Rz(φ) 0

0 Rz(φ)

)(
q(0)
p(0)

)
. (1.3.21)
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Here the matrix

Rz(φ) =
(

cosφ sinφ
− sinφ cosφ

)
(1.3.22)

represents rotation of both q and p by an angle φ about the optical
axis.

Remark 1.3.16 The application of the Hamiltonian vector field XS

for skewness in (1.3.20) to the position vector q yields

XSq = − ẑ× q . (1.3.23)

Likewise, the application of the Hamiltonian vector field XS for
skewness in (1.3.20) to the momentum vector yields

XSp = − ẑ× p . (1.3.24)

Thus, the application of XS to the vectors q ∈ R3 and p ∈ R3 rotates
them both about ẑ by the same angle.

Definition 1.3.17 (Diagonal action & cotangent lift)
Together, formulas (1.3.23) - (1.3.24) comprise the diagonal action on
(q,p) of axial rotations about ẑ. The rotation of the momentum vector
p that is induced by the rotation of the position vector q is called the
cotangent lift of the action of the Hamiltonian vector field XS . Namely,
(1.3.24) is the lift of the action of rotation (1.3.23) from position vectors to
momentum vectors.

Remark 1.3.18 [Moment of momentum]
Applying the Hamiltonian vector field XS for skewness in (1.3.20)
to screen coordinates q = R2 produces the infinitesimal action of
rotations about ẑ, as

XSq = {q, S} = − ẑ× q =
dq
dφ

∣∣∣∣
φ=0

.

The skewness function S in (1.3.19) may be expressed in terms of
two different pairings,

S =
〈〈

p, XSq
〉〉

= p · (− ẑ× q) and

S = (p× q) · ẑ =
〈
J(p, q), ẑ

〉
= Jz(p, q) . (1.3.25)
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Although these pairings are both written as dot-products of vectors,
strictly speaking they act on different spaces. Namely,〈〈

· , ·
〉〉

: (momentum)× (velocity)→ R , (1.3.26)〈
· , ·
〉

: (moment of momentum)× (rotation rate)→ R .

The first pairing 〈〈 · , · 〉〉 is between two vectors that are tangent to
an optical screen. These vectors represent the projection of the ray
vector on the screen p and the rate of change of the position q with
azimuthal angle, dq/dφ in (1.3.23). This is also the pairing 〈〈 · , · 〉〉 be-
tween velocity and momentum that appears in the Legendre trans-
formation. The second pairing 〈 · , · 〉 is between the oriented area
p× q and the normal to the screen ẑ. Thus, as we knew, Jz(p, q) =
S(p, q) is the Hamiltonian for an infinitesimal rotation about the ẑ
axis in R3.

Definition 1.3.19 Distinguishing between the pairings in (1.3.25) inter-
prets the Lagrange invariant S = Jz(p, q) = p×q·ẑ as the ẑ-component
of a map from phase space with coordinates (p, q) to the oriented area
J(p, q) = p× q, or moment of momentum.

Definition 1.3.20 (Momentum map for cotangent lift) For-
mula (1.3.25) defines the momentum map for the cotangent lift of the
action of rotations about ẑ from position vectors to their canonically
conjugate momentum vectors in phase space. In general, a momen-
tum map applies from phase space to the dual space of the Lie algebra
of the Lie group whose action is involved. In this case, it is the map
from phase space to the moment-of-momentum space,M,

J : T ∗R2 →M , namely, J(p, q) = p× q , (1.3.27)

and p×q is dual to the rotation rate about the axial direction ẑ under
the pairing given by the three-dimensional scalar (dot) product. The
corresponding Hamiltonian is the skewness

S = Jz(p, q) = J · ẑ = p× q · ẑ
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in (1.3.25). This is the real-valued phase space function whose Hamil-
tonian vector field XS rotates a point P = (q,p) in phase space about
the optical axis ẑ at its centre, according to

−ẑ× P = XJ·ẑP = {P , J · ẑ} . (1.3.28)

Remark 1.3.21 The skewness function S and its square, S2 (called
the Petzval invariant [Wo2004]) are conserved for ray optics in ax-
isymmetric media. That is, the canonical Poisson bracket vanishes

{S2, H} = 0 , (1.3.29)

for optical Hamiltonians of the form,

H = −
[
n(|q|2)2 − |p|2

]1/2
. (1.3.30)

The Poisson bracket (1.3.29) vanishes because |q|2 and |p|2 inH both
remain invariant under the simultaneous rotations of q and p about
ẑ generated by S in (1.3.20).

1.4 Axisymmetric invariant coordinates

Transforming to axisymmetric coordinates and azimuthal angle in
the optical phase space is similar to passing to polar coordinates
(radius and angle) in the plane. Passing to polar coordinates by
(x, y)→ (r, φ) decomposes the plane R2 into the product of the real
line r ∈ R+ and the angle φ ∈ S1. Quotienting the plane by the
angle leaves just the real line. The quotient map for the plane is

π : R2{0} → R\{0} : (x, y)→ r . (1.4.1)

The S1 angle in optical phase space T ∗R2 is the azimuthal angle. But
how does one quotient the four-dimensional T ∗R2 by the azimuthal
angle?
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As discussed in Section 1.3.3, azimuthal symmetry of the Hamil-
tonian summons the transformation to polar coordinates in phase
space, as

(q,p)→ (r, pr; pφ, φ) .

This transformation reduces the motion to phase planes of radial
(r, pr) position and momentum, defined on level surfaces of the
skewness pφ. The trajectories evolve along intersections of the the
level sets of skewness (the planes pφ = const) with the level sets of
the Hamiltonian H(r, pr, pφ) = const. The motion along these in-
tersections is independent of the ignorable phase variable φ ∈ S1,
whose evolution thus decouples from that of the other variables.
Consequently, the phase evolution may be reconstructed later by
a quadrature, i.e., an integral that involves the parameters of the
reduced phase space. Thus, in this case, azimuthal symmetry decom-
poses the phase space exactly as

T ∗R2\{0} '
(
T ∗(R\{0})× R

)
× S1 . (1.4.2)

The corresponding quotient map for azimuthal symmetry is

π : T ∗R2\{0} → T ∗(R\{0})× R : (q,p)→ (r, pr; pφ) . (1.4.3)

An alternative procedure exists for quotienting out the angular de-
pendence of an azimuthally symmetric Hamiltonian system, which
is independent of the details of the Hamiltonian function. This al-
ternative procedure involves transforming to quadratic azimuthally
invariant functions.

Definition 1.4.1 (Quotient map to quadratic S1 invariants)
The quadratic azimuthally invariant coordinates in R3\{0} are de-
fined by the quotient map3

π : T ∗R2\{0} → R3\{0} : (q,p)→ X = (X1, X2, X3) , (1.4.4)

given explicitly by the quadratic monomials,

X1 = |q|2 ≥ 0 , X2 = |p|2 ≥ 0 , X3 = p · q . (1.4.5)
3The transformation T ∗R2 → R3 in (1.4.5) will be recognised later as another

example of a momentum map.



42 CHAPTER 1. FERMAT’S RAY OPTICS

The quotient map (1.4.4) is written a bit more succinctly as

π (p, q) = X . (1.4.6)

Theorem 1.4.2 The vector (X1, X2, X3) of quadratic monomials in phase
space all Poisson-commute with skewness S,

{S,X1} = 0 , {S,X2} = 0 , {S,X3} = 0 . (1.4.7)

Proof. These three Poisson brackets with skewness S all vanish be-
cause dot products of vectors are preserved by the joint rotations of
q and p that are generated by S.

Remark 1.4.3 The orbits of S in (1.3.21) are rotations of both q and
p by an angle φ about the optical axis at a fixed position z. Accord-
ing to the relation {S, X} = 0, the quotient map X = π (p, q) in
(1.4.4) collapses each circular orbit of S on a given image screen in
phase space T ∗R2\{0} to a point in R3\{0}. The converse also holds.
Namely, the inverse of the quotient map π−1X for X ∈ Imageπ con-
sists of the circle (S1) generated by the rotation of phase space about
its centre by the flow of S.

Definition 1.4.4 (Orbit manifold)
The image in R3 of the quotient map π : T ∗R2\{0} → R3\{0} in (1.4.4)
is the orbit manifold for axisymmetric ray optics.

Remark 1.4.5 [Orbit manifold for axisymmetric ray optics]
The image of the quotient map π in (1.4.4) may be conveniently dis-
played as the zero-level set of the the relation

C(X1, X2, X3, S) = S2 − (X1X2 −X2
3 ) = 0 , (1.4.8)

among the axisymmetric variables in equation (1.4.5). Consequently,
a level set of S in the quotient map T ∗R2\{0} → R3\{0} obtained by
transforming to S1 phase space invariants yields an orbit manifold
defined by C(X1, X2, X3, S) = 0 in R3\{0}.

For axisymmetric ray optics, the image of the quotient map π in R3

turns out to be a family of hyperboloids of revolution.
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1.5 Geometry of invariant coordinates

In terms of the axially invariant coordinates (1.4.5), the Petzval in-
variant and the square of the optical Hamiltonian satisfy

|p×q|2 = |p|2|q|2−(p·q)2 and H2 = n2(|q|2)−|p|2 ≥ 0 . (1.5.1)

That is,

S2 = X1X2 −X2
3 ≥ 0 and H2 = n2(X1)−X2 ≥ 0 . (1.5.2)

The geometry of the solution is determined by the intersections of
the level sets of the conserved quantities S2 andH2. The level sets of
S2 ∈ R3 are hyperboloids of revolution around the X1 = X2 axis in
the horizontal plane defined by X3 = 0. The level-set hyperboloids
lie in the interior of the S = 0 cone with X1 > 0 and X2 > 0. The
level sets ofH2 depend on the functional form of the index of refrac-
tion, but they are X3-independent. The ray path in the S1-invariant
variables X = (X1, X2, X3) ∈ R3 must occur along intersections of
S2 and H2, since both of these quantities are conserved along the
ray path in axisymmetric translation-invariant media.

One would naturally ask how the quadratic phase space quan-
tities (X1, X2, X3) Poisson-commute among themselves. However,
before addressing that question, let us ask the following.

Question 1.5.1
How does the Poisson bracket with each of the axisymmetric quantities
(X1, X2, X3) act as a derivative operation on functions of the phase
space variables q and p?

Remark 1.5.2
Answering this question introduces the concept of flows of Hamil-
tonian vector fields.
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Y1

Y2

= Y3X   = p  q3 .

X  = p2
2

X  = q1
2

Figure 1.8: Level sets of the Petzval invariant S2 = X1X2 − X2
3 are hyper-

boloids of revolution around the X1 = X2 axis (along Y1) in the horizontal plane,
X3 = 0. Level sets of the Hamiltonian H in (1.5.2) are independent of the ver-
tical coordinate. The axisymmetric invariants X ∈ R3 evolve along the intersec-
tions of these level sets by Ẋ = ∇S2 × ∇H , as the vertical Hamiltonian knife
H = constant slices through the hyperbolic onion of level sets of S2. In the coordi-
nates, Y1 = (X1 +X2)/2 , Y2 = (X2−X1)/2 , Y3 = X3, one has S2 = Y 2

1 −Y 2
2 −Y 2

3 .
Being invariant under the flow of the Hamiltonian vector field XS = { · , S}, each
point on any layer H2 of the hyperbolic onion H3 consists of an S1 orbit in phase
space under the diagonal rotation (1.3.21). This orbit is a circular rotation of both
q and p on an image screen at position z by an angle φ about the optical axis.

1.5.1 Flows of Hamiltonian vector fields

Theorem 1.5.3 (Flows of Hamiltonian vector fields)
Poisson brackets with the S1-invariant phase space functions X1, X2 and
X3 generate linear homogeneous transformations of (q, p) ∈ T ∗R2, ob-
tained by regarding the Hamiltonian vector fields obtained as in Defi-
nition 1.3.6 from the Poisson brackets as derivatives,

d

dτ1
:= { · , X1} ,

d

dτ2
:= { · , X2} and

d

dτ3
:= { · , X3} , (1.5.3)
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in their flow parameters τ1, τ2 and τ3, respectively.

The flows themselves may be determined by integrating the character-
istic equations of these Hamiltonian vector fields.

Proof.

• The sum 1
2(X1 + X2) is the harmonic-oscillator Hamiltonian.

This Hamiltonian generates rotation of the (q, p) phase space
around its centre, by integrating the characteristic equations
of its Hamiltonian vector field,

d

dω
=
{
· , 1

2
(X1 +X2)

}
= p · ∂

∂q
− q · ∂

∂p
. (1.5.4)

To see this, write the simultaneous equations

d

dω

(
q
p

)
=
{(

q
p

)
,

1
2

(X1 +X2)
}
,

or in matrix form,4

d

dω

(
q
p

)
=
(

0 1
−1 0

)(
q
p

)
=:

1
2

(m1 +m2)
(

q
p

)
,

for the 2× 2 traceless matrices m1 and m2 defined by

m1 =
(

0 0
−2 0

)
and m2 =

(
0 2
0 0

)
.

These ω-dynamics may be rewritten as a complex equation,

d

dω
(q + ip) = −i(q + ip) , (1.5.5)

whose immediate solution is

q(ω) + ip(ω) = e−iω
(
q(0) + ip(0)

)
.

4For rotational symmetry, it is sufficient to restrict attention to rays lying in a
fixed azimuthal plane and, thus, we may write these actions using 2× 2 matrices,
rather than 4× 4 matrices.
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This solution may also be written in matrix form as(
q(ω)
p(ω)

)
=
(

cosω sinω
− sinω cosω

)(
q(0)
p(0)

)
, (1.5.6)

which is a diagonal clockwise rotation of (q,p). This solution
sums the following exponential series

eω(m1+m2)/2 =
∞∑
n=0

ωn

n!

(
0 1
−1 0

)n
=

(
cosω sinω
− sinω cosω

)
. (1.5.7)

This may also be verified by summing its even and odd pow-
ers separately.

Likewise, a nearly identical calculation yields

d

dγ

(
q
p

)
=

1
2

(m2 −m1)
(

q
p

)
=
(

0 1
1 0

)(
q
p

)
,

for the dynamics of the Hamiltonian H = (|p|2 − |q|2)/2. The
time, the solution is the hyperbolic rotation(

q(γ)
p(γ)

)
=
(

cosh γ sinh γ
sinh γ cosh γ

)(
q(0)
p(0)

)
, (1.5.8)

which, in turn, sums the exponential series

eγ(m2−m1)/2 =
∞∑
n=0

γn

n!

(
0 1
1 0

)n
=

(
cosh γ sinh γ
sinh γ cosh γ

)
. (1.5.9)

• In ray optics, the canonical Poisson bracket with the quadratic
phase space function X1 = |q|2 defines the action of the fol-
lowing linear Hamiltonian vector field:

d

dτ1
=
{
· , X1

}
= −2q · ∂

∂p
. (1.5.10)
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This action may be written equivalently in matrix form as

d

dτ1

(
q
p

)
=
(

0 0
−2 0

)(
q
p

)
= m1

(
q
p

)
.

Integration of this system of equations yields the finite trans-
formation(

q(τ1)
p(τ1)

)
= eτ1m1

(
q(0)
p(0)

)
=

(
1 0
−2τ1 1

)(
q(0)
p(0)

)
=: M1(τ1)

(
q(0)
p(0)

)
. (1.5.11)

This is an easy result, because the matrix m1 is nilpotent. That

is, m2
1 =

(
0 0
0 0

)
, so the formal series representing the expo-

nential of the matrix

eτ1m1 =
∞∑
n=0

1
n!

(τ1m1)n (1.5.12)

truncates at its second term. This solution may be interpreted
as the action of a thin lens [Wo2004].

• Likewise, the canonical Poisson bracket with X2 = |p|2 de-
fines the linear Hamiltonian vector field,

d

dτ2
=
{
· , X2

}
= 2p · ∂

∂q
. (1.5.13)

In matrix form, this is

d

dτ2

(
q
p

)
=
(

0 2
0 0

)(
q
p

)
= m2

(
q
p

)
,

in which the matrix m2 is also nilpotent. Its integration gener-
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ates the finite transformation(
q(τ2)
p(τ2)

)
= eτ2m2

(
q(0)
p(0)

)
=

(
1 2τ2

0 1

)(
q(0)
p(0)

)
=: M2(τ2)

(
q(0)
p(0)

)
, (1.5.14)

corresponding to free propagation of light rays in a homoge-
neous medium.

• The transformation generated byX3 = q ·p compresses phase
space along one coordinate and expands it along the other,
while preserving skewness. Its Hamiltonian vector field is

d

dτ3
=
{
· , X3

}
= q · ∂

∂q
− p · ∂

∂p
.

Being linear, this may be written in matrix form as

d

dτ3

(
q
p

)
=
(

1 0
0 −1

)(
q
p

)
=: m3

(
q
p

)
.

The integration of this linear system generates the flow, or fi-
nite transformation,(

q(τ3)
p(τ3)

)
= eτ3m3

(
q(0)
p(0)

)
=

(
eτ3 0
0 e−τ3

)(
q(0)
p(0)

)
=: M3(τ3)

(
q(0)
p(0)

)
, (1.5.15)

whose exponential series is easily summed, because m3 is di-
agonal and constant. Thus, the quadratic quantity X3 gener-
ates a transformation that takes one harmonic-oscillator Hamil-
tonian into another one corresponding to a different natural
frequency. This transformation is called squeezing of light.

The proof of Theorem 1.5.3 is now finished.
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1.6 Symplectic matrices

Remark 1.6.1 [Symplectic matrices]
Poisson brackets with the quadratic monomials on phase spaceX1, X2, X3

correspond respectively to multiplication by the traceless constant
matrices m1,m2,m3. In turn, exponentiation of these traceless con-
stant matrices leads to the corresponding matricesM1(τ1),M2(τ2),M3(τ3)
in equations (1.5.11), (1.5.14) and (1.5.15). The latter are 2 × 2 sym-
plectic matrices. That is, these three matrices each satisfy

Mi(τi)JMi(τi)T = J (no sum on i = 1, 2, 3), (1.6.1)

where

J =
(

0 −1
1 0

)
. (1.6.2)

By their construction from the axisymmetric invariants X1, X2, X3,
each of the symplectic matricesM1(τ1),M2(τ2),M3(τ3) preserves the
cross product S = p× q.

Definition 1.6.2 (Lie transformation groups)

• A transformation is a one-to-one mapping of a set onto itself.

• A collection of transformations is called a group, provided:
– it includes the identity transformation and the inverse of each
transformation;
– it contains the result of the consecutive application of any two
transformations; and
– composition of that result with a third transformation is asso-
ciative.

• A group is a Lie group, provided its transformations depend
smoothly on a set of parameters.
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Theorem 1.6.3 (Symplectic group Sp(2,R))
Under matrix multiplication, the set of 2 × 2 symplectic matrices forms a
group.

Exercise. Prove that the matrices M1(τ1),M2(τ2),M3(τ3)
defined above all satisfy the defining relation (1.6.1) re-
quired to be symplectic. Prove that these matrices form a
group under matrix multiplication. Conclude that they
form a three-parameter Lie group. F

Theorem 1.6.4 (Fundamental theorem of planar optics)
Any plane paraxial optical system, represented by a 2×2 symplectic matrix
M ∈ Sp(2,R) may be factored into subsystems consisting of products of
three subgroups of the symplectic group, as

M =
(

cosω sinω
− sinω cosω

)(
eτ3 0
0 e−τ3

)(
1 0

2τ1 1

)
. (1.6.3)

This is a general result, called the Iwasawa decomposition of the sym-
plectic matrix group, usually written as [Ge1961]

Sp(2,R) = KAN . (1.6.4)

The rightmost matrix factor (nilpotent subgroup N) corresponds to a thin
lens, whose parameter 2τ1 is called its Gaussian power [Wo2004]. This
factor does not affect the image at all, since q(τ1) = q(0) from equation
(1.5.11). However, the rightmost factor does change the direction of the
rays that fall on each point of the screen. The middle factor (Abelian sub-
group A) magnifies the image by the factor eτ3 , while squeezing the light
so that the product q · p remains the invariant as in equation (1.5.15).
The leftmost factor (the maximal compact subgroup K) is a type of Fourier
transform in angle ω ∈ S1 on a circle as in equation (1.5.6).

For insightful discussions and references to the literature in the design
and analysis of optical systems using the symplectic matrix approach, see,
e.g., [Wo2004]. For many extensions of these ideas with applications to
charged-particle beams, see [Dr2007].
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Definition 1.6.5 (Hamiltonian matrices)
The traceless constant matrices

m1 =
(

0 0
−2 0

)
, m2 =

(
0 2
0 0

)
, m3 =

(
1 0
0 −1

)
, (1.6.5)

whose exponentiation defines the Sp(2,R) symplectic matrices

eτ1m1 = M1(τ1) , eτ2m2 = M2(τ2) , eτ3m3 = M3(τ3) , (1.6.6)

and which are the tangent vectors at their respective identity trans-
formations,

m1 =
[
M ′

1(τ1)M−1
1 (τ1)

]
τ1=0

,

m2 =
[
M ′

2(τ2)M−1
2 (τ2)

]
τ2=0

,

m3 =
[
M ′

3(τ3)M−1
3 (τ3)

]
τ3=0

, (1.6.7)

are called Hamiltonian matrices.

Remark 1.6.6

• From their definitions, the Hamiltonian matrices mi with i =
1, 2, 3, each satisfy

Jmi +mT
i J = 0 , where J =

(
0 −1
1 0

)
. (1.6.8)

That is, Jmi = (Jmi)T is a symmetric matrix.

Exercise. Take the derivative of the definition of
symplectic matrices (1.6.1) to prove statement (1.6.8)
about Hamiltonian matrices. Verify that the Hamil-
tonian matrices in (1.6.5) satisfy (1.6.8). F

• The respective actions of the symplectic matricesM1(τ1),M2(τ2),
M3(τ3) in (1.6.6) on the phase space vector (q, p)T are the
flows of the Hamiltonian vector fields { · , X1}, { · , X2}, and
{ · , X3} corresponding to the axisymmetric invariants X1, X2

and X3 in (1.4.5).
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• The quadratic Hamiltonian,

H =
ω

2
(X1 +X2) +

γ

2
(X2 −X1) + τX3 (1.6.9)

=
ω

2
(|p|2 + |q|2) +

γ

2
(|p|2 − |q|2) + τq · p ,

is associated to the Hamiltonian matrix,

m(ω, γ, τ) =
ω

2
(m1 +m2) +

γ

2
(m2 −m1) + τm3

=
(

τ γ + ω
γ − ω −τ

)
. (1.6.10)

The eigenvalues of the Hamiltonian matrix (1.6.10) are deter-
mined from

λ2 + ∆ = 0 , with ∆ = detm = ω2 − γ2 − τ2 . (1.6.11)

Consequently, the eigenvalues come in pairs, given by

λ± = ±
√
−∆ = ±

√
τ2 + γ2 − ω2 . (1.6.12)

Orbits of Hamiltonian flows in the space (γ+ω, γ−ω, τ) ∈ R3

obtained from the action of a symplectic matrix M(τi) on a
Hamiltonian matrix m(ω, γ, τ) by matrix conjugation

m→ m′ = M(τi)mM−1(τi) (no sum on i = 1, 2, 3)

may alter the values of (ω, γ, τ) in (1.6.10). However, this ac-
tion preserves eigenvalues, so it preserves the value of the de-
terminant ∆. This means the orbits of the Hamiltonian flows
lie of level sets of the determinant ∆.

The Hamiltonian flows corresponding to these eigenvalues change
type, depending on whether ∆ < 0 (hyperbolic), ∆ = 0 (parabolic),
or ∆ > 0 (elliptic), as illustrated in Figure 1.9 and summarised
in the table below, cf. [Wo2004].
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Harmonic (elliptic) orbit Trajectories: Ellipses

∆ = 1 , λ± = ± i mH =
(

0 1
−1 0

)
,

Free (parabolic) orbit Trajectories: Straight lines

∆ = 0 , λ± = 0 mH =
(

0 1
0 0

)
,

Repulsive (hyperbolic) orbit Trajectories: Hyperbolas

∆ = −1 , λ± = ± 1 mH =
(

0 1
1 0

)
.

τ

γ−ωγ+ω

Δ < 0

Δ > 0

Δ = 0

Figure 1.9: The action by matrix conjugation of a symplectic matrix on a Hamil-
tonian matrix changes its parameters (ω, γ, τ) ∈ R3, while preserving the value
of the discriminant ∆ = ω2 − γ2 − τ2. The flows corresponding to exponentia-
tion of the Hamiltonian matrices with parameters (ω, γ, τ) ∈ R3 are divided into
three families of orbits defined by the sign of ∆. These three families of orbits are
hyperbolic (∆ < 0), parabolic (∆ = 0) and elliptic (∆ > 0).

Remark 1.6.7 [Prelude to Lie algebras]

• In terms of the Hamiltonian matrices the KAN decomposition
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(1.6.3) may be written as

M = eω(m1+m2)/2eτ3m3eτ1m1 . (1.6.13)

• Under the matrix commutator [mi,mj ] := mimj −mjmi, the
Hamiltonian matrices mi with i = 1, 2, 3, close among them-
selves, as

[m1,m2] = 4m3 , [m2,m3] = − 2m2 , [m3,m1] = − 2m1 .

The last observation (closure of the commutators) summons the def-
inition of a Lie algebra. For this, we follow [Ol2000].

1.7 Lie algebras

1.7.1 Definitions

Definition 1.7.1 A Lie algebra is a vector space g together with a bilin-
ear operation

[ · , · ] : g× g→ g ,

called the Lie bracket for g, that satisfies the defining properties:

(a) Bilinearity, e.g.,

[au + bv , w] = a[u , w] + b[v , w] ,

for constants (a, b) ∈ R and any vectors (u,v,w) ∈ g;

(b) Skew symmetry
[u , w] = −[w , u] ;

(c) Jacobi identity

[u , [v , w] ] + [v , [w , u] ] + [w , [u , v] ] = 0 ,

for all u,v,w in g.
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1.7.2 Structure constants

Suppose g is any finite dimensional Lie algebra. The Lie bracket
for any choice of basis vectors {e1, . . . , er} of g must again lie in
g. Thus, constants ckij exist i, j, k = 1, 2, . . . , r, called the structure
constants of the Lie algebra g, such that

[ ei , ej ] = ckijek . (1.7.1)

Since the {e1, . . . , er} form a vector basis, the structure constants in
(1.7.1) determine the Lie algebra g from the bilinearity of the Lie
bracket. The conditions of skew symmetry and the Jacobi iden-
tity place further constraints on the structure constants. These con-
straints are:

(i) Skew symmetry
ckji = − ckij , (1.7.2)

and

(ii) Jacobi identity

ckijc
m
lk + cklic

m
jk + ckjlc

m
ik = 0 . (1.7.3)

Conversely, any set of constants ckij that satisfy relations (1.7.2) and
(1.7.3) defines a Lie algebra g.

Exercise. Prove that the Jacobi identity requires the rela-
tion (1.7.3). F

Answer. The Jacobi identity involves summing three
terms of the form,

[ el , [ ei , ej ] ] = ckij [ el , ek] = ckijc
m
lkem .

Summing over the three cyclic permutations of (l, i, j) of
this expression yields the required relation (1.7.3) among
the structure constants for the Jacobi identity to hold.

N
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1.7.3 Commutator tables

A convenient way to display the structure of a finite dimensional
Lie algebra is to write its commutation relations in tabular form. If
g is an r-dimensional Lie algebra and {e1, . . . , er} forms a basis of
g, then its commutator table will be the r × r array whose (i, j)-
th entry expresses the Lie bracket [ ei , ej ]. Commutator tables are
always antisymmetric since [ ej , ei ] = −[ ei , ej ]. Hence, the diago-
nal entries all vanish. The structure constants may be easily read off
the commutator table, since ckij is the coefficient of ek in the (i, j)-th
entry of the table.

For example, the commutator table of the Hamiltonian matrices
in equation (1.6.7) is given by

[mi, mj ] = ckijmk =

[ · , · ] m1 m2 m3

m1

m2

m3

0 4m3 2m1

−4m3 0 −2m2

−2m1 2m2 0

(1.7.4)

The structure constants are immediately read off the table as

c3
12 = 4 = −c3

21 , c1
13 = c2

32 = 2 = −c2
23 = −c1

31 ,

and all the other ckij ’s vanish.

Proposition 1.7.2 (Structure constants for sp(2,R))
The commutation relations in (1.6.7) for the 2 × 2 Hamiltonian matrices
define the structure constants for the symplectic Lie algebra sp(2,R).

Proof. The exponentiation of the Hamiltonian matrices was shown
in Theorem 1.5.3 of Section 1.5.1 to produce the symplectic Lie group,
Sp(2,R). Likewise, the tangent space at the identity of the symplec-
tic Lie group Sp(2,R) is the symplectic Lie algebra, sp(2,R), a vector
space whose basis may be chosen as the 2 × 2 Hamiltonian matri-
ces. Thus, the commutation relations among these matrices yield
the structure constants for sp(2,R) in this basis.
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1.7.4 Poisson brackets among axisymmetric variables

Theorem 1.7.3 The canonical Poisson brackets among the axisymmetric
variables X1, X2 and X3 in (1.4.5) close among themselves,

{X1, X2} = 4X3 , {X2, X3} = − 2X2 , {X3, X1} = − 2X1 .

In tabular form, this is

{Xi, Xj} =

{ · , · } X1 X2 X3

X1

X2

X3

0 4X3 2X1

−4X3 0 −2X2

−2X1 2X2 0

(1.7.5)

Proof. The proof is a direct verification using the chain rule for Pois-
son brackets,

{Xi, Xj} =
∂Xi

∂zA
{zA, zB}

∂Xj

∂zA
, (1.7.6)

for the invariant quadratic monomials Xi(zA) in (1.4.5). Here one
denotes zA = (qA, pA), with A = 1, 2, 3.

Remark 1.7.4 The closure in the Poisson commutator table (1.7.5)
among the set of axisymmetric phase space functions (X1, X2, X3)
is possible, because these functions are all quadratic monomials in
the canonical variables. That is, the canonical Poisson bracket pre-
serves the class of quadratic monomials in phase space.

Summary 1.7.5 The 2× 2 traceless matrices m1, m2 and m3 in equation
(1.6.7) provide a matrix commutator representation of the Poisson bracket
relations in equation (1.7.5) for the quadratic monomials in phase space,
X1, X2 and X3, from which the matrices m1, m2 and m3 were derived.
Likewise, the 2× 2 symplectic matrices M1(τ1), M2(τ2) and M3(τ3) pro-
vide a matrix representation of the transformations of the phase space vec-
tor (q,p)T . These transformations are generated by integrating the char-
acteristic equations of the Hamiltonian vector fields { · , X1}, { · , X2} and
{ · , X3}.
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1.7.5 Non-canonical R3 Poisson bracket for ray optics

The canonical Poisson bracket relations in (1.7.5) may be used to
transform to another Poisson bracket expressed solely in terms of
the variables X = (X1, X2, X3) ∈ R3 by using the chain rule again,

dF

dt
= {F,H} =

∂F

∂Xi
{Xi, Xj}

∂H

∂Xj
. (1.7.7)

Here, the quantities {Xi, Xj}, with i, j = 1, 2, 3, are obtained from
Poisson commutator table in (1.7.5).

This chain rule calculation reveals that the Poisson bracket in the
R3 variables (X1, X2, X3) repeats the commutator table [mi, mj ] =
ckijmk for the Lie algebra sp(2,R) of Hamiltonian matrices in (1.7.4).
Consequently, we may write this Poisson bracket equivalently as

{F,H} = Xk c
k
ij

∂F

∂Xi

∂H

∂Xj
. (1.7.8)

In particular, the Poisson bracket between two of these quadratic-
monomial invariants is a linear function of them

{Xi, Xj} = ckijXk , (1.7.9)

and we also have

{Xl, {Xi, Xj}} = ckij{Xl, Xk} = ckijc
m
lkXm . (1.7.10)

Hence, the Jacobi identity is satisfied for the Poisson bracket (1.7.7)
as a consequence of

{Xl, {Xi, Xj}}+ {Xi, {Xj , Xl}}+ {Xj , {Xl, Xi}}
= ckij{Xl, Xk}+ ckjl{Xi, Xk}+ ckli{Xj , Xk}

=
(
ckijc

m
lk + ckjlc

m
ik + cklic

m
jk

)
Xm = 0 ,

followed by comparison with equation (1.7.3) for the Jacobi identity
in terms of the structure constants.
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Remark 1.7.6 This calculation for the Poisson bracket (1.7.8) pro-
vides an independent proof that it satisfies the Jacobi identity.

The chain rule calculation (1.7.7) also reveals the following.

Theorem 1.7.7 Under the map

T ∗R2 → R3 : (q,p)→ X = (X1, X2, X3) , (1.7.11)

the Poisson bracket among the axisymmetric optical variables (1.4.5)

X1 = |q|2 ≥ 0 , X2 = |p|2 ≥ 0 , X3 = p · q ,

may be expressed for S2 = X1X2 −X2
3 as

dF

dt
= {F,H} = ∇F · ∇S2 ×∇H

= − ∂S
2

∂Xl
εljk

∂F

∂Xj

∂H

∂Xk
. (1.7.12)

Proof. This is a direct verification using formula (1.7.7). For exam-
ple,

2ε123
∂S2

∂X3
= −4X3, 2ε132

∂S2

∂X2
= 2X1, 2ε231

∂S2

∂X1
= −2X2 .

(The inessential factors of 2 may be absorbed into the definition of
the independent variable, which here is the time, t.)

The standard symbol εklm used in the last relation in (1.7.12) to
write the triple scalar product of vectors in index form is defined as
follows.

Definition 1.7.8 (Antisymmetric symbol εklm)
The symbol εklm with ε123 = 1 is the totally antisymmetric tensor in three
dimensions: it vanishes if any of its indices are repeated and it equals the
parity of the permutations of the set {1, 2, 3} when {k, l,m} are all differ-
ent. That is,

εkkm = 0 (no sum)

and

εklm = +1 (resp. −1) for even (resp. odd) permutations of {1, 2, 3} .
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Remark 1.7.9 For three-dimensional vectors A, B, C, one has

(B×C)k = εklmBlCm and
(
A× (B×C)

)
i

= εijkAjεklmBlCm

Hence, the relation

εijkεklm = δilδjm − δimδjl

verifies the familiarBAC minusCAB rule for the triple vector prod-
uct. That is,

A× (B×C) = B(A ·C)−C(A ·B) .

Corollary 1.7.10 The equations of Hamiltonian ray optics in axisymmet-
ric translation-invariant media may be expressed with H = H(X1, X2)
as

Ẋ = ∇S2 ×∇H , with S2 = X1X2 −X2
3 ≥ 0 . (1.7.13)

Thus, the flow preserves volume (that is, it satisfies div Ẋ = 0) and the
evolution along the curve X(z) ∈ R3 takes place on intersections of level
surfaces of the axisymmetric media invariants S2 and H(X1, X2) in R3.

Remark 1.7.11 The Petzval invariant S2 satisfies {S2, H} = 0 with
the bracket (1.7.12) for every Hamiltonian H(X1, X2, X3) expressed
in these variables.

Definition 1.7.12 (Casimir, or distinguished function)
A function that Poisson-commutes with all other functions on a certain
space is the Poisson bracket’s Casimir, or distinguished function.

1.8 Equilibrium solutions

1.8.1 Energy-Casimir stability

Remark 1.8.1 [Critical energy plus Casimir equilibria]
A point of tangency of the level sets of Hamiltonian H and Casimir
S2 is an equilibrium solution of equation (1.7.13). This is because, at
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such a point, the gradients of the HamiltonianH and Casimir S2 are
collinear; so the right-hand side of (1.7.13) vanishes. At such points
of tangency, the variation of the sum HΦ = H + Φ(S2) vanishes, for
some smooth function Φ. That is,

δHΦ(Xe) = DHΦ(Xe) · δX

=
[
∇H + Φ′(S2)∇S2

]
Xe

· δX = 0 ,

when evaluated at equilibrium points Xe where the level sets of H
and S2 are tangent.

Exercise. Show that a point Xe at whichHΦ has a critical
point (i.e., δHΦ = 0) must be an equilibrium solution of
equation (1.7.13). F

Energy-Casimir stability of equilibria

The second variation of the sum HΦ = H + Φ(S2) is a quadratic
form in R3 given by

δ2HΦ(Xe) = δX ·D2HΦ(Xe) · δX .

Thus we have, by Taylor’s theorem,

HΦ(Xe + δX)−HΦ(Xe) =
1
2
δ2HΦ(Xe) + o(|δX|2) ,

when evaluated at the critical point Xe. Remarkably, the quadratic
form δ2HΦ(Xe) is the Hamiltonian for the dynamics linearised around
the critical point. Consequently, the second variation δ2HΦ is pre-
served by the linearised dynamics in a neighbourhood of the equi-
librium point.

Exercise.
• Linearise the dynamical equation (1.7.13) about an equi-
librium Xe for which the quantityHΦ has a critical point
and show that the linearised dynamics conserves the quadratic
form arising from the second variation.
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• Show that the quadratic form is the Hamiltonian for
the linearised dynamics.
•What is the corresponding Poisson bracket?
•Does this process provides a proper bracket for the lin-
earised dynamics? Prove that it does. F

The signature of the second variation provides a method for
determining the stability of the critical point. This is the energy-
Casimir stability method. This method is based on the following.

Theorem 1.8.2 A critical point Xe of HΦ = H + Φ(S2) whose sec-
ond variation is definite in sign is a stable equilibrium solution of equa-
tion (1.7.13).

Proof. A critical point Xe of HΦ = H + Φ(S2) is an equilib-
rium solution of equation (1.7.13). Sign definiteness of the sec-
ond variation provides a norm ‖δX‖2 = |δ2HΦ(Xe)| for the
perturbations around the equilibrium Xe that is conserved by
the linearised dynamics. Being conserved by the dynamics lin-
earised around the equilibrium, this sign-definite distance from
Xe must remain constant. Therefore, in this case, the absolute
value of sign-definite second variation |δ2HΦ(Xe)| provides a
distance from the equilibrium ‖δX‖2 which is bounded in time
under the linearised dynamics. Hence, the equilibrium solution
is stable.

Remark 1.8.3 Even when the second variation is indefinite, it is still
linearly conserved. However, an indefinite second variation does
not provide a norm for the perturbations. Consequently, an indef-
inite second variation does not limit the growth of a perturbation
away from its equilibrium.

Definition 1.8.4 (Geometrical nature of equilibria)
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An equilibrium whose second variation is sign-definite are called ellip-
tic, because the level sets of the second variation in this case make closed,
nearly elliptical contours in its Euclidean neighbourhood. Hence, the or-
bits on these closed level sets remain near the equilibria in the sense of the
Euclidean norm on R3. (In R3 all norms are equivalent to the Euclidean
norm.)

An equilibrium with sign-indefinite second variation is called hyper-
bolic, because the level sets of the second variation do not close locally in
its Euclidean neighbourhood. Hence, in this case, an initial perturbation
following a hyperbolic level set of the second variation may move out of the
Euclidean neighbourhood of the equilibrium.

1.9 Momentum maps

1.9.1 The action of Sp(2,R) on T ∗R2 ' R2 × R2

The Lie group Sp(2,R) of symplectic real matrices M(s) acts diago-
nally on z = (q, p)T ∈ T ∗R2 by matrix multiplication as

z(s) = M(s)z(0) = exp(sξ)z(0) ,

in which M(s)JMT (s) = J is a symplectic 2 × 2 matrix. The 2 × 2
matrix tangent to the symplectic matrix M(s) at the identity s = 0
is given by

ξ =
[
M ′(s)M−1(s)

]
s=0

.

This is a 2× 2 Hamiltonian matrix in sp(2,R), satisfying (1.6.8) as

Jξ + ξTJ = 0 so that Jξ = (Jξ)T . (1.9.1)

That is, for ξ ∈ sp(2,R), the matrix Jξ is symmetric.

Exercise. Verify (1.9.1), cf. (1.6.8). What is the corre-
sponding formula for ζ = [M−1(s)M ′(s)]s=0?

F
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The vector field ξM (z) ∈ TR2 may be expressed as a derivative,

ξM (z) =
d

ds

[
exp(sξ)z

]∣∣∣
s=0

= ξz ,

in which the diagonal action (ξz) of the Hamiltonian matrix (ξ) and
the 2-component real multi-vector z = (q, p)T has components given
by (ξklql, ξklpl)T , with k, l = 1, 2. The matrix ξ is any linear combi-
nation of the traceless constant Hamiltonian matrices (1.6.5).

Definition 1.9.1 (Map J : T ∗R2 ' R2 × R2 → sp(2,R)∗ )
The map, J : T ∗R2 ' R2 × R2 → sp(2,R)∗ is defined by

J ξ(z) :=
〈
J (z), ξ

〉
sp(2,R)∗×sp(2,R)

=
(
z, Jξz

)
R2×R2

:= zk(Jξ)klzl
= zT · Jξz

= tr
(

(z⊗ zTJ)ξ
)
, (1.9.2)

where z = (q, p)T ∈ R2 × R2.

Remark 1.9.2 The map J (z) given in (1.9.2) by

J (z) = (z⊗ zTJ) ∈ sp(2,R)∗ , (1.9.3)

sends z = (q, p)T ∈ R2 × R2 to J (z) = (z ⊗ zTJ), which is an
element of sp(2,R)∗, the dual space to sp(2,R). Under the pairing
〈 · , · 〉 : sp(2,R)∗ × sp(2,R) → R given by the trace of the matrix
product, one finds the Hamiltonian, or phase space function,〈

J (z), ξ
〉

= tr
(
J (z) ξ

)
, (1.9.4)

for J (z) = (z⊗ zTJ) ∈ sp(2,R)∗ and ξ ∈ sp(2,R).

Remark 1.9.3 [Map to axisymmetric invariant variables]
The map, J : T ∗R2 ' R2 × R2 → sp(2,R)∗ in (1.9.2) for Sp(2,R)
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acting diagonally on R2 × R2 in equation (1.9.3) may be expressed
in matrix form as

J = (z⊗ zTJ)

= 2
(

p · q − |q|2
|p|2 −p · q

)
= 2

(
X3 −X1

X2 −X3

)
. (1.9.5)

This is none other than matrix form of the map (1.7.11) to axisym-
metric invariant variables.

T ∗R2 → R3 : (q,p)T → X = (X1, X2, X3) ,

defined as

X1 = |q|2 ≥ 0 , X2 = |p|2 ≥ 0 , X3 = p · q . (1.9.6)

Applying the momentum map J to the vector of Hamiltonian ma-
trices m = (m1, m2, m3) in equation (1.6.5) yields the individual
components,

J ·m = 2X ⇐⇒ X =
1
2
zk(Jm)klzl . (1.9.7)

Thus, the map, J : T ∗R2 ' R2 × R2 → sp(2,R)∗ recovers the
components of the vector X = (X1, X2, X3) that are related to the
components of the Petzval invariant by S2 = X1X2 −X2

3 .

Exercise. Verify equation (1.9.7) explicitly by comput-
ing, for example,

X1 =
1
2

(q, p) · (Jm1)
(

q
p

)
=

1
2

(q, p) ·
(

0 −1
1 0

)(
0 0
−2 0

)(
q
p

)
= |q|2 .

F
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Remark 1.9.4 [Momentum maps for ray optics]
Our previous discussions have revealed that the axisymmetric
variables (X1, X2, X3) in (1.9.6) generate the Lie group of sym-
plectic transformations (1.6.3) as flows of Hamiltonian vector
fields. It turns out that this result is connected to the theory
of momentum maps. Momentum maps take phase space co-
ordinates (q, p) to the space of Hamiltonians whose flows are
canonical transformations of phase space. An example of a mo-
mentum map already appeared in Definition 1.3.20.

The Hamiltonian functions for the one-parameter subgroups
of the symplectic group Sp(2,R) in the KAN decomposition
(1.6.13) are given by

HK =
1
2

(X1 +X2) , HA = X3 and HN = −X1 . (1.9.8)

The three phase space functions,

HK =
1
2

(|q|2 + |p|2) , HA = q · p , HN = − |q|2 , (1.9.9)

map the phase space (q, p) to these Hamiltonians whose cor-
responding Poisson brackets are the Hamiltonian vector fields
for the corresponding one-parameter subgroups. These three
Hamiltonians and, equally well, any other linear combinations
of (X1, X2, X3), arise from a single momentum map, as we shall
explain in Section 1.9.2.

Remark 1.9.5 Momentum maps are Poisson maps. That is, they
map Poisson brackets on phase space into Poisson brackets on
the target space.

The corresponding Lie algebra product in sp(2,R) was iden-
tified using Theorem 1.7.7 with the vector cross product in the
space R3 by using the R3-bracket. The R3-brackets among the
(X1, X2, X3) closed among themselves. Therefore, as expected,
the momentum map was found to be Poisson. In general, when
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the Poisson bracket relations are all linear, they will be Lie-
Poisson brackets, defined below in Section 1.10.1.

1.9.2 Summary: Properties of momentum maps

A momentum map takes phase space coordinates (q, p) to the space
of Hamiltonians, whose flows are canonical transformations of phase
space. The ingredients of the momentum map are: (i) a representa-
tion of the infinitesimal action of the Lie algebra of the transforma-
tion group on the coordinate space; and (ii) an appropriate pairing
with the conjugate momentum space. For example, one may con-
struct a momentum map by using the familiar pairing 〈〈 · , · 〉〉 be-
tween momentum in phase space and the velocity in the tangent
space of the configuration manifold as it appears in the Legendre
transformation. For this pairing, the momentum map is derived
from the cotangent lift of the infinitesimal action ξM (q) of the Lie
algebra of the transformation group on the configuration manifold
to its action on the canonical momentum. In this case, the formula
for the momentum map J (q, p) is

J ξ(q, p) =
〈
J (q, p), ξ

〉
=
〈〈

p, ξM (q)
〉〉
, (1.9.10)

in which the other pairing 〈 · , · 〉 is between the Lie algebra and its
dual. This means the momentum map J for the Hamiltonian J ξ
lives in the dual space of the Lie algebra belonging to the Lie sym-
metry. The flow of its vector field XJ ξ = { · , J ξ} is the transfor-
mation of phase space by the cotangent lift of a Lie group symme-
try infinitesimally generated for configuration space by ξM (q). The
computation of the Lagrange invariant S in (1.3.25) is an example of
this type of momentum map.

Not all momentum maps arise as cotangent lifts. Momentum
maps may also arise from the infinitesimal action of the Lie algebra
on the phase space manifold ξT ∗M (z) with z = (q, p) by using the
pairing with the symplectic form. The formula for the momentum
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map is then

J ξ(z) =
〈
J (z), ξ

〉
=
(
z, JξT ∗M (z)

)
, (1.9.11)

where J is the symplectic form and ( · , · ) is the inner product on
phase space T ∗R ' R × R for n degrees of freedom. The transfor-
mation to axisymmetric variables in (1.9.5) is an example of a mo-
mentum map obtained from the symplectic pairing. Both of these
approaches are useful and we have seen that both types of momen-
tum maps are summoned when reduction by S1 axisymmetry is ap-
plied in ray optics. The present chapter explores the consequences
of S1 symmetry and the reductions of phase space associated with
the momentum maps for this symmetry.

The level sets of the momentum maps provide the geometrical
setting for dynamics with symmetry. The components of the mo-
mentum map live on the dual of the Lie symmetry algebra, which
is a linear space. The level sets of the components of the momen-
tum map provide the natural coordinates for the reduced dynamics.
Thus, the motion takes place in a reduced space whose coordinates
are invariant under the original S1 symmetry. The motion in the
reduced space lies on a level set of the momentum map for the S1

symmetry. It also lies on a level set of the Hamiltonian. Hence, the
dynamics in the reduced space of coordinates that are invariant un-
der the S1 symmetry is confined to the intersections in the reduced
space of the level sets of the Hamiltonian and the momentum map
associated with that symmetry. Moreover, in most cases, restriction
to either level set results in symplectic (canonical) dynamics.

After the solution for this S1-reduced motion is determined, one
must reconstruct the phase associated with the S1 symmetry, which
decouples from the dynamics of the rest of system through the pro-
cess of reduction. Thus, each point on the manifolds defined by
the level sets of the Hamiltonian and the momentum map in the
reduced space is associated with an orbit of the phase on S1. This
S1 phase must be reconstructed from the solution on the reduced
space of S1-invariant functions. The reconstruction of the phase is
of interest in its own right, because it contains both geometric and
dynamic components, as discussed in Section 1.12.2.
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One advantage of this geometric setting is that it readily reveals
how bifurcations arise under changes of parameters in the system,
for example, under changes in parameters in the Hamiltonian. In
this setting, bifurcations are topological transitions in the intersec-
tions of level surfaces of orbit manifolds of the Hamiltonian and
momentum map. The motion proceeds along these intersections in
the reduced space whose points are defined by S1-invariant coor-
dinates. These topological changes in the intersections of the or-
bit manifolds accompany qualitative changes in the solution be-
haviour, such as the change of stability of an equilibrium, or the
creation or destruction of equilibria. The display of these changes of
topology in the reduced space of S1-invariant functions also allows
a visual classification of potential bifurcations. That is, it affords an
opportunity to organise the choreography of bifurcations that are
available to the system as its parameters are varied. For an example
of this type of geometric bifurcation analysis, see Section 4.5.5.

Remark 1.9.6 The two results:
(1) that the action of a Lie group G with Lie algebra g on a sym-
plectic manifold P should be accompanied by a momentum map
J : P → g∗; and
(2) that the orbits of this action are themselves symplectic manifolds,
both occur already in [Lie1890]. See [We1983] for an interesting dis-
cussion of Lie’s contributions to the theory of momentum maps.

The reader should consult [MaRa1994, OrRa2004] for more dis-
cussions and additional examples of momentum maps.

1.10 Lie-Poisson brackets

1.10.1 The R3-bracket for ray optics is Lie-Poisson

The Casimir invariant S2 = X1X2−X2
3 for the R3-bracket (1.7.12) is

quadratic. In such cases, one may write the Poisson bracket on R3

in the suggestive form with a pairing 〈 · , · 〉,

{F,H} = −Xk c
k
ij

∂F

∂Xi

∂H

∂Xj
=: −

〈
X ,

[
∂F

∂X
,
∂H

∂X

]〉
, (1.10.1)
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where ckij with i, j, k = 1, 2, 3 are the structure constants of a three-
dimensional Lie algebra operation denoted as [ · , · ]. In the particu-
lar case of ray optics, c3

12 = 4, c2
23 = 2, c1

31 = 2 and the rest of the
structure constants either vanish, or are obtained from antisymme-
try of ckij under exchange of any pair of its indices. These values
are the structure constants of the 2× 2 Hamiltonian matrices (1.6.5),
which represent any of the Lie algebras sp(2,R), so(2, 1), su(1, 1),
or sl(2,R). Thus, the reduced description of Hamiltonian ray op-
tics in terms of axisymmetric R3 variables may be defined on the
dual space of any of these Lie algebras, say, sp(2,R)∗ for definite-
ness, where duality is defined by pairing 〈 · , · 〉 in R3 (contraction
of indices). Since R3 is dual to itself under this pairing, upper and
lower indices are equivalent.

Definition 1.10.1 (Lie-Poisson bracket)
A Lie-Poisson bracket is a bracket operation defined as a linear func-
tional of a Lie algebra bracket by a real-valued pairing between a Lie algebra
and its dual space.

Remark 1.10.2 Equation (1.10.1) defines a Lie-Poisson bracket. Be-
ing a linear functional of an operation (the Lie bracket [ · , · ]) which
satisfies the Jacobi identity, any Lie-Poisson bracket also satisfies the
Jacobi identity.

1.10.2 Lie-Poisson brackets with quadratic Casimirs

An interesting class of Lie-Poisson brackets emerges from the R3

Poisson bracket,

{F,H}C := −∇C · ∇F ×∇H , (1.10.2)

when its Casimir gradient is the linear form on R3 given by ∇C =
KX associated with the 3×3 symmetric matrix KT = K. This bracket
may be written equivalently in various notations, including index
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form, R3 vector form, and Lie-Poisson form, as

{F, H}K = −∇C · ∇F ×∇H

= −XlK
liεijk

∂F

∂Xj

∂H

∂Xk

= −X · K
(
∂F

∂X
× ∂H

∂X

)
=: −

〈
X ,

[
∂F

∂X
,
∂H

∂X

]
K

〉
. (1.10.3)

Remark 1.10.3 The triple scalar product of gradients in the R3-bracket
(1.10.2) is the determinant of the Jacobian matrix for the transforma-
tion (X1, X2, X3) → (C,F,H), which is known to satisfy the Jacobi
identity. Being a special case, the Poisson bracket {F, H}K also sat-
isfies the Jacobi identity.

In terms of the R3 components, the Poisson bracket (1.10.3) yields

{Xj , Xk}K = −XlK
liεijk . (1.10.4)

The Lie-Poisson form in (1.10.3) associates the R3 bracket to a Lie
algebra with structure constants given in the dual vector basis by

[ej , ek]K = elKliεijk =: elc ljk . (1.10.5)

The Lie group belonging to this Lie algebra is the invariance group
of the quadratic Casimir. Namely, it is the transformation group GK

with elements O(s) ∈ GK with O(t)|t=0 = Id whose action from the
left on R3 is given by X→ OX, such that

OT (t)KO(t) = K (1.10.6)

or, equivalently,

K−1OT (t)K = O−1(t) , (1.10.7)

for the 3× 3 symmetric matrix KT = K.
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Definition 1.10.4 An n× n orthogonal matrix O(t) satisfies

OT (t)IdO(t) = Id (1.10.8)

in which Id is the n × n identity matrix. These matrices represent the
orthogonal Lie group in n dimensions, denoted O(n).

Definition 1.10.5 (Quasi-orthogonal matrices)
A matrixO(t) satisfying (1.10.6) is called quasi-orthogonal with respect
to the symmetric matrix K.

The quasi-orthogonal transformations X→ OX are not orthogo-
nal, unless K = Id. However, they do form a Lie group under matrix
multiplication, since for any two of them O1 and O2, we have

(O1O2)TK(O1O2) = OT2 (OT1 KO1)O2 = OT2 KO2 = K . (1.10.9)

The corresponding Lie algebra gK is the derivative of the defin-
ing condition of the Lie group (1.10.6), evaluated at the identity. This
yields,

0 =
[
ȮTO−T

]
t=0

K + K
[
O−1Ȯ

]
t=0

.

Consequently, if X̂ = [O−1Ȯ]t=0 ∈ gK, the quantity KX̂ is skew.
That is,

(KX̂)T = −KX̂ .

A vector representation of this skew matrix is provided by the fol-
lowing hat map from the Lie algebra gK to vectors in R3,

̂ : gK → R3 defined by (KX̂)jk = −XlK
liεijk . (1.10.10)

When K is invertible, the hat map ( ·̂ ) in (1.10.10) is a linear isomor-
phism. For any vectors u, v ∈ R3 with components uj , vk, where
j, k = 1, 2, 3, one computes

uj(KX̂)jkvk = −X · K(u× v)
=: −X · [u , v]K .
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This is the Lie-Poisson bracket for the Lie algebra structure repre-
sented on R3 by the vector product,

[u,v]K = K(u× v) . (1.10.11)

Thus, the Lie algebra of the Lie group of transformations of R3 leav-
ing invariant the quadratic form 1

2XT · KX may be identified with
the cross product of vectors in R3 by using the K-pairing instead
of the usual dot product. For example, in the case of the Petzval
invariant we have

∇S2 =

 0 1 0
1 0 0
0 0 −2

X .

Consequently,

K =

 0 1 0
1 0 0
0 0 −2

 ,

for ray optics, with X = (X1, X2, X3)T .

Exercise. Verify that inserting this formula for K into for-
mula (1.10.4) recovers the Lie-Poisson bracket relations
(1.7.5) for ray optics (up to an inessential constant). F

Hence, we have proved the following theorem.

Theorem 1.10.6 Consider the R3 bracket in equation (1.10.3)

{F,H}K := −∇CK · ∇F ×∇H with CK =
1
2

X · KX , (1.10.12)

in which KT = K is a 3 × 3 real symmetric matrix and X ∈ R3. The
quadratic form CK is the Casimir function for the Lie-Poisson bracket
given by

{F, H}K = −X · K
(
∂F

∂X
× ∂H

∂X

)
, (1.10.13)

=: −
〈

X ,

[
∂F

∂X
,
∂H

∂X

]
K

〉
, (1.10.14)
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defined on the dual of the three-dimensional Lie algebra gK, whose bracket
has the following vector product representation for u, v ∈ R3,

[ u,v ]K = K(u× v) . (1.10.15)

This is the Lie algebra bracket for the Lie group GK of transformations of
R3 given by action from the left X→ OX, such that OTKO = K, thereby
leaving the quadratic form CK invariant.

Definition 1.10.7 (The ad and ad∗ operations)
The adjoint (ad) and coadjoint (ad∗) operations are defined for the Lie-
Poisson bracket (1.10.14) with quadratic Casimir, CK = 1

2 X ·KX, as
follows.

〈X , [ u,v ]K〉 = 〈X , aduv〉 = 〈ad∗uX , v〉 (1.10.16)
= KX · (u× v) = (KX× u) · v .

Thus, we have explicitly,

aduv = K(u× v) and ad∗uX = −u× KX . (1.10.17)

These definitions of the ad and ad∗ operations yield the follow-
ing theorem for the dynamics.

Theorem 1.10.8 (Lie-Poisson dynamics)
The Lie-Poisson dynamics (1.10.13) - (1.10.14) is expressed in terms
of the ad and ad∗ operations by

dF

dt
= {F, H}K =

〈
X , ad∂H/∂X

∂F

∂X

〉
=

〈
ad∗∂H/∂XX ,

∂F

∂X

〉
, (1.10.18)

so that the Lie-Poisson dynamics expresses itself as coadjoint motion,

dX
dt

= {X, H}K = ad∗∂H/∂XX = − ∂H
∂X
× KX . (1.10.19)

By construction, this equation conserves the quadratic Casimir, CK =
1
2 X · KX.
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Exercise. Write the equations of coadjoint motion (1.10.19)
for K = diag(1, 1, 1) and H = X2

1 −X2
3/2. F

1.11 Divergenceless vector fields

1.11.1 Jacobi identity

One may verify directly that the R3 bracket in (1.7.12) and in the
class of brackets (1.10.12) does indeed satisfy the defining proper-
ties of a Poisson bracket. Clearly, it is a bilinear, skew-symmetric
form. To show that it is also a Leibnitz operator that satisfies the
Jacobi identity, we identify the bracket in (1.7.12) with the following
divergenceless vector field on R3 defined by

XH = { · , H} = ∇S2 ×∇H · ∇ ∈ X . (1.11.1)

This isomorphism identifies the bracket in (1.11.1) acting on func-
tions on R3 with the action of the divergenceless vector fields X. It
remains to verify the Jacobi identity explicitly, by using the proper-
ties of the commutator of divergenceless vector fields.

Definition 1.11.1 (Jacobi-Lie bracket)
The commutator of two divergenceless vector fields u, v ∈ X is defined to
be [

v, w
]

=
[
v · ∇, w · ∇

]
=
(

(v · ∇)w − (w · ∇)v
)
· ∇ . (1.11.2)

The coefficient of the commutator of vector fields is called the Jacobi-Lie
bracket. It may be written without risk of confusion in the same notation
as [

v, w
]

= (v · ∇)w − (w · ∇)v . (1.11.3)

In Euclidean vector components, the Jacobi-Lie bracket (1.11.3) is expressed
as [

v, w
]
i

= wi,jvj − vi,jwj . (1.11.4)

Here, a subscript comma denotes partial derivative, e.g., vi,j = ∂vi/∂xj
and one sums repeated indices over their range; for example, i, j =
1, 2, 3, in three dimensions.
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Exercise. Show that [v, w]i,i = 0 for the expression in
(1.11.4); so the commutator of two divergenceless vector
fields yields another one. F

Remark 1.11.2 [Interpreting commutators of vector fields]
We may interpret a smooth vector field in R3 as the tangent at

the identity (ε = 0) of a one-parameter flow φε in R3 parameterised
by ε ∈ R and given by integrating

d

dε

∣∣∣∣
ε=0

= vi(x)
∂

∂xi
. (1.11.5)

The characteristic equations of this flow are

dxi
dε

= vi(x(ε)) , so that
dxi
dε

∣∣∣∣
ε=0

= vi(x) , i = 1, 2, 3 . (1.11.6)

Integration of the characteristic equations (1.11.6) yields the solution
for the flow x(ε) = φεx of the vector field defined by (1.11.5), whose
initial condition starts from x = x(0). Suppose the characteristic
equations for two such flows parameterised by (ε, σ) ∈ R are given
respectively by,

dxi
dε

= vi(x(ε)) and
dxi
dσ

= wi(x(σ)) .

The difference of their cross derivatives evaluated at the identity
yields the Jacobi-Lie bracket,

d

dε

∣∣∣
ε=0

dxi
dσ

∣∣∣
σ=0
− d

dσ

∣∣∣
σ=0

dxi
dε

∣∣∣
ε=0

=
d

dε
wi(x(ε))

∣∣∣
ε=0
− d

dσ
vi(x(σ))

∣∣∣
σ=0

=
∂wi
∂xj

dxi
dε

∣∣∣∣
ε=0

− ∂vi
∂xj

dxi
dσ

∣∣∣∣
σ=0

= wi,jvj − vi,jwj
= [v, w]i .

Thus, the Jacobi-Lie bracket of vector fields is the difference between
the cross-derivatives with respect to their corresponding character-
istic equations, evaluated at the identity. Of course, this difference
of cross derivatives would vanish if each derivative were not evalu-
ated before taking the next one.
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The composition of Jacobi-Lie brackets for three divergenceless
vector fields u, v, w ∈ X has components given by[

u, [v, w]
]
i

= ukvjwi,kj + ukvj,kwi,j − ukwj,kvi,j
−ukwjvi,jk − vjwk,jui,k + wjvk,jui,k . (1.11.7)

Equivalently, in vector form,[
u, [v, w]

]
= uv : ∇∇w + u · ∇vT · ∇wT − u · ∇wT · ∇vT

−uw : ∇∇v − v · ∇wT · ∇uT + w · ∇vT · ∇uT .

Theorem 1.11.3 The Jacobi-Lie bracket of divergenceless vector fields sat-
isfies the Jacobi identity,

[u, [v, w] ] + [v, [w, u] ] + [w, [u, v] ] = 0 . (1.11.8)

Proof. Direct verification using (1.11.7) and summing over cyclic
permutations.

Exercise. Prove Theorem 1.11.3 in streamlined notation
obtained by writing

[v, w] = v(w)− w(v) ,

and using bilinearity of the Jacobi-Lie bracket. F

Lemma 1.11.4 The R3-bracket (1.7.12) may be identified with the diver-
genceless vector fields in (1.11.1) by

[XG, XH ] = −X{G,H} , (1.11.9)

where [XG, XH ] is the Jacobi-Lie bracket of vector fields XG and XH .

Proof. Equation (1.11.9) may be verified by a direct calculation,

[XG, XH ] = XGXH −XHXG

= {G, · }{H, · } − {H, · }{G, · }
= {G, {H, · }} − {H, {G, · }}
= {{G, H}, · } = −X{G,H} .
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Remark 1.11.5 The last step in the proof of Lemma 1.11.4 uses the
Jacobi identity for the R3-bracket, which follows from the Jacobi
identity for divergenceless vector fields, since

XFXGXH = −{F, {G, {H, · }}}

1.11.2 Geometric forms of Poisson brackets

Determinant & wedge-product forms of the canonical bracket

For one degree of freedom, the canonical Poisson bracket {F,H}
is the same as the determinant for a change of variables (q, p) →
(F (q, p), H(q, p)),

{F,H} =
∂F

∂q

∂H

∂p
− ∂H

∂q

∂F

∂p
= det

∂(F,H)
∂(q, p)

. (1.11.10)

This may be written in terms of the differentials of the functions
(F (q, p), H(q, p)) defined as

dF =
∂F

∂q
dq +

∂F

∂p
dp and dH =

∂H

∂q
dq +

∂H

∂p
dp , (1.11.11)

by writing the canonical Poisson bracket {F,H} as a phase space
density

dF ∧ dH = det
∂(F,H)
∂(q, p)

dq ∧ dp = {F,H}dq ∧ dp . (1.11.12)

Here the wedge product ∧ in dF ∧ dH = − dH ∧ dF is introduced
to impose the antisymmetry of the Jacobian determinant under in-
terchange of its columns.

Definition 1.11.6 (Wedge product of differentials)
The wedge product of differentials (dF, dG, dH) of any smooth functions
(F,G,H) is defined by its following three properties.

(i) ∧ is anticommutative: dF ∧ dG = −dG ∧ dF ;
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(ii) ∧ is bilinear: (adF + bdG) ∧ dH = a(dF ∧ dH) + b(dG ∧ dH);

(iii) ∧ is associative: dF ∧ (dG ∧ dH) = (dF ∧ dG) ∧ dH .

Remark 1.11.7 These are the usual properties of area elements and
volume elements in integral calculus. These properties also apply
in computing changes of variables.

Exercise. Verify formula (1.11.12) from equation (1.11.11)
and the linearity and antisymmetry of the wedge prod-
uct, so that, e.g., dq ∧ dp = −dp ∧ dq and dq ∧ dq = 0.

F

Determinant & wedge-product forms of the R3-bracket

The R3-bracket in equation (1.7.12) may also be rewritten equiva-
lently as a Jacobian determinant, namely,

{F, H} = −∇S2 · ∇F ×∇H = − ∂(S2, F,H)
∂(X1, X2, X3)

, (1.11.13)

where

∂(F1, F2, F3)
∂(X1, X2, X3)

= det
(
∂F
∂X

)
. (1.11.14)

The determinant in three dimensions may be defined using the an-
tisymmetric tensor symbol εijk as

εijk det
(
∂F
∂X

)
= εabc

∂Fa
∂Xi

∂Fb
∂Xj

∂Fc
∂Xk

, (1.11.15)

where, as mentioned earlier, we sum on repeated indices over their
range. We shall keep track of the antisymmetry of the determinant
in three dimensions by using the wedge product (∧)

det
(
∂F
∂X

)
dX1 ∧ dX2 ∧ dX3 = dF1 ∧ dF2 ∧ dF3 . (1.11.16)
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Thus, the R3-bracket in equation (1.7.12) may be rewritten equiva-
lently in wedge-product form as

{F, H} dX1 ∧ dX2 ∧ dX3 = −(∇S2 · ∇F ×∇H) dX1 ∧ dX2 ∧ dX3

= − dS2 ∧ dF ∧ dH .

Poisson brackets of this type are called Nambu brackets, since [Na1973]
introduced them in three dimensions. They can be generalised to
any dimension, but this requires additional compatibility conditions
[Ta1994].

1.11.3 Nambu brackets

Theorem 1.11.8 (Nambu brackets [Na1973])
For any smooth functions F H ∈ F(R3) of coordinates X ∈ R3 with
volume element d 3X , the Nambu bracket

{F, H} : F(R3)×F(R3)→ F(R3)

defined by

{F, H} d 3X = −∇C · ∇F ×∇Hd 3X

= − dC ∧ dF ∧ dH , (1.11.17)

possesses the properties (1.3.4) required of a Poisson bracket for any choice
of distinguished smooth function C : R3 → R.

Proof. The bilinear skew-symmetric Nambu R3 bracket yields the
divergenceless vector field

XH = { · , h} = ∇C ×∇H · ∇ ,

in which
div (∇C ×∇H) = 0 .

Divergenceless vector fields are derivative operators that satisfy the
Leibnitz product rule and the Jacobi identity. These properties hold
in this case for any choice of smooth functions C, H ∈ F(R3). The
other two properties – bilinearity and skew symmetry – hold as
properties of the wedge product. Hence, the Nambu R3 bracket
in (1.11.17) satisfies all the properties required of a Poisson bracket
specified in Definition 1.3.4.
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1.12 Geometry of solution behaviour

1.12.1 Restricting axisymmetric ray optics to level sets

Having realised that the R3-bracket in equation (1.7.12) is associ-
ated to Jacobian determinants for changes of variables, it is natu-
ral to transform the dynamics of the axisymmetric optical variables
(1.4.5) from three dimensions (X1, X2, X3) ∈ R3 to one of its level
sets S2 > 0. For convenience, we first make a linear change of Carte-
sian coordinates in R3 that explicitly displays the axisymmetry of
the level sets of S2 under rotations, namely,

S2 = X1X2 −X2
3 = Y 2

1 − Y 2
2 − Y 2

3 , (1.12.1)

with

Y1 =
1
2

(X1 +X2) , Y2 =
1
2

(X2 −X1) , Y3 = X3 .

In these new Cartesian coordinates (Y1, Y2, Y3) ∈ R3, the level sets
of S2 are manifestly invariant under rotations about the Y1-axis.

Exercise. Show that this linear change of Cartesian co-
ordinates preserves the orientation of volume elements,
but scales them by a constant factor of one-half. That is,
show

{F, H} dY1 ∧ dY2 ∧ dY3 =
1
2
{F, H} dX1 ∧ dX2 ∧ dX3 .

The overall constant factor of one-half here is unimpor-
tant, because it may be simply absorbed into the units of
axial distance in the dynamics induced by the R3-bracket
for axisymmetric ray optics in the Y -variables. F

Each of the family of hyperboloids of revolution in (1.12.1)
comprises a layer in the “hyperbolic onion” preserved by ax-
isymmetric ray optics. We use hyperbolic polar coordinates on
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these layers in analogy to spherical coordinates,

Y1 = S coshu , Y2 = S sinhu cosψ , Y3 = S sinhu sinψ .
(1.12.2)

The R3-bracket (1.7.12) thereby transforms into hyperbolic coor-
dinates (1.12.2) as

{F, H} dY1 ∧ dY2 ∧ dY3 = −{F, H}hyperb S2 dS ∧ dψ ∧ d coshu .
(1.12.3)

Note that the oriented quantity

S2d coshu ∧ dψ = −S2dψ ∧ d coshu ,

is the area element on the hyperboloid corresponding to the con-
stant S2.

On a constant level surface of S2 the function {F,H}hyperb
only depends on (coshu, ψ) so the Poisson bracket for optical
motion on any particular hyperboloid is then

{F, H} d 3Y = −S2dS ∧ dF ∧ dH (1.12.4)
= −S2dS ∧ {F, H}hyperb dψ ∧ d coshu ,

with

{F, H}hyperb =
(
∂F

∂ψ

∂H

∂ coshu
− ∂H

∂ coshu
∂F

∂ψ

)
.

Being a constant of the motion, the value of S2 may be absorbed
by a choice of units for any given initial condition and the Pois-
son bracket for the optical motion thereby becomes canonical
on each hyperboloid,

dψ

dz
= {ψ, H}hyperb =

∂H

∂ coshu
, (1.12.5)

d coshu
dz

= {coshu, H}hyperb = − ∂H
∂ψ

. (1.12.6)

In the Cartesian variables (Y1, Y2, Y3) ∈ R3, one has coshu =
Y1/S and ψ = tan−1(Y3/Y2). In the original variables,

coshu =
X1 +X2

2S
and ψ = tan−1 2X3

X2 −X1
.
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Example 1.12.1 For a paraxial harmonic guide, whose Hamiltonian
is,

H =
1
2

(|p|2 + |q|2) =
1
2

(X1 +X2) = Y1 , (1.12.7)

the ray paths consist of circles cut by the intersections of level sets of
the planes Y1 = const with the hyperboloids of revolution about the
Y1-axis, given by S2 = const.

The dynamics for Y ∈ R3 is given by

Ẏ =
{
Y, H

}
= ∇YS

2 × Ŷ1 = 2Ŷ1 ×Y , (1.12.8)

on using the (1.12.1) to transform the R3 bracket in (1.7.12). Thus,
for the paraxial harmonic guide, the rays spiral down the optical axis
following circular helices whose radius is determined by their initial
conditions.

Exercise. Verify that equation (1.12.3) transforms the R3-
bracket from Cartesian to hyperboloidal coordinates, by
using the definitions in equations (1.12.2). F

Exercise. Reduce {F,H}hyperb to the conical level set S =
0. F

Exercise. Reduce the R3 dynamics of (1.7.12) to level sets
of the Hamiltonian

H = aX1 + bX2 + cX3 ,

for constants (a, b, c). Explain how this reduction simpli-
fies the equations of motion. F
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1.12.2 Geometric phase on level sets of S2 = p2
φ

In polar coordinates, the axisymmetric invariants are

Y1 =
1
2

(
p2
r + p2

φ/r
2 + r2

)
,

Y2 =
1
2

(
p2
r + p2

φ/r
2 − r2

)
,

Y3 = rpr .

Hence, the corresponding volume elements are found to be

d 3Y =: dY1 ∧ dY2 ∧ dY3

= d
S3

3
∧ d coshu ∧ dψ

= dp2
φ ∧ dpr ∧ dr . (1.12.9)

On a level set of S = pφ this implies

S d coshu ∧ dψ = 2 dpr ∧ dr , (1.12.10)

so the transformation of variables (coshu, ψ)→ (pr, r) is canonical
on level sets of S = pφ.

One recalls Stokes Theorem on phase space∫∫
A
dpj ∧ dqj =

∮
∂A
pjdqj , (1.12.11)

where the boundary of the phase space area ∂A is taken around a
loop on a closed orbit. Either in polar coordinates or on an invariant
hyperboloid S = pφ this loop integral becomes∮

p · dq :=
∮
pjdqj =

∮ (
pφdφ+ prdr

)
=

∮ (S3

3
dφ+ coshu dψ

)
.
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Thus we may compute the total phase change around a closed peri-
odic orbit on the level set of hyperboloid S from∮

S3

3
dφ =

S3

3
∆φ

= −
∮

coshu dψ︸ ︷︷ ︸
Geometric ∆φ

+
∮

p · dq︸ ︷︷ ︸
Dynamic ∆φ

. (1.12.12)

Evidently, one may denote the total change in phase as the sum

∆φ = ∆φgeom + ∆φdyn ,

by identifying the corresponding terms in the previous formula. By
the Stokes theorem (1.12.11), one sees that the geometric phase asso-
ciated with a periodic motion on a particular hyperboloid is given
by the hyperbolic solid angle enclosed by the orbit, times a constant
factor depending on the level set value S = pφ. Thus, the name:
geometric phase.

1.13 Geometric ray optics in anisotropic media

Every ray of light has therefore two opposite sides. . . .
And since the crystal by this disposition or virtue does
not act upon the rays except when one of their sides of
unusual refraction looks toward that coast, this argues a
virtue or disposition in those sides of the rays which an-
swers to and sympathises with that virtue or disposition
of the crystal, as the poles of two magnets answer to one
another. . . .

– Newton, Optiks 1704

Some media have directional properties that are exhibited by
differences in the transmission of light in different directions. This
effect is seen, for example, in certain crystals. Fermat’s principle for
such media still conceives light rays as lines in space (i.e., no polar-
isation vectors, yet), but the refractive index along the paths of the
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rays in the medium is allowed to depend on both position and direc-
tion. In this case, Theorem 1.1.15 adapts easily to yield the expected
3D eikonal equation (1.1.7).

1.13.1 Fermat and Huygens principles for anisotropic me-
dia

Let us investigate how Fermat’s principle (1.1.8) changes, when Huy-
gens equation (3.2.20) allows the velocity of the wave fronts to de-
pend on direction because of material anisotropy.

We consider a medium in which the tangent vector of a light
ray does not point along the normal to its wave-front, ∇S(r), but
instead satisfies a matrix relation depending on the spatial location
along the ray path, r(s), as

dr
ds

= D−1(r)∇S , (1.13.1)

with with ṙ(s) := dr/ds and |ṙ| = 1 for an invertible matrix function
D that characterises the medium. In components, this anisotropic
Huygens equation is written

∂S

∂ri
= Dij(r)

drj

ds
. (1.13.2)

We shall write the Euler-Lagrange equation for r(s) that arises from
Fermat’s principle for this anisotropic version of Huygens equation
and derive its corresponding Snell’s Law.

We begin by taking the square on both sides of the vector equa-
tion (1.13.2), which produces the anisotropic version of the scalar
eikonal equation (1.1.19), now written in the form

|∇S|2 =
dr
ds

T

(DTD)
dr
ds

=
dri

ds
(DikDkj)

drj

ds
= n2(r, ṙ). (1.13.3)

Substituting this expression into Fermat’s principle yields

0 = δA = δ

∫ B

A
n(r(s), ṙ(s)) ds (1.13.4)

= δ

∫ B

A

√
ṙ(s) · (DTD)(r) · ṙ(s) ds.
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This is the variational principle for the curve that leaves the dis-
tance between two points A and B stationary under variations in a
space with Riemannian metric given by G := DTD, whose element
of length is defined by

n2(r, ṙ)ds2 = dr · G(r) · dr. (1.13.5)

When Gij = n2(r) δij , one recovers the isotropic case discussed in
§1.1.1.

Remark 1.13.1 By construction, the quantity under the integral in (1.13.4),
now rewritten as

A =
∫ B

A

√
ṙ · G(r) · ṙ ds =

∫ B

A
n(r(s), ṙ(s)) ds (1.13.6)

is homogeneous of degree 1 and thus is invariant under reparameterising
the ray path r(s)→ r(σ).

Continuing the variational computation leads to

0 = δA = δ

∫ B

A

√
ṙ(s) · G(r) · ṙ(s) ds

=
∫ B

A

[
∂n(r, ṙ)
∂r

− d

ds

(
G(r) · ṙ
n(r, ṙ)

)]
· δr ds

upon substituting
√

ṙ(s) · G(r) · ṙ(s) = n(r, ṙ).
Stationarity, δA = 0 now yields the Euler-Lagrange equation

ṗ =
∂n(r, ṙ)
∂r

, with p :=
G(r) · ṙ
n(r, ṙ)

=
∂n(r, ṙ)
∂ṙ

, (1.13.7)

where the vector p is the optical momentum. This is the eikonal
equation for an anisotropic medium whose Huygens equation is
(1.13.1).
Note the elegant formula

p · dr = n(r, ṙ) ds , or equivalently p · ṙ = n(r, ṙ) ,

which follows, as in the isotropic case, from Euler’s relation (1.1.14)
for homogeneous functions of degree 1, and in particular for the
Lagrangian in (1.13.6).
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Exercise. Transform the arc-length variable in Fermat’s
principle (1.13.4) to dσ = n(r, ṙ)ds so that

dσ2 = dr · G(r) · dr (1.13.8)

and recalculate its Euler-Lagrange equation. F

Answer. Denoting r′(σ) = dr/dσ in Fermat’s principle
(1.13.4) and recalculating the stationary condition yields

0 = δA =
∫ B

A

[
dσ

2nds
r′
k ∂Gkl
∂r

r′
l − d

dσ

(
dσ

nds
G · r′

)]
· δr dσ.

Applying n(r, ṙ)ds = dσ leads to the Euler-Lagrange
equation

1
2
r′
k ∂Gkl
∂r

r′
l − d

dσ

(
G(r) · r′(σ)

)
= 0 . (1.13.9)

A curve r(σ) satisfying this equation leaves the length
between pointsA andB stationary under variations and
is called a geodesic with respect to the metric G(r), whose
length element is defined in equation (1.13.8).

N

Exercise. Does the variational principle

0 = δA = δ

∫ B

A

1
2r′(σ) · G(r) · r′(σ) dσ

also imply the Euler-Lagrange equation (1.13.9)? Prove
it.

Hint: take a look at equation (1.1.12) and the remark af-
ter it about Finsler geometry and singular Lagrangians.
Does this calculation reveal a general principle about the
stationary conditions of Fermat’s principle for singular
Lagrangians of degree 1 and their associated induced
Lagrangians of degree 2?

F
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Exercise. Show that the Euler-Lagrange equation (1.13.9)
may be written as

r′′(σ) = −G(r, r′) , with Gi := Γijk(r)r′jr′k

(1.13.10)
and

Γijk(r) =
1
2
Gil
[
∂Glk(r)
∂rj

+
∂Glj(r)
∂rk

−
∂Gjk(r)
∂rl

]
, (1.13.11)

where GkiGil = δlk. Equation (1.13.11) identifies Γijk(r)
as the Christoffel coefficients of the Riemannian metric
Gij(r) in equation (1.13.8). Note that the Christoffel co-
efficients are symmetric under exchange of their lower
indices, Γijk(r) = Γikj(r).

The vector G in equation (1.13.10) is called the geodesic
spray of the Riemannian metric Gij(r). Its analytical prop-
erties (e.g., smoothness) govern the behaviour of the so-
lutions r(σ) for the geodesic paths. F

1.13.2 Ibn Sahl-Snell law for anisotropic media

The statement of the Ibn Sahl-Snell law relation at discontinuities of
the refractive index for isotropic media is a bit more involved for an
anisotropic medium with Huygens equation (1.13.1).

A break in the direction ŝ of the ray vector is still expected for
anisotropic media at any interface of finite discontinuity in the ma-
terial properties (refractive index and metric) that may be encoun-
tered along the ray path r(s). According to the eikonal equation for
anisotropic media (1.13.7) the jump in 3D optical momentum across
a material interface, ∆p := p− p̄, must satisfy the relation

∆p× ∂n

∂r
= ∆

(
G(r) · ṙ
n(r, ṙ)

)
× ∂n

∂r
= 0 . (1.13.12)

This means the jump in optical momentum ∆p at a material inter-
face can only occur in the direction normal to the interface. Hence,
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the transverse projection of the 3D optical momenta onto the tan-
gent plane will be invariant across the interface.

Let ψ and ψ′ denote the angles of incident and transmitted mo-
mentum directions, measured from the normal ẑ through the inter-
face. Preservation of the transverse components of the momentum
vector (

p− p̄
)
× ẑ = 0 , (1.13.13)

means that these momentum vectors must lie in the same plane and
the angles ψ = cos−1(p · ẑ/|p|) and ψ̄ = cos−1(p̄ · ẑ/|p̄|) must satisfy

|p| sinψ = |p̄| sin ψ̄ . (1.13.14)

Relation (1.13.14) determines the angles of incidence and transmis-
sion of the optical momentum directions. However, the transverse
components of the optical momentum alone are not enough to de-
termine the ray directions, in general, because the inversion using
equation (1.13.7) involves all three of the momentum and velocity
components.

1.14 Ten geometrical features of ray optics

1. The design of axisymmetric planar optical systems reduces to
multiplication of symplectic matrices corresponding to each
element of the system, as in Theorem 1.6.4.

2. Hamiltonian evolution occurs by canonical transformations.
Such transformations may be obtained by integrating the char-
acteristic equations of Hamiltonian vector fields, which are de-
fined by Poisson-bracket operations with smooth functions on
phase space, as in the proof of Theorem 1.5.3.

3. The Poisson bracket is associated geometrically with the Jaco-
bian for canonical transformations in Section 1.11.2. Canonical
transformations are generated by Poisson-bracket operations
and these transformations preserve the Jacobian.
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4. A one-parameter symmetry, that is, an invariance under canon-
ical transformations that are generated by a Hamiltonian vec-
tor field Xpφ = { · , pφ }, separates out an angle, φ, whose
canonically conjugate momentum pφ is conserved. As dis-
cussed in Section 1.3.2, the conserved quantity pφ may be an
important bifurcation parameter for the remaining reduced
system. The dynamics of the angle φ decouples from the re-
duced system and can be determined as a quadrature after
solving the reduced system.

5. Given a symmetry of the Hamiltonian, it may be wise to trans-
form from phase space coordinates to invariant variables as in
(1.4.5). This transformation defines the quotient map, which
quotients out the angle(s) conjugate to the symmetry genera-
tor. The image of the quotient map produces the orbit man-
ifold, a reduced manifold whose points are orbits under the
symmetry transformation. The corresponding transformation
of the Poisson bracket is done using the chain rule as in (1.7.6).
Closure of the Poisson brackets of the invariant variables amongst
themselves is a necessary condition for the quotient map to be
a momentum map, as discussed in Section 1.9.2.

6. Closure of the Poisson brackets among an odd number of in-
variant variables is no cause for regret. It only means that this
Poisson bracket among the invariant variables is not canoni-
cal (symplectic). For example, the Nambu R3 bracket (1.11.17)
arises this way.

7. The bracket resulting from transforming to invariant variables
could also be Lie-Poisson. This will happen when the new in-
variant variables are quadratic in the phase space variables,
as occurs for the Poisson brackets among the axisymmetric
variables X1, X2 and X3 in (1.4.5). Then the Poisson brack-
ets among them are linear in the new variables with constant
coefficients. Those constant coefficients are dual to the struc-
ture constants of a Lie algebra. In that case, the brackets will
take the Lie-Poisson form (1.10.1) and the transformation to
invariant variables will be the momentum map associated as
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in Remark 1.9.4 with the action of the symmetry group on the
phase space.

8. The orbits of the solutions in the space of axisymmetric in-
variant variables in ray optics lie on the intersections of level
sets of the Hamiltonian and the Casimir for the noncanonical
bracket. The Petzval invariant S2 in (1.7.13) is the Casimir for
the Nambu bracket in R3, which for axisymmetric, translation-
invariant ray optics is also a Lie-Poisson bracket. In this case,
the ray paths are revealed when the Hamiltonian knife slices
through the level sets of the Petzval invariant. These level sets
are the layers of the hyperbolic onion shown in Figure 1.8. When
restricted to a level set of the Petzval invariant, the dynamics
becomes symplectic.

9. The phases associated with reconstructing the solution from
the reduced space of invariant variables by going back to the
original space of canonical coordinates and momenta natu-
rally divide into their geometric and dynamic parts as in equa-
tion (1.12.12). In ray optics as governed by Fermat’s principle,
the geometric phase is related to the area enclosed by a peri-
odic solution on a symplectic level set of the Petzval invariant
S2. This is no surprise, because the Poisson bracket on the
level set is determined from the Jacobian using that area ele-
ment.

10. The Lagrangian in Fermat’s principle is typically homogeneous
of degree 1 and thus is singular; that is, its Hessian deter-
minant vanishes, as occurs in the example of Fermat’s prin-
ciple in anisotropic media discussed in Section 1.13. In this
case, the ray directions cannot be determined from the opti-
cal momentum and the coordinate along the ray. In particu-
lar, Snell’s Law of refraction at an interface determines mo-
mentum directions, but not ray directions. Even so, the Euler-
Lagrange equations resulting from Fermat’s principle may be
regularised by using as induced Lagrangian that is homoge-
neous of degree 2, in the sense that reparameterised solutions
for the ray paths may be obtained from the resulting ordinary
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differential equations.

The Euler-Lagrange equation (1.13.9) for geometric optics may
be written equivalently in the form (1.13.10), which shows that
ray paths follow geodesic motion through a Riemannian space
whose metric is determined from optical material parameters
whose physical meaning is derived from Huygens equation
relating the ray path to the motion of the wave front.
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Chapter 2

Newton, Lagrange,
Hamilton & the rigid body

2.1 Newton

Isaac Newton

Briefly stated, Newton’s three laws of
motion in an inertial frame are:

1. Law of Inertia An object in uni-
form motion (constant velocity)
will remain in uniform motion un-
less acted upon by a force.

2. Law of Acceleration Mass times
acceleration equals force.

3. Law of Reciprocal Action To every
action there is an equal and oppo-
site reaction.

Newton’s Law of Inertia may be re-
garded as the definition of an inertial
frame. Newton also introduced the fol-
lowing definitions of space, time and
motion.

95
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These definitions are needed to formulate and interpret Newton’s
three laws governing particle motion in an inertial frame.

Definition 2.1.1 (Space, time, motion)

• Space is three-dimensional. Position in space is located at vector
coordinate r ∈ R3, with length |r| = 〈r , r 〉1/2 defined by the met-
ric pairing denoted 〈 · , · 〉 : R3 × R3 → R.

• Time is one-dimensional. A moment in time occurs at t ∈ R.

• Motion of a single particle in space (R3, fixed orientation) is con-
tinuously parameterised by time t ∈ R as a trajectory

M : R3 × R→ R3 , ( r0, t)→ r(t) ,

which maps initial points r0 = r(0) in R3 into curves r(t) ∈ R3

parameterised by time t ∈ R.

• Velocity is the tangent vector at time t to the particle trajectory,
r(t), dr/dt := ṙ ∈ TR3 ' R3 × R3 with coordinates (r, ṙ).

• Acceleration measures how the velocity (tangent vector to trajec-
tory) may also change with time, a := v̇ = r̈ ∈ TTR3 ' R3 ×
R3 × R3 with coordinates (r, ṙ, r̈).

• Motion of N particles is defined by the one-parameter map,

MN : R3N × R→ R3N .

Definition 2.1.2 (Galilean transformations)
Transformations of reference location, origin of time, orientation or state of
uniform translation at constant velocity are called Galilean transforma-
tions.

Definition 2.1.3 (Uniform rectilinear motion)
Coordinate systems related by Galilean transformations are said to be in
uniform rectilinear motion relative to each other.
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z

x y

Figure 2.1: Position r(t) ∈ R3 × R, velocity ṙ(t) ∈ TR3 × R and acceleration
r̈(t) ∈ TTR3 ×R along a trajectory of motion governed by Newton’s Second Law,
mr̈ = F(r, ṙ).

Proposition 2.1.4 (Existence of inertial frames)
Following Newton, we assume the existence of a preferred reference frame,
which Newton called Absolute Space and with respect to which he formu-
lated his laws. Coordinate systems in uniform rectilinear motion relative
to Absolute Space are called inertial frames.

Proposition 2.1.5 (Principle of Galilean relativity)
The laws of motion are independent of reference location, time, orientation,
or state of uniform translation at constant velocity. Hence, these laws are
invariant under Galilean transformations. That is, the laws of motion
must have the same form in any inertial frame.

2.1.1 Newton’s Laws

The definitions of space, time, motion, uniform rectilinear motion
and inertial frames provide the terms in which Newton wrote his
three laws of motion. The first two of these may now be written
more precisely as [KnHj2001]:

(#1) Law of Inertia An object in uniform rectilinear motion relative
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to a given inertial frame remains so, unless acted upon by an
external force.

(#2) Law of Acceleration When acted upon by a prescribed exter-
nal force, F, an object of massm accelerates according tomr̈ =
F(r, ṙ) relative to a given inertial frame.

Remark 2.1.6 For several particles, Newton’s Law #2 determines the mo-
tion resulting from the prescribed forces Fj as

mj r̈j = Fj(rk − rl, ṙk − ṙl) , with j, k, l = 1, 2, . . . , N, (no sum) .

This force law is independent of reference location, time or state of uniform
translation at constant velocity. It will also be independent of reference
orientation and thus it will be Galilean invariant, provided the forces Fj

transform under rotations and parity reflections as

mjOr̈j = OFj = Fj

(
O(rk − rl), O(ṙk − ṙl)

)
,

for any orthogonal transformation O. (The inverse of an orthogonal trans-
formation is its transpose, O−1 = OT . Such transformations include rota-
tions and reflections. They preserve both lengths and relative orientations
of vectors.)

Exercise. Prove that orthogonal transformations preserve
both lengths and relative orientations of vectors.

F

Newton’s Law #3 applies to closed systems.

Definition 2.1.7 (Closed system)
A system ofN material points with massesmj at positions rj , j = 1, 2, . . . , N ,
acted on by forces Fj is said to be closed if

Fj =
∑
k 6=j

Fjk where Fjk = −Fkj . (2.1.1)
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Remark 2.1.8 Newton’s law of gravitational force applies to closed sys-
tems, since

Fjk =
γ mjmk

|rjk|3
rjk , where rjk = rj − rk , (2.1.2)

with gravitational constant γ.

Exercise. Prove that Newton’s law of motion

mj r̈j =
∑
k 6=j

Fjk , (2.1.3)

with gravitational forces Fjk in (2.1.2) is Galilean invari-
ant. F

(#3) Law of Reciprocal Actions For closed mechanical systems, ac-
tion equals reaction. That is,

Fjk = −Fkj . (2.1.4)

Corollary 2.1.9 (Action, reaction, momentum conservation) For two
particles, action equals reaction implies ṗ1 + ṗ2 = 0, for pj = mjvj
(no sum on j).

Proof. For two particles, ṗ1 + ṗ2 = m1v̇1 +m2v̇2 = F12 + F21 = 0 .

2.1.2 Dynamical quantities

Definition 2.1.10 (Dynamical quantities)
The following dynamical quantities are often useful in characterising par-
ticle systems:

• Kinetic energy, K = 1
2m|v|

2 ;

• Momentum, p = ∂K/∂v = mv ;

• Moment of inertia, I = m|r|2 = m
〈
r , r

〉
;
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• Centre of mass of a particle system, RCM =
∑

jmjrj/
∑

kmk ;

• Angular momentum, J = r× p .

Proposition 2.1.11 (Total momentum of a closed system)
Let P =

∑
j pj and F =

∑
j Fj , so that ṗj = Fj . Then Ṗ = F = 0 for a

closed system. Thus, a closed system conserves its total momentum P.

Proof. As for the case of two particles, sum the motion equations
and use the definition of a closed system to verify conservation of
its total momentum.

Corollary 2.1.12 (Uniform motion of centre of mass)
The centre of mass for a closed system is defined as

RCM =
∑
j

mjrj/
∑
k

mk .

Thus, the centre of mass velocity is

VCM = ṘCM =
∑
j

mjvj/M = P/M ,

where M =
∑

kmk is the total mass of the N particles.
For a closed system,

Ṗ = 0 = MR̈CM ,

so the centre of mass for a closed system is in uniform motion. Thus, it
defines an inertial frame called the centre-of-mass frame.

Proposition 2.1.13 (Work rate of a closed system)
Let

K =
1
2

∑
j

mj |vj |2

be the total kinetic energy of a closed system. Its time derivative is

dK

dt
=
∑
j

〈mjv̇j , vj〉 =
∑
j

〈Fj , vj〉 .

This expression defines the rate at which the forces within the closed system
perform work.
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Definition 2.1.14 (Conservative forces)
The forces Fj(r1, . . . rN ) for a closed system of N particles are conserva-
tive, if ∑

j

〈
Fj , drj

〉
= − dV (r1, . . . , rN )

:=
∑
j

〈
− ∂V

∂rj
, drj

〉
, (2.1.5)

where dV is the differential of a smooth function V : RN → R which
called the potential, or potential energy.

Remark 2.1.15 For conservative forces the potential is independent of the
particle velocities. That is, ∂V/∂ṙj = 0 for all j = 1, . . . , N .

Proposition 2.1.16 (Energy conservation)
If the forces are conservative, then the total energy

E = K + V

is a constant of motion for a closed system.

Proof. This result follows from the definition of work rate of a
closed system, so that

dK

dt
=
∑
j

〈
Fj ,

drj
dt

〉
= − dV

dt
, (2.1.6)

for conservative forces.

Proposition 2.1.17 (A class of conservative forces)
Forces that depend only on relative distances between pairs of particles are
conservative.

Proof. Suppose Fjk = fjk(|rjk|)ejk with ejk = rjk/|rjk| = ∂|rjk|/∂rjk
(no sum). In this case,

〈Fjk , drjk〉 = 〈fjk(|rjk|)ejk , drjk〉
= fjk(|rjk|) d|rjk|

= − dVjk where Vjk = −
∫
fjk(|rjk|)d|rjk| .
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Example 2.1.18 (Conservative force)
The gravitational, or Coulomb force between particles j and k satisfies

Fjk =
γ mjmk

|rjk|3
rjk = −

∂Vjk
∂rjk

,

where

Vjk =
γ mjmk

|rjk|
and rjk = rj − rk ,

so it is a conservative force.

Proposition 2.1.19 (Total angular momentum)
A closed system of interacting particles conserves its total angular momen-
tum J =

∑
i Ji =

∑
i ri × pi.

Proof. As for the case of two particles, one computes the time deriva-
tive for the sum,

J̇ =
∑
i

J̇ i =
∑
i

ṙi × pi +
∑
i

ri × ṗi =
∑
i,j

ri × Fij ,

since ṗi =
∑

j Fij in the absence of external forces and ṙi × pi van-
ishes. Rewriting this as a sum over pairs i < j yields

J̇ =
∑
i,j

ri × Fij =
∑
i<j

(ri − rj)× Fij = T .

That is, the total angular momentum is conserved, provided the to-
tal torque T vanishes in this equation. When T vanishes, the total
angular momentum J is conserved.

Corollary 2.1.20 (Conserving total angular momentum)
In particular, Proposition 2.1.19 implies that total angular momentum J
is constant for a closed system of particles interacting via central forces,
for which force Fij is parallel to the inter-particle displacement (ri − rj).



2.1. NEWTON 103

2.1.3 Newtonian form of free rigid rotation

Definition 2.1.21 In free rigid rotation, a set of points undergoes rota-
tion about its centre of mass and the pairwise distances between the points
all remain fixed.

A system of coordinates in free rigid motion is stationary in a
rotating orthonormal basis. This rotating orthonormal basis is given
by

ea(t) = O(t)ea(0) , a = 1, 2, 3, (2.1.7)

in which O(t) is an orthogonal 3× 3 matrix, so that O−1 = OT . The
three unit vectors ea(0) with a = 1, 2, 3, denote an orthonormal basis
for fixed reference coordinates. This basis may be taken as being
aligned with any choice of fixed spatial coordinates at the initial
time, t = 0. For example one may choose an initial alignment so
that O(0) = Id.

Each point r(t) in rigid motion may be represented in either co-
ordinate basis as

r(t) = rA0 (t)eA(0) , in the fixed basis, (2.1.8)
= raea(t) , in the rotating basis, (2.1.9)

and the components ra relative to the rotating basis satisfy ra =
δaAr

A
0 (0) for the choice that the two bases are initially aligned. (Oth-

erwise, δaA is replaced by an orthogonal 3 × 3 matrix describing the
initial rotational misalignment.) The fixed basis is called the spatial
frame and the rotating basis is called the body frame. The compo-
nents of vectors in the spatial frame are related to those in the body
frame by the mutual rotation of their axes in (2.1.7) at any time.

Lemma 2.1.22 The velocity ṙ(t) of a point r(t) in free rigid rotation de-
pends linearly on its position relative to the centre of mass.

Proof. In particular, r(t) = raO(t)ea(0) implies

ṙ(t) = raėa(t) = raȮ(t)ea(0) =: raȮO−1(t)ea(t) =: ω̂(t)r , (2.1.10)
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which is linear in r(t).

Being orthogonal, the matrix O(t) satisfies OOT = Id and one may
compute that

0 = (OOT ) ˙ = ȮOT +OȮT

= ȮOT + (ȮOT )T

= ȮO−1 + (ȮO−1)T

= ω̂ + ω̂T .

This computation implies the following.

Lemma 2.1.23 (Skew symmetry)
The matrix ω̂(t) = ȮO−1(t) in (2.1.10) is skew symmetric. That is,

ω̂T = − ω̂ .

Definition 2.1.24 (Hat map for the angular velocity vector)
The skew symmetry of ω̂ allows one to introduce the corresponding angu-
lar velocity vector ω(t) ∈ R3 whose components ωc(t), with c = 1, 2, 3,
are given by

(ȮO−1)ab(t) = ω̂ab(t) = − εabc ωc(t) . (2.1.11)

Equation (2.1.11) defines the hat map, which is an isomorphism between
3× 3 skew-symmetric matrices and vectors in R3.

According to this definition, one may write the matrix compo-
nents of ω̂ in terms of the vector components of ω as

ω̂ =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 , (2.1.12)

and the velocity in space of a point at r undergoing rigid body mo-
tion is found by the matrix multiplication ω̂(t)r as

ṙ(t) =: ω̂(t)r =: ω(t)× r . (2.1.13)

Hence, the velocity of free rigid motion of a point displaced by r
from the centre of mass is a rotation in space of r about the time-
dependent angular velocity vector ω(t).
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Exercise. Compute the kinetic energy of free rigid mo-
tion about the centre of mass of a system of N points
of mass mj , with j = 1, 2, . . . , N , located at distances rj
from the centre of mass, as

K =
1
2

∑
j

mj |ṙj |2 =
1
2

∑
j

mj |ω × rj |2 =
1
2
ω · Iω .

Use this expression to define the moment of inertia I of
the system of N particles in terms of their masses and
distances from the centre of mass. F

Definition 2.1.25 (Angular momentum of rigid rotation)
The angular momentum is defined as the derivative of the kinetic energy
with respect to angular velocity. In the present case, this definition pro-
duces the linear relation,

J =
∂K

∂ω
= −

N∑
j=1

mjrj ×
(
rj × ω

)

=
N∑
j=1

mj

(
|rj |2Id− rj ⊗ rj

))
ω

=: Iω , (2.1.14)

where I is the moment of inertia tensor defined by the kinetic energy of free
rotation.

Exercise. Show that this definition of angular momen-
tum recovers the previous one for a single rotating par-
ticle. F
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2.2 Lagrange

Lagrange

In 1756, at the age of 19, Lagrange sent
a letter to Euler in which he proposed
the solution to an outstanding problem
dating from antiquity. The isoperimet-
ric problem solved in Lagrange’s letter
may be stated as follows: Among all
closed curves of a given fixed perime-
ter in the plane, which curve maximises
the area that it encloses? The circle does
this. However, Lagrange’s method of so-
lution was more important than the an-
swer.

Lagrange’s solution to the isoperimetric problem problem laid down
the principles for the calculus of variations and perfected results
which Euler himself had introduced. Lagrange used the calculus
of variations to re-formulate Newtonian mechanics as the Euler-
Lagrange equations. These equations are covariant: they take the
same form in any coordinate system. Specifically, the Euler-Lagrange
equations appear in the same form in coordinates on any smooth
manifold, that is, on any space that admits the operations of calcu-
lus in local coordinates. This formulation, called Lagrangian me-
chanics, is also the language in which mechanics may be extended
from finite to infinite dimensions.

2.2.1 Basic definitions for manifolds

Definition 2.2.1 (Smooth manifold)
A smooth manifold M is a set of points together with a finite (or perhaps
countable) set of subsets Uα ⊂ M and 1-to-1 mappings φα : Uα → Rn

such that

1.
⋃
α Uα = M .

2. For every nonempty intersection Uα ∩ Uβ, the set φα (Uα ∩ Uβ) is
an open subset of Rn and the 1-to-1 mapping φβ ◦ φ−1

α (called the
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transition function) is a smooth function on φα (Uα ∩ Uβ) .

Remark 2.2.2 As a practical matter, a smooth manifold of dimension k is
a space that is locally isomorphic to Rk and admits calculus operations in
its local coordinates. The most common examples of smooth manifolds are
smooth curves on the plane (e.g., the circle x2 + y2 = 1) or curves and
surfaces in three-dimensional Euclidean space R3. Riemann’s treatment of
the sphere S2 in R3 is a famous example of how to show that a set of points
defines a manifold.

Example 2.2.3 (Stereographic projection of S2 → R2)
The unit sphere S2 may be defined as a surface in R3 given by the set of
points satisfying

S2 = {(x, y, z) : x2 + y2 + z2 = 1} .

The spherical polar angle θ and azimuthal angle φ are often used as co-
ordinates on S2. However, the angle φ cannot be defined uniquely at the
North and South poles, where θ = 0 and θ = π, respectively. Riemann’s
treatment used Ptolemy’s stereographic projection to define two overlap-
ping subsets that satisfied the defining properties of a smooth manifold.

Let UN = S2\{0, 0, 1} and US = S2\{0, 0,−1} be the subsets ob-
tained by deleting the North and South poles of S2, respectively. The stere-
ographic projections φN and φS from the North and South poles of the
sphere onto the equatorial plane, z = 0, are defined respectively by

φN : UN → ξN + iηN =
x+ iy

1− z
= eiφ cot(θ/2),

and φS : US → ξS + iηS =
x− iy
1 + z

= e−iφ tan(θ/2).

The union of these two subsets covers S2. On the overlap of their projec-
tions, the coordinates (ξN , ηN ) ∈ R2 and (ξS , ηS) ∈ R2 are related by

(ξN + iηN )(ξS + iηS) = 1 .

According to Definition 2.2.1 these two properties show that S2 ∈ R3 is a
smooth manifold.
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Exercise. Prove the formulas above for the complex num-
bers ξN+iηN and ξS+iηS in the stereographic projection.
For this, it may be useful to start with the stereographic
projection for the circle. F

N

S

θ/2

Figure 2.2: In the stereographic projection of the Riemann sphere onto the com-
plex plane from the North pole, complex numbers lying outside (resp., inside) the
unit circle are projected from points in the upper (resp., lower) hemisphere.

Definition 2.2.4 (Submersion)

A subspace M ⊂ Rn may be defined by the intersections of level
sets of k smooth relations fi(x) = 0,

M =
{
x ∈ Rn

∣∣fi(x) = 0, i = 1, . . . , k
}
,
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N

S

θ/2

Figure 2.3: In the stereographic projection of the Riemann sphere onto the com-
plex plane from the South pole, complex numbers lying outside (resp., inside) the
unit circle are also projected from points in the upper (resp., lower) hemisphere.

with det(∂fi/∂xa) 6= 0, a = 1, 2, . . . , n, so that the gradients
∂fi/∂x

a are linearly independent. Such a subspace M defined this
way is called a submersion and has dimension dimM = n− k.

Remark 2.2.5 A submersion is a particularly convenient type of
smooth manifold. As we have seen,the unit sphere

S2 = {(x, y, z) : x2 + y2 + z2 = 1} ,

is a smooth two-dimensional manifold realised as a submersion in R3.

Exercise. Prove that all submersions are submani-
folds. (For assistance, see Lee [Le2003].) F
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Remark 2.2.6 (Foliation of a manifold) A foliation looks locally
like a decomposition of the manifold as a union of parallel submani-
folds of smaller dimension. For example, the manifold R3/{0} may be
foliated by spheres S2, which make up the leaves of the foliation. As
another example, the two-dimensional R2 leaves of a book in R3 are
enumerated by a (one-dimensional) page number.

Definition 2.2.7 (Tangent space to level sets)
Suppose the set

M =
{
x ∈ Rn

∣∣fi(x) = 0, i = 1, . . . , k
}

with linearly independent gradients ∂fi/∂xa, a = 1, 2, . . . , n, is a
smooth manifold in Rn. The tangent space at each x ∈M, is defined
by

TxM =
{
v ∈ Rn

∣∣∣∣ ∂fi∂xa
(x)va = 0, i = 1, . . . , k

}
.

Note: in this expression we introduce the Einstein summation con-
vention. That is, repeated indices are to be summed over their range.

Remark 2.2.8 The tangent space is a linear vector space.

Example 2.2.9 (Tangent space to the sphere in R3) The sphere
S2 is the set of points (x, y, z) ∈ R3 solving x2 + y2 + z2 = 1.
The tangent space to the sphere at such a point (x, y, z) is the plane
containing vectors (u, v, w) satisfying xu+ yv + zw = 0.

Definition 2.2.10 (Tangent bundle) The tangent bundle of a
smooth manifold M , denoted by TM , is the smooth manifold whose
underlying set is the disjoint union of the tangent spaces to M at the
points q ∈M ; that is,

TM =
⋃
q∈M

TqM

Thus, a point of TM is a vector v which is tangent toM at some point
q ∈M .
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Example 2.2.11 (Tangent bundle TS2 of S2) The tangent bundle
TS2 of S2 ∈ R3 is the union of the tangent spaces of S2:

TS2 =
{

(x, y, z;u, v, w) ∈ R6
∣∣ x2+y2+z2 = 1, xu+yv+zw = 0

}
.

Remark 2.2.12 (Dimension of tangent bundle TS2) Defining
TS2 requires two independent conditions in R6; so dimTS2 = 4.

Exercise. Define the sphere Sn−1 in Rn. What is the
dimension of its tangent space TSn−1? F

Example 2.2.13 (Tangent bundle TS1 of the circle S1)
The tangent bundle of the unit circle parameterised by an angle θ may
be imagined in three dimensions as the union of the circle with a one-
dimensional vector space of line vectors (the velocities θ̇) sitting over each
point on the circle, shown in Figure 2.4.

Definition 2.2.14 (Vector fields)
A vector field X on a manifold M is a map X : M → TM that assigns
a vector X(q) at every point q ∈ M . The real vector space of vector fields
on a manifold M is denoted by X(M).

Definition 2.2.15 A time-dependent vector field is a map

X : M × R→ TM

such that X(q, t) ∈ TqM for each q ∈M and t ∈ R.

Definition 2.2.16 (Integral curves)
An integral curve of vector field X(q) with initial condition q0 is a differ-
entiable map q : ]t1, t2[→ M such that the open interval ]t1, t2[ contains
the initial time t = 0, at which q(0) = q0 and the tangent vector coincides
with the vector field

q̇(t) = X(q(t))

for all t ∈ ]t1, t2[.
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Figure 2.4: The tangent bundle TS1 of the circle S1 with coordinates (θ, θ̇) is the
union of the circle with a one-dimensional vector space of line vectors (the angular
velocities).

Remark 2.2.17 In what follows we shall always assume we are dealing
with vector fields that satisfy the conditions required for their integral
curves to exist and be unique.

Definition 2.2.18 (Vector basis)
As in (2.2.4) a vector field q̇ is defined by the components of its directional
derivatives in the chosen coordinate basis, so that, for example,

q̇ = q̇a
∂

∂qa
(vector basis). (2.2.1)

In this vector basis, the vector field q̇ has components q̇a, a = 1, . . . ,K.

Definition 2.2.19 (Fibres of the tangent bundle)
The velocity vectors (q̇1, q̇2, . . . , q̇K) in the tangent spaces TqM to M at
the points q ∈ M in the tangent bundle TM are called the fibres of the
bundle.

Definition 2.2.20 (Dual vector space)
Any finite dimensional vector space V possesses a dual vector space of the
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same dimension. The dual space V ∗ consists of all linear functions V → R.
The dual to the tangent space TqM is called the cotangent space T ∗qM to
the manifold M at a point q ∈M .

Definition 2.2.21 (Dual basis)
The differential df ∈ T ∗qM of a smooth real function f : M → R is
expressed in terms of the basis dqb, b = 1, . . . ,K, that is dual to ∂/∂qa,
a = 1, . . . ,K, as

df(q) =
∂f

∂qb
dqb (dual basis). (2.2.2)

That is, the linear function df(q) : TqM → R lives in the space T ∗qM dual
to the vector space TqM .

Definition 2.2.22 (Contraction)
The operation of contraction between elements of a vector basis and
its dual basis is defined in terms of a nondegenerate symmetric pairing

〈 · , · 〉 : TqM × T ∗qM → R,

as the bilinear relation〈
∂

∂qb
, dqa

〉
:=

∂

∂qb
dqa = δab ,

where δab is the Kronecker delta. That is, δab = 0 for a 6= b and δab = 1 for
a = b.

Definition 2.2.23 (Directional derivative)
The directional derivative of a smooth function f : M → R along the
vector q̇ ∈ TqM is defined as

q̇ df = 〈 q̇ , df(q) 〉 =
〈
q̇b

∂

∂qb
,
∂f

∂qa
dqa

〉
=

∂f

∂qa
q̇a =

d

dt
f(q(t)) .
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Definition 2.2.24 (Cotangent space to a smooth manifold)
The space of differentials df(q) of smooth functions f defined on a manifold
M at a point q ∈M forms a dual vector space called the cotangent space
of M at q ∈M which is denoted as T ∗qM .

Definition 2.2.25 (Cotangent bundle of a manifold)
The disjoint union of cotangent spaces to M at the points q ∈M given by

T ∗M =
⋃
q∈M

T ∗qM (2.2.3)

is a vector space called the cotangent bundle ofM and is denoted as T ∗M .

Remark 2.2.26 (Covariant versus contravariant vectors)
Historically, the components of vector fields were called contravariant
while the components of differential one-forms were called covariant. The
covariant and contravariant components of vectors and tensors are dis-
tinguished by their coordinate transformation properties under changes of
vector basis and dual basis for a change of coordinates q → y(q). For
example, the components in a new vector basis are

q̇ =
(
q̇a
∂yb

∂qa

) ∂

∂yb
=: ẏb

∂

∂yb
= ẏ ,

while the components in a new dual basis are

df(q) =
( ∂f
∂qb

∂qb

∂ya

)
dya =:

∂f

∂ya
dya = df(y) .

Thus, as every physicist learns about covariant and contravari-
ant vectors and tensors,

“By their transformations shall ye know them.”
– A. Sommerfeld (private communication, O. Laporte)

Exercise. Consider the following mixed tensor

T (q) = T abcijk (q)
∂

∂qa
⊗ ∂

∂qb
⊗ ∂

∂qc
⊗ dqi ⊗ dqj ⊗ dqk,
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in which ⊗ denotes direct (or, tensor) product. How do
the components of the mixed tensor T transform under
a change of coordinates q → y(q)?

That is, write the components of T (y) in the new basis
in terms of the Jacobian matrix for the change of coordi-
nates and the components T abcijk (q) of T (q). F

2.2.2 Euler-Lagrange equation on a manifold

Motion on a K-dimensional submanifold of R3N

Consider the motion ofN particles undergoing conservative motion
on a smooth K-dimensional manifold M ⊂ R3N .

Let q = (q1, q2, . . . qK) be coordinates on the manifold M , which
is defined as rj = rj(q1, q2, . . . , qK), with j = 1, 2, . . . , N . Conse-
quently, a velocity vector q̇(t) tangent to a path q(t) in the manifold
M at point q ∈M induces a velocity vector in R3N by

ṙj(t) =
K∑
a=1

∂rj
∂qa

q̇a(t) for j = 1, 2, . . . N . (2.2.4)

Remark 2.2.27 The 2K numbers q1, q2, . . . , qK , q̇1, q̇2, . . . , q̇K , provide
a local coordinate system for TqM , the tangent space to M at q ∈M .

Remark 2.2.28 (Generalised coordinates)
The choice of coordinates q is arbitrary up to a reparametrisation map
q → Q ∈ M with det(∂Q/∂q) 6= 0. For this reason, the {q} are called
generalised coordinates.

Theorem 2.2.29 (Euler-Lagrange equation)
Newton’s law for conservative forces gives

N∑
j=1

〈
(mj r̈j − Fj) , drj(q)

〉∣∣∣
r(q)

=
K∑
a=1

〈[
L
]
qa
, dqa

〉
,
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where [
L
]
qa

:=
d

dt

∂L

∂q̇a
− ∂L

∂qa
,

for particle motion tangent to a manifold M ⊂ R3N with generalised co-
ordinates qa and for conservative forces. Here, the quantity

L(q, q̇) := T (q, q̇)− V (r(q))

is called the Lagrangian and T (q, q̇) is the particle kinetic energy on M ,
namely,

T (q, q̇) =
1
2

N∑
j=1

mj |vj |2 =
1
2

N∑
j=1

mj |ṙj(q)|2 =
1
2

N∑
j=1

mj

∣∣∣ K∑
a=1

∂rj
∂qa

q̇a
∣∣∣2

The proof of the theorem proceeds by assembling the formulas for
constrained acceleration and work rate in the next two lemmas, ob-
tained by direct computations using Newton’s law for conservative
forces.

By the way, we have suspended the summation convention on
repeated indices for a moment to avoid confusion between the two
different types of indices for the particle label and for the coordinate
components on the manifold TM .

Lemma 2.2.30 (Constrained acceleration formula)
The induced kinetic energy T (q, q̇) on the manifold M satisfies

N∑
j=1

〈
mj r̈j , drj(q)

〉∣∣∣
r(q)

=
K∑
a=1

〈 d
dt

∂T

∂q̇a
− ∂T

∂qa
, dqa

〉
. (2.2.5)

Proof. The constrained acceleration formula follows from differen-
tiating T (q, q̇) to obtain

∂T

∂q̇a
=

N∑
j=1

mj

( K∑
b=1

∂rj
∂qb

q̇b
)
· ∂rj
∂qa

,
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and

d

dt

∂T

∂q̇a
=

N∑
j=1

mj r̈j ·
∂rj
∂qa

+
∂T

∂qa
.

Lemma 2.2.31 (Work rate formula)
Forces Fj(r1, . . . , rN ) evaluated on the manifold M satisfy

N∑
j=1

〈
Fj , drj(q)

〉∣∣∣
r(q)

= − dV
(
r(q)

)
= −

K∑
a=1

〈∂V (r(q)
)

∂qa
, dqa

〉
.

Proof. This Lemma follows, because the forces Fj(r1, . . . , rN ) are
conservative.

The proof of Theorem 2.2.29 now proceeds by assembling the
formulas for constrained acceleration and work rate in the previous
two lemmas, as a direct calculation.
Proof.

N∑
j=1

〈
mj r̈j − Fj , drj(q)

〉∣∣∣
r(q)

=
K∑
a=1

〈 d
dt

∂T (q, q̇)
∂q̇a

−
∂
(
T (q, q̇)− V (r(q))

)
∂qa

, dqa
〉
.

Corollary 2.2.32 (Newton ' Lagrange)
Newton’s law for the motion of N particles on a K-dimensional manifold
M ⊂ R3N defined as rj = rj(q1, q2, . . . qK), with j = 1, 2, . . . N , is
equivalent to the Euler-Lagrange equations,[

L
]
qa

:=
d

dt

∂L

∂q̇a
− ∂L

∂qa
= 0 , (2.2.6)

for motion tangent to the manifold M and for conservative forces with
Lagrangian

L(q, q̇) := T (q, q̇)− V
(
r(q)

)
. (2.2.7)
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Proof. This corollary of Theorem 2.2.29 follows by independence of
the differential basis elements dqa in the final line of its proof.

Theorem 2.2.33 (Hamilton’s principle of stationary action)
The Euler-Lagrange equation,[

L
]
qa

:=
d

dt

∂L

∂q̇a
− ∂L

∂qa
= 0 , (2.2.8)

follows from stationarity of the action, S, defined as the integral over a
time interval t ∈ (t1 , t2)

S =
∫ t2

t1

L(q, q̇) dt . (2.2.9)

Then Hamilton’s principle of stationary action,

δS = 0 , (2.2.10)

implies [L ]qa = 0, for variations δqa that are tangent to the manifold M
and which vanish at the endpoints in time.

Remark 2.2.34 (Variational derivatives)
The variational derivative has already appeared when introducing Fermat’s
principle in equations (1.1.27) - (1.1.32). Its definition will be repeated
below for convenience.

Proof. Notation in this proof is simplified by suppressing super-
scripts a in qa and only writing q. The meaning of the variational
derivative in the statement of Hamilton’s principle is the follow-
ing. Consider a family of C2 curves q(t, s) for |s| < ε satisfying
q(t, 0) = q(t), q(t1, s) = q(t1), and q(t2, s) = q(t2) for all s ∈ (−ε, ε).
The variational derivative of the action S is defined as

δS = δ

∫ t2

t1

L(q(t), q̇(t))dt :=
d

ds

∣∣∣∣
s=0

∫ t2

t1

L(q(t, s), q̇(t, s))dt .

(2.2.11)
Differentiating under the integral sign, denoting

δq(t) :=
d

ds

∣∣∣∣
s=0

q(t, s) , (2.2.12)
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and integrating by parts produces

δS =
∫ t2

t1

(∂L
∂q
δq +

∂L

∂q̇
δq̇
)
dt

=
∫ t2

t1

(∂L
∂q
− d

dt

∂L

∂q̇

)
δq dt+

[
∂L

∂q̇
δq

]t2
t1

,

where one exchanges the order of derivatives by using qst = qts so
that δq̇ = d

dtδq. Vanishing of the variations at the endpoints δq(t1) =
0 = δq(t2) then causes the last term to vanish, which finally yields

δS =
∫ t2

t1

(∂L
∂q
δq +

∂L

∂q̇
δq̇
)
dt =

∫ t2

t1

(∂L
∂q
− d

dt

∂L

∂q̇

)
δq dt .

The action S is stationary δS = 0 for an arbitrary C1 function δq(t)
if and only if the Euler-Lagrange equations (2.2.6) hold, that is, pro-
vided [L ]q = 0.

2.2.3 Geodesic motion on Riemannian manifolds

The kinetic energy in Theorem 2.2.29 may be rewritten as

T (q, q̇) =
1
2

N∑
j=1

mj

K∑
a,b=1

(
∂rj
∂qa
· ∂rj
∂qb

)
q̇aq̇b

=:
1
2

N∑
j=1

mj

K∑
a,b=1

(gj(q))ab q̇aq̇b,

which defines the quantity (gj(q))ab. For N = 1, this reduces to

T (q, q̇) =
1
2
mgab(q) q̇aq̇b,

where we now reinstate the summation convention; that is, we again
sum repeated indices over their range, which in this case is a, b =
1, 2, . . . ,K, where K is the dimension of the manifold M .
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Free particle motion in a Riemannian space

The Lagrangian for the motion of a free particle of unit mass is its
kinetic energy, which defines a Riemannian metric on the mani-
folm M (i.e., a nonsingular positive symmetric matrix depending
smoothly on q ∈M ) that in turn yields a norm ‖ · ‖ : TM → R+, by

L(q, q̇) =
1
2
q̇bgbc(q)q̇c =:

1
2
‖q̇‖2 ≥ 0 . (2.2.13)

The Lagrangian in this case has partial derivatives given by,

∂L

∂q̇a
= gac(q)q̇c and

∂L

∂qa
=

1
2
∂gbc(q)
∂qa

q̇bq̇c .

Consequently, its Euler-Lagrange equations [L ]qa = 0 are

[
L
]
qa

:=
d

dt

∂L

∂q̇a
− ∂L

∂qa

= gae(q)q̈ e +
∂gae(q)
∂qb

q̇bq̇e − 1
2
∂gbe(q)
∂qa

q̇bq̇e = 0 .

Symmetrising the coefficient of the middle term and contracting
with co-metric gca satisfying gcagae = δce yields

q̈ c + Γcbe(q)q̇
bq̇e = 0 , (2.2.14)

with

Γcbe(q) =
1
2
gca
[
∂gae(q)
∂qb

+
∂gab(q)
∂qe

− ∂gbe(q)
∂qa

]
, (2.2.15)

in which the Γcbe are the Christoffel symbols for the Riemannian met-
ric gab. These Euler-Lagrange equations are the geodesic equations
of a free particle moving in a Riemannian space.

Exercise. Calculate the induced metric and Christoffel
symbols for the sphere x2 + y2 + z2 = 1, written in polar
coordinates (θ.φ) with x+ iy = eiφ sin θ, z = cos θ. F
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Exercise. Calculate the Christoffel symbols when the
metric in the Lagrangian takes the form in equation (1.1.11)
for Fermat’s principle; namely

L(q, q̇) =
1
2
n2(q) q̇bδbcq̇c , (2.2.16)

in Euclidean coordinates q ∈ R3 with a prescribed index
of refraction n(q). F

Geodesic motion on the 3× 3 special orthogonal matrices

A three-dimensional spatial rotation is described by multiplication
of a spatial vector by a 3 × 3 special orthogonal matrix, denoted as
O ∈ SO(3),

OTO = Id , so that O−1 = OT and detO = 1 . (2.2.17)

Geodesic motion on the space of rotations in three dimensions may
be represented as a curve O(t) ∈ SO(3) depending on time t. Its
angular velocity is defined as the 3× 3 matrix Ω̂,

Ω̂(t) = O−1(t)Ȯ(t) , (2.2.18)

which must be skew-symmetric. That is, Ω̂T = − Ω̂, where super-
script ( · )T denotes matrix transpose.

Exercise. Show that the skew symmetry of Ω̂(t) follows
by taking the time derivative of the defining relation for
orthogonal matrices. F

Answer. The time derivative of OT (t)O(t) = Id along the curve
O(t) yields (OT (t)O(t)) ˙ = 0, so that

0 = ȮTO +OT Ȯ = (OT Ȯ)T +OT Ȯ ,

and, thus
(O−1Ȯ)T +O−1Ȯ = Ω̂T + Ω̂ = 0 .
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That is, Ω̂T = − Ω̂. N

As for the time derivative, the variational derivative of O−1O =
Id yields δ(O−1O) = 0, which leads to another skew-symmetric ma-
trix, Ξ̂, defined by

δO−1 = − (O−1δO)O−1 ,

and
Ξ̂ := O−1δO = −(δO−1)O = −(O−1δO)T = − Ξ̂T .

Lemma 2.2.35 The variational derivative of the angular velocity Ω̂ =
O−1Ȯ satisfies

δΩ̂ = Ξ̂˙ + Ω̂Ξ̂− Ξ̂Ω̂ , (2.2.19)

in which Ξ̂ = O−1δO.

Proof. The variational formula (2.2.19) follows by subtracting the
time derivative Ξ̂ ˙ = (O−1δO) ˙ from the variational derivative δΩ̂ =
δ(O−1Ȯ) in the relations

δΩ̂ = δ(O−1Ȯ) = − (O−1δO)(O−1Ȯ) + δȮ = − Ξ̂Ω̂ + δȮ ,

Ξ̂ ˙ = (O−1δO) ˙ = − (O−1Ȯ)(O−1δO) + (δO) ˙ = − Ω̂Ξ̂ + (δO) ˙ ,

and using equality of cross derivatives δȮ = (δO) ˙ .

Theorem 2.2.36 (Geodesic motion on SO(3))
The Euler-Lagrange equation for Hamilton’s principle

δS = 0 with S =
∫
L(Ω̂) dt , (2.2.20)

using the quadratic Lagrangian L : TSO(3)→ R,

L(Ω̂) = −1
2

tr(Ω̂AΩ̂) , (2.2.21)

in which A is a symmetric, positive-definite 3× 3 matrix, takes the matrix
commutator form

dΠ̂
dt

= − [ Ω̂ , Π̂ ] with Π̂ = AΩ̂ + Ω̂A =
δL

δΩ̂
= − Π̂T . (2.2.22)
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Proof. Taking matrix variations in this Hamilton’s principle yields

δS =:
∫ b

a

〈
δL

δΩ̂
, δΩ̂

〉
dt

= −1
2

∫ b

a
tr
(
δΩ̂

δL

δΩ̂

)
dt

= −1
2

∫ b

a
tr
(
δΩ̂ (AΩ̂ + Ω̂A)

)
dt

= −1
2

∫ b

a
tr
(
δΩ̂ Π̂

)
dt

=
∫ b

a

〈
Π̂ , δΩ̂

〉
dt . (2.2.23)

The first step uses δΩ̂T = −δΩ̂ and expresses the pairing in the vari-
ational derivative of S for matrices as the trace pairing, e.g.,〈

M , N
〉

=:
1
2

tr
(
MT N

)
=

1
2

tr
(
NT M

)
. (2.2.24)

The second step applies the variational derivative. After cyclically
permuting the order of matrix multiplication under the trace, the
fourth step substitutes

Π̂ = AΩ̂ + Ω̂A =
δL

δΩ̂
.

Next, substituting formula (2.2.19) for δΩ̂ into the variation of the
action (2.2.23) leads to

δS = −1
2

∫ b

a
tr
(
δΩ̂Π̂

)
dt

= −1
2

∫ b

a
tr
(
(Ξ̂ ˙ + Ω̂Ξ̂− Ξ̂Ω̂) Π̂

)
dt . (2.2.25)

Permuting cyclically under the trace again yields

tr(Ω̂ Ξ̂ Π̂) = tr(Ξ̂ Π̂ Ω̂) .
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Integrating by parts (dropping endpoint terms) then yields the equa-
tion

δS = − 1
2

∫ b

a
tr
(
Ξ̂ (− Π̂ ˙ + Π̂Ω̂− Ω̂Π̂ )

)
dt . (2.2.26)

Finally, invoking stationarity δS = 0 for an arbitrary variation

Ξ̂ = O−1δO ,

yields geodesic dynamics on SO(3) with respect to the metric A in
the commutator form (2.2.22).

Remark 2.2.37 (Interpretation of Theorem 2.2.36)
Equation (2.2.22) for the matrix Π̂ describes geodesic motion in the space of
3× 3 orthogonal matrices with respect to the metric tensor A. The matrix
Π̂ is defined as the fibre derivative of the Lagrangian L(Ω̂) with respect
to the angular velocity matrix Ω̂(t) = O−1(t)Ȯ(t). Thus, Π̂ is the angular
momentum matrix dual to the angular velocity matrix Ω̂.

Once the solution for Ω̂(t) is known from the evolution of Π̂(t), the
orthogonal matrix orientationO(t) is determined from one last integration
in time, by using the equation

Ȯ(t) = O(t)Ω̂(t) . (2.2.27)

This is the reconstruction formula, obtained from the definition (2.2.18)
of the angular velocity matrix. In the classical literature, such an integra-
tion is called a quadrature.

Corollary 2.2.38 Formula (2.2.22) for the evolution of Π̂(t) is equivalent
to the conservation law

d

dt
π̂(t) = 0 , where π̂(t) := O(t)Π̂(t)O−1(t) . (2.2.28)

Proof. This may be verified by a direct computation that uses the
reconstruction formula in (2.2.27).

Remark 2.2.39 The quantities π̂ and Π̂ in the rotation of a rigid body are
called its spatial and body angular momentum, respectively.
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Exercise. (Noether’s theorem)

What does Noether’s theorem (Corollary 1.1.16) imply
for geodesic motion on the special orthogonal group SO(3)?
How does this generalise to SO(n)? What about Noether’s
theorem for geodesic motion on other groups?

Hint: consider the endpoint terms tr(Ξ̂Π̂)|ba arising in the
variation δS in (2.2.26) and invoke left-invariance of the
Lagrangian (2.2.21) under O → UεO with Uε ∈ SO(3).
For this symmetry transformation, δO = Γ̂O with Γ̂ =
d
dε |ε=0Uε, so Ξ̂ = O−1Γ̂O. F

2.2.4 Euler’s equations for the motion of a rigid body

Besides describing geodesic motion in the space of 3× 3 orthogonal
matrices with respect to the metric tensor A, the dynamics of Π̂ in
(2.2.22) turns out to be the matrix version of Euler’s equations for
rigid body motion.

Physical interpretation of SO(3) matrix dynamics

To see how Euler’s equation for a rigid body emerges from geodesic
motion in SO(3) with respect to the metric A, we shall use the hat
map in equation (2.1.11) to convert the skew-symmetric matrix dy-
namics (2.2.22) into its vector form. Let the principal axes of inertia
of the body be the orthonormal eigenvectors e1, e2, e3 of A. Then its
principal moments of inertia turn out to be linear combinations of
the corresponding (positive) eigenvalues a1, a2, a3. Setting

Ω = Ω1e1 + Ω2e2 + Ω3e3 , (2.2.29)

identifies vector components Ωk, k = 1, 2, 3, with the components of
the skew-symmetric matrix Ω̂ij , i, j = 1, 2, 3, as

Ω̂ij = − εijkΩk , (2.2.30)
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which takes the skew-symmetric matrix form of (2.1.13)

Ω̂ =

 0 −Ω3 Ω2

Ω3 0 −Ω1

−Ω2 Ω1 0

 . (2.2.31)

This identification yields for Π̂ = AΩ̂ + Ω̂A,

Π̂ =

 0 −I3Ω3 I2Ω2

I3Ω3 0 −I1Ω1

−I2Ω2 I1Ω1 0

 , (2.2.32)

with

I1 = a2 + a3 , I2 = a1 + a3 , I3 = a1 + a2 . (2.2.33)

These quantities are all positive, because A is positive definite. Con-
sequently, the skew-symmetric matrix Π̂ has principle-axis vector
components of

Π = Π1e1 + Π2e2 + Π3e3 , (2.2.34)

and the Lagrangian (2.2.21) in these vector components is expressed
as

L =
1
2

(
I1Ω2

1 + I2Ω2
2 + I3Ω3

1

)
, (2.2.35)

with body angular momentum components,

Πi =
δL

δΩi
= IiΩi , i = 1, 2, 3, (no sum) . (2.2.36)

In this vector representation, the matrix Euler-Lagrange equation
(2.2.22) becomes Euler’s equation for rigid body motion.

In vector form, Euler’s equations are,

Π̇ = −Ω×Π , (2.2.37)

whose vector components are expressed as

I1Ω̇1 = (I2 − I3)Ω2Ω3 = −(a2 − a3)Ω2Ω3 ,

I2Ω̇2 = (I3 − I1)Ω3Ω1 = −(a3 − a1)Ω3Ω1 ,

I3Ω̇3 = (I1 − I2)Ω1Ω2 = −(a1 − a2)Ω1Ω2 .

(2.2.38)
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Corollary. Equation (2.2.37) implies as in Corollary 2.2.38 that

π̇(t) = 0 , for π(t) = O(t)Π(t) , (2.2.39)

on using the hat map O−1Ȯ(t) = Ω̂(t) = Ω(t)×, as in (2.2.30).

Remark 2.2.40 (Two interpretations of Euler’s equations)

1. Euler’s equations describe conservation of spatial angular momen-
tum π(t) = O(t)Π(t) under the free rotation around a fixed point
of a rigid body with principal moments of inertia (I1, I2, I3) in the
moving system of coordinates, whose orthonormal basis

(e1, e2, e3)

comprises the principal axes of the body.

2. Euler’s equations also represent geodesic motion on SO(3) with
respect to the metric A whose orthonormal eigenvectors form the ba-
sis (e1, e2, e3) and whose (positive) eigenvalues

(a1, a2, a3)

are obtained from linear combinations of the formulas for (I1, I2, I3)
in equation (2.2.33). Thus, a rigid body rotates from one orientation
to another along the shortest path in SO(3), as determined by using
its principal moments of inertia in a metric.
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2.3 Hamilton

Hamilton

Hamilton’s approach to geometric optics
sketched in Chapter 1 led to his formula-
tion of the canonical equations of parti-
cle motion in mechanics.
Geometric optics may be approached
either as a theory of systems of rays
constructed by means of the elemen-
tary laws of refraction (Ibn Sahl, Snell,
Descartes, Fermat, Newton), or as a the-
ory based upon the consideration of sys-
tems of surfaces whose orthogonal tra-
jectories are the rays (Huygens, Hamil-
ton).

These two approaches embody the dual pictures of light prop-
agation as either rays or as envelopes of Huygens wavelets. The
ray approach to geometric optics via Fermat’s principle leads to
what may be called Lagrangian optics, in which each ray is char-
acterised by assigning an initial point on it and its direction there,
much like specifying the initial position and velocity of Newtonian
or Lagrangian particle motion. The Huygens wavelet approach leads
to Hamiltonian optics, in which a characteristic function measures
the time that light takes to travel from one point to another and it
depends on the co-ordinates of both the initial and final points.

In a tour de force begun in 1823, when he was aged eighteen,
Hamilton showed that all significant properties of a geometric op-
tical system may be expressed in terms of this characteristic func-
tion and its partial derivatives. In this way, Hamilton completed
the wave picture of geometric optics first envisioned by Huygens.
Hamilton’s work was particularly striking because it encompassed
and solved the outstanding problem at the time in optics. Namely,
it determined how the bright surfaces called “caustics" are created
when light reflects off a curved mirror.

Years after his tour de force in optics as a young man, Hamilton re-
alised that the same method applies unchanged to mechanics. One
simply replaces the optical axis by the time axis, the light rays by the
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trajectories of the system of particles, and the optical phase space
variables by the mechanical phase space variables. Hamilton’s for-
mulation of his canonical equations of particle motion in mechanics
was expressed using partial derivatives of a simplified form of his
characteristic function for optics, now called the Hamiltonian.

The connection between the Lagrangian and Hamiltonian ap-
proaches to mechanics was made via the Legendre transform. Hamil-
ton’s methods, as developed by Jacobi, Poincaré and other 19th cen-
tury scientists became a powerful tool in the analysis and solution
of problems in mechanics. Hamilton’s analogy between optics and
mechanics became a guiding light in the development of the quan-
tum mechanics of atoms and molecules a century later, and his ideas
still apply today in scientific research on the quantum interactions
of photons, electrons and beyond.

2.3.1 Legendre transform

One passes from Lagrangian to Hamiltonian dynamics through the
Legendre transformation.

Definition 2.3.1 (Legendre transform and fibre derivative)
The Legendre transformation is defined by using the fibre derivative of
the Lagrangian,

p =
∂L

∂q̇
. (2.3.1)

The name fibre derivative refers to Definition 2.2.19 of the tangent bundle
TM of a manifold M in which the velocities q̇ ∈ TqM at a point q ∈ M
are called its fibres.

Remark 2.3.2 Since the velocity is in the tangent bundle TM , the fibre
derivative of the Lagrangian will be in the cotangent bundle T ∗M of man-
ifold M .

Definition 2.3.3 (Canonical momentum and Hamiltonian)
The quantity p is also called the canonical momentum dual to the con-
figuration variable q. If this relation is invertible for the velocity q̇(q, p),
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then one may define the Hamiltonian, cf. equation (1.2.8)

H(p, q) = 〈 p , q̇ 〉 − L(q, q̇) . (2.3.2)

Remark 2.3.4 The Hamiltonian H(p, q) may be obtained from the Leg-
endre transformation H(p, q) = 〈 p , q̇ 〉 − L(q, q̇) as a function of the
variables (q, p), provided one may solve for q̇(q, p), which requires the La-
grangian to be non-degenerate, e.g.,

det
∂2L

∂q̇∂q̇
= det

∂p(q, q̇)
∂q̇

6= 0 (suppressing indices) . (2.3.3)

Definition 2.3.5 (Non-degenerate Lagrangian system)
A Lagrangian system (M,L) is said to be non-degenerate if the Hessian
matrix

HL(q, q̇) =
∂2L

∂q̇∂q̇
(again suppressing indices) (2.3.4)

is invertible everywhere on the tangent bundle TM . Such Lagrangians are
also said to be hyperregular [MaRa1994].

Remark 2.3.6 In Chapter 1, Remark 1.1.5, we saw an example of a sin-
gular Lagrangian

L(q, q̇) = n(q)
√
δij q̇iq̇j ,

that appeared in Fermat’s principle for ray paths. That Lagrangian was
homogeneous of degree 1 in the tangent vector to the ray path. Such a
Lagrangian satisfies

∂2L

∂q̇i∂q̇j
q̇j = 0,

so its Hessian matrix with respect to the tangent vectors is singular (has
zero determinant). This difficulty is inherent in Finsler geometry. How-
ever, as we saw in Chapter 1, that case may be regularised by transforming
to a related Riemannian description, in which the Lagrangian is quadratic
in the tangent vector.
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2.3.2 Hamilton’s canonical equations

Theorem 2.3.7 (Hamiltonian equations) When the Lagrangian is non-
degenerate (hyperregular), the Euler-Lagrange equations

[L ]qa = 0 ,

in (2.2.8) are equivalent to Hamilton’s canonical equations,

q̇ =
∂H

∂p
, ṗ = − ∂H

∂q
, (2.3.5)

where ∂H/∂q and ∂H/∂p are the gradients ofH(p, q) = 〈 p , q̇ 〉−L(q, q̇)
with respect to q and p, respectively.

Proof. The derivatives of the Hamiltonian follow from the differen-
tial of its defining equation (2.3.2) as

dH =
〈
∂H

∂p
, dp

〉
+
〈
∂H

∂q
, dq

〉
= 〈 q̇ , dp 〉 −

〈
∂L

∂q
, dq

〉
+
〈
p− ∂L

∂q̇
, dq̇

〉
.

Consequently,

∂H

∂p
= q̇ =

dq

dt
,

∂H

∂q
= − ∂L

∂q
and

∂H

∂q̇
= p− ∂L

∂q̇
= 0 .

The Euler-Lagrange equations [L ]qa = 0 then imply

ṗ =
dp

dt
=

d

dt

(
∂L

∂q̇

)
=
∂L

∂q
= − ∂H

∂q
.

This proves the equivalence of the Euler-Lagrange equations and
Hamilton’s canonical equations for non-degenerate, or hyper-regular
Lagrangians.

Remark 2.3.8 The Euler-Lagrange equations are second order and they
determine curves in configuration space q ∈ M . In contrast, Hamil-
ton’s equations are first order and they determine curves in phase space
(q, p) ∈ T ∗M , a space whose dimension is twice the dimension of the con-
figuration space M .
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Definition 2.3.9 (Number of degrees of freedom)
The dimension of the configuration space is called the number of degrees
of freedom.

Remark 2.3.10 Each degree of freedom has its own coordinate and mo-
mentum in phase space.

Remark 2.3.11 (Momentum vs position in phase space)
As discussed in Definition 3.3.11, the momenta p = (p1, . . . , pn) are
coordinates in the cotangent bundle at q = (q1, . . . , qn) corresponding
to the basis dq1, . . . , dqn for T ∗qM . This basis for 1-forms in T ∗qM is
dual to the vector basis ∂/∂q1, . . . , ∂/∂qn for the tangent bundle TqM
at q = (q1, . . . , qn).

2.3.3 Phase space action principle

Hamilton’s principle on the tangent space of a manifold M may be
augmented by imposing the relation q̇ = dq/dt as an additional con-
straint in terms of generalised coordinates (q, q̇) ∈ TqM . In this case,
the constrained action is given by

S =
∫ tb

ta

L(q, q̇) + p
(dq
dt
− q̇
)
dt , (2.3.6)

where p is a Lagrange multiplier for the constraint. The variations
of this action result in

δS =
∫ tb

ta

(
∂L

∂q
− dp

dt

)
δq +

(
∂L

∂q̇
− p
)
δq̇ +

(dq
dt
− q̇
)
δp dt

+
[
p δq

]tb
ta
. (2.3.7)

The contributions at the endpoints ta and tb in time vanish, because
the variations δq are assumed to vanish then.

Thus, stationarity of this action under these variations imposes
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the relations

δq :
∂L

∂q
=
dp

dt
,

δq̇ :
∂L

∂q̇
= p ,

δp : q̇ =
dq

dt
.

• Combining the first and second of these relations recovers the
Euler-Lagrange equations, [L ]qa = 0.

• The third relation constrains the variable q̇ to be the time deriva-
tive of the trajectory q(t) at any time t.

Substituting the Legendre-transform relation (2.3.2) into the con-
strained action (2.3.6) yields the phase space action

S =
∫ tb

ta

(
p
dq

dt
−H(q, p)

)
dt . (2.3.8)

Varying the phase space action in (2.3.8) yields

δS =
∫ tb

ta

(
dq

dt
− ∂H

∂p

)
δp−

(
dp

dt
+
∂H

∂q

)
δq dt+

[
p δq

]tb
ta
.

Because the variations δq vanish at the endpoints ta and tb in time,
the last term vanishes. Thus, stationary variations of the phase-
space action in (2.3.8) recover Hamilton’s canonical equations (2.3.5).

Hamiltonian evolution along a curve (q(t), p(t)) ∈ T ∗M satis-
fying equations (2.3.5) induces the evolution of a given function
F (q, p) : T ∗M → R on the phase-space T ∗M of a manifold M , as

dF

dt
=

∂F

∂q

dq

dt
+
∂H

∂q

dp

dt

=
∂F

∂q

∂H

∂p
− ∂H

∂q

∂F

∂p
=: {F , H} (2.3.9)

=
(
∂H

∂p

∂

∂q
− ∂H

∂q

∂

∂p

)
F =: XHF . (2.3.10)
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The second and third lines of this calculation introduce notation for
two natural operations that will be investigated further in the next
few sections. These are the Poisson bracket { · , · } and the Hamil-
tonian vector field XH = { · , H }.

2.3.4 Poisson brackets

Definition 2.3.12 (Canonical Poisson bracket)
Hamilton’s canonical equations are associated to the canonical Poisson
bracket for functions on phase space, defined by

ṗ = {p , H} , q̇ = {q , H} . (2.3.11)

Hence, the evolution of a smooth function on phase space is expressed as

Ḟ (q, p) = {F , H} =
∂F

∂q

∂H

∂p
− ∂H

∂q

∂F

∂p
. (2.3.12)

This expression defines the canonical Poisson bracket as a map {F,H} :
C∞ ×C∞ → C∞ for smooth, real-valued functions F, G on phase space.

Remark 2.3.13 For one degree of freedom, the canonical Poisson bracket
is the same as the determinant for a change of variables

(q, p)→ (F (q, p), H(q, p)),

namely,

dF ∧ dH = det
∂(F,H)
∂(q, p)

dq ∧ dp = {F,H}dq ∧ dp . (2.3.13)

Here the wedge product ∧ denotes the antisymmetry of the determinant of
the Jacobian matrix under exchange of rows or columns, so that

dF ∧ dH = − dH ∧ dF.

Proposition 2.3.14 (The canonical Poisson bracket)
The definition of the canonical Poisson bracket in (2.3.12) implies the
following properties. By direct computation, the bracket is:
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1. bilinear,

2. skew symmetric, {F , H} = −{H , F},

3. satisfies the Leibnitz rule (product rule),

{FG , H} = {F , H}G+ F{G , H}

for the product of any two phase space functions F and G, and

4. satisfies the Jacobi identity

{F , {G , H}}+ {G , {H , F}}+ {H , {F , G}} = 0

for any three phase space functions F , G and H .

2.3.5 Canonical transformations

Definition 2.3.15 (Transformation)
A transformation is a one-to-one mapping of a set onto itself.

Example 2.3.16 For example, under a change of variables

(q, p)→ (Q(q, p), P (q, p))

in phase space T ∗M , the Poisson bracket in (2.3.13) transforms via the
Jacobian determinant, as

dF ∧ dH = {F,H}dq ∧ dp

= {F,H}det
∂(q, p)
∂(Q,P )

dQ ∧ dP . (2.3.14)

Definition 2.3.17 (Canonical transformations)
When the Jacobian determinant is equal to unity, that is, when

det
∂(q, p)
∂(Q,P )

= 1 , so that dq ∧ dp = dQ ∧ dP , (2.3.15)

then the Poisson brackets {F,H} have the same values in either set of phase
space coordinates. Such transformations of phase space T ∗M are said to
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be canonical transformations, since in that case Hamilton’s canonical
equations keep their forms, as

Ṗ = {P , H} , Q̇ = {Q , H} . (2.3.16)

Remark 2.3.18 If the Jacobian determinant above were equal to any nonzero
constant, then Hamilton’s canonical equations would still keep their forms,
after absorbing that constant into the units of time. Hence, transforma-
tions for which

det
∂(q, p)
∂(Q,P )

= constant , (2.3.17)

may still be said to be canonical.

Definition 2.3.19 (Lie transformation groups)

• A collection of transformations is called a group, provided:
– it includes the identity transformation and the inverse of each
transformation;
– it contains the result of the consecutive application of any two
transformations; and
– composition of that result with a third transformation is associa-
tive.

• A group is a Lie group, provided its transformations depend smoothly
on a parameter.

Proposition 2.3.20 The canonical transformations form a group.

Proof. Composition of change of variables (q, p)→ (Q(q, p), P (q, p))
in phase space T ∗M with constant Jacobian determinant satisfies the
defining properties of a group.

Remark 2.3.21 The smooth parameter dependence needed to show that
the canonical transformations actually form a Lie group will arise from
their definition in terms of the Poisson bracket.
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2.3.6 Flows of Hamiltonian vector fields

The Leibnitz property (product rule) in Proposition 2.3.14 suggests
the canonical Poisson bracket is a type of derivative. This derivation
property of the Poisson bracket allows its use in the definition of a
Hamiltonian vector field.

Definition 2.3.22 (Hamiltonian vector field)
The Poisson bracket expression

XH = {· , H} =
∂H

∂p

∂

∂q
− ∂H

∂q

∂

∂p
, (2.3.18)

defines a Hamiltonian vector fieldXH , for any smooth phase space func-
tion H : T ∗M → R.

Proposition 2.3.23 Solutions of Hamilton’s canonical equations q(t) and
p(t) are the characteristic paths of the first order linear partial differen-
tial operator XH . That is, XH corresponds to the time derivative along
these characteristic paths.

Proof. Verify directly by applying the product rule for vector fields
and Hamilton’s equations in the form, ṗ = XHp and q̇ = XHq.

Definition 2.3.24 (Hamiltonian flow)
The union of the characteristic paths of the Hamiltonian vector field XH

in phase space T ∗M is called the flow of the Hamiltonian vector field XH .
That is, the flow of XH is the collection of maps φt : T ∗M → T ∗M
satisfying

dφt
dt

= XH

(
φt(q, p)

)
= {φt, H} , (2.3.19)

for each (q, p) ∈ T ∗M for real t and φ0(q, p) = (q, p).

Theorem 2.3.25 Canonical transformations result from the smooth flows
of Hamiltonian vector fields. That is, Poisson brackets generate canonical
transformations.
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Proof. According to Definition 2.3.17, a transformation

(q(0), p(0))→ (q(ε), p(ε)) ,

which depends smoothly on a parameter ε is canonical, provided
it preserves area in phase space (up to a constant factor that defines
the units of area). That is, provided it satisfies the condition in equa-
tion (2.3.15), discussed further in Chapter 3, namely

dq(ε) ∧ dp(ε) = dq(0) ∧ dp(0) . (2.3.20)

Let this transformation be the flow of a Hamiltonian vector fieldXF .
That is, let it result from integrating the characteristic equations of

d

dε
= XF = {· , F} =

∂F

∂p

∂

∂q
− ∂F

∂q

∂

∂p
=: F,p∂q − F,q∂p ,

for a smooth function F on phase space. Then applying the Hamil-
tonian vector field to the area in phase space and exchanging differ-
ential and derivative with respect to ε yields

d

dε

(
dq(ε) ∧ dp(ε)

)
= d(XF q) ∧ dp+ dq ∧ d(XF p)

= d(F,p) ∧ dp+ dq ∧ d(F,q)
= (F,pqdq + F,ppdp) ∧ dp+ dq ∧ (F,qqdq + F,qpdp)
= (F,pq − F,qp)dq ∧ dp
= 0 , (2.3.21)

by equality of cross derivatives of F and asymmetry of the wedge
product. Therefore, condition (2.3.20) holds and the transformation
is canonical.

Corollary 2.3.26 The canonical transformations of phase space form a Lie
group.

Proof. The flows of the Hamiltonian vector fields are canonical
transformations that depend smoothly on their flow parameters.
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Exercise. (Noether’s theorem)

Suppose the phase space action (2.3.8) is invariant under
the infinitesimal transformation q → q + δq, with δq =
ξM (q) ∈ TM for q ∈ M under the transformations of a
Lie group G acting on a manifold M . That is, suppose S
in (2.3.8) satisfies δS = 0 for δq = ξM (q) ∈ TM .

What does Noether’s theorem (Corollary 1.1.16) imply
for this phase space action principle? F

Answer. Noether’s theorem implies conservation of the quantity

Jξ =
〈
p, ξM (q)

〉
T ∗M×TM ∈ R , (2.3.22)

arising from integration by parts evaluated at the endpoints. This
notation introduces a pairing 〈 · , · 〉T ∗M×TM : T ∗M × TM → R. The
conservation of Jξ is expressed as,

dJξ

dt
= {Jξ, H} = 0 . (2.3.23)

That is XHJ
ξ = 0, or, equivalently,

0 = XJξH =
∂Jξ

∂p

∂H

∂q
− ∂Jξ

∂q

∂H

∂p

= ξM (q)∂qH − pξ′M (q)∂pH

=
d

dε

∣∣∣
ε=0

H
(
q(ε), p(ε)

)
. (2.3.24)

This means that H is invariant under (δq, δp) = (ξM (q), −pξ′M (q)).
That is, H is invariant under the cotangent lift to T ∗M of the in-
finitesimal point transformation q → q + ξM (q) of the Lie group G
acting by canonical transformations on the manifold M .

Conversely, if the Hamiltonian H(q, p) is invariant under the
canonical transformation generated by XJξ , then the Noether end-
point quantity Jξ in (2.3.22) will be a constant of the canonical mo-
tion under H .

N
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Definition 2.3.27 (Cotangent lift momentum map)
On introducing a pairing 〈 · , · 〉 : g∗ × g → R one may define a map
J : T ∗M → g∗ in terms of this pairing and the Noether endpoint quantity
in (2.3.22 as

Jξ =
〈
p, ξM (q)

〉
T ∗M×TM =:

〈
J(q, p), ξ

〉
g∗×g

, (2.3.25)

for any fixed element of the Lie algebra ξ ∈ g. The map J(q, p) is called the
cotangent lift momentum map associated to the infinitesimal transfor-
mation δq = ξM (q) ∈ TM and its cotangent lift δp = −pξ′M (q) ∈ TM∗.

Exercise. Compare Definition 2.3.27 with Definition 1.3.20,
by identifying corresponding terms. F

Exercise. (Cotangent lift momentum maps are Poisson)
Show that cotangent lift momentum maps are Poisson.
That is, show that, for smooth functions F and H ,{

F ◦ J , H ◦ J
}

=
{
F , H

}
◦ J . (2.3.26)

This relation defines a Lie-Poisson bracket on g∗ that in-
herits the properties in Proposition 2.3.14 of the canoni-
cal Poisson bracket.

F

2.3.7 Properties of Hamiltonian vector fields

By associating Poisson brackets with Hamiltonian vector fields on
phase space, one may quickly determine their shared properties.

Definition 2.3.28 (Hamiltonian vector field commutator)
The commutator of the Hamiltonian vector fields XF and XH is defined
as

[XF , XH ] = XFXH −XHXF , (2.3.27)

which is again a Hamiltonian vector field.
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Exercise. Verify directly that the commutator of two Hamil-
tonian vector fields yields yet another one. F

Lemma 2.3.29 Hamiltonian vector fields satisfy the Jacobi identity,

[XF , [XG , XH ] ] + [XG , [XH , XF ] ] + [XH , [XF , XG] ] = 0 .

Proof. Write [XG , XH ] = G(H)−H(G) symbolically, so that

[XF , [XG , XH ] ] = F (G(H))− F (H(G))−G(H(F )) +H(G(F ))

Summation over cyclic permutations then yields the result.

Lemma 2.3.30 The Jacobi identity holds for the canonical Poisson bracket
{· , ·},

{F, {G, H}}+ {G, {H, F}}+ {H, {F, G}} = 0 . (2.3.28)

Proof. Formula (2.3.28) may be proved by direct computation, as
in Proposition 2.3.14. This identity may also be verified formally
by the same calculation as in the proof of the previous Lemma, by
writing {G, H} = G(H)−H(G) symbolically.

Remark 2.3.31 (Lie algebra of Hamiltonian vector fields)
The Jacobi identity defines the Lie algebra property of Hamiltonian vector
fields, which form a Lie subalgebra of all vector fields on phase space.

Theorem 2.3.32 (The Poisson bracket and the commutator)
The canonical Poisson bracket {F, H} is put into one-to-one correspon-
dence with the commutator of the corresponding Hamiltonian vector fields
XF and XH by the equality

X{F ,H} = − [XF , XH ] . (2.3.29)

Proof. One recalls the remark after Lemma 1.11.4,

[XG, XH ] = XGXH −XHXG

= {G, · }{H, · } − {H, · }{G, · }
= {G, {H, · }} − {H, {G, · }}
= {{G, H}, · } = −X{G,H} .
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The first line is the definition of the commutator of vector fields. The
second line is the definition of Hamiltonian vector field in terms of
Poisson bracket. The third line is a substitution. The fourth line uses
the Jacobi identity (2.3.28) and skew symmetry.

2.4 Rigid-body motion

2.4.1 Hamiltonian form of rigid body motion

A dynamical system on the tangent space TM of a manifold M

ẋ(t) = F(x) , x ∈M

is said to be in Hamiltonian form, if it can be expressed as

ẋ(t) = {x, H} , for H : M → R ,

in terms of a Poisson bracket operation,

{· , ·} : F(M)×F(M)→ F(M) ,

which is bilinear, skew-symmetric, defines a derivative operation
satisfying the Leibnitz rule for a product of functions and satisfies
the Jacobi identity.

As we shall explain, reduced equations arising from group-invariant
Hamilton’s principles on Lie groups are naturally Hamiltonian. If
we Legendre transform the Lagrangian in Hamilton’s principle in
Theorem 2.2.36 for geodesic motion on SO(3) – interpreted also as
rigid body dynamics – then its simple, beautiful and well-known
Hamiltonian formulation emerges.

Definition 2.4.1 The Legendre transformation from angular velocity Ω
to angular momentum Π is defined by

δL

δΩ
= Π .
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That is, the Legendre transformation defines the body angular mo-
mentum vector by the variations of the rigid body’s reduced La-
grangian with respect to the body angular velocity vector. For the
Lagrangian in (2.2.35),

L(Ω) =
1
2

Ω · IΩ , (2.4.1)

with moment of inertia tensor I, the body angular momentum,

Π =
δL

δΩ
= IΩ , (2.4.2)

has R3 components,

Πi = IiΩi =
∂L

∂Ωi
, i = 1, 2, 3, (2.4.3)

in which principal moments of inertia Ii with i = 1, 2, 3 are all posi-
tive definite. This is also how body angular momentum was defined
in Definition 2.1.25 in the Newtonian setting.

2.4.2 Lie-Poisson Hamiltonian rigid body dynamics

The Legendre transformation is defined for rigid body dynamics by

H(Π) := Π ·Ω− L(Ω) ,

in terms of the vector dot product on R3. From the rigid body La-
grangian in (2.4.1), one finds the expected expression for the rigid
body Hamiltonian,

H(Π) =
1
2

Π · I−1Π :=
Π2

1

2I1
+

Π2
2

2I2
+

Π2
3

2I3
. (2.4.4)

The Legendre transform for this case is invertible for positive defi-
nite Ii, so we may solve for

∂H

∂Π
= Ω +

(
Π− ∂L

∂Ω

)
· ∂Ω
∂Π

= Ω .
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In R3 coordinates, this relation expresses the body angular velocity
as the derivative of the reduced Hamiltonian with respect to the
body angular momentum, namely,

Ω =
∂H

∂Π
.

Hence, the reduced Euler-Lagrange equation forLmay be expressed
equivalently in angular momentum vector components in R3 and
Hamiltonian H as:

d

dt
(IΩ) = IΩ×Ω⇐⇒ dΠ

dt
= Π× ∂H

∂Π
:= {Π, H} . (2.4.5)

This expression suggests we introduce the following rigid body Pois-
son bracket on functions of Π ∈ R3.

{F,H}(Π) := −Π ·
(
∂F

∂Π
× ∂H

∂Π

)
, (2.4.6)

or, in components,
{Πj ,Πk} = −Πiεijk . (2.4.7)

For the Hamiltonian (2.4.4), one checks that the Euler equations in
terms of the rigid body angular momenta,

dΠ1

dt
= −

(
1
I2
− 1
I3

)
Π2Π3 ,

dΠ2

dt
= −

(
1
I3
− 1
I1

)
Π3Π1 ,

dΠ3

dt
= −

(
1
I1
− 1
I2

)
Π1Π2 ,

(2.4.8)

that is, the equations in vector form,

dΠ
dt

= −Ω×Π , (2.4.9)

are equivalent to

dF

dt
= {F,H} , with F = Π .
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The Poisson bracket proposed in (2.4.6) may be rewritten in terms
of coordinates Π ∈ R3 as

{F,H} = −∇|Π|
2

2
· ∇F ×∇H , (2.4.10)

where∇ denotes ∂/∂Π. This is an example of the Nambu R3 bracket
in (1.11.17), which we learned in Chapter 1 satisfies the defining
relations to be a Poisson bracket. In this case, the distinguished
function C(Π) = |Π|2/2 and its level sets are the angular momen-
tum spheres. Hence, the Hamiltonian rigid body dynamics (2.4.9)
rewritten as

dΠ
dt

=
{

Π, H
}

= ∇|Π|
2

2
×∇H (2.4.11)

may be interpreted as a divergenceless flow in R3 along intersec-
tions of level sets of angular momentum spheres |Π|2 = const with
the kinetic energy ellipsoids H = const in equation (2.4.4).

2.4.3 Geometry of rigid body level sets in R3

Euler’s equations (2.4.11) are expressible in vector form as

d

dt
Π = ∇L×∇H , (2.4.12)

where H is the rotational kinetic energy

H =
Π2

1

2I1
+

Π2
2

2I2
+

Π2
3

2I3
, (2.4.13)

with gradient

∇H =
(
∂H

∂Π1
,
∂H

∂Π2
,
∂H

∂Π3

)
=
(

Π1

I1
,
Π2

I2
,
Π3

I3

)
,

and L is half the square of the body angular momentum

L =
1
2

(Π2
1 + Π2

2 + Π2
3) , (2.4.14)

with gradient
∇L = (Π1, Π2, Π3) . (2.4.15)
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Figure 2.5: The dynamics of a rotating rigid body may be represented as a di-
vergenceless flow along the intersections in R3 of the level sets of two conserved
quantities: the angular momentum sphere |Π|2 = const and the hyperbolic cylin-
ders G = const in equation (2.4.18).
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Since bothH and L are conserved, the rigid body motion itself takes
place, as we know, along the intersections of the level surfaces of
the energy (ellipsoids) and the angular momentum (spheres) in R3:
The centres of the energy ellipsoids and the angular momentum
spheres coincide. This, along with the (Z2)3 symmetry of the en-
ergy ellipsoids, implies that the two sets of level surfaces in R3 de-
velop collinear gradients (for example, tangencies) at pairs of points
which are diametrically opposite on an angular momentum sphere.
At these points, collinearity of the gradients of H and L implies sta-
tionary rotations, that is, equilibria.

The geometry of the level sets on whose intersections the mo-
tion takes place may be recast equivalently by taking linear combi-
nations of H and L. For example, consider the following.

Proposition 2.4.2 Euler’s equations for the rigid body (2.4.12) may be
written equivalently as

d

dt
Π = ∇L×∇G , where G = H − L

I2
, (2.4.16)

or, explicitly, L and G are given by

L =
1
2

(Π2
1 + Π2

2 + Π2
3) (2.4.17)

and
G = Π2

1

(
1

2I1
− 1

2I2

)
−Π2

3

(
1

2I2
− 1

2I3

)
. (2.4.18)

Proof. The proof is immediate. Since∇L×∇L = 0,

d

dt
Π = ∇L×∇H = ∇L×∇

(
H − L

I2

)
= ∇L×∇G . (2.4.19)

Remark 2.4.3 With the linear combination G = H −L/I2, the solutions
of Euler’s equations for rigid body dynamics may be realised as flow along
the intersections of the spherical level sets of the body angular momentum
L = const and a family of hyperbolic cylinders G = const. These
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hyperbolic cylinders are translation-invariant along the principal axis of
the intermediate moment of inertia and oriented so that the asymptotes of
the hyperbolas (at G = 0) slice each angular momentum sphere along the
four (heteroclinic) orbits that connect the diametrically opposite points on
the sphere that lie along the intermediate axis. See Figure 2.5.

2.4.4 Rotor and pendulum

The idea of recasting the geometry of flow lines in R3 as the in-
tersections of different level sets on which the motion takes place
was extended in [HoMa1991] to reveal a remarkable relationship
between the rigid body and the planar pendulum. This relationship
was found by further exploiting the symmetry of the triple scalar
product appearing in the R3 bracket (2.4.10).

Theorem 2.4.4 Euler’s equations for the rigid body (2.4.12) may be writ-
ten equivalently as

d

dt
Π = ∇A×∇B , (2.4.20)

where A and B are given by the following linear combinations of H and
L, (

A
B

)
=
[
a b
c e

](
H
L

)
, (2.4.21)

in which the constants a, b, c, e satisfy ae − bc = 1 to form an SL(2,R)
matrix.

Proof. Recall from equation (2.4.6) that

{F,H}d 3Π := dF ∧ dL ∧ dH (2.4.22)

=
1

ae− bc
dF ∧ d(aH + bL) ∧ d(cH + eL) ,

for real constants a, b, c, e. Consequently, the rigid body equation
will remain invariant under any linear combinations of energy and
angular momentum(

A
B

)
=
[
a b
c e

](
H
L

)
,



2.4. RIGID-BODY MOTION 149

provided the constants a, b, c, e satisfy ae−bc = 1 to form an SL(2,R)
matrix.

Remark 2.4.5 (Equilibria)
For a general choice for the linear combination of A and B in (2.4.21),
equilibria occur at points where the cross product of gradients ∇A ×∇B
vanishes. This can occur at points where the level sets are tangent (and
the gradients are both nonzero), or at points where one of the gradients
vanishes.

Corollary 2.4.6 Euler’s equations for the rigid body (2.4.12) may be writ-
ten equivalently as

d

dt
Π = ∇N ×∇K , (2.4.23)

where K and N are

K =
Π2

1

2k2
1

+
Π2

2

2k2
2

and N =
Π2

2

2k2
3

+
1
2

Π2
3 , (2.4.24)

for

1
k2

1

=
1
I1
− 1
I3
,

1
k2

2

=
1
I2
− 1
I3
,

1
k2

3

=
I3(I2 − I1)
I2(I3 − I1)

. (2.4.25)

Proof. If I1 < I2 < I3, the choice

c = 1, e =
1
I3
, a =

I1I3

I3 − I1
< 0, and b =

I3

I3 − I1
< 0

yields

{F,H}d 3Π := dF ∧ dL ∧ dH = dF ∧ dN ∧ dK , (2.4.26)

from which equations (2.4.23) - (2.4.25) of the Corollary follow.

Since (
H
L

)
=

1
ae− bc

[
e −b
−c a

](
N
K

)
we also have

H = eN − bK =
1
I3
N +

I3

I3 − I1
K . (2.4.27)
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Consequently, we may write

dF ∧ dL ∧ dH = dF ∧ dN ∧ dK = −I3 dF ∧ dK ∧ dH . (2.4.28)

With this choice, the orbits for Euler’s equations for rigid body
dynamics are realised as motion along the intersections of two, or-
thogonally oriented, elliptic cylinders, one elliptic cylinder is a level
surface of K, with its translation axis along Π3 (where K = 0), and
the other is a level surface of N , with its translation axis along Π1

(where N = 0).

Equilibria occur at points where the cross product of gradients
∇K×∇N vanishes. In the elliptic cylinder case above, this may oc-
cur at points where the elliptic cylinders are tangent, and at points
where the axis of one cylinder punctures normally through the sur-
face of the other. The elliptic cylinders are tangent at one Z2-symmetric
pair of points along the Π2 axis, and the elliptic cylinders have nor-
mal axial punctures at two other Z2-symmetric pairs of points along
the Π1 and Π3 axes.

Restricting rigid body motion to elliptic cylinders

We pursue the geometry of the elliptic cylinders by restricting the
rigid body equations to a level surface of K. On the surface K =
constant, define new variables θ and p by

Π1 = k1r cos θ, Π2 = k2r sin θ, Π3 = p , with r =
√

2K ,

so that

d 3Π := dΠ1 ∧ dΠ2 ∧ dΠ3 = k1k2 dK ∧ dθ ∧ dp .

In terms of these variables, the constants of the motion become

K =
1
2
r2 and N =

1
2
p2 +

(
k2

2

2k2
3

r2

)
sin2 θ.
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On a constant level surface of K the function {F,H} only depends
on (θ, p) so the Poisson bracket for rigid body motion on any partic-
ular elliptic cylinder is given by (2.4.26) as

{F, H} d 3Π = − dL ∧ dF ∧ dH
= k1k2 dK ∧ {F, H}EllipCyl dθ ∧ dp . (2.4.29)

The symplectic structure on the level setK = constant is thus given
by the following Poisson bracket on this elliptic cylinder:

{F,H}EllipCyl =
1

k1k2

(
∂F

∂p

∂H

∂θ
− ∂F

∂θ

∂H

∂p

)
,

which is symplectic. In particular, it satisfies

{p, θ}EllipCyl =
1

k1k2
. (2.4.30)

The restriction of the Hamiltonian H to the symplectic level set of
the elliptic cylinder K = constant is by (2.4.13)

H =
k2

1K

I1
+

1
I3

[
1
2
p2 +

I2
3 (I2 − I1)

2(I3 − I2)(I3 − I1)
r2 sin2 θ

]
=
k2

1K

I1
+
N

I3
.

That is, N/I3 can be taken as the Hamiltonian on this symplectic
level set of K. Note that N/I3 has the form of kinetic plus potential
energy. The equations of motion are thus given by

dθ

dt
=

{
θ,
N

I3

}
EllipCyl

=
1

k1k2I3

∂N

∂p
= − 1

k1k2I3
p ,

dp

dt
=

{
p,
N

I3

}
EllipCyl

=
1

k1k2I3

∂N

∂θ
=

1
k1k2I3

k2
2

k2
3

r2 sin θ cos θ .

Combining these equations of motion gives the pendulum equation,

d2θ

dt2
= − r2

k1k2I3
sin 2θ .

In terms of the original rigid body parameters, this becomes

d2θ

dt2
= − K

I2
3

(
1
I1
− 1
I2

)
sin 2θ . (2.4.31)
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Thus, simply by transforming coordinates, we have proved the fol-
lowing result.

Proposition 2.4.7 Rigid body motion reduces to pendulum motion on
level surfaces of K.

Corollary 2.4.8 The dynamics of a rigid body in three-dimensional body
angular momentum space is a union of two-dimensional simple-pendulum
phase portraits, as shown in Figure 2.6.

Figure 2.6: The dynamics of the rigid body in three-dimensional body angular
momentum space is recovered by taking the union in R3 of the intersections of
level surfaces of two orthogonal families of concentric cylinders. (Only one mem-
ber of each family is shown in the figure here, although the curves on each cylinder
show other intersections.) On each cylindrical level surface, the dynamics reduces
to that of a simple pendulum, as given in equation (2.4.31).

By restricting to a nonzero level surface of K, the pair of rigid
body equilibria along the Π3 axis are excluded. (This pair of equi-
libria can be included by permuting the indices of the moments of
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inertia.) The other two pairs of equilibria, along the Π1 and Π2 axes,
lie in the p = 0 plane at θ = 0; π/2, π and 3π/2. Since K is pos-
itive, the stability of each equilibrium point is determined by the
relative sizes of the principal moments of inertia, which affect the
overall sign of the right-hand side of the pendulum equation. The
well-known results about stability of equilibrium rotations along
the least and greatest principal axes, and instability around the in-
termediate axis, are immediately recovered from this overall sign,
combined with the stability properties of the pendulum equilibria.

For K > 0 and I1 < I2 < I3; this overall sign is negative, so the
equilibria at θ = 0 and π (along the Π1 axis) are stable, while those
at θ = π/2 and 3π/2 (along the Π2 axis) are unstable. The factor of 2
in the argument of the sine in the pendulum equation is explained
by the Z2 symmetry of the level surfaces of K (or, just as well, by
their invariance under θ → θ + π). Under this discrete symmetry
operation, the equilibria at θ = 0 and π/2 exchange with their coun-
terparts at θ = π and 3π/2; respectively, while the elliptical level
surface of K is left invariant. By construction, the Hamiltonian N/I3

in the reduced variables θ and p is also invariant under this discrete
symmetry.

2.5 Spherical pendulum

A spherical pendulum of unit length swings from a fixed point of
support under the constant acceleration of gravity g. This motion
is equivalent to a particle of unit mass moving on the surface of the
unit sphere S2 under the influence of the gravitational (linear) po-
tential V (z) with z = ê3 · x. The only forces acting on the mass are
the reaction from the sphere and gravity. This system is treated as
an enhanced coursework example by using spherical polar coordi-
nates and the traditional methods of Newton, Lagrange and Hamil-
ton in Appendix A. The present section treats this problem more
geometrically, inspired by the approach discussed in [CuBa1997,
EfMoSa2005].
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In this section, the equations of motion for the spherical pen-
dulum will be derived according to the approaches of Lagrange
and Hamilton on the tangent bundle TS2 of S2 ∈ R3:

TS2 =
{

(x, ẋ) ∈ TR3 ' R6
∣∣ 1− |x|2 = 0, x · ẋ = 0

}
. (2.5.1)

After the Legendre transformation to the Hamiltonian side,
the canonical equations will be transformed to quadratic vari-
ables that are invariant under S1 rotations about the vertical
axis. This is the quotient map for the spherical pendulum.

Then the Nambu bracket in R3 will be found in these S1

quadratic invariant variables and the equations will be reduced
to the orbit manifold, which is the zero level set of a distin-
guished function called the Casimir function for this bracket.
On the intersections of the Hamiltonian with the orbit manifold,
the reduced equations for the spherical pendulum will simplify
to the equations of a quadratically nonlinear oscillator.

The solution for the motion of the spherical pendulum will
be finished by finding expressions for its geometrical and dy-
namical phases.

The constrained Lagrangian We begin with the LagrangianL(x, ẋ) :
TR3 → R given by

L(x, ẋ) = 1
2 |ẋ|

2 − gê3 · x− 1
2µ(1− |x|2), (2.5.2)

in which the Lagrange multiplier µ constrains the motion to remain
on the sphere S2 by enforcing (1 − |x|2) = 0 when it is varied in
Hamilton’s principle. The corresponding Euler-Lagrange equation
is

ẍ = −gê3 + µx . (2.5.3)

This equation preserves both of the TS2 relations 1 − |x|2 = 0 and
x · ẋ = 0, provided the Lagrange multiplier is given by

µ = gê3 · x− |ẋ|2 . (2.5.4)
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g
Figure 2.7: Spherical pendulum moving under gravity on TS2 in R3.

Remark 2.5.1 In Newtonian mechanics, the motion equation obtained by
substituting (2.5.4) into (2.5.3) may be interpreted as

ẍ = F · (Id− x⊗ x)− |ẋ|2x ,

where F = −gê3 is the force exerted by gravity on the particle,

T = F · (Id− x⊗ x)

is its component tangential to the sphere and, finally, −|ẋ|2x is the cen-
tripetal force for the motion to remain on the sphere.

S1 symmetry and Noether’s theorem The Lagrangian in (2.5.2) is
invariant under S1 rotations about the vertical axis, whose infinites-
imal generator is δx = ê3 × x. Consequently Noether’s theorem
(Corollary 1.1.16) that each smooth symmetry of the Lagrangian in
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an action principle implies a conservation law for its Euler-Lagrange
equations, in this case implies that the equations (2.5.3) conserve

J3(x, ẋ) = ẋ · δx = x× ẋ · ê3 , (2.5.5)

which is the angular momentum about the vertical axis.

Legendre transform and canonical equations The fibre derivative
of the Lagrangian L in (2.5.2) is

y =
∂L

∂ẋ
= ẋ . (2.5.6)

The variable y will be the momentum canonically conjugate to the
radial position x, after the Legendre transform to the corresponding
Hamiltonian,

H(x,y) = 1
2 |y|

2 + gê3 · x + 1
2(gê3 · x− |y|2)(1− |x|2) , (2.5.7)

whose canonical equations on (1− |x|2) = 0, are

ẋ = y and ẏ = −gê3 + (gê3 · x− |y|2)x . (2.5.8)

This Hamiltonian system on T ∗R3 admits TS2 as an invariant mani-
fold, provided the initial conditions satisfy the defining relations for
TS2 in (2.5.1). On TS2, equations (2.5.8) conserve the energy

E(x,y) = 1
2 |y|

2 + gê3 · x , (2.5.9)

and the vertical angular momentum

J3(x,y) = x× y · ê3 .

Under the (x,y) canonical Poisson bracket, the angular momentum
component J3 generates the Hamiltonian vector field

XJ3 = { · , J3} =
∂J3

∂y
· ∂
∂x
− ∂J3

∂x
· ∂
∂y

= ê3 × x · ∂
∂x

+ ê3 × y · ∂
∂y

, (2.5.10)

for infinitesimal rotations about the vertical axis ê3. Because of the
S1 symmetry of the Hamiltonian in (2.5.7) under these rotations, we
have the conservation law,

J̇3 = {J3, H} = XJ3H = 0 .
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2.5.1 Lie symmetry reduction

Algebra of invariants To take advantage of the S1 symmetry of
the spherical pendulum, we transform to S1-invariant quantities. A
convenient choice of basis for the algebra of polynomials in (x,y)
that are S1-invariant under rotations about the 3-axis is given by
[EfMoSa2005]

σ1 = x3 σ3 = y2
1 + y2

2 + y2
3 σ5 = x1y1 + x2y2

σ2 = y3 σ4 = x2
1 + x2

2, σ6 = x1y2 − x2y1

Quotient map The transformation defined by

π : (x,y)→ {σj(x,y), j = 1, . . . , 6} (2.5.11)

is the quotient map TR3 → R6 for the spherical pendulum. Each
of the fibres of the quotient map π is an S1 orbit generated by the
Hamiltonian vector field XJ3 in (2.5.10).

The six S1-invariants that define the quotient map in (2.5.11) for
the spherical pendulum satisfy the cubic algebraic relation

σ2
5 + σ2

6 = σ4(σ3 − σ2
2) . (2.5.12)

They also satisfy the positivity conditions

σ4 ≥ 0, σ3 ≥ σ2
2. (2.5.13)

In these variables, the defining relations (2.5.1) for TS2 become

σ4 + σ2
1 = 1 and σ5 + σ1σ2 = 0 . (2.5.14)

Perhaps not unexpectedly, since TS2 is invariant under the S1 rota-
tions, it is also expressible in terms of S1-invariants. The three re-
lations in equations (2.5.12) – (2.5.14) will define the orbit manifold
for the spherical pendulum in R6.
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Reduced space and orbit manifold in R3 On TS2, the variables
σj(x,y), j = 1, . . . , 6, satisfying (2.5.14) allow the elimination of σ4

and σ5 to satisfy the algebraic relation

σ2
1σ

2
2 + σ2

6 = (σ3 − σ2
2)(1− σ2

1) ,

which on expansion simplifies to

σ2
2 + σ2

6 = σ3(1− σ2
1) , (2.5.15)

where σ3 ≥ 0 and (1−σ2
1) ≥ 0. Restoring σ6 = J3, we may write the

previous equation as

C(σ1, σ2, σ3; J2
3 ) = σ3(1− σ2

1)− σ2
2 − J2

3 = 0 . (2.5.16)

This is the orbit manifold for the spherical pendulum in R3. The
motion takes place on the following family of surfaces depending
on (σ1, σ2, σ3) ∈ R3 and parameterised by the conserved value of
J2

3 ,

σ3 =
σ2

2 + J2
3

1− σ2
1

. (2.5.17)

The orbit manifold for the spherical pendulum is a graph of σ3 over
(σ1, σ2) ∈ R2, provided 1− σ2

1 6= 0. The two solutions of 1− σ2
1 = 0

correspond to the North and South poles of the sphere. In the case
J2

3 = 0, the spherical pendulum restricts to the planar pendulum.

Reduced Poisson bracket in R3 When evaluated on TS2, the Hamil-
tonian for the spherical pendulum is expressed in these S1-invariant
variables by the linear relation

H = 1
2σ3 + gσ1 , (2.5.18)

whose level surfaces are planes in R3. The motion in R3 takes place
on the intersections of these Hamiltonian planes with the level sets
of J2

3 given by C = 0 in equation (2.5.16). Consequently, in R3-
vector form, the motion is governed by the cross-product formula

σ̇ =
∂C

∂σ
× ∂H

∂σ
. (2.5.19)
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Figure 2.8: The dynamics of the spherical pendulum in the space of S1 invariants
(σ1, σ2, σ3) is recovered by taking the union in R3 of the intersections of level sets
of two families of surfaces. These surfaces are the roughly cylindrical level sets of
angular momentum about the vertical axis given in (2.5.17) and the (planar) level
sets of the Hamiltonian in (2.5.18). (Only one member of each family is shown in
the figure here, although the curves show a few of the other intersections.) On each
planar level set of the Hamiltonian, the dynamics reduces to that of a quadratically
nonlinear oscillator for the verical coordinate (σ1) given in equation (2.5.24).

In components, this evolution is expressed as

σ̇i = {σi, H} = εijk
∂C

∂σj

∂H

∂σk
with i, j, k = 1, 2, 3. (2.5.20)
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The motion may be expressed in Hamiltonian form by introducing
the following bracket operation, defined for a function F of the S1-
invariant vector σ = (σ1, σ2, σ3) ∈ R3 by

{F,H} = − ∂C
∂σ
· ∂F
∂σ
× ∂H

∂σ
= − εijk

∂C

∂σi

∂F

∂σj

∂H

∂σk
. (2.5.21)

This is another example of the Nambu R3 bracket in (1.11.17) in-
troduced in [Na1973], which we learned in Chapter 1 satisfies the
defining relations to be a Poisson bracket. In this case, the distin-
guished function C(σ1, σ2, σ3; J2

3 ) in (2.5.16) defines a level set of
the squared vertical angular momentum J2

3 in R3 given by C = 0.
The distinguished function C is a Casimir function for the Nambu
bracket in R3. That is, the Nambu bracket in (2.5.21) with C obeys
{C,H} = 0 for any Hamiltonian H(σ1, σ2, σ3) : R3 → R. Conse-
quently, the motion governed by this R3 bracket takes place on level
sets of J2

3 given by C = 0.

Poisson map Introducing the Nambu bracket in (2.5.21) ensures
that the orbit map for the spherical pendulum π : TR3 → R6 in
(B.7.1) is a Poisson map. That is, the subspace obtained by using the
relations (2.5.14) to restrict to the invariant manifold TS2 produces
a set of Poisson brackets {σi, σj} for i, j = 1, 2, 3, that close amongst
themselves. Namely,

{σi, σj} = εijk
∂C

∂σk
, (2.5.22)

with C given in (2.5.16). These brackets may be expressed in tabular
form, as

{ · , · } σ1 σ2 σ3

σ1

σ2

σ3

0 1− σ2
1 2σ2

−1 + σ2
1 0 − 2σ1σ3

− 2σ2 2σ1σ3 0

In addition, {σi, σ6} = 0 for i = 1, 2, 3, since σ6 = J3 and the {σi
∣∣ i =

1, 2, 3} are all S1-invariant under XJ3 in (2.5.10).
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Remark 2.5.2 The proof that the Nambu bracket in (2.5.21) satisfies
the defining properties in Proposition 2.3.14 that are required for it
to be a genuine Poisson bracket is given in Section 1.11.3. Another
example of the Nambu bracket will be discussed in Section 4.4.4.

Reduced motion: Restriction in R3 to Hamiltonian planes The
individual components of the equations of motion may be obtained
from (2.5.20) as

σ̇1 = −σ2 , σ̇2 = σ1σ3 + g(1− σ2
1) , σ̇3 = 2gσ2 . (2.5.23)

Substituting σ3 = 2(H − gσ1) from equation (2.5.18) and setting the
acceleration of gravity to be unity g = 1 yields

σ̈1 = 3σ2
1 − 2Hσ1 − 1 (2.5.24)

which has equilibria at σ±1 = 1
3(H ±

√
H2 + 3) and conserves the

energy integral
1
2 σ̇

2
1 + V (σ1) = E (2.5.25)

with the potential V (σ1) parameterised by H in (2.5.18) and given
by

V (σ1) = −σ3
1 +Hσ2

1 + σ1 (2.5.26)

Equation (2.5.25) is an energy equation for a particle of unit mass,
with position σ1 and energy E, moving in a cubic potential field
V (σ1). For H = 0, its equilibria in the (σ1, σ̇1) phase plane are at
(σ1, σ̇1) = (±

√
3/3, 0), as sketched in Figure 2.9.

Each curve in the lower panel of Figure 2.9 represents the in-
tersection in the reduced phase-space with S1-invariant coordinates
(σ1, σ2, σ3) ∈ R3 of one of the Hamiltonian planes (2.5.18) with a
level set of J2

3 given byC = 0 in equation (2.5.16). The critical points
of the potential are relative equilibria, corresponding to S1-periodic
solutions. The case H = 0 includes the homoclinic trajectory, for
which the level set E = 0 in (2.5.25) starts and ends with zero ve-
locity at the North pole of the unit sphere. Refer to Section A.6 for
a discussion of the properties of motion in a cubic potential and the
details of how to compute its homoclinic trajectory.
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Figure 2.9: The upper panel shows a sketch of the cubic potential V (σ1) in equa-
tion (2.5.26) for the case H = 0. For H = 0, the potential has three zeros located at
σ1 = 0,±1 and two critical points (relative equilibria) at σ1 = −

√
3/3 (centre) and

σ1 = +
√

3/3 (saddle). The lower panel shows a sketch of its fish-shaped saddle-
centre configuration in the (σ1, σ̇1) phase plane, comprising several level sets of
E(σ1, σ̇1) from equation (2.5.25) for H = 0.

2.5.2 Geometric phase for the spherical pendulum

We write the Nambu bracket (2.5.21) for the spherical pendulum as
a differential form in R3

{F,H} d3σ = dC ∧ dF ∧ dH , (2.5.27)

with oriented volume element d3σ = dσ1 ∧ dσ2 ∧ dσ3. Hence, on a
level set of H we have the canonical Poisson bracket

{f, h}dσ1∧dσ2 = df∧dh =
(
∂f

∂σ1

∂h

∂σ2
− ∂f

∂σ2

∂h

∂σ1

)
dσ1∧dσ2 (2.5.28)
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and we recover equation (2.5.24) in canonical form with Hamilto-
nian

h(σ1, σ2) = −
(

1
2σ

2
2 − σ3

1 +Hσ2
1 + σ1

)
= −

(
1
2σ

2
2 + V (σ1)

)
, (2.5.29)

which, not unexpectedly, is also the conserved energy integral in
(2.5.25) for motion on level sets of H .

For the S1 reduction considered in the present case, the canoni-
cal 1-form is

pidqi = σ2 dσ1 +Hdψ , (2.5.30)

where σ1 and σ2 are the symplectic coordinates for the level sur-
face of H on which the reduced motion takes place and ψ ∈ S1 is
canonically conjugate to H .

Our goal is to finish the solution for the spherical pendulum mo-
tion by reconstructing the phaseψ ∈ S1 from the symmetry-reduced
motion in (σ1, σ2, σ3) ∈ R3 on a level set ofH . Rearranging equation
(4.3.1) gives

Hdψ = −σ2 dσ1 + pidqi . (2.5.31)

Thus, the phase change around a closed periodic orbit on a level set
of H in the (σ1, σ2, ψ,H) phase space decomposes into the sum of
the following two parts:∮

H dψ = H ∆ψ = −
∮
σ2 dσ1︸ ︷︷ ︸

geometric

+
∮
pidqi︸ ︷︷ ︸

dynamic

. (2.5.32)

On writing this decomposition of the phase as

∆ψ = ∆ψgeom + ∆ψdyn , (2.5.33)

one sees from (2.5.23) that

H∆ψgeom =
∮
σ2

2 dt =
∫∫

dσ1 ∧ dσ2 (2.5.34)

is the area enclosed by the periodic orbit on a level set of H . Thus,
the name: geometric phase for ∆ψgeom, because this part of the
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phase equals the geometric area of the periodic orbit. The rest of
the phase is given by

H∆ψdyn =
∮
pi dqi =

∫ T

0
(−σ2σ̇1 +Hψ̇) dt . (2.5.35)

Hence, from the canonical equations σ̇1 = ∂h/∂σ2 and ψ̇ = ∂h/∂H
with Hamiltonian h in (2.5.29), we have

∆ψdyn =
1
H

∫ T

0

(
σ2

∂h

∂σ2
+H

∂h

∂H

)
dt

=
2T
H

(
h+

〈
V (σ1)

〉
− 1

2H
〈
σ2

1

〉)
=

2T
H

(
h+

〈
V (σ1)

〉)
− T

〈
σ2

1

〉
, (2.5.36)

where T is the period of the orbit around which the integration is
performed and the angle brackets 〈 · 〉 denote time average.

The second summand ∆ψdyn in (2.5.33) depends on the Hamilto-
nian h = E, the orbital period T , the value of the level set H and the
time averages of the potential energy and σ2

1 over the orbit. Thus,
∆ψdyn deserves the name dynamic phase, since it depends on the
several aspects of the dynamics along the orbit, not just its area.

This finishes the solution for the periodic motion of the spherical
pendulum up to quadratures for the phase. The remaining homo-
clinic trajectory is determined as in Section A.6.



Chapter 3

Lie, Poincaré, Cartan:
Differential forms

3.1 Poincaré and symplectic manifolds

Henri Poincaré

The geometry of Hamiltonian mechanics
is best expressed by using exterior cal-
culus on symplectic manifolds. Exterior
calculus began with H. Poincaré and was
eventually perfected by E. Cartan using
methods of S. Lie. This chapter intro-
duces key definitions and develops the
necessary ingredients of exterior calcu-
lus.
This chapter casts the ideas underly-
ing the examples we have been study-
ing heuristically in the previous chapters
into the language of differential forms.
The goals of this chapter are, as follows.

• Define differential forms using exterior product (wedge prod-
uct) in a local basis.

• Define the push-forward and pull-back of a differential form
under a smooth invertible map.

165
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• Define the operation of contraction, or substitution of a vector
field into a differential form.

• Define the exterior derivative of a differential form.

• Define Lie derivative in two equivalent ways, either dynam-
ically as the tangent to the flow of a smooth invertible map
acting by push-forward on a differential form, or algebraically
by using Cartan’s formula.

• Derive the various identities for Lie derivatives acting on dif-
ferential forms and illustrate them using steady incompress-
ible fluid flows as an example.

• Explain Nambu’s bracket for divergenceless vector fields in
R3 in the language of differential forms.

• Define the Hodge star operation and illustrate its application
in Maxwell’s equations.

• Explain Poincaré’s Lemma for closed, exact and co-exact forms.

We begin by recalling Hamilton’s canonical equations and us-
ing them to demonstrate Poincaré’s theorem for Hamiltonian flows
heuristically, by a simple direct calculation. This will serve to mo-
tivate further discussion of manifolds, tangent bundles, cotangent
bundles, vector fields and differential forms in the remainder of this
Chapter.

Definition 3.1.1 (Hamilton’s canonical equations)
Hamilton’s canonical equations are written on phase space, a locally
Euclidean space with pairs of coordinates denoted (q, p). Namely,

dq

dt
=
∂H

∂p
,

dp

dt
= − ∂H

∂q
, (3.1.1)

where ∂H/∂q and ∂H/∂p are the gradients of a smooth function on phase
space H(q, p) called the Hamiltonian.

The set of curves in phase space (q(t), p(t)) satisfying Hamilton’s canon-
ical equations (3.1.1) is called a Hamiltonian flow.
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Definition 3.1.2 (Symplectic 2-form)
The oriented area in phase space

ω = dq ∧ dp = − dp ∧ dq

is called the symplectic 2-form.

Definition 3.1.3 (Sym·plec·tic)
From the Greek for plaiting, braiding or joining together.

Definition 3.1.4 (Symplectic flows)
Flows that preserve area in phase space are said to be symplectic.

Remark 3.1.5 There is a close analogy here between oriented phase space
area measured by the symplectic two-form ω = dq∧dp and the correspond-
ing symplectic matrix transformations (1.6.1) that preserve the phase space
area S = q × p in axisymmetric screen optics. The wedge product in the
symplectic two-form ω = dq ∧ dp is the analog of the cross product of vec-
tors in the skewness S = q × p, which is invariant in axisymmetric ray
optics.

Theorem 3.1.6 (Poincaré’s theorem) Hamiltonian flows are symplec-
tic. That is, they preserve the oriented phase space area ω = dq ∧ dp.

Proof. Preservation of ω may first be verified via the same formal
calculation used to prove its preservation (2.3.20) in Theorem 2.3.25.
Namely, along the characteristic equations of the Hamiltonian vec-
tor field (dq/dt, dp/dt) = (q̇(t), ṗ(t)) = (Hp,−Hq), for a solution of
Hamilton’s equations for a smooth Hamiltonian function H(q, p),
the flow of the symplectic two-form ω is governed by

dω

dt
= dq̇ ∧ dp+ dq ∧ dṗ = dHp ∧ dp− dq ∧ dHq

= (Hpqdq +Hppdp) ∧ dp− dq ∧ (Hqqdq +Hqpdp)
= Hpq dq ∧ dp−Hqp dq ∧ dp = (Hpq −Hqp) dq ∧ dp = 0 .

The first step uses the product rule for differential forms, the second
uses antisymmetry of the wedge product (dq ∧ dp = − dp ∧ dq) and
last step uses equality of cross derivatives Hpq = Hqp for a smooth
Hamiltonian function H .
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3.2 Preliminaries for exterior calculus

3.2.1 Manifolds and bundles

Let us review some of the fundamental concepts that have already
begun to emerge in the previous chapter and cast them into the lan-
guage of exterior calculus.

Definition 3.2.1 (Smooth submanifold of R3N )
A smooth K-dimensional submanifold M of the Euclidean space R3N is
any subset which in a neighbourhood of every point on it is a graph of a
smooth mapping of RK into R(3N−K) (where RK and R(3N−K) are coor-
dinate subspaces of R3N ' RK × R(3N−K)).

This means that every point in M has an open neighbourhood
U such that the intersection M ∩ U is the graph of some smooth
function expressing (3N −K) of the standard coordinates of R3N in
terms of the otherK coordinates, e.g., (x, y, z) = (x, f(x, z), z) in R3.
This is also called an embedded submanifold.

Definition 3.2.2 (Tangent vectors and tangent bundle)
The solution q(t) ∈ M is a curve (or trajectory) in manifold M param-
eterised by time in some interval t ∈ (t1 , t2). The tangent vector of
the curve q(t) is the velocity q̇(t) along the trajectory that passes though
the point q ∈ M at time t. This is written q̇ ∈ TqM , where TqM is
the tangent space at position q on the manifold M . Taking the union of
the tangent spaces TqM over the entire configuration manifold defines the
tangent bundle (q, q̇) ∈ TM .

Remark 3.2.3 (Tangent and cotangent bundles)
The configuration space M has coordinates q ∈ M . The union of posi-
tions on M and tangent vectors (velocities) at each position comprises the
tangent bundle TM . Its positions and momenta have phase space coor-
dinates expressed as (q, p) ∈ T ∗M , where T ∗M is the cotangent bundle
of the configuration space.

The terms tangent bundle and cotangent bundle introduced earlier
are properly defined in the context of manifolds. See especially Definition
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3.3.14 in the next section for a precise definition of the cotangent bundle
of a manifold. Until now, we have gained intuition about geometric me-
chanics in the context of examples, by thinking of the tangent bundle as
simply the space of positions and velocities. Likewise, we have regarded the
cotangent bundle simply as a pair of vectors on an optical screen, or as the
space of positions and canonical momenta for a system of particles. In this
chapter, these intuitive definitions will be formalised and made precise by
using the language of differential forms.

3.2.2 Contraction

Definition 3.2.4 (Contraction)
In exterior calculus, the operation of contraction denoted as intro-
duces a pairing between vector fields and differential forms. Contraction is
also called substitution of a vector field into a differential form. For basis
elements in phase space, contraction defines duality relations,

∂q dq = 1 = ∂p dp , and ∂q dp = 0 = ∂p dq , (3.2.1)

so that differential forms are linear functions of vector fields. A Hamilto-
nian vector field:

XH = q̇
∂

∂q
+ ṗ

∂

∂p
= Hp∂q −Hq∂p = { · , H } , (3.2.2)

satisfies the intriguing linear functional relations with the basis elements
in phase space,

XH dq = Hp and XH dp = −Hq . (3.2.3)

Definition 3.2.5 (Contraction rules with higher forms)
The rule for contraction or substitution of a vector field into a differential
form is to sum the substitutions ofXH over the permutations of the factors
in the differential form that bring the corresponding dual basis element
into its leftmost position. For example, substitution of the Hamiltonian
vector field XH into the symplectic form ω = dq ∧ dp yields

XH ω = XH (dq ∧ dp) = (XH dq) dp− (XH dp) dq .
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In this example, XH dq = Hp and XH dp = −Hq, so

XH ω = Hpdp+Hqdq = dH ,

which follows from the duality relations (3.2.1).

This calculation proves the following.

Theorem 3.2.6 (Hamiltonian vector field) The Hamiltonian vec-
tor field XH = { · , H } satisfies

XH ω = dH with ω = dq ∧ dp . (3.2.4)

Remark 3.2.7 The purely geometric nature of relation (3.2.4) argues for
it to be taken as the definition of a Hamiltonian vector field.

Lemma 3.2.8 (d2 = 0 for smooth phase space functions)

Proof. For any smooth phase space function H(q, p), one computes

dH = Hqdq +Hpdp

and taking the second exterior derivative yields

d2H = Hqp dp ∧ dq +Hpq dq ∧ dp
= (Hpq −Hqp) dq ∧ dp = 0 .

Relation (3.2.4) also implies the following.

Corollary 3.2.9 The flow of XH preserves the exact 2-form ω for any
Hamiltonian H .
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Proof. Preservation of ω may be verified first by a formal calcula-
tion using (3.2.4). Along (dq/dt, dp/dt) = (q̇, ṗ) = (Hp,−Hq), for a
solution of Hamilton’s equations, we have

dω

dt
= dq̇ ∧ dp+ dq ∧ dṗ = dHp ∧ dp− dq ∧ dHq

= d(Hp dp+Hq dq) = d(XH ω) = d(dH) = 0 .

The first step uses the product rule for differential forms and the
third and last steps use the property of the exterior derivative d that
d2 = 0 for continuous forms. The latter is due to equality of cross
derivatives Hpq = Hqp and antisymmetry of the wedge product:
dq ∧ dp = − dp ∧ dq.

Definition 3.2.10 (Symplectic flow)
A flow is symplectic, if it preserves the phase space area, or symplectic
two-form, ω = dq ∧ dp.

According to this definition, Corollary 3.2.9 may be simply re-stated
as

Corollary 3.2.11 (Poincaré’s theorem)
The flow of a Hamiltonian vector field is symplectic.

Definition 3.2.12 (Canonical transformations)
A smooth invertible map g of the phase space T ∗M is called a canonical
transformation, if it preserves the canonical symplectic form ω on T ∗M ,
i.e., g∗ω = ω, where g∗ω denotes the transformation of ω under the map
g.

Remark 3.2.13 The usage of the notation g∗ω as the transformation of ω
under the map g foreshadows the idea of pull-back, made more precise in
Definition 3.3.18.

Remark 3.2.14 (Criterion for a canonical transformation) Suppose
in the original coordinates (p, q) the symplectic form is expressed as ω =
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dq ∧ dp. A transformation g : T ∗M 7→ T ∗M written as (Q,P ) =
(Q(p, q), P (p, q) is canonical if the direct computation shows that dQ ∧
dP = c dq ∧ dp, up to a constant factor c. (Such a constant factor c is
unimportant, since it may be absorbed into the units of time in Hamilton’s
canonical equations.)

Remark 3.2.15 By Corollary 3.2.11 of Poincaré’s Theorem 3.1.6, the Hamil-
tonian phase flow gt is a one-parameter group of canonical transforma-
tions.

Theorem 3.2.16 (Preservation of Hamiltonian form)
Canonical transformations preserve Hamiltonian form.

Proof. The coordinate-free relation (3.2.4) keeps its form if

dQ ∧ dP = c dq ∧ dp ,

up to the constant factor c. Hence, Hamilton’s equations re-emerge
in canonical form in the new coordinates, up to a rescaling by c
which may be absorbed into the units of time.

Remark 3.2.17 (Lagrange-Poincaré theorem)
Lagrange’s equations [

L
]
q

:=
d

dt

∂L

∂q̇
− ∂L

∂q
= 0

imply an evolution equation for the differential one-form

d

dt

(∂L
∂q̇

dq
)

=
( d
dt

∂L

∂q̇

)
dq +

∂L

∂q̇
dq̇

= dL .

Applying the exterior derivative, commuting it with the time derivative
and using d2 = 0 yields

d

dt

(
d
∂L

∂q̇
∧ dq

)
= 0 , (3.2.5)

whose preservation is Lagrange’s counterpart of Poincaré’s theorem on the
symplectic property of Hamiltonian flows, found and used in ray optics
almost a century before Poincaré!
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The components ∂L/∂q̇a of the differential one-form,

θL =
∂L

∂q̇a
dqa ,

transform under a change of coordinates onM as a covariant vector.
That is, under a change of coordinates Qi = Qi(q), we find

θL =
∂L

∂q̇a
dqa =

∂L

∂q̇a
∂qa

∂Qb
dQb .

Proposition 3.2.18 A Lagrangian system (M,L) is non-degenerate (hy-
perregular) if and only if the two-form dθL on TM is non-degenerate.

Proof. In coordinates on TM with indices a, b = 1, . . . ,K,

dθL =
∂2L

∂q̇a∂q̇b
dq̇b ∧ dqa +

∂2L

∂q̇a∂qb
dqb ∧ dqa , (3.2.6)

so that the 2K × 2K matrix corresponding to the two-form dθL is
non-degenerate if and only if the K ×K matrix HL in (2.3.3) is non-
degenerate.

Definition 3.2.19 (Canonical, or Liouville one-form)
The one-form θ on T ∗M , defined in phase space coordinates by

θ = padq
a = p · dq ,

is called the canonical, or Liouville one-form. Its exterior derivative
yields (minus) the symplectic two-form,

dθ = −ω = dpa ∧ dqa .

Definition 3.2.20 (Cotangent lift)
A change of base coordinates Qb = Qb(q) in the cotangent bundle T ∗M of
a manifold M induces a change in its fibre coordinates

pa = Pb
∂Qb

∂qa
such that padq

a = PbdQ
b ,

so (Qb, Pb) are also canonical coordinates. This transformation of the fibre
coordinates (canonical momenta) is called the cotangent lift of the base
transformation.
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3.2.3 Hamilton-Jacobi equation

Definition 3.2.21 (Steady generating functions)
A sufficient condition for a transformation (Q,P ) = (Q(p, q), P (p, q)) to
be canonical is that

P · dQ− p · dq = dF . (3.2.7)

Following Hamilton’s approach to geometric optics, this relation defines
a generating function F , which may be chosen to depend on one of the
old phase space variables (p, q) and one of the new phase space variables
(Q,P ).

Remark 3.2.22 (Time-dependent generating functions)

Generating functions based on the phase space action in (2.3.8)
lead to the Hamilton-Jacobi equation. For this, one considers a
time-dependent transformation (Q,P ) = (Q(p, q, t), P (p, q, t)), un-
der which the integrand of the phase space action in (2.3.8) trans-
forms as

p · dq −H(q, p)dt = P · dQ−K(Q,P )dt+ dS , (3.2.8)

in which we require the transformed Hamiltonian to vanish identi-
cally, that is

K(Q,P ) ≡ 0 .

Hence, all its derivatives are also zero, and Hamilton’s equations
become trivial:

dP

dt
= 0 =

dQ

dt
.

That is, the new generalised coordinates Q and momenta P are con-
stants of motion. Under this condition, one may rearrange equation
(3.2.8), so that

dS =
∂S

∂q
· dq +

∂S

∂t
dt+

∂S

∂Q
· dQ

= p · dq −H(q, p)dt− P · dQ . (3.2.9)
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Consequently, the generating function S(q, t,Q) satisfies, term by
term,

∂S

∂q
= p ,

∂S

∂Q
= −P , ∂S

∂t
+H(q, p) = 0 . (3.2.10)

Combining these equations results in the Hamilton-Jacobi equa-
tion, written in the form,

∂S

∂t
(q, t,Q) +H

(
q,
∂S

∂q

)
= 0 . (3.2.11)

Thus, the Hamilton-Jacobi equation (3.2.11) is a single, first-order
nonlinear partial differential equation for the function S of the N
generalised coordinates q = (q1, . . . , qN ) and the time t. The gener-
alised momenta do not appear, except as derivatives of S. Remark-
ably, when the 2N constant parameters Q and P are identified with
the initial values Q = q(ta), P = p(ta), the function S is equal to the
classical action,

S(q, t,Q) =
∫ t

ta

dS =
∫ t

ta

p · dq −H(q, p) dt . (3.2.12)

In geometrical optics, the solution S of the Hamilton-Jacobi equa-
tion (3.2.11) is called Hamilton’s characteristic function.

Remark 3.2.23 (Hamilton’s characteristic function in optics)
Hamilton’s characteristic function S in (3.2.12) has an interesting

interpretation in terms of geometric optics. As we saw in Chapter
1, the tangents to Fermat’s light rays in an isotropic medium are
normal to Huygens wave fronts. The phase of such a wave front is
given by [BoWo1965]

φ =
∫

k · dr− ω(k, r) dt . (3.2.13)

The Huygens wave front is a travelling wave, for which the phase
φ is constant. For such a wave, the phase shift

∫
k · dr along a ray

trajectory such as r(t) in Figure 1.1 is given by
∫
ωdt.
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On comparing the phase relation in (3.2.13) to the Hamilton-
Jacobi solution in equation (3.2.12), one sees that Hamilton’s char-
acteristic function S plays the role of the phase φ of the wave front.
The frequency ω of the travelling wave plays the role of the Hamil-
tonian and the wavevector k corresponds to the canonical momen-
tum. Physically, the index of refraction n(r) of the medium at posi-
tion r enters the travelling wave phase speed ω/k as

ω

k
=

c

n(r)
, k = |k| ,

where c is the speed of light in a vacuum. Consequently, we may
write Hamilton’s canonical equations for a wave front as

dr
dt

=
∂ω

∂k
=
c

n

k
k

=
c2

n2ω
k , (3.2.14)

dk
dt

= − ∂ω
∂r

=
ck

2n3

∂n2

∂r
=
ω

n

∂n

∂r
. (3.2.15)

After a short manipulation, these canonical equations combine into

n2

c

d

dt

(
n2

c

dr
dt

)
=

1
2
∂n2

∂r
. (3.2.16)

In terms of a different variable time increment cdt = n2dτ , equation
(3.2.16) may also be expressed in the form of

d2r
dτ2

=
1
2
∂n2

∂r
(Newton’s 2nd Law) (3.2.17)

If instead of τ we define the variable time increment cdt = ndσ,
then equation (3.2.16) takes the form of the eikonal equation (1.1.7)
for the paths of light rays in geometric optics, r(σ) ∈ R3 as

d

dσ

(
n(r)

dr
dσ

)
=
∂n

∂r
(Eikonal equation) (3.2.18)

As discussed in Chapter 1, this equation follows from Fermat’s prin-
ciple of stationarity of the optical length under variations of the ray
paths,

δ

∫ B

A
n(r(σ)) dσ = 0 (Fermat’s principle) (3.2.19)
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with arclength parameter σ, satisfying dσ2 = dr(σ) · dr(σ) and,
hence, |dr/dσ| = 1.

From this vantage point, one sees that replacing k → ω
c∇S in

Hamilton’s first equation (3.2.14) yields

n(r)
dr
dσ

= ∇S(r) (Huygens equation) (3.2.20)

from which the eikonal equation (3.2.18) may be recovered by dif-
ferentiating, using d/dσ = n−1∇S · ∇ and |∇S|2 = n2.

Thus, the Hamilton-Jacobi equation (3.2.11) includes and unifies
the ideas that originated with Fermat, Huygens and Newton.

Remark 3.2.24 (The threshold of quantum mechanics)

In a paper based on his PhD thesis, Feynman [Fe1948] derived
a new formulation of quantum mechanics based on summing the
complex amplitude for each path exp(iS/~), with action S given by
the Hamilton-Jacobi solution in equation (3.2.12), over all possible
paths between the initial and final points. Earlier Dirac [Dirac1933]
had considered a similar idea, but Dirac had considered only the
classical path. Feynman showed that quantum mechanics emerges
when the amplitudes exp(iS/~) for all paths are summed. That is,
the amplitudes for all paths are added together, then their modulus-
squared is taken according to the quantum mechanical rule for ob-
taining a probability density. Perhaps not unexpectedly, Feynman’s
original paper [Fe1948] which laid the foundations of a new formu-
lation of quantum mechanics was rejected by the mainstream scien-
tific journal then, Physical Review!

Feynman’s formulation of quantum mechanics provides an ex-
tremely elegant view of classical mechanics as being the ~→ 0 limit
of quantum mechanics, through the principle of stationary phase.
In this limit, only the path for which S is stationary (i.e., satisfies
Hamilton’s principle) contributes to the sum over all paths, and the
particle traverses a single trajectory, rather than many. For more
information, see [Fe1948, FeHi1965, Dirac1981].
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3.3 Differential forms and Lie derivatives

3.3.1 Exterior calculus with differential forms

Various concepts involving differential forms have already emerged
heuristically in our earlier discussions of the relations among La-
grangian and Hamiltonian formulations of mechanics. In this chap-
ter, we shall reprise the relationships among these concepts and set
up a framework for using differential forms that generalises the the-
orems of vector calculus involving grad, div and curl, and the in-
tegral theorems of Green, Gauss and Stokes so that they apply to
manifolds of arbitrary dimension.

Definition 3.3.1 (Velocity vectors of smooth curves)
Consider an arbitrary curve c(t) that maps an open interval t ∈ (−ε, ε) ⊂
R around the point t = 0 to the manifold M :

c : (−ε, ε)→M,

with c(0) = x. Its velocity vector at x is defined by c′(0) := dc
dt

∣∣
t=0

= v.

Definition 3.3.2 (Tangent space to a smooth manifold)
The space of velocities v tangent to the manifold at a point x ∈M forms a
vector space called the tangent space to M at x ∈ M . This vector space
is denoted as TxM .

Definition 3.3.3 (Tangent bundle over a smooth manifold)
The disjoint union of tangent spaces to M at the points x ∈M given by

TM =
⋃
x∈M

TxM

is a vector space called the tangent bundle to M and is denoted as TM .

Definition 3.3.4 [Differential of a smooth function]
Let f : M 7→ R be a smooth, real-valued function on an n-dimensional
manifold M . The differential of f at a point x ∈ M is a linear map
df(x) : TxM 7→ R, from the tangent space TxM of M at x to the real
numbers.
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Definition 3.3.5 (Differentiable map)
A map f : M → N from manifold M to manifold N is said to be differ-
entiable (resp. Ck) if it is represented in local coordinates on M and N by
differentiable (resp. Ck) functions.

Definition 3.3.6 (Derivative of a differentiable map)
The derivative of a differentiable map

f : M → N

at a point x ∈M is defined to be the linear map

Txf : TxM → TxN,

constructed for v ∈ TxM by using the chain rule to compute,

Txf · v =
d

dt
f(c(t))

∣∣∣
t=0

=
∂f

∂c

∣∣∣
x

d

dt
c(t)
∣∣∣
t=0

.

Thus Txf · v is the velocity vector at t = 0 of the curve f ◦ c : R → N
at the point x ∈M .

Remark 3.3.7 The tangent vectors of the map f : M → N define a space
of linear operators at each point x in M , satisfying
(i) Tx(f + g) = Txf + Txg (linearity), and
(ii) Tx(fg) = (Txf)g + f(Txg) (the Leibniz rule).

Definition 3.3.8 (Tangent lift)
The union Tf =

⋃
x Txf of the derivatives Txf : TxM → TxN over

points x ∈M is called the tangent lift of the map f : M → N .

Remark 3.3.9 The chain-rule definition of the derivative Txf of a differ-
entiable map at a point x depends on the function f and the vector v. Other
degrees of differentiability are possible. For example, if M and N are man-
ifolds and f : M → N is of class Ck+1, then the tangent lift (Jacobian)
Txf : TxM → TxN is Ck.
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Definition 3.3.10 (Vector field)
A vector field X on a manifold M is a map : M → TM that assigns a
vector X(x) at any point x ∈ M . The real vector space of vector fields on
M is denoted X(M).

Definition 3.3.11 (Local basis of a vector field)
A basis of the vector space TxM may be obtained by using the gradient op-
erator, written as ∇ = (∂/∂x1, ∂/∂x2, . . . , ∂/∂xn) in local coordinates.
In these local coordinates a vector field X has components Xj given by

X = Xj ∂

∂xj
=: Xj∂j ,

where repeated indices are summed over their range. (In this case j =
1, 2, . . . , n.)

Definition 3.3.12 (Dual basis)
As in Definition 3.3.11, relative to the local coordinate basis ∂j = ∂/∂xj ,
j = 1, 2, . . . , n of the tangent space TxM , one may write the dual basis
as dxk, k = 1, 2, . . . , n, so that, in familiar notation, the differential of a
function f is given by

df =
∂f

∂xk
dxk ,

and again one sums on repeated indices.

Definition 3.3.13 (Subscript-comma notation)
Subscript-comma notation abbreviates partial derivatives as

f,k :=
∂f

∂xk
, so that df = f,k dx

k .

Definition 3.3.14 (Cotangent space of M at x)
Being a linear map from the tangent space TxM of M at x to the reals, the
differential defines the space T ∗xM dual to TxM . The dual space T ∗xM is
called the cotangent space of M at x.
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Definition 3.3.15 (Tangent and cotangent bundles) The union of tan-
gent spaces TxM over all x ∈M is the tangent bundle TM of the mani-
fold M . Its dual is the cotangent bundle, denoted T ∗M .

3.3.2 Pull-back and push-forward notation:
coordinate-free representation

We introduce the pull-back and push-forward notation for
changes of basis by variable transformations in functions, vector
fields and differentials. Let φ : M → N be a smooth invertible
map from the manifold M to the manifold N .

φ∗f pull-back of a function: φ∗f = f ◦ φ .

φ∗g push-forward of a function: φ∗g = g ◦ φ−1 .

φ∗X push-forward of a vector field X by φ:

(φ∗X)
(
φ(z)

)
= Tzφ ·X(z) . (3.3.1)

The push-forward of a vector field X by φ has compo-
nents,

(φ∗X)l
∂

∂φl(z)
= XJ(z)

∂

∂zJ
,

so that

(φ∗X)l =
∂φl(z)
∂zJ

XJ(z) =: (Tzφ ·X(z))l . (3.3.2)

This formula defines the notation Tzφ ·X(z).

φ∗Y pull-back of a vector field Y by φ:

φ∗Y = (φ−1)∗Y .
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φ∗df pull-back of differential df of function f by φ:

φ∗df = d(f ◦ φ) = d(φ∗f) . (3.3.3)

In components, this is

φ∗df = df(φ(z)) =
∂f

∂φl(z)
(Tzφ · dz)l =

∂f

∂zJ
dzJ ,

in which

(Tzφ · dz)l =
∂φl(z)
∂zJ

dzJ . (3.3.4)

3.3.3 Wedge product of differential forms

Differential forms of higher degree may be constructed locally from
the one-form basis dxj , j = 1, 2, . . . , n, by composition with the
wedge product, or exterior product, denoted by the symbol ∧. The
geometric construction of higher-degree forms is intuitive and the
wedge product is natural, if one imagines first composing the one-
form basis as a set of line elements in space to construct oriented
surface elements as two-forms dxj ∧ dxk, then volume elements as
three-forms dxj ∧ dxk ∧ dxl, etc. For these surface and volume el-
ements to be oriented, the wedge product must be antisymmetric.
That is, dxj ∧ dxk = − dxk ∧ dxj under exchange of the order in a
wedge product. By using this construction, any k-form α ∈ Λk on
M may be written locally at a point m ∈M in the dual basis dxj as

αm = αi1...ik(m)dxi1 ∧ · · · ∧ dxik ∈ Λk , i1 < i2 < · · · < ik , (3.3.5)

where the sum over repeated indices is ordered, so that it must be
taken over all ij satisfying i1 < i2 < · · · < ik.

The rules for composition with the wedge product in the con-
struction of k-forms Λk with k ≤ n on an n-dimensional manifold
are summarised in the following proposition.
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Proposition 3.3.16 (Wedge product rules)
The properties of the wedge product among differential forms in n di-
mensions are:

(i) α ∧ β is associative: α ∧ (β ∧ γ) = (α ∧ β) ∧ γ.

(ii) α ∧ β is bilinear in α and β:

(aα1 + bα2) ∧ β = aα1 ∧ β + bα2 ∧ β
α ∧ (cβ1 + eβ2) = cα ∧ β1 + eα ∧ β2 ,

for a, b, c, e ∈ R.

(iii) α ∧ β is anticommutative: α ∧ β = (−1)klβ ∧ α , where α
is a k-form and β is an l-form. The prefactor (−1)kl counts
the signature of the switches in sign required in reordering the
wedge product so that its basis indices are strictly increasing,
that is, they satisfy i1 < i2 < · · · < ik+l.

3.3.4 Pull-back & push-forward of differential forms

Smooth invertible maps act on differential forms by the opera-
tions of pull-back and push-forward.

Definition 3.3.17 (Diffeomorphism)
A smooth invertible map whose inverse is also smooth is said to be a
diffeomorphism.

Definition 3.3.18 (Pull-back and push-forward)
Let φ : M → N be a smooth invertible map from the manifold M to
the manifold N and let α be a k-form on N . The pull-back φ∗α of α
by φ is defined as the k-form on M given by

φ∗αm = αi1...ik(φ(m))(Tmφ · dx)i1 ∧ · · · ∧ (Tmφ · dx)ik , (3.3.6)
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with i1 < i2 < · · · < ik. If the map φ is a diffeomorphism, the
push-forward φ∗α of a k-form α by the map φ is defined by φ∗α =
(φ∗)−1α. That is, for diffeomorphisms, pull-back of a differential form
is the inverse of push-forward.

Example 3.3.19 In the definition (3.3.6) of the pull-back of the k-form
α, the additional notation Tmφ expresses the chain rule for change of
variables in local coordinates. For example,

(Tmφ · dx)i1 =
∂φi1(m)
∂xiA

dxiA .

Thus, the pull-back of a one-form is given as in (3.3.2) and (3.3.4),

φ∗
(
v(x) · dx

)
= v

(
φ(x)

)
· dφ(x)

= vi1
(
φ(x)

)(∂φi1(x)
∂xiA

dxiA
)

= v
(
φ(x)

)
· (Txφ · dx) .

Pull-backs of other differential forms may be built up from
their basis elements, by the following.

Proposition 3.3.20 (Pull-back of a wedge product)
The pull-back of a wedge product of two differential forms is the wedge
product of their pull-backs:

φ∗(α ∧ β) = φ∗α ∧ φ∗β . (3.3.7)

Remark 3.3.21 The Definition 3.2.12 of a canonical transformation
may now be rephrased using the pull-back operation, as follows. A
smooth invertible transformation φ is canonical, if

φ∗ω = c ω ,

for some constant c ∈ R.
Likewise, Poincaré’s Theorem 3.1.6 of invariance of the symplectic

2-form under a Hamiltonian flow φt depending on a real parameter t
may be expressed in terms of the pull-back operation as

φ∗t (dq ∧ dp) = dq ∧ dp .
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3.3.5 Summary of differential-form operations

Besides the wedge product, three basic operations are commonly
applied to differential forms. These are contraction, exterior deriva-
tive and Lie derivative.

Contraction with a vector field X lowers the degree:

X Λk 7→ Λk−1 .

Exterior derivative d raises the degree:

dΛk 7→ Λk+1 .

Lie derivative £X by vector field X preserves the degree:

£XΛk 7→ Λk , where £XΛk =
d

dt

∣∣∣∣
t=0

φ∗tΛ
k ,

in which φt is the flow of the vector field X .

Lie derivative £X satisfies Cartan’s formula:

£Xα = X dα+ d(X α) for α ∈ Λk .

Remark 3.3.22
Note that Lie derivative commutes with exterior derivative. That is,

d(£Xα) = £Xdα , for α ∈ Λk(M) and X ∈ X(M) .

3.3.6 Contraction, or interior product
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Definition 3.3.23 (Contraction, or interior product)
Let α ∈ Λk be a k-form on a manifold M

α = αi1...ikdx
i1 ∧ · · · ∧ dxik ∈ Λk , with i1 < i2 < · · · < ik ,

and let X = Xj∂j be a vector field. The contraction, or interior prod-
uct X α of a vector field X with a k-form α is defined by

X α = Xjαji2...ikdx
i2 ∧ · · · ∧ dxik . (3.3.8)

Note that

X (Y α) = X lY mαmli3...ikdx
i3 ∧ · · · ∧ dxik

= −Y (X α) ,

by antisymmetry of αmli3...ik , particularly in its first two indices.

Remark 3.3.24 (Examples of contraction)

(1) A mnemonic device for keeping track of signs in contraction or sub-
stitution of a vector field into a differential form is to sum the sub-
stitutions of X = Xj∂j over the permutations that bring the corre-
sponding dual basis element into the leftmost position in the k-form
α. For example, in two dimensions, contraction of the vector field
X = Xj∂j = X1∂1 +X2∂2 into the two-form α = αjkdx

j ∧ dxk
with α21 = −α12, yields

X α = Xjαji2dx
i2 = X1α12dx

2 +X2α21dx
1 .

Likewise, in three dimensions, contraction of the vector field X =
X1∂1+X2∂2+X3∂3 into the three-form α = α123dx

1 ∧ dx2 ∧ dx3

with α213 = −α123, etc. yields

X α = X1α123dx
2 ∧ dx3 + cyclic permutations,

= Xjαji2i3dx
i2 ∧ dxi3 with i2 < i3 .
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(2) The rule for contraction of a vector field with a differential form de-
velops from the relation

∂j dxk = δkj ,

in the coordinate basis ej = ∂j := ∂/∂xj and its dual basis ek =
dxk. Contraction of a vector field with a one-form yields the dot
product, or inner product, between a covariant vector and a con-
travariant vector is given by

Xj∂j vkdx
k = vkδ

k
jX

j = vjX
j ,

or, in vector notation,

X v · dx = v ·X .

This is the dot product of vectors v and X.

Our previous calculations for 2-forms and 3-forms provide the
following additional expressions for contraction of a vector field
with a differential form,

X B · dS = −X×B · dx ,
X d 3x = X · dS ,

d(X d 3x) = d(X · dS) = (divX) d 3x .

Remark 3.3.25 (Physical examples of contraction)
The first of these contraction relations represents the Lorentz, or
Coriolis force, when X is particle velocity and B is either magnetic
field, or rotation rate, respectively. The second contraction relation
is the flux of the vector X through a surface element. The third is
the exterior derivative of the second, thereby yielding the divergence
of the vector X.

Exercise. Show that

X (X B · dS) = 0 ,
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and
(X B · dS) ∧B · dS = 0 ,

for any vector field X and 2-form B · dS. F

(3) By the linearity of its definition (3.3.8), contraction of a vector field
X with a differential k-form α satisfies

(hX) α = h(X α) = X hα .

Proposition 3.3.26 (Contracting through wedge product)
Let α be a k-form and β be a one-form on a manifold M and let X = Xj∂j
be a vector field. Then the contraction of X through the wedge product
α ∧ β satisfies

X (α ∧ β) = (X α) ∧ β + (−1)kα ∧ (X β) . (3.3.9)

Proof. The proof is a straightforward calculation using the defini-
tion of contraction. The exponent k in the factor (−1)k counts the
number of exchanges needed to get the one-form β to the left-most
position through the k-form α.

Proposition 3.3.27 (Contraction commutes with pull-back)
That is,

φ∗(X(m) α) = X(φ(m)) φ∗α . (3.3.10)

Proof. Direct verification using the relation between pull-back of
forms and push-forward of vector fields.

Definition 3.3.28 (Alternative notations for contraction)
Besides the hook notation with , one also finds in the literature the fol-
lowing two alternative notations for contraction of a vector field X with
k-form α ∈ Λk on a manifold M .

X α = iXα = α(X, · , · , . . . , ·︸ ︷︷ ︸
k − 1 slots

) ∈ Λk−1 . (3.3.11)
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In the last alternative, one leaves a dot ( · ) in each remaining slot of the
form that results after contraction. For example, contraction of the Hamil-
tonian vector field XH = { · , H} with the symplectic 2-form ω ∈ Λ2

produces the 1-form,

XH ω = ω(XH , · ) = −ω( · , XH) = dH .

Proposition 3.3.29 (Hamiltonian vector field definitions)
The two definitions of Hamiltonian vector field XH

dH = XH ω and XH = { · , H} ,

are equivalent.

Proof. The symplectic Poisson bracket satisfies {F,H} = ω(XF , XH),
because

ω(XF , XH) := XH XF ω = XH dF = −XF dH = {F, H} .

Remark 3.3.30 The relation {F, H} = ω(XF , XH) means that the Hamil-
tonian vector field defined via the symplectic form coincides exactly with
the Hamiltonian vector field defined using the Poisson bracket.

3.3.7 Exterior derivative

Definition 3.3.31 (Exterior derivative of a k-form)
The exterior derivative of the k-form α written locally as

α = αi1...ikdx
i1 ∧ · · · ∧ dxik ,

in which one sums on all ij satisfying i1 < i2 < · · · < ik), is the (k + 1)-
form dα written in coordinates as

dα = dαi1...ik ∧ dx
i1 ∧ · · · ∧ dxik , with i1 < i2 < · · · < ik ,

where dαi1...ik = (∂αi1...ik/∂x
j) dxj summed on all j.
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With this local definition of dα in coordinates, one may verify the
following properties.

Proposition 3.3.32 (Properties of the exterior derivative)

(i) If α is a zero-form (k = 0), that is α = f ∈ C∞(M), then df is
the one-form given by the differential of f .

(ii) dα is linear in α, that is

d(c1α1 + c2α2) = c1dα1 + c2dα2 for constants c1, c2 ∈ R .

(iii) dα satisfies the product rule ,

d(α ∧ β) = (dα) ∧ β + (−1)kα ∧ dβ , (3.3.12)

where α is a k-form and β is a one-form.

(iv) d2 = 0, that is, d(dα) = 0 for any k-form α.

(v) d is a local operator, that is, dα depends only on local properties
of α restricted to any open neighbourhood of x.

3.3.8 Exercises in exterior calculus operations

Vector notation for differential basis elements
One denotes differential basis elements dxi and dSi = 1

2εijkdx
j∧dxk,
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for i, j, k = 1, 2, 3, in vector notation as

dx := (dx1, dx2, dx3) ,
dS = (dS1, dS2, dS3)

:= (dx2 ∧ dx3, dx3 ∧ dx1, dx1 ∧ dx2) ,

dSi :=
1
2
εijkdx

j ∧ dxk ,

d 3x = dVol := dx1 ∧ dx2 ∧ dx3

=
1
6
εijkdx

i ∧ dxj ∧ dxk .

Exercise. Vector calculus operations
Show that contraction of the vector field X = Xj∂j =:
X · ∇ with the differential basis elements recovers the
following familiar operations among vectors:

X dx = X ,

X dS = X× dx ,
(or, X dSi = εijkX

jdxk)
Y X dS = X×Y ,

X d 3x = X · dS = XkdSk ,

Y X d 3x = X×Y · dx = εijkX
iY jdxk ,

Z Y X d 3x = X×Y · Z .

F

Exercise. Exterior derivatives in vector notation
Show that the exterior derivative and wedge product
satisfy the following relations in components and in three-
dimensional vector notation:

df = f,j dx
j =: ∇f · dx ,

0 = d2f = f,jk dx
k ∧ dxj ,

df ∧ dg = f,j dx
j ∧ g,k dxk

=: (∇f ×∇g) · dS ,
df ∧ dg ∧ dh = f,j dx

j ∧ g,k dxk ∧ h,l dxl

=: (∇f · ∇g ×∇h) d 3x .
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F

Exercise. Vector calculus formulas
Show that the exterior derivative yields the following
vector calculus formulas:

df = ∇f · dx ,
d(v · dx) = (curl v) · dS ,
d(A · dS) = (div A) d 3x .

The compatibility condition d2 = 0 is written for these
forms as

0 = d2f = d(∇f · dx) = (curl grad f) · dS ,
0 = d2(v · dx) = d

(
(curl v) · dS

)
= (div curl v) d 3x .

The product rule (A.7.1) is written for these forms as

d
(
f(A · dx)

)
= df ∧A · dx + fcurlA · dS
=

(
∇f ×A + fcurlA

)
· dS

= curl(fA) · dS ,

and

d
(
(A · dx) ∧ (B · dx)

)
= (curlA) · dS ∧B · dx
−A · dx ∧ (curlB) · dS

=
(
B · curlA−A · curlB

)
d 3x

= d
(
(A×B) · dS

)
= div(A×B) d 3x .

These calculations return the familiar formulas from vec-
tor calculus for quantities curl(grad), div(curl), curl(fA)
and div(A×B). F

Exercise. Integral calculus formulas
Show that Stokes theorem for the vector calculus formu-
las yields the following familiar results in R3:
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(1) The fundamental theorem of calculus, upon integrat-
ing df along a curve in R3 starting at point a and
ending at point b,∫ b

a
df =

∫ b

a
∇f · dx = f(b)− f(a) .

(2) Classical Stokes theorem, for a compact surface S
with boundary ∂S:∫

S
(curl v) · dS =

∮
∂S

v · dx .

(For a planar surface Ω ∈ R2, this is Green’s theo-
rem.)

(3) The Gauss divergence theorem, for a compact spatial
domain D with boundary ∂D:∫

D
(div A) d 3x =

∮
∂D

A · dS .

F

These exercises illustrate the following.

Theorem 3.3.33 (Stokes theorem)
SupposeM is a compact oriented k-dimensional manifold with bound-
ary ∂M and α is a smooth (k − 1)-form on M . Then∫

M
dα =

∮
∂M

α .

3.4 Lie derivative
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Definition 3.4.1 (Dynamic definition of Lie derivative) Let α
be a k-form on a manifold M and let X be a vector field with flow φt
on M . The Lie derivative of α along X is defined as

£Xα =
d

dt

∣∣∣∣
t=0

(φ∗tα) . (3.4.1)

Remark 3.4.2 This is the definition we have been using all along in Chap-
ter 1 in defining vector fields by their characteristic equations.

Definition 3.4.3 (Cartan’s formula for Lie derivative) Cartan’s
formula defines the Lie derivative of the k-form α with respect to a
vector field X in terms of the operations d and as

£Xα = X dα+ d(X α) . (3.4.2)

The proof of the equivalence of these two definitions of the Lie
derivative of an arbitrary k-form is straightforward, but too cum-
bersome to be given here. We shall investigate the equivalence of
these two definitions in a few individual cases, instead.

3.4.1 Poincaré’s theorem

By Cartan’s formula, the Lie derivative of a differential form ω by a
Hamiltonian vector field XH is defined by

£XHω := d(XH ω) +XH dω .
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Proposition 3.4.4 Poincaré’s Theorem 3.2.11 for preservation of the sym-
plectic form ω may be rewritten using Lie derivative notation as

0 =
d

dt
φ∗tω

∣∣∣∣
t=0

= £XHω := d(XH ω) +XH dω

=: (divXH)ω . (3.4.3)

The last equality defines the divergence of the vector field XH , which van-
ishes by virtue of d(XH ω) = d2H = 0 and dω = 0.

Remark 3.4.5

• Relation (3.4.3) expresses Hamiltonian dynamics as the symplectic
flow in phase space of the divergenceless Hamiltonian vector field
XH .

• The Lie derivative operation defined in (3.4.3) is equivalent to the
time derivative along the characteristic paths (flow) of the first order
linear partial differential operator XH , which are obtained from its
characteristic equations,

dt =
dq

Hp
=

dp

−Hq
.

This equivalence instills the dynamical meaning of the Lie deriva-
tive. Namely,

£XHω =
d

dt
φ∗tω

∣∣∣∣
t=0

is the evolution operator for the symplectic flow φt in phase space.

Theorem 3.4.6 (Poincaré theorem for N degrees of freedom)
For a system ofN degrees of freedom, the flow of a Hamiltonian vector field
XH = { · , H} preserves each subvolume in the phase space T ∗RN . That
is, let ωn ≡ dqn ∧ dpn be the symplectic form expressed in terms of the
position and momentum of the n-th particle. Then

dωM
dt

∣∣∣∣
t=0

= £XHωM = 0 , for ωM = ΠM
n=1ωn , for all M ≤ N .
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Proof. The proof of the preservation of the Poincaré invariants ωM
with M = 1, 2, . . . , N follows the same pattern as the verification
for a single degree of freedom. This is because each factor ωn =
dqn ∧ dpn in the wedge product of symplectic forms is preserved by
its corresponding Hamiltonian flow in the sum

XH =
M∑
n=1

(
q̇n

∂

∂qn
+ ṗn

∂

∂pn

)
=

M∑
n=1

(
Hpn∂qn −Hqn∂pn

)
= { · , H } .

Thus,
XH ωn = dH := Hpn dpn +Hqn dqn

with ωn = dqn ∧ dpn and one uses

∂qm dqn = δmn = ∂pm dpn

and
∂qm dpn = 0 = ∂pm dqn

to compute

dωn
dt

∣∣∣∣
t=0

= £XHωn := d(XH ωn)︸ ︷︷ ︸
d(dH) = 0

+ XH dωn︸ ︷︷ ︸
= 0

= 0 , (3.4.4)

where ωn ≡ dqn ∧ dpn is closed (dωn = 0) for all n.

Remark 3.4.7 Many of the following exercises may be solved (or checked)
by equating the dynamical definition of Lie derivative in equation (3.4.1)
with its geometrical definition by Cartan’s formula (3.4.2)

£Xα =
d

dt

∣∣∣∣
t=0

(φ∗tα)

= X dα+ d(X α) ,

where α is a k-form on a manifold M and X is a smooth vector field with
flow φt on M . Informed by this equality, one may derive various Lie-
derivative relations by differentiating the properties of the pull-back φ∗t ,
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which commutes with exterior derivative as in (3.3.3), wedge product as
in (3.3.7) and contraction as in (3.3.10). That is, for m ∈M ,

d(φ∗tα) = φ∗tdα ,

φ∗t (α ∧ β) = φ∗tα ∧ φ∗tβ ,
φ∗t (X(m) α) = X(φt(m)) φ∗tα .

3.4.2 Lie derivative exercises

Exercise. Lie derivative of forms in R3

Show that both the dynamic definition and Cartan’s for-
mula imply the following Lie derivative relations in vec-
tor notation,

(a) £Xf = X df = X · ∇f ,

(b) £X (v · dx) =
(
− X× curl v +∇(X · v)

)
· dx ,

(c) £X(ω · dS) =
(
− curl (X× ω) + X divω

)
· dS ,

(d) £X(f d 3x) = (div fX) d 3x .

F

Exercise. Lie derivative identities for k-forms
Show that both the dynamic definition and Cartan’s for-
mula imply the following Lie derivative identities for a
k-form α:

(a) £fXα = f£Xα+ df ∧ (X α) ,

(b) £Xdα = d
(
£Xα

)
,

(c) £X(X α) = X £Xα ,

(d) £X(Y α) = (£XY ) α+ Y (£Xα).

(e) When k = 1 so that α is a 1-form (α = dx), show that
the previous exercise (d) implies a useful relation
for (£XY ). Namely,

£X(Y dx) = £XY dx + Y £Xdx , (3.4.5)
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which implies the relation,

£XY = [X, Y ] , (3.4.6)

where [X, Y ] is the Jacobi-Lie bracket (1.11.3) of vec-
tor fields X and Y .

(f) Use the two properties

X (α ∧ β) = (X α) ∧ β + (−1)kα ∧ (X β) ,

for contraction ( ) and

d(α ∧ β) = (dα) ∧ β + (−1)kα ∧ dβ ,

for exterior derivative (d), along with Cartan’s for-
mula, to verify the product rule for Lie derivative
of the wedge product,

£X(α ∧ β) = (£Xα) ∧ β + α ∧£Xβ . (3.4.7)

The product rule for Lie derivative (3.4.7) also fol-
lows immediately from its dynamical definition (3.4.1).

(g) Use

[X , Y ] α = £X(Y α)− Y (£Xα) , (3.4.8)

as verified in part (d) in concert with the defini-
tion(s) of Lie derivative to show,

£[X ,Y ]α = £X£Y α−£Y £Xα . (3.4.9)

(h) Use the result of (g) to verify the Jacobi identity for
the Lie derivative,

£[Z , [X ,Y ] ] α+ £[X , [Y , Z] ] α+ £[Y , [Z ,X] ] α = 0 .

F
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3.5 Formulations of ideal fluid dynamics

3.5.1 Euler’s fluid equations

Euler’s equations for the incompressible motion of an ideal flow of a
fluid of unit density and velocity u satisfying divu = 0 in a rotating
frame with Coriolis parameter curlR = 2Ω are given in the form of
Newton’s Law of Force by

∂t u + u · ∇u︸ ︷︷ ︸
Acceleration

= u× 2Ω︸ ︷︷ ︸
Coriolis

− ∇p︸︷︷︸
Pressure

. (3.5.1)

Requiring preservation of the divergence-free (volume preserving)
constraint ∇ · u = 0 results in a Poisson equation for pressure p,
which may be written in several equivalent forms,

−∆p = div
(
u · ∇u− u× 2Ω

)
,

= ui,juj,i − div
(
u× 2Ω

)
,

= tr S2 − 1
2
|curlu|2 − div

(
u× 2Ω

)
, (3.5.2)

where S = 1
2(∇u +∇uT ) is the strain-rate tensor.

The Newton’s Law equation for Euler fluid motion in (3.5.1) may
be rearranged into an alternative form,

∂t v − u× ω +∇
(
p+

1
2
|u|2

)
= 0 , (3.5.3)

where we denote

v ≡ u + R , ω = curlv = curlu + 2Ω , (3.5.4)

and introduce the Lamb vector,

` := −u× ω , (3.5.5)

which represents the nonlinearity in Euler’s fluid equation (3.5.3).
The Poisson equation (3.5.2) for pressure p may now be expressed
in terms of the divergence of the Lamb vector,

−∆
(
p+ 1

2 |u|
2
)

= div(−u× curl v) = div ` . (3.5.6)
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Remark 3.5.1 (Boundary Conditions)

Because the velocity u must be tangent to any fixed boundary, the nor-
mal component of the motion equation must vanish. This requirement
produces a Neumann condition for pressure given by

∂n
(
p+ 1

2 |u|
2
)

+ n̂ · ` = 0 , (3.5.7)

at a fixed boundary with unit outward normal vector n̂.

Remark 3.5.2 (Helmholtz vorticity dynamics)

Taking the curl of the Euler fluid equation (3.5.3) yields the Helmholtz
vorticity equation

∂tω − curl (u× ω) = 0 , (3.5.8)

whose geometrical meaning will emerge in discussing Stokes Theorem 3.5.5
for the vorticity of a rotating fluid.

The rotation terms have now been fully integrated into both the
dynamics and the boundary conditions. In this form, the Kelvin
circulation theorem and the Stokes vorticity theorem will emerge
naturally together as geometrical statements.

Theorem 3.5.3 (Kelvin’s circulation theorem)
The Euler equations (3.5.1) preserve the circulation integral I(t) defined
by

I(t) =
∮
c(u)

v · dx , (3.5.9)

where c(u) is a closed circuit moving with the fluid at velocity u.

Proof. The dynamical definition of Lie derivative (3.4.1) yields the
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following for the time rate of change of this circulation integral,

d

dt

∮
c(u)

v · dx =
∮
c(u)

(
∂

∂t
+ £u

)
(v · dx)

=
∮
c(u)

(
∂v
∂t

+
∂v
∂xj

uj + vj
∂uj

∂x

)
· dx

= −
∮
c(u)
∇
(
p+

1
2
|u|2 − u · v

)
· dx

= −
∮
c(u)

d
(
p+

1
2
|u|2 − u · v

)
= 0 . (3.5.10)

The Cartan formula (3.4.2) defines the Lie derivative of the circula-
tion integrand in an equivalent form that we need for the third step
and will also use in a moment for the Stokes theorem,

£u(v · dx) =
(
u · ∇v + vj∇uj

)
· dx

= u d(v · dx) + d(u v · dx)
= u d(curl v · dS) + d(u · v)
=

(
− u× curl v +∇(u · v)

)
· dx . (3.5.11)

This identity recasts Euler’s equation into the following geometric
form,(

∂

∂t
+ £u

)
(v · dx) =

(
∂tv − u× curl v +∇(u · v)

)
· dx

= −∇
(
p+

1
2
|u|2 − u · v

)
· dx

= − d
(
p+

1
2
|u|2 − u · v

)
. (3.5.12)

This finishes the last step in the proof (3.5.10), because the integral
of an exact differential around a closed loop vanishes.

The exterior derivative of the Euler fluid equation in the form
(3.5.12) yields Stokes theorem, after using the commutativity of the
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exterior and Lie derivatives [d, £u] = 0,

d£u(v · dx) = £u d(v · dx)
= £u(curlv · dS)
= − curl

(
u× curlv

)
· dS

=
[
u · ∇curlv + curlv(divu)− (curlv) · ∇u

]
· dS

(by divu = 0) =
[
u · ∇curlv − (curlv) · ∇u

]
· dS

=: [u, curlv ] · dS , (3.5.13)

where [u, curlv ] denotes the Jacobi-Lie bracket (1.11.3) of the vector
fields u and curlv. This calculation proves the following.

Theorem 3.5.4 Euler’s fluid equations (3.5.3) imply that

∂ω

∂t
= − [u, ω ] (3.5.14)

where [u, ω ] denotes the Jacobi-Lie bracket (1.11.3) of the divergenceless
vector fields u and ω := curlv.

The exterior derivative of Euler’s equation in its geometric form
(3.5.12) is equivalent to the curl of its vector form (3.5.3). That is,

d

(
∂

∂t
+ £u

)
(v · dx) =

(
∂

∂t
+ £u

)
(curlv · dS) = 0 . (3.5.15)

Hence from the calculation in (3.5.13) and the Helmholtz vorticity
equation (3.5.15) we have(

∂

∂t
+ £u

)
(curlv · dS) =

(
∂tω − curl (u× ω)

)
· dS = 0 , (3.5.16)

in which one denotes ω := curlv. This Lie-derivative version of the
Helmholtz vorticity equation may be used to prove the following
form of Stokes theorem for the Euler equations in a rotating frame.

Theorem 3.5.5 (Stokes theorem for vorticity of a rotating fluid)

d

dt

∫∫
S(u)

curlv · dS =
∫∫

S(u)

(
∂

∂t
+ £u

)
(curlv · dS) (3.5.17)

=
∫∫

S(u)

(
∂tω − curl (u× ω)

)
· dS = 0 ,
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where the surface S(u) is bounded by an arbitrary circuit ∂S = c(u)
moving with the fluid.

3.5.2 Steady solutions: Lamb surfaces

According to Theorem 3.5.4, Euler’s fluid equations (3.5.3) imply
that

∂ω

∂t
= − [u, ω ] . (3.5.18)

Consequently, the vector fields u, ω in steady Euler flows, which sat-
isfy ∂tω = 0, also satisfy the condition necessary for the Frobenius
theorem to hold1 – namely, that their Jacobi-Lie bracket vanishes.
That is, in smooth steady, or equilibrium, solutions of Euler’s fluid
equations, the flows of the two divergenceless vector fields u and ω
commute with each other and lie on a surface in three dimensions.

A sufficient condition for this commutation relation is that the
Lamb vector ` := −u× curlv in (3.5.5) satisfies

` := −u× curlv = ∇H(x) , (3.5.19)

for some smooth functionH(x). This condition means that the flows
of vector fields u and curlv (which are steady flows of the Euler equa-
tions) are both confined to the same surface H(x) = const. Such a
surface is called a Lamb surface.

The vectors of velocity (u) and total vorticity (curlv) for a steady
Euler flow are both perpendicular to the normal vector to the Lamb
surface along ∇H(x). That is, the Lamb surface is invariant under
the flows of both vector fields, viz

£uH = u · ∇H = 0 and £curlvH = curlv · ∇H = 0 . (3.5.20)

The Lamb surface condition (3.5.19) has the following coordinate-
free representation [HaMe1998].

1For a precise statement and proof of the Frobenius Theorem with applications
to differential geometry, see [La1999].
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Theorem 3.5.6 (Lamb surface condition [HaMe1998])
The Lamb surface condition (3.5.19) is equivalent to the following double
substitution of vector fields into the volume form,

dH = u curlv d 3x . (3.5.21)

Proof. Recall that the contraction of vector fields with forms yields
the following useful formula for the surface element:

∇ d 3x = dS . (3.5.22)

Then using results from previous exercises in vector calculus oper-
ations one finds by direct computation that

u curlv d 3x = u (curlv · dS)
= −

(
u× curlv

)
· dx

= ∇H · dx
= dH . (3.5.23)

Remark 3.5.7 Formula (3.5.23)

u (curlv · dS) = dH

is to be compared with
Xh ω = dH ,

in the definition of a Hamiltonian vector field in equation (3.2.4) of Theo-
rem 3.2.6. Likewise, the stationary case of the Helmholtz vorticity equation
(3.5.15), namely,

£u(curlv · dS) = 0 . (3.5.24)

is to be compared with the proof of Poincaré’s theorem in Proposition 3.4.4

£Xhω = d(Xh ω) = d2H = 0 .

Thus, the 2-form curlv · dS plays the same role for stationary Euler fluid
flows as the symplectic form dq∧dp plays for canonical Hamiltonian flows.
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Definition 3.5.8 The Clebsch representation of the 1-form v · dx is de-
fined by

v · dx = −Π dΞ + dΨ . (3.5.25)

The functions Ξ, Π and Ψ are called Clebsch potentials for the vector v.2

In terms of the Clebsch representation (3.5.25) of the 1-form v·dx,
the total vorticity flux curlv · dS = d(v · dx) is the exact 2-form,

curlv · dS = dΞ ∧ dΠ . (3.5.26)

This amounts to writing the flow lines of the vector field of the total
vorticity curlv as the intersections of level sets of surfaces Ξ = const
and Π = const. In other words,

curlv = ∇Ξ×∇Π , (3.5.27)

with the assumption that these level sets foliate R3. That is, one as-
sumes that any point in R3 along the flow of the total vorticity vec-
tor field curlv may be assigned to a regular intersection of these level
sets. To justify this assumption, we shall refer without attempting a
proof to the following theorem.

Theorem 3.5.9 (Geometry of Lamb surfaces [ArKh1992])
In general, closed Lamb surfaces are tori foliating R3.

Hence, the symmetry [u, curlv ] = 0 that produces the Lamb
surfaces for the steady incompressible flow of the vector field u on a
three-dimensional manifold M ∈ R3 affords a reduction to a family
of two-dimensional total vorticity flux surfaces. These surfaces are
coordinatised by formula (3.5.26) and they may be envisioned along
with the flow lines of the vector field curlv in R3 by using formula
(3.5.27). The main result is the following.

2The Clebsch representation is another example of a momentum map. For more
discussion of this aspect of fluid flows, see [MaWe83, HoMa2004].
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Theorem 3.5.10 (Lamb surfaces are symplectic manifolds)
The steady flow of the vector field u satisfying the symmetry relation given
by vanishing of the commutator [u, curlv ] = 0 on a three-dimensional
manifold M ∈ R3 reduces to incompressible flow on a two-dimensional
symplectic manifold whose canonically conjugate coordinates (Ξ, Π) are
provided by the total vorticity flux

curlv d 3x = curlv · dS = dΞ ∧ dΠ .

The reduced flow is canonically Hamiltonian on this symplectic manifold.
Furthermore, the reduced Hamiltonian is precisely the restriction of the
invariant H onto the reduced phase space.

Proof. Restricting formula (3.5.23) to coordinates on a total vorticity
flux surface (3.5.26) yields the exterior derivative of the Hamilto-
nian,

dH(Ξ, Π) = u (curlv · dS)
= u (dΞ ∧ dΠ)
= (u · ∇Ξ) dΠ− (u · ∇Π) dΞ

=:
dΞ
dT

dΠ− dΠ
dT

dΞ

=
∂H

∂Π
dΠ +

∂H

∂Ξ
dΞ , (3.5.28)

where T ∈ R is the time parameter along the flow lines of the steady
vector field u, which carries the Lagrangian fluid parcels. On iden-
tifying corresponding terms, the steady flow of the fluid velocity u
is found to obey the canonical Hamiltonian equations,

(u · ∇Ξ) = £uΞ =:
dΞ
dT

=
∂H

∂Π
=
{

Ξ, H
}
, (3.5.29)

(u · ∇Π) = £uΠ =:
dΠ
dT

= − ∂H
∂Ξ

=
{

Π, H
}
, (3.5.30)

where { · , · } is the canonical Poisson bracket for the symplectic
form dΞ ∧ dΠ.

Corollary 3.5.11 The vorticity flux dΞ ∧ dΠ is invariant under the flow
of the velocity vector field u.
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Proof. By (3.5.28), one verifies

£u(dΞ ∧ dΠ) = d
(
u (dΞ ∧ dΠ)

)
= d2H = 0 .

This is the standard computation in the proof of Poincaré’s theorem
in Proposition 3.4.4 for the preservation of a symplectic form by a
canonical transformation. Its interpretation here is that the steady
Euler flows preserve the total vorticity flux, curlv · dS = dΞ ∧ dΠ.

3.5.3 Helicity in incompressible fluids

Definition 3.5.12 (Helicity)
The helicity Λ[curlv] of a divergence-free vector field curlv that is tangent
to the boundary ∂D of a simply connected domain D ∈ R3 is defined as

Λ[curlv] =
∫
D

v · curlv d 3x , (3.5.31)

where v is a divergence-free vector-potential for the field curlv.

Remark 3.5.13 The helicity is unchanged by adding a gradient to the vec-
tor v. Thus, v is not unique and divv = 0 is not a restriction for simply
connected domains in R3, provided curlv is tangent to the boundary ∂D.

The helicity of a vector field curlv measures the average linking
of its field lines, or their relative winding. (For details and math-
ematical history, see Arnold and Khesin [ArKh1998].) The idea of
helicity goes back to Helmholtz [He1858] and Kelvin [Ke1869] in
the 19th century. Interest in helicity of fluids was rekindled in mag-
netohydrodynamics (MHD) by Woltjer [Wo1958] and later in ideal
hydrodynamics by Moffatt [Mo1969] who first applied the name he-
licity and emphasised its topological character. Refer to [Mo1981,
MoTs1992, ArKh1998] for excellent historical surveys. The princi-
pal feature of this concept for fluid dynamics is embodied in the
following theorem.

Theorem 3.5.14 (Euler flows preserve helicity)
When homogeneous or periodic boundary conditions are imposed, Euler’s



208 CHAPTER 3. DIFFERENTIAL FORMS

equations for an ideal incompressible fluid flow in a rotating frame with
Coriolis parameter curlR = 2Ω preserves the helicity

Λ[curlv] =
∫
D

v · curlv d 3x , (3.5.32)

with v = u+R, for which u is the divergenceless fluid velocity (divu = 0)
and curlv = curlu + 2Ω is the total vorticity.

Proof. Rewrite the geometric form of the Euler equations (3.5.12)
for rotating incompressible flow with unit mass density in terms of
the circulation 1-form v := v · dx as(

∂t + £u

)
v = − d

(
p+

1
2
|u|2 − u · v

)
=: − d$ , (3.5.33)

and £u d
3x = 0, where $ is an augmented pressure variable,

$ := p+
1
2
|u|2 − u · v . (3.5.34)

The fluid velocity vector field is denoted as u = u ·∇with divu = 0.
Then the helicity density, defined as

v ∧ dv = v · curlv d 3x = λ d 3x , with λ = v · curlv , (3.5.35)

obeys the dynamics it inherits from the Euler equations,(
∂t + £u

)
(v ∧ dv) = −d$ ∧ dv − v ∧ d2$ = −d($dv) , (3.5.36)

after using d2$ = 0 and d2v = 0. In vector form, this result may be
expressed as a conservation law,(

∂tλ+ divλu
)
d 3x = −div($ curlv) d 3x . (3.5.37)

Consequently, the time derivative of the integrated helicity in a do-
main D obeys

d

dt
Λ[curlv] =

∫
D
∂tλ d

3x = −
∫
D

div(λu +$ curlv) d 3x

= −
∮
∂D

(λu +$ curlv) · dS , (3.5.38)

which vanishes when homogeneous or periodic boundary condi-
tions are imposed on ∂D.
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Remark 3.5.15 This result means the helicity integral

Λ[curlv] =
∫
D
λ d 3x ,

is conserved in periodic domains, or in all of R3 with vanishing bound-
ary conditions at spatial infinity. However, if either the velocity or total
vorticity at the boundary possesses a nonzero normal component, then the
boundary is a source of helicity. For a fixed impervious boundary, the nor-
mal component of velocity does vanish, but no such condition is imposed on
the total vorticity by the physics of fluid flow. Thus, we have the following.

Corollary 3.5.16 A flux of total vorticity curlv into the domain is a source
of helicity.

Exercise. Use Cartan’s formula (3.4.2) to compute £u(v∧
dv) in equation (3.5.36). F

Exercise. Compute the helicity for the 1-form v = v · dx
in the Clebsch representation (3.5.25). What does this
mean for the linkage of the vortex lines that admit the
Clebsch representation? F

Remark 3.5.17 (Helicity as Casimir)
The helicity turns out to be a Casimir for the Hamiltonian formulation of
the Euler fluid equations [ArKh1998]. Namely, {Λ, H} = 0 for every
Hamiltonian functional of the velocity, not just the kinetic energy. The
Hamiltonian formulation of ideal fluid dynamics is beyond our present
scope. However, the plausibility that the helicity is a Casimir may be con-
firmed by the following.

Theorem 3.5.18 (Diffeomorphisms preserve helicity)
The helicity Λ[ξ] of any divergenceless vector field ξ is preserved under the
action on ξ of any volume-preserving diffeomorphism of the manifold M
[ArKh1998].

Remark 3.5.19 (Helicity is a topological invariant)
The helicity Λ[ξ] is a topological invariant, not a dynamical invariant,
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because its invariance is independent of which diffeomorphism acts on ξ.
This means the invariance of helicity is independent of which Hamilto-
nian flow produces the diffeomorphism. This is the hallmark of a Casimir
function. Although it is defined above with the help of a metric, every
volume-preserving diffeomorphism carries a divergenceless vector field ξ
into another such field with the same helicity. However, independently
of any metric properties, the action of diffeomorphisms does not create or
destroy linkages of the characteristic curves of divergenceless vector fields.

Definition 3.5.20 (Beltrami flows)
Equilibrium Euler fluid flows whose velocity and total vorticity are collinear
are called Beltrami flows.

Theorem 3.5.21 (Helicity and Beltrami flows)
Critical points of the conserved sum of fluid kinetic energy and a constant
κ times helicity are Beltrami flows of an Euler fluid.

Proof. A critical point of the sum of fluid kinetic energy and a con-
stant κ times helicity satisfies

0 = δHΛ =
∫
D

1
2
|u|2 d 3x+ κ

∫
D

v · curlv d 3x

=
∫
D

(
u + 2κ curlv

)
· δu d 3x ,

after an integration by parts with either homogeneous, or periodic
boundary conditions. Vanishing of the integrand for an arbitrary
variation in fluid velocity δu implies the Beltrami condition that the
velocity and total vorticity are collinear.

Remark 3.5.22 (No conclusion about Beltrami stability)
The second variation of HΛ is given by

δ2HΛ =
∫
D
|δu|2 + 2κ δu · curl δu d 3x .

This second variation is indefinite in sign unless κ vanishes, which corre-
sponds to a trivial motionless fluid equilibrium. Hence, no conclusion is
offered by the energy-Casimir method for the stability of a Beltrami flow of
an Euler fluid.
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3.5.4 Silberstein-Ertel theorem for potential vorticity

Euler-Boussinesq equations. The Euler-Boussinesq equations for
the incompressible motion of an ideal flow of a stratified fluid and
velocity u satisfying divu = 0 in a rotating frame with Coriolis pa-
rameter curlR = 2Ω are given by

∂t u + u · ∇u︸ ︷︷ ︸
Acceleration

= − gb∇z︸ ︷︷ ︸
Buoyancy

+ u× 2Ω︸ ︷︷ ︸
Coriolis

− ∇p︸︷︷︸
Pressure

(3.5.39)

where −g∇z is the constant downward acceleration of gravity and
b is the bouyancy, which satisfies the advection relation,

∂t b+ u · ∇b = 0 . (3.5.40)

As for Euler’s equations without buoyancy, requiring preservation
of the divergence-free (volume preserving) constraint ∇ · u = 0 re-
sults in a Poisson equation for pressure p,

−∆
(
p+

1
2
|u|2

)
= div(−u× curl v) + g∂zb , (3.5.41)

which satisfies a Neumann boundary condition because the velocity
u must be tangent to the boundary.

The Newton’s Law form of the Euler-Boussinesq equations (3.5.39)
may be rearranged as

∂t v − u× curl v + gb∇z +∇
(
p+

1
2
|u|2

)
= 0 , (3.5.42)

where v ≡ u + R and∇ · u = 0. Geometrically, this is(
∂t + £u

)
v + gbdz + d$ = 0 , (3.5.43)

where $ is defined in (3.5.33). In addition, the buoyancy satisfies(
∂t + £u

)
b = 0 , with £u d

3x = 0 . (3.5.44)

The fluid velocity vector field is denoted as u = u · ∇ and the cir-
culation 1-form as v = v · dx. The exterior derivatives of the two
equations in (3.5.43) are written as(

∂t + £u

)
dv = −gdb ∧ dz and

(
∂t + £u

)
db = 0 . (3.5.45)
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Consequently, one finds from the product rule for Lie derivatives
(3.4.7) that(

∂t + £u

)
(dv ∧ db) = 0 or ∂t q + u · ∇q = 0 , (3.5.46)

in which the quantity
q = ∇b · curlv (3.5.47)

is called potential vorticity and is abbreviated as PV. The potential
vorticity is an important diagnostic for many processes in geophysi-
cal fluid dynamics. Conservation of PV on fluid parcels is called Er-
tel’s theorem [Er1942], although it was probably known much ear-
lier, at least by Silberstein, who presented it in his textbook [Si1913].

Remark 3.5.23 (Silberstein-Ertel theorem)
The constancy of the scalar quantities b and q on fluid parcels implies con-
servation of the spatially integrated quantity,

CΦ =
∫
D

Φ(b, q) d 3x , (3.5.48)

for any smooth function Φ for which the integral exists.

Remark 3.5.24 (Energy conservation)
In addition to CΦ, the Euler-Boussinesq fluid equations (3.5.42) also con-
serve the total energy

E =
∫
D

1
2
|u|2 + gbz d 3x , (3.5.49)

which is the sum of the kinetic and potential energies. We do not de-
velop the Hamiltonian formulation of the 3D stratified rotating fluid equa-
tions here. However, one may imagine that the quantity CΦ would be its
Casimir, as the notation indicates. With this understanding, we shall prove
the following.

Theorem 3.5.25 (Energy-Casimir criteria for equilibria)
Critical points of the conserved sum EΦ = E + CΦ, namely,

EΦ =
∫
D

1
2
|u|2 + gbz d 3x+

∫
D

Φ(b, q) + κq d 3x , (3.5.50)
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are equilibrium solutions of the Euler-Boussinesq fluid equations in (3.5.42).
The function Φ in the Casimir and the Bernoulli functionK in (3.5.54) for
the corresponding fluid equilibrium are related by qΦq − Φ = K.

Proof. The last term in (3.5.50) was separated out for convenience in
dealing with the boundary terms that arise on taking the variation.
The variation of EΦ is given by

δEΦ =
∫
D

(
ue − Φqq∇be ×∇qe

)
· δu d 3x

+
∫
D

(
gz + Φb − curlve · ∇Φq

)
δb d 3x (3.5.51)

+
(

Φq

∣∣∣
∂D

+ κ
)∮

∂D

(
δb curlve + be curl δu

)
· n̂ dS ,

in which the surface terms arise from integrating by parts and n̂ is
the outward normal of the domain boundary, ∂D. Here, the par-
tial derivatives Φb, Φq and Φqq are evaluated at the critical point
be, qe,ve and Φq|∂D takes the critical point values on the boundary.
The critical point conditions are obtained by setting δEΦ = 0. These
conditions are,

δu : ue = Φqq∇be ×∇qe ,
δb : gz + Φb = curlve · ∇Φq , (3.5.52)

∂D : Φq

∣∣∣
∂D

+ κ = 0 .

The critical point condition on the boundary ∂D holds automati-
cally for tangential velocity and plays no further role. The critical
point condition for δu satisfies the steady flow conditions,

ue · ∇qe = 0 = ue · ∇be .

An important steady flow condition derives from the motion equa-
tion (3.5.42)

ue × curl ve = − gz∇be +∇K , (3.5.53)

which summons the Bernoulli function,

K(be, qe) = pe +
1
2
|ue|2 + gbez , (3.5.54)
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and forces it to be a function of (be, qe). When taken in concert with
the previous relation for K, the vector product of ∇be with (3.5.53)
yields

ue =
1
qe
∇be ×∇K(be, qe) = ∇be ×∇Φq(be, qe) , (3.5.55)

where the last relation uses the critical point condition arising from
the variations of velocity, δu. By equation (3.5.55), critical points
of EΦ are steady solutions of the Euler-Boussinesq fluid equations
(3.5.42) and the function Φ in the Casimir is related to the Bernoulli
function K in (3.5.54) for the corresponding steady solution by

qeΦqq(be, qe) = Kq(be, qe) . (3.5.56)

This equation integrates to

qeΦq − Φ = K + F (be) . (3.5.57)

The vector product of ∇qe with the steady flow relation (3.5.53)
yields

Φqq(be, qe)(∇qe · curlve) = gz −Kb(be, qe) . (3.5.58)

Combining this result with the critical point condition for δb in (3.5.52)
yields

qeΦq − Φ = K +G(qe) . (3.5.59)

Subtracting the two relations (3.5.59) and (3.5.56) eliminates the in-
tegration functions F and G, and establishes

qeΦq(be, qe)− Φ(be, qe) = K(be, qe) , (3.5.60)

as the relation between critical points of EΦ and equilibrium solu-
tions of the Euler-Boussinesq fluid equations.

Remark 3.5.26
The energy-Casimir stability method was implemented for Euler-Boussinesq
fluid equilibria in [AbHoMaRa1986]. See also [HoMaRaWe1985] for ad-
ditional examples.
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3.6 Hodge star operator on R3

Definition 3.6.1 The Hodge star operator establishes a linear corre-
spondence between the space of k-forms and the space of (3 − k)-forms,
for k = 0, 1, 2, 3. This correspondence may be defined by its usage:

∗1 := d 3x = dx1 ∧ dx2 ∧ dx3 ,

∗dx := dS ,

(∗dx1, ∗dx2, ∗dx3) := (dS1, dS2, dS3) ,
:= (dx2 ∧ dx3, dx3 ∧ dx1, dx1 ∧ dx2) ,

∗dS = dx ,

(∗dS1, ∗dS2, ∗dS3) := (dx1, dx2, dx3) ,
∗d 3x = 1 ,

in which each formula admits cyclic permutations of the set {1, 2, 3}.

Remark 3.6.2 Note that ∗∗ α = α for these k-forms.

Definition 3.6.3 (L2 inner product of forms)
The Hodge star induces an inner product ( · , · ) : Λk(M)×Λk(M)→ R
on the space of k-forms. Given two k-forms α and β defined on a smooth
manifold M , one defines their L2 inner product as

(α, β) :=
∫
M
α ∧ ∗β =

∫
M
〈α, β〉 d 3x , (3.6.1)

where d 3x is the volume form. The main examples of the inner product are
for k = 0, 1. These are given by the L2 pairings,

(f, g) =
∫
M
f ∧ ∗g :=

∫
M
fg d 3x ,

(u · dx, v · dx) =
∫
M

u · dx ∧ ∗(v · dx) :=
∫
M

u · v d 3x .

Exercise. Show that combining the Hodge star operator
with the exterior derivative yields the following vector
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calculus operations:

∗ d ∗ (v · dx) = div v ,

∗ d(v · dx) = (curl v) · dx ,
d ∗ d ∗ (v · dx) = (∇div v) · dx ,
∗ d ∗ d(v · dx) = curl (curl v) · dx .

F

The Hodge star on manifolds is used to define the codifferential.

Definition 3.6.4 The codifferential, denoted as δ, is defined for a k-form
α ∈ Λk as

δα = (−1)k+1+k(3−k) ∗ d ∗ α . (3.6.2)

Note that the sign is positive for k = 1 and negative for k = 2.

Exercise. Verify that δ2 = 0. F

Remark 3.6.5 Introducing the notation δ for codifferential cannot cause
any confusion with other familiar uses of the same notation, for example,
to denote Kronecker delta, or the variational derivative delta. All these
standard usages of the notation (δ) are easily recognised in their individual
contexts.

Proposition 3.6.6 The codifferential is the adjoint of the exterior deriva-
tive, in that

(δα, β) = (α, dβ) . (3.6.3)

Exercise. Verify that the codifferential is the adjoint of
the exterior derivative by using the definition of the Hodge
star inner product.
(Hint: Why may one use

∫
M d(∗α ∧ β) = 0 when inte-

grating by parts?) F

Definition 3.6.7 The Laplace-Beltrami operator on smooth functions
is defined to be∇2 = div grad = δ d. Thus, one finds,

∇2f = δ df = ∗ d ∗ df , (3.6.4)

for a smooth function f .
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Definition 3.6.8 The Laplace-deRham operator is defined by

∆ := dδ + δd . (3.6.5)

Exercise. Show that the Laplace-deRham operator on a
1-form v · dx expresses the Laplacian of a vector,

(dδ+δd)(v ·dx) = (∇div v− curl curl v) ·dx =: (∆v) ·dx .

Use this expression to define the inverse of the curl op-
erator applied to a divergenceless vector function as

curl−1v = curl(−∆−1v) when div v = 0. (3.6.6)

This is the Biot-Savart Law often used in electo-magnetism
and incompressible fluid dynamics. F

Remark 3.6.9 Identifying this formula for ∆v as the vector Laplacian
on a differentiable manifold agrees with the definition of the Laplacian of a
vector in any curvilinear coordinates.

Exercise. Compute the components of the Laplace-deRham
operator ∆v for a 1-form v ·dx defined on a sphere of ra-
dius R. How does this differ from the Laplace-Beltrami
operator (∇2v = div gradv) in spherical curvilinear co-
ordinates? F

Exercise. Show that the Laplace-deRham operator−∆ :=
dδ+δd is symmetric with respect to the Hodge star inner
product, that is,

(∆α, β) = (α, ∆β) .

F

Exercise. In coordinates, symmetry of ∆ with respect to
the Hodge star inner product is expressed as∫
−∆α · βd 3x =

∫
(−∇divα+ curlcurlα) · βd 3x

=
∫

(divα · divβ + curlα · curlβd 3x .
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Conclude that the Laplace-deRham operator −∆ is non-
negative, by setting α = β.

F

Exercise. Use formula (3.6.2) for the definition of codif-
ferential δ = ∗d∗ to express in vector notation,

δ(£uv) = −δdp− gδ(bdz) ,

for the 1-form v = v ·dx, vector field u = u ·∇, functions
p, b and constant g. How does this expression differ from
the Poisson equation for pressure p in (3.5.41)? F

3.7 Poincaré’s Lemma:
Closed vs exact differential forms

Definition 3.7.1 (Closed and exact differential forms)
A k-form α is closed if dα = 0.

The k-form is exact if there exists a (k − 1)-form β for which α = dβ.

Definition 3.7.2 (Co-closed and co-exact differential forms) A k-form
α is co-closed if δα = 0 and is co-exact if there exists a (3 − k)-form β
for which α = δβ.

Proposition 3.7.3 Exact and co-exact forms are orthogonal with respect
to the L2 inner product on Λk(M).

Proof. Let α = δβ be a co-exact form and let ζ = dη be an exact
form. Their L2 inner product defined in (3.6.1) is computed as

(α, ζ) = (δβ, dη) = (β, d2η) = 0 .

This vanishes, because δ is dual to d, that is, (δβ, ζ) = (β, dζ) by
Proposition 3.6.6.

Remark 3.7.4 Not all closed forms are globally exact on a given manifold
M .
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Example 3.7.5 (Helicity example)
As an example, the one-form

v = fdg + ψdφ

for smooth functions f, g, ψ, φ on R3 may be used to create the closed
three-form (helicity)

v ∧ dv = (ψdf − fdψ) ∧ dg ∧ dφ ∈ R3 .

This three-form is closed because it is a “top form” in R3. However, it is
exact only when the combination ψdf − fdψ is exact, and this fails when-
ever ψ and f are functionally independent. Thus, some closed forms are
not exact.

However, it turns out that all closed forms may be shown to be locally
exact. This is the content of the following Lemma.

Definition 3.7.6 (Locally exact differential forms)
A closed differential form α that satisfies dα = 0 on a manifold M is
locally exact, when a neighbourhood exists around each point in M
in which α = dβ.

Lemma 3.7.7 (Poincaré’s lemma)
Any closed form on a manifold M is locally exact.

Remark 3.7.8 Rather than give the standard proof appearing in most texts
in this subject, let us illustrate Poincaré’s Lemma in an example, then use
it to contrast the closed versus exact properties.

Example 3.7.9 In the example of helicity above, the one-form v = fdg+
ψdφ may always be written locally as v = fdg + cdφ in a neighbourhood
defined on a level surface ψ = c. In that neighbourhood, v ∧ dv = c (df ∧
dg ∧ dφ), which is exact because c is a constant.
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Remark 3.7.10 Closed forms that are not globally exact have topological
content. For example, the spatial integral of the three-form v ∧ dv ∈ R3

is the degree-of-mapping formula for the Hopf map S3 7→ S2. It also
measures the number of self-linkages (also known as helicity) of the di-
vergenceless vector field associated with the two-form dv. See [ArKh1998]
for in-depth discussions of the topological content of differential forms that
are closed, but only locally exact, in the context of geometric mechanics.

Example 3.7.11 (A locally closed and exact two-form in R3) The trans-
formation in R3 from 3D Cartesian coordinates (x, y, z) to spherical coor-
dinates (r, θ, φ) is given by

(x, y, z) = (r sin θ cosφ, r sin θ sinφ, r cos θ) .

As is well known, the volume form transforms into spherical coordinates
as

dVol = d 3x = dx ∧ dy ∧ dz = r2dr ∧ dφ ∧ d cos θ .

Exercise. Compute the transformation in the previous equa-
tion explicitly. F

In general, contraction of a vector field into a volume form produces a two-
formX d 3x = X · n̂ dS, where dS is the surface area element with unit
normal vector n̂. Consider the two-form β ∈ Λ2 obtained by substituting
the radial vector field,

X = x · ∇ = x∂x + y∂y + z∂z = r∂r ,

into the volume form dVol. This may be computed in various ways,

β = X d 3x = x · n̂ dS
= xdy ∧ dz + ydz ∧ dx+ zdx ∧ dy

=
1
2
εabcx

a dxb ∧ dxc

= r∂r r2dr ∧ dφ ∧ d cos θ = r3dφ ∧ d cos θ .

One computes the exterior derivative

dβ = d(X d 3x) = d(x · n̂ dS) = div x d 3x

= 3 d 3x = 3 r2dr ∧ dφ ∧ d cos θ 6= 0 .
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So the two-form β is not closed. Hence it cannot be exact. When evaluated
on the spherical level surface r = 1 (which is normal to the radial vector
field X) the 2-form β becomes the area element on the sphere.

Remark 3.7.12

• The 2-form β in the previous example is closed on the level surface
r = 1, but it is not exact everywhere. This is because singularities
occur at the poles, where the coordinate φ is not defined.

• This is an example of Poincaré’s theorem, in which a differential form
is closed, but is only locally exact.

• If β were exact on r = 1, its integral
∫
S2 β would give zero for the

area of the unit sphere instead of 4π!

Example 3.7.13 Instead of the radial vector field, let us choose an arbi-
trary three-dimensional vector field n(x) in which n : R3 → R3. As for
the radial vector field, we may compute the two-form,

β = X d 3n := n · ∂
∂n

d 3n =
1
2
εabc n

a dnb ∧ dnc

=
1
2
εabc n

a∇nb ×∇nc · dS(x) .

One computes the exterior derivative once again,

dβ = d(X d 3x) = div n d 3n = det [∇n] d 3x .

Now suppose n is a unit vector, satisfying the relation |n(x)|2 = 1. Then
n : R3 → S2 and the rows of its Jacobian will be functionally dependent,
so the determinant det [∇n] must vanish.

Consequently, dβ vanishes and the two-form β is closed. In this case,
Poincaré’s Lemma states that a one-form α exists locally such that the
closed two-form β satisfies β = dα. In fact, the unit vector in spherical
coordinates,

n = (sin θ cosφ, sin θ sinφ, cos θ) ,
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does produce a closed two-form β that is expressible as an exterior deriva-
tive,

β = dφ ∧ d cos θ = d(φdcos θ) . (3.7.1)

However, we know from the previous example that β could only be locally
exact. The obstructions to being globally exact are indicated by the singu-
larities of the polar coordinate representation, in which the azimuthal angle
φ is undefined at the North and South poles of the unit sphere.

Remark 3.7.14 (Hopf fibration)
These considerations introduce the Hopf map in which the unit vector
n(x) maps x ∈ S3 to the spherical surface S2 given by |n(x)|2 = 1
locally as S3 ' S2 × S1. Such a direct-product map that holds locally,
but does not hold globally, is called a fibration. Here S2 is called the base
space and S1 is called the fibre. The integral

∫
S2 β is called the degree

of mapping of the Hopf fibration. This integral is related to the self-
linkage or helicity discussed earlier in this section. For more details, see
[ArKh1998, Fl1963, Is1999, Ur2003]. The Hopf fibration will re-emerge
naturally and play an important role as the orbit manifold in our studies
of the dynamics of coupled resonant oscillators in Chapter 4.

3.8 Euler’s equations in Maxwell form

Exercise. (Maxwell form of Euler’s fluid equations)
Show that by making the following identifications

B := ω + curl A0

E := `+∇
(
p+ 1

2 |u|
2
)

+
(
∇φ− ∂tA0

)
D := ` (3.8.1)
H := ∇ψ ,

the Euler fluid equations (3.5.3) and (3.5.6) imply the
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Maxwell form

∂tB = − curl E
∂tD = curl H + J

div B = 0
div E = 0 (3.8.2)
div D = ρ = −∆

(
p+ 1

2 |u|
2
)

J = E×B + (curl−1E)× curl B ,

provided the (smooth) gauge functions φ and A0 satisfy
∆φ − ∂tdivA0 = 0 with ∂nφ = n̂ · ∂tA0 at the boundary
and ψ may be arbitrary, because curl H = 0 removes H
from further consideration in the dynamics. F

Remark 3.8.1

• The first term in the current density J in the Maxwell form of
Euler’s fluid equations in (3.8.2) is reminiscent of the Poynting
vector in electromagnetism [BoWo1965]. The second term in
J contains the inverse of the curl operator acting on the diver-
genceless vector function E. This inverse-curl operation may
be defined via the Laplace-DeRham theory that leads to the
Biot-Savart Law (3.6.6).

• The divergence of the D-equation in the Maxwell form (3.8.2)
of the Euler fluid equations implies a conservation equation,
given by

∂tρ = div J . (3.8.3)

Thus, the total “charge”
∫
ρ d3x is conserved, provided the

current density J (or, equivalently, the partial time derivative
of the Lamb vector) has no normal component at the bound-
ary.

• The conservation equation (3.8.3) for ρ = div` is potentially
interesting in applications. For example, it may be interest-
ing to use the divergence of the Lamb vector as a diagnostic
quantity in turbulence experiments.
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• The equation for the curl of the Lamb vector is of course also
easily accessible, if needed.

3.9 Euler’s equations in Hodge-star form in R4

Definition 3.9.1 The Hodge star operator on R4 establishes a linear
correspondence between the space of k-forms and the space of (4−k)-forms,
for k = 0, 1, 2, 3, 4. This correspondence may be defined by its usage:

∗1 := d 4x = dx0 ∧ dx1 ∧ dx2 ∧ dx3 ,

(∗dx1, ∗dx2, ∗dx3) := (dS1 ∧ dx0,−dS2 ∧ dx0, dS3 ∧ dx0) ,
:= (dx2 ∧ dx3 ∧ dx0, dx3 ∧ dx0 ∧ dx1, dx0 ∧ dx1 ∧ dx2) ,

(∗dS1, ∗dS2, ∗dS3) :=
(
∗ (dx2 ∧ dx3), ∗(dx3 ∧ dx1), ∗(dx1 ∧ dx2)

)
,

= (dx0 ∧ dx1, dx0 ∧ dx2, dx3 ∧ dx0) ,
∗d 3x = ∗(dx1 ∧ dx2 ∧ dx3) = dx0 ,

∗d 4x = 1 ,

in which each formula admits cyclic permutations of the set {0, 1, 2, 3}.

Remark 3.9.2 Note that ∗∗ α = α for these k-forms.

Exercise. Prove that

∗(dxµ ∧ dxν) = 1
2εµνσγdx

σ ∧ dxγ ,

where εµνσγ = +1 (resp. −1) when {µνσγ} is an even
(resp. odd) permutation of the set {0, 1, 2, 3} and it van-
ishes if any of its indices are repeated. F

Exercise. Introduce the R4-vectors for fluid velocity and
vorticity with components uµ = (1,u) and ων = (0,ω).
Let dx0 = dt and prove that

F = ∗uµωνdxµ ∧ dxν = ` · dx ∧ dt+ ω · dS . (3.9.1)

F
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Exercise. Show that Euler’s fluid equations (3.5.3) imply

F = d
(
v · dx− (p+ 1

2u
2)dt

)
, (3.9.2)

in the Euler fluid notation of equation (3.5.4). F

After the preparation of having solved these exercises, it is an
easy computation to show that the Helmholtz vorticity equation
(3.5.15) follows from the compatibility condition for F . Namely,

0 = dF =
(
∂tω − curl (u× ω)

)
· dS ∧ dt+ divω d3x .

This Hodge-star version of the Helmholtz vorticity equation brings
us a step closer to understanding the electromagnetic analogy in
the Maxwell form of Euler’s fluid equations (3.8.2). This is because
Faraday’s Law in Maxwell’s equations has a similar formulation,
but for 4-vectors in Minkowski space-time instead of R4 [Fl1963].
The same concepts from the calculus of differential forms still apply,
but with the Minkowski metric.

Next, introduce the 2-form in R4

G = ` · dS + dχ ∧ dt, (3.9.3)

representing the flux of the Lamb vector though a fixed spatial sur-
face element dS. Two more brief computations recover the other
formulas in the Maxwell representation of fluid dynamics in (3.8.2).
First, the exterior derivative of G, given by

dG = ∂t` · dS ∧ dt+ div ` d3x (3.9.4)
= J · dS ∧ dt+ ρ d3x =: J , (3.9.5)

recovers the two relations ∂t` = J and div ` = ρ in (3.8.2). Here J
is the current density 3-form with components (ρ,J). The second
calculation we need is the compatibility condition for G, namely

d2G =
(

div J− ∂tρ
)
d3x ∧ dt = 0 .

This recovers the conservation law in (3.8.3) for the Maxwell form
of Euler’s fluid equations.
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Thus, the differential-form representation of Euler’s fluid equa-
tions in R4 reduces to two elegant relations,

dF = 0 and dG = J , (3.9.6)

where the 2-forms F , G and the 3-form J are given in (3.9.1), (3.9.3)
and (3.9.5), respectively.

Exercise. Show that equations (3.9.6) for the differential
representation of Euler’s fluid equations in R4 may be
written as a pair of partial differential equations,

∂µF
µν = 0 and ∂µG

µν = Jν , (3.9.7)

written in terms of the R4-vector Jν = (−J, ρ)T and the
4× 4 antisymmetric tensors Fµν = uµων − uνωµ. In ma-
trix form Fµν is given by

Fµν =


0 `3 −`2 ω1

−`3 0 `1 ω2

`2 −`1 0 ω3

−ω1 −ω2 −ω3 0

 ,
and Gµν is given by

Gµν =


0 χ,3 −χ,2 `1
−χ,3 0 χ,1 `2
χ,2 −χ,1 0 `3
−`1 −`2 −`3 0

 ,
where µ, ν = 1, 2, 3, 4, with notation ∂µ = ∂/∂xµ with
xµ = (x, t)T , uµ = (u, 1)T and ωµ = (ω, 0)T . Also,
∂µu

µ ≡ uµ,µ = ∇ · u = 0 and ωµ,µ = ∇ · ω = 0. F

Exercise. Write Maxwell’s equations for the propaga-
tion of electromagnetic waves in Hodge-star form (3.9.6)
in Minkowski space. Discuss the role of the Minkowski
metric in defining Hodge-star and the effects of curlH 6=
0 on the solutions, in comparison to the treatment of Eu-
ler’s fluid equations in R4 presented here. F



Chapter 4

Resonances and S1

reduction

Resonant harmonic oscillators play a central role in physics. This is
largely because the linearised dynamics of small excitations always
leads to an eigenvalue problem. Excitations oscillate. Nonlinear os-
cillations resonate. Under changes of parameters, resonant oscilla-
tions bifurcate. The application of these ideas in physics is immense
in scope, ranging from springs, to swings, to molecules, to lasers,
to coherent states in nuclear physics, to Bose-Einstein condensed
(BEC) systems, to nonlinear optics, to telecommunication, to qubits
in quantum computing.

This chapter studies resonance of two coupled nonlinear oscilla-
tors, using polarisation states of travelling waves in nonlinear opti-
cal fibres as our final physical application.

4.1 Dynamics of two coupled oscillators on C2

4.1.1 Oscillator variables in C2

The linear transformation from T ∗R2 with phase space coordinates
(q,p) for two degrees of freedom to its oscillator variables (a,a∗) ∈

227
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C2 is defined by

a =
[
a1

a2

]
=
[
q1 + ip1

q2 + ip2

]
= q + ip ∈ C2 . (4.1.1)

This linear transformation is canonical: its symplectic two-form is
given by

dqj ∧ dpj =
1

(−2i)
(dqj + idpj) ∧ (dqj − idpj)

=
1

(−2i)
daj ∧ da∗j . (4.1.2)

Likewise, the Poisson bracket transforms by the chain rule as

{aj , a∗k} = {qj + ipj , qk − ipk}
= −2i {qj , pk} = −2i δjk . (4.1.3)

Thus, in oscillator variables Hamilton’s canonical equations become

ȧj = {aj , H} = −2i
∂H

∂a∗j
, (4.1.4)

and ȧ∗j = {a∗j , H} = 2i
∂H

∂aj
.

The corresponding Hamiltonian vector field is

XH = {· , H} = −2i

(
∂H

∂a∗j

∂

∂aj
− ∂H

∂aj

∂

∂a∗j

)
, (4.1.5)

satisfying the defining property of a Hamiltonian system,

XH
1

(−2i)
daj ∧ da∗j = dH . (4.1.6)

The norm |a| of a complex number a ∈ C2 is defined via the
real-valued pairing〈〈

· , ·
〉〉

: C2 ⊗ C2 7→ R . (4.1.7)
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For a , b ∈ C2, this pairing takes the value〈〈
a , b

〉〉
= a∗ · b =

[
a∗1, a

∗
2

] [ b1
b2

]
= a∗1b1 + a∗2b2 . (4.1.8)

Here dot ( · ) denotes usual inner product of vectors. The pairing
〈 · , · 〉 defines a norm |a| on C2 by setting

|a|2 = 〈a , a〉 = a∗ · a = a∗1a1 + a∗2a2 . (4.1.9)

For additional introductory discussion of simple harmonic motion,
see Appendix A.

4.1.2 The 1 : 1 resonant action of S1 on C2

The norm |a| on C2 is invariant under a unitary change of basis
a → Ua. The group of 2 × 2 unitary matrix transformations is
denoted U(2) and satisfies the condition

U †U = Id = UU † ,

where dagger in U † denotes the Hermitian adjoint (conjugate trans-
pose) of U . That is,

|Ua|2 = 〈Ua , Ua〉 = (Ua)† · (Ua)
= (a∗U †) · (Ua) = a∗ · a = 〈a , a〉 = |a|2 .

The determinant detU of a unitary matrix U is a complex number
of unit modulus; that is, detU belongs to U(1).

A unitary matrix U is called special unitary if its determinant
satisfies detU = 1. The special unitary 2 × 2 matrices are denoted
SU(2). Since determinants satisfy a product rule, one sees that U(2)
factors into U(1)diag × SU(2) where U(1)diag is an overall phase
times the identity matrix. For example,[

ei(r+s) 0
0 ei(r−s)

]
=
[
eir 0
0 eir

] [
eis 0
0 e−is

]
, (4.1.10)

where r, s ∈ R. The first of these matrices is the U(1)diag phase
shift, while the second is a possible SU(2) phase shift. Together
they make up the individual phase shifts by r + s and r − s. The
U(1)diag phase shift is also called a diagonal S1 action.
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Definition 4.1.1 (Diagonal S1 action)
The action of a U(1)diag phase shift S1 : C2 7→ C2 on a complex two-
vector with real angle parameter s is given by

a(s) = e−2isa(0) and a∗(s) = e2isa∗(0) , (4.1.11)

which solves,

d

ds
a(s) = −2ia and

d

ds
a∗(s) = 2ia∗ . (4.1.12)

This operation is generated canonically by the Hamiltonian vector field

XR = {· , R} = −2ia · ∂
∂a

+ 2ia∗ · ∂

∂a∗
=:

d

ds
, (4.1.13)

with canonically conjugate variables (a,a∗) ∈ C2 satisfying the Poisson
bracket relations

{aj , a∗k} = −2i δjk ,

in (4.1.3). The variable R canonically conjugate to the angle s is called its
corresponding action and is given by

R = |a1|2 + |a2|2 = |a|2 for which {s,R} = 1 . (4.1.14)

Definition 4.1.2 (1 : 1 resonance dynamics)

• The flow φRt of the Hamiltonian vector field XR = { · , R} is the
1 : 1 resonant phase shift. In this flow, the phases of both simple
harmonic oscillations (a1, a2) precess counterclockwise at the same
constant rate.

• In 1 : 1 resonant motion on C2 = C×C, the complex two amplitudes
a1 and a2 stay in phase, because they both oscillate at the same rate.

Remark 4.1.3 (Restricting to S1-invariant variables)
Choosing a particular value of R restricts C2 → S3. As we shall see,
further restriction to S1-invariant variables will locally map

C2/S1 → S3/S1 = S2.
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4.1.3 The S1-invariant Hermitian coherence matrix

The bilinear product Q = a ⊗ a∗ of the vector amplitudes (a,a∗) ∈
C2 comprises an S1-invariant 2 × 2 Hermitian matrix for the 1 : 1
resonance, whose components are

Q = a⊗ a∗ =
[
a1a
∗
1 a1a

∗
2

a2a
∗
1 a2a

∗
2

]
. (4.1.15)

Its matrix properties are

Q† = Q , trQ = R , detQ = 0 , and Qa = R a .

The vector a ∈ C2 is a complex eigenvector of the Hermitian matrix
Q that belongs to the real eigenvalue R. In addition, Q projects out
the components of a in any complex vector b as

Qb = a (a∗ · b) .

Because the determinant of Q vanishes, we may rescale a to set
trQ = R = 1. Under this rescaling, the complex amplitude a be-
comes a unit vector and Q becomes a projection matrix with unit
trace, since trQ = R, Qa = Ra, Q2 = RQ and R = 1.1 In what
follows, however, we shall explicitly keep track of the value of the
real quantity R, so it will be available for use later as a bifurcation
parameter in our studies of S1-invariant Hamiltonian dynamics.

4.1.4 The Poincaré sphere S2 ∈ S3

We expand the Hermitian matrix Q in (4.1.15) as a linear combina-
tion of the four 2×2 Pauli spin matrices (σ0 ,σ), withσ = (σ1, σ2, σ3)
given by

σ0 =
[

1 0
0 1

]
, σ1 =

[
0 1
1 0

]
,

σ2 =
[

0 −i
i 0

]
, σ3 =

[
1 0
0 −1

]
. (4.1.16)

1In optics, matrix Q is called the coherency of the pulse and the scalar R is its
intensity [Sh1984, Bl1965].
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The result of this linear expansion is, in vector notation,

Q =
1
2

(
Rσ0 + Y · σ

)
. (4.1.17)

Consequently, the vector Y is determined by the trace formula,

Y = tr (Qσ) = a∗kσklal . (4.1.18)

Definition 4.1.4 (Poincaré sphere)
The coefficients (R, Y) in the expansion of the matrix Q in (4.1.17) are
the four quadratic S1 invariants,

R = |a1|2 + |a2|2 ,
Y3 = |a1|2 − |a2|2 , and

Y1 + i Y2 = 2a∗1a2 . (4.1.19)

These satisfy the relation,

detQ = R2 − |Y|2 = 0 , with |Y|2 ≡ Y 2
1 + Y 2

2 + Y 2
3 , (4.1.20)

which defines the Poincaré sphere S2 ∈ S3 of radius R.

Definition 4.1.5 (Stokes vector)
The matrix decomposition (4.1.17) of the Hermitian matrix Q in equation
(4.1.15) into the Pauli spin matrix basis (4.1.16) may be written explicitly
as

Q = a⊗ a∗ =
[
a1a
∗
1 a1a

∗
2

a2a
∗
1 a2a

∗
2

]
=

1
2

[
R+ Y3 Y1 − iY2

Y1 + iY2 R− Y3

]
, (4.1.21)

or, on factoring R > 0,

Q =
R

2

(
σ0 +

Y · σ
R

)
=

R

2

[
1 + s3 s1 − is2

s1 + is2 1− s3

]
=

R

2

[
1 + cos θ sin θe−iφ

sin θeiφ 1− cos θ

]
, (4.1.22)
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where the vector with components s = (s1, s2, s3) is a unit vector defined
by

Y/R = (Y1, Y2, Y3)/R = (sin θ cosφ, sin θ sinφ, cos θ)
=: (s1, s2, s3) = s . (4.1.23)

The unit vector s with polar angles θ and φ is called the Stokes vector
[St1852].

s

2

1

s

s3

1s s2 s3,( , )s=

Figure 4.1: The Stokes vector on the unit Poincaré sphere.
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4.1.5 1 : 1 resonance:
Quotient map and orbit manifold

Definition 4.1.6 (Quotient map)
The 1 : 1 quotient map π : C2\{0} → R3\{0} is defined (for R > 0) by
means of the formula (4.1.19). This map may be expressed as

Y := (Y1 + iY2, Y3) = π(a) . (4.1.24)

Explicitly, this is
Y = trQσ = a∗kσklal , (4.1.25)

also known as the Hopf map.

Remark 4.1.7 Since {Y, R} = 0, the quotient map π in (4.1.24) col-
lapses each 1 : 1 orbit to a point. The converse also holds, namely that the
inverse of the quotient map π−1Y for Y ∈ Imageπ consists of a 1 : 1
orbit (S1).

Definition 4.1.8 (Orbit manifold)
The image in R3 of the quotient map π : C2\{0} → R3\{0} in (4.1.24) is
the orbit manifold for the 1 : 1 resonance.

Remark 4.1.9 (1 : 1 orbit manifold is the Poincaré sphere)
The image of the quotient map π in (4.1.24) may be conveniently displayed
as the zero-level set of the relation detQ = 0 using the S1-invariant vari-
ables in equation (4.1.21)

detQ = C(Y1, Y2, Y3, R)
:= (R+ Y3)(R− Y3)−

(
Y 2

1 + Y 2
2

)
= 0 . (4.1.26)

Consequently, a level set of R in the 1 : 1 resonance map C2 → S3 ob-
tained by transforming to S1 invariants yields an orbit manifold defined
by C(Y1, Y2, Y3, R) = 0 in 3D.

For the 1 : 1 resonance, the image in R3 of the quotient map π in (4.1.24)
is the Poincaré sphere S2.
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Remark 4.1.10 (The Poincaré sphere S3 ' S2 × S1)
Being invariant under the flow of the Hamiltonian vector field XR =
{ · , R}, each point on the Poincaré sphere S2 consists of a resonant S1

orbit under the 1 : 1 circle action

φ1:1 : C2 7→ C2 as (a1, a2)→ (eiφa1, e
iφa2)

and (a∗1, a
∗
2)→ (e−iφa∗1, e

−iφa∗2) . (4.1.27)

Exercise. What corresponds to the quotient map, or-
bit manifold (image of the quotient map) and Poincaré
sphere for the transmission of optical rays by Fermat’s
principle in an axisymmetric, translation-invariant medium
in Chapter 1? F

4.1.6 The basic qubit:
Quantum computing in the Bloch ball

In quantum mechanics, the Poincaré sphere is known as the Bloch
sphere, and it corresponds to a two-level atomic system [FeVeHe1957,
AlEb1975, DaBaBi1992, BeBuHo1994]. In particular, the Hermitian
matrix Q in (4.1.22) is the analog of the density matrix (denoted as
ρ) in quantum mechanics. The density matrix ρ is a key element in
the applications of quantum mechanics, including quantum com-
puting. In traditional computing, a bit is a scalar that can assume
either of the values 0, or 1. In quantum computing, a qubit is a vec-
tor in a two-dimensional complex Hilbert space that can assume the
values up and down, as well as all other values intermediate between
them in a certain sense. The basic qubit in quantum computing is a
two-level spin system whose density matrix ρ was first introduced
in [FeVeHe1957] for describing MASER dynamics.2 This is the 2× 2
positive Hermitian matrix with unit trace,

ρ =
1
2

(
σ0 + r · σ

)
=

1
2

[
1 + r3 r1 − ir2

r1 + ir2 1− r3

]
, (4.1.28)

so that r = trρσ.
2The acronym MASER stands for Microwave Amplification by Stimulated Emission

of Radiation.
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To be positive, the 2 × 2 Hermitian density matrix must have
both positive trace and positive determinant. By construction, it has
unit trace and its determinant

detρ = 1− |r|2 , (4.1.29)

will also be positive, provided one requires

|r|2 = r2
1 + r2

2 + r2
3 ≤ 1 , (4.1.30)

which defines the Bloch ball.

Definition 4.1.11 (Bloch ball)
The Bloch ball is the locus of states for a given density matrix ρ in (4.1.28)
satisfying |r| ≤ 1.

The determinant of the density matrix vanishes for points on
the surface of the Bloch sphere, on which |r| = 1. These are the
pure states of the two-level system. For example, the North (respec-
tively, South) pole of the Bloch sphere may be chosen to represent
the pure up quantum state (1, 0)T (respectively, down state (0, 1)T )
for the two-state wave function [FeVeHe1957]

ψ(t) = a1(t)
[

1
0

]
+ a2(t)

[
0
1

]
=
[
a1(t)
a2(t)

]
.

The other points that are on the surface but away from the poles
of the Bloch sphere represent a superposition of these pure states,
with complex probability amplitude function ψ(t), corresponding
to probability

|ψ(t)|2 = |a1(t)|2 + |a2(t)|2 .

Restriction of the density matrix ρ|r=1 to the surface of the Bloch
sphere |r| = 1 recovers the Hermitian matrix Q in (4.1.15) whose
vanishing determinant defines the unit Poincaré sphere, withR = 1.

Points for which |r| < 1 are within the Bloch ball. These points
represent impure states, also known as mixed states. The mixed
states are distinguished from the pure states, as follows.
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Definition 4.1.12 (Pure vs impure states)
A given state corresponding to density matrix ρ, is impure, or mixed, if

trρ2 =
1
2

(1 + |r|2) < 1 .

If trρ2 = 1, then |r| = 1 and the state is pure, or unmixed.

Remark 4.1.13 (Optics vs quantum mechanics)
The quantum mechanical case deals with mixed and pure states inside and
on the surface of the Bloch ball, respectively. The dynamics of optical polar-
isation directions on the Poincaré sphere deals exclusively with pure states.

4.2 The action of SU(2) on C2

The Lie group SU(2) of complex 2 × 2 unitary matrices U(s) with
unit determinant acts on a ∈ C2 by matrix multiplication as

a(s) = U(s)a(0) = exp(isξ)a(0) .

Here, the quantity

iξ =
[
U ′(s)U−1(s)

]
s=0
∈ su(2)

is a 2 × 2 traceless skew-Hermitian matrix, (iξ)† = −(iξ). This con-
clusion follows from unitarity,

UU † = Id , which implies U ′U † + UU ′ † = 0 = U ′U † + (U ′U †)† .

Consequently, ξ alone (without multiple i) is a 2 × 2 traceless Her-
mitian matrix, ξ† = ξ, which may be written as a sum over the Pauli
matrices in (4.1.16) as

ξkl =
3∑
j=1

ξj(σj)kl with k, l = 1, 2 .

The corresponding vector field ξU (a) ∈ TC2 may be expressed as a
Lie derivative,

ξU (a) =
d

ds

[
exp(isξ)a

]∣∣∣∣
s=0

=: £ξUa = iξa ,
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in which the product (ξa) of the Hermitian matrix (ξ) and the 2-
component complex vector (a) has components ξklal, with k, l =
1, 2.

Definition 4.2.1 (Momentum map J : T ∗C2 7→ su(2)∗ )
The momentum map, J(a∗,a) : T ∗C2 ' C2 × C2 7→ su(2)∗ for the
action of SU(2) on C2 is defined by

Jξ(a∗,a) :=
〈
J(a∗,a), ξ

〉
su(2)∗×su(2)

=
〈〈

a∗, £ξUa
〉〉

C2×C2

:= a∗kξklal = ala
∗
kξkl

:= tr
(
(a⊗ a∗)ξ

)
= tr

(
Qξ
)
. (4.2.1)

Note: in these expressions we treat a∗ ∈ C2 as a∗ ∈ T ∗aC2.

Remark 4.2.2 This map may also be expressed using the canonical sym-
plectic form, Ω(a,b) = Im(a∗ · b) on C2 as in [MaRa1994]

Jξ(a∗,a) := Ω(a, ξU (a)) = Ω(a, iξa)
= Im(a∗k(iξ)klal) = a∗kξklal = tr

(
Qξ
)
. (4.2.2)

Remark 4.2.3 (Removing the trace)
Being traceless, ξ has zero pairing with any multiple of the identity; so
one may remove the trace of Q by subtracting trQ times a multiple of the
identity. Thus, the momentum map

J(a∗,a) = Q̃ = Q− 1
2
Id trQ ∈ su(2)∗ (4.2.3)

sends (a∗,a) ∈ C2 × C2 to the traceless part Q̃ of the Hermitian matrix
Q = a⊗ a∗, which is an element of su(2)∗. Here, su(2)∗ is the dual space
to su(2) under the pairing 〈 · , · 〉 : su(2)∗×su(2) 7→ R given by the trace
of the matrix product,〈

Q̃, ξ
〉

= tr
(
Q̃ξ
)

for Q̃ ∈ su(2)∗ and ξ ∈ su(2) . (4.2.4)
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Remark 4.2.4 (Momentum map and Poincaré sphere)
A glance at equation (4.1.17) reveals that the momentum map C2×C2 7→
su(2)∗ for the action of SU(2) acting on C2 in equation (4.2.3) is none
other than the map C2 7→ S2 to the Poincaré sphere. To see this, one
simply replaces ξ ∈ su(2) by the vector of Pauli matrices σ in equation
(4.1.17) to recover the Hopf map,

Q̃ = Q− 1
2
Rσ0 =

1
2

Y · σ (4.2.5)

in which

Y = tr Q̃σ = akσkla
∗
l . (4.2.6)

Thus, the traceless momentum map, J : T ∗C2 ' C2 × C2 7→ su(2)∗ in
equation (4.2.3) explicitly recovers the components of the vector Y on the
Poincaré sphere |Y|2 = R2. Namely,

Q̃ =
1
2

[
Y3 Y1 − iY2

Y1 + iY2 −Y3

]
. (4.2.7)

Remark 4.2.5 (Poincaré sphere and Hopf fibration of S3)
The sphere |Y|2 = R2 defined by the map C2/S1 7→ S2 ' S3/S1 for
1:1 resonance was first introduced by Poincaré to describe the two trans-
verse polarisation states of light [Po1892, BoWo1965]. It was later studied
by Hopf [Ho1931], who showed that it has interesting topological prop-
erties. Namely, it is a fibration of S3 ' SU(2). That is, the Poincaré
sphere S2 = S3/S1 has an S1-fibre sitting over every point on the sphere
[Ho1931]. This reflects the SU(2) group decomposition which locally fac-
torises into S2×S1 at each point on the sphere S2. ForR = 1, this may be
expressed as a matrix factorisation for any A ∈ SU(2) with s, φ ∈ [0, 2π)
and θ ∈ [0, π/2), as

A =
(
a∗1 −a2

a∗2 a1

)
(4.2.8)

=
(
−i cos θ − sin θeiφ

sin θe−iφ i cos θ

)(
exp(−is) 0

0 exp(is)

)
.

For further discussion of the Hopf fibration in the context of geometric
dynamics for resonant coupled oscillators, see [Ku1976, Ku1986, El2006].
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4.2.1 Coherence matrix dynamics for the 1 : 1 resonance

For a given Hamiltonian H : C2 7→ R, the matrix Q(t) = a ⊗ a∗(t)
in (4.1.15) evolves canonically according to

Q̇(t) = {Q, H} = ȧ⊗ a∗ + a⊗ ȧ∗ = − 4 Im
(
a⊗ ∂H

∂a

)
.

Thus, by the decomposition (4.1.17) ofQ(t) in an su(2) basis of Pauli
matrices for an S1-invariant Hamiltonian H(Y, R) we have

Q̇ = {Q, H} =
1
2
{Rσ0 + Y · σ, H} =

1
2
{Y · σ, H} ,

where we have used Ṙ = {R, H} = 0 which follows because of
the S1 symmetry of the Hamiltonian. The Poisson brackets of the
components (Y1, Y2, Y3) ∈ R3 are computed by the product rule to
close among themselves. This is expressed in tabular form as

{Yi, Yj} =

{ · , · } Y1 Y2 Y3

Y1

Y2

Y3

0 4Y3 −4Y2

−4Y3 0 4Y1

4Y2 −4Y1 0

(4.2.9)

or, in index notation,

{Yk , Yl} = 4εklmYm . (4.2.10)

Proof. The proof of the result (4.2.9) is a direct verification using the
chain rule for Poisson brackets,

{Yi, Yj} =
∂Yi
∂zA
{zA, zB}

∂Yj
∂zA

, (4.2.11)

for the invariant bilinear functions Yi(zA) in (1.4.5). In (4.2.11), one
denotes zA = (aA, a∗A), with A = 1, 2, 3.

Thus, functions F,G of the S1-invariant vector Y ∈ R3 satisfy

{F , H}(Y) = 4Y · ∂F
∂Y
× ∂H

∂Y
, (4.2.12)
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and one checks with Ṙ = 0 that

Q̇ = {Q, H} =
{1

2
Y · σ, H

}
= − 2Y × ∂H

∂Y
· σ =

1
2
Ẏ · σ .

Therefore, the motion equation for the S1-invariant vector Y ∈ R3

is

Ẏ = − 4Y × ∂H

∂Y
, (4.2.13)

which of course preserves the radius of the Poincaré sphere |Y| = R.
Equation (4.2.13) proves the following.

Theorem 4.2.6 (The momentum map (4.2.5) is Poisson)
The traceless momentum map, J : T ∗C2 ' C2 × C2 7→ su(2)∗ in
equation (4.2.5) is a Poisson map. That is, it satisfies the Poisson property
(2.3.26) for smooth functions F and H ,{

F ◦ J , H ◦ J
}

=
{
F , H

}
◦ J . (4.2.14)

This relation defines a Lie-Poisson bracket on su(2)∗ that inherits the
defining properties of a Poisson bracket from the canonical relations

{ak, a∗l } = −2iδkl ,

for the canonical symplectic form, ω = 1
2 Im (daj ∧ da∗j ).

Remark 4.2.7 The Hamiltonian vector field in R3 for the evolution of the
components of the coherence matrix Q̃ in (4.2.7) has the same form, modulo
the factor of (− 4), as Euler’s equations (2.4.5) for a rigid body.

4.2.2 Poisson brackets on the surface of a sphere

The R3-bracket (4.2.12) for functions of the vector Y on the sphere
|Y|2 = const is expressible as

{F, H}(Y) = 4Y3

( ∂F
∂Y1

∂H

∂Y2
− ∂F

∂Y2

∂H

∂Y1

)
+ 4Y1

( ∂F
∂Y2

∂H

∂Y3
− ∂F

∂Y3

∂H

∂Y2

)
+ 4Y2

( ∂F
∂Y3

∂H

∂Y1
− ∂F

∂Y1

∂H

∂Y3

)
. (4.2.15)
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This expression may be rewritten equivalently as

{F, H} d 3Y = dC ∧ dF ∧ dH ,

with C(Y) = 2|Y|2.

Exercise. In spherical coordinates,

Y1 = r cosφ sin θ, Y2 = r sinφ sin θ, Y3 = r cos θ,

where Y 2
1 + Y 2

2 + Y 2
3 = r2. The volume element is,

d 3Y = dY1 ∧ dY2 ∧ dY3 =
1
3
dr3 ∧ dφ ∧ d cos θ .

Show that the area element on the sphere satisfies

r2dφ∧d cos θ =
r

3

(
dY1 ∧ dY2

Y3
+
dY2 ∧ dY3

Y1
+
dY3 ∧ dY1

Y2

)
.

Explain why the canonical Poisson bracket

{F, H} =
( ∂F

∂ cos θ
∂H

∂φ
− ∂F

∂φ

∂H

∂ cos θ

)
might be expected to be related to the R3 bracket in (4.2.15),
up to a constant multiple. F

On a constant level surface of r the functions (F,H) only depend
on (cos θ, φ), so under the transformation to spherical coordinates
we have

{F, H} d 3Y =
1
3
dr3 ∧ dF ∧ dH(cos θ, φ) (4.2.16)

=
1
3
dr3 ∧

( ∂F

∂ cos θ
∂H

∂φ
− ∂F

∂φ

∂H

∂ cos θ

)
d cos θ ∧ dφ .

Consequently, on a level surface r = const, the Poisson bracket be-
tween two functions (F,H) depending only on (cos θ, φ) has sym-
plectic form ω = d cos θ ∧ dφ, so that

dF ∧ dH(cos θ, φ) = {F, H} d cos θ ∧ dφ (4.2.17)

=
( ∂F

∂ cos θ
∂H

∂φ
− ∂F

∂φ

∂H

∂ cos θ

)
d cos θ ∧ dφ .

Perhaps not surprisingly, the symplectic form on the surface of a
unit sphere is its area element.
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4.2.3 Riemann projection of Poincaré sphere

The Riemann sphere may be visualised as the unit Poincaré sphere
Y 2

1 + Y 2
2 + Y 2

3 = 1 in the three-dimensional real space R3. To this
end, consider the stereographic projection from the unit sphere mi-
nus the point P (∞) = (0, 0, 1) onto the plane Y3 = 0, which we
identify with the complex plane by setting ζ = Y1+iY2. In Cartesian
coordinates (Y1, Y2, Y3) and coordinates (θ, φ) on the sphere defined
by the polar angle θ and the azimuthal angle φ, the stereographic
projection is found to be

ζ =
Y1 + iY2

1− Y3
= cot(θ/2) eiφ . (4.2.18)

This formula may be verified by an argument using similar triangles
and the relation

sin θ
1− cos θ

=
√

1 + cos θ√
1− cos θ

=
cos(θ/2)
sin(θ/2)

= cot(θ/2) , (4.2.19)

as shown in Figure 4.2.

Exercise. Use equation (4.2.19) and the unit sphere con-
dition to show that

|ζ|2 =
1 + Y3

1− Y3
. (4.2.20)

Hence, deduce from this equation and (4.2.18) that

Y3 =
|ζ|2 − 1
|ζ|2 + 1

and Y1 + iY2 =
2ζ

|ζ|2 + 1
. (4.2.21)

Check that Y 2
3 + |Y1 + iY2|2 = 1. F

Theorem 4.2.8 Stereographic projection of the symplectic dynamics on
the sphere yields the following Poisson bracket on the complex plane:{

ζ, ζ∗
}

=
1
4i
(
|ζ|2 + 1

)2
. (4.2.22)
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-

θ

θ/2
-1 1

θ/2

Figure 4.2: In the stereographic projection of complex numbers A and B onto
points α and β of the Riemann sphere, complex numbers lying outside (resp., in-
side) the unit circle are projected onto the upper (resp., lower) hemisphere. The cir-
cle at complex |ζ| → ∞ is projected stereographically onto the upper pole (θ → 0)
of the Riemann sphere.

Proof. By formulas (4.2.18) and (4.2.19), one finds

dζ =
eiφ

2
(1 + cos θ)−1/2(1− cos θ)−3/2d cos θ

+ (1 + cos θ)1/2(1− cos θ)−1/2eiφ(i dφ) .

Consequently, one finds the following wedge-product relations by
a direct calculation,

dζ ∧ dζ∗(cos θ, φ) =
1
4i

(
2

1− cos θ

)2

d cos θ ∧ dφ

=
1
4i
(
|ζ|2 + 1

)2
d cos θ ∧ dφ

=
{
ζ, ζ∗

}
d cos θ ∧ dφ ,
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which proves equation (4.2.22) of the theorem.

Corollary 4.2.9 The Riemann projection of symplectic Hamiltonian dy-
namics on the Poincaré sphere is given by the Poisson bracket relation,

dζ

dt
=
{
ζ, H

}
=

1
4i
(
|ζ|2 + 1

)2 ∂H
∂ζ∗

, (4.2.23)

where H(ζ, ζ∗) is the result of stereographic projection of the correspond-
ing Hamiltonian defined on the sphere.

Remark 4.2.10 The Hermitian coherence matrix in (4.1.22) for the Poincaré
sphere with |Y|2 = 1 takes the following form in the complex Riemann
variables,

Q =
1
2

[
1 + Y3 Y1 − iY2

Y1 + iY2 1− Y3

]
=

1
|ζ|2 + 1

[
|ζ|2 ζ∗

ζ 1

]
. (4.2.24)

Exercise. Show that the Poisson bracket (4.2.22) result-
ing from stereographic projection of the complex plane
onto the Riemann sphere satisfies the relations,{

ζ

|ζ|2 + 1
,

ζ∗

|ζ|2 + 1

}
= 2i

|ζ|2 − 1
|ζ|2 + 1

,

and {
ζ

|ζ|2 + 1
,
|ζ|2 − 1
|ζ|2 + 1

}
=

4i ζ
|ζ|2 + 1

.

F

4.3 The geometric and dynamic S1 phases

S1-invariant dynamical solutions for 1 : 1 resonance on C2 may be
represented as motion along the intersections of a level surface of
the Hamiltonian H(Y) and the Poincaré sphere for various values
of the intensity R, the radius of the sphere.
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However, the Poincaré sphere does not represent the phase of
the C2 oscillation: all states related by an S1 phase factor correspond
to a single point on the Poincaré sphere. The geometric determina-
tion of the phase evolution of a particular motion on the sphere is a
story in itself.

Imagine reconstructing the solutions on C2 from the S1-reduced
system on the Poincaré sphere. Consider a periodic solution. As
a result of travelling over one period in the S1-reduced space (on
a level surface of the Poincaré sphere) the solution may not return
to its original state, because phase shifts may be generated. These
phases are associated with the S1-group action for the 1 : 1 reso-
nance symmetry responsible for the reduction. Thus, the Poincaré
sphere represents a manifold of S1 orbits. That is, the Poincaré
sphere is an orbit manifold, because each point on it is a 1 : 1 reso-
nant S1 motion.

4.3.1 Geometric phase

The 1 : 1 resonant S1 reduction produces the symplectic form on the
Poincaré sphere

ω =
1
2

Im (daj ∧ da∗j ) = d cos θ ∧ dφ+
1
2
dR ∧ ds .

This symplectic form arises from the following canonical one-form

1
2

Im (a · da∗) = cos θ dφ+
1
2
Rds . (4.3.1)

Thus, we may compute the total phase change ∆s around a closed
periodic orbit on the Poincaré sphere of radius R as the sum of two
integrations, namely∮

1
2
Rds =

R

2
∆s = −

∮
cos θ dφ︸ ︷︷ ︸

Geometric phase

+
∮

1
2

Im (a · da∗) .︸ ︷︷ ︸
Dynamic phase

(4.3.2)

Equivalently, one may denote the total change in phase as the sum

∆s = ∆sgeom + ∆sdyn ,
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by identifying the corresponding terms in the previous formula.

Remark 4.3.1 By the Stokes theorem, one sees that the geometric phase
associated with a periodic motion on the Poincaré sphere is proportional to
the solid angle that it encloses. Thus, the name: geometric phase. Quite a
large literature has built up during the past few years on this subject. For
a guide to learning about this literature, the interested reader might want
to consult the collection of articles in [ShWi1989].

4.3.2 Dynamic phase

The other term in the phase formula (4.3.2) is called the dynamic
phase. One computes the dynamic phase as

R

2
∆sdyn =

∮
1
2

Im (a · ȧ∗)dt =
∮

1
2

Im (a · {a∗, H})dt (4.3.3)

=
∮

1
2

Im
(

2ia · ∂H
∂a

)
dt (depends on the Hamiltonian).

For Hamiltonians that are S1-invariant polynomials in C2, the
dynamic phase may be computed in terms of the orbit-averaged
Hamiltonian, as in the following example. Suppose the Hamilto-
nian is the real-valued S1-invariant polynomial in C2 in [DaHoTr1990]

H = Hlinear +Hint

= a∗ · χ(1) · a+
3
2
a∗a∗ : χ(3) : aa (4.3.4)

= a∗jχ
(1)
jk ak +

3
2
a∗ja
∗
kχ

(3)
jklmalam .

This is the Hamiltonian for a polarised optical travelling wave mov-
ing in a continuously varying medium with linear and nonlinear
optical susceptibilities χ(1) and χ(3), respectively, to be treated in
Section 4.5. These susceptibilities are required to be Hermitian in
the appropriate indices so that Hlinear and Hint are real quantities.
One computes the dynamic phase for this Hamiltonian as

R

2
∆sdyn =

∮
1
2

Im
(

2ia · ∂H
∂a

)
dt , (4.3.5)

(for this Hamiltonian) =
∮

(H +Hint) dt = T (H + 〈Hint 〉 ) ,
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where T is the period of the closed orbit and 〈 · 〉 := T−1
∮

( · ) dt
denotes time average along the orbit.

4.3.3 Total phase

The total phase shift of a closed orbit on the Poincaré sphere is pro-
portional to the sum of the geometric phase given by the solid angle
captured by the orbit,

Ωorbit = −
∮
orbit= ∂S

cos θ dφ =
∫∫

S
dφ ∧ d cos θ ,

plus the dynamic phase given by the product of the period with the
sum of the constant total energy and the time-averaged interaction
energy, namely,

R

2
∆s = Ωorbit + T (H + 〈Hint 〉 ) . (4.3.6)

Remark 4.3.2 (S1 gauge invariance)
The geometric phase is given by the solid angle subtended by the orbit on
the Poincaré sphere. Thus, it is independent of the S1 parameterisation of
the orbit.

On the other hand, the dynamic phase depends on the period of the
orbit and also on properties of the Hamiltonian averaged in time over the
orbit. The dynamic phase also depends on the parameterisation of the S1

phase along the orbit. In particular, under an S1gauge transformation
given by

a(s)→ eiψ(s)a(s) , (4.3.7)

along the orbit a(s) the Poincaré sphere is invariant by construction. This
means the geometric phase (the area subtended by the orbit on the sphere)
is also left invariant. However, the dynamic phase changes under this
transformation, as follows:

Im (a · da∗)→ Im (a · da∗) + dψ . (4.3.8)
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This change in the dynamical phase for a problem with S1 symmetry is
reminiscent of the transformation of the vector potential in electrodynam-
ics under the change of gauge that leaves the electric and magnetic fields
invariant. As for the electromagnetic fields in that case, the geometric
phase is invariant under S1 gauge transformations.

4.4 Kummer shapes for n : m resonances

This section reviews work by M. Kummer [Ku1981, Ku1986] that ex-
tends the representation of the orbit manifold for the reduced phase
flow of the (1 : 1) resonance in a Hamiltonian system composed of
two harmonic oscillators of equal frequency to the case of (n : m)
resonance of any type. The orbit manifolds for (n : m) resonant
oscillators are two-dimensional surfaces of revolution in R3 called
Kummer shapes. These are:

(a) the Poincaré sphere S2 for the (1 : 1) resonance;

(b) spheres pinched at one pole for the (1 : m) resonances when
m > 1; and

(c) spheres pinched at both poles for the (n : m) resonances when
m ≥ n > 1.

Resonant orbit manifolds represented by the corresponding Kum-
mer shapes also exist for pseudo-oscillators – when the resonance
Hamiltonian is an indefinite quadratic form. In this case, the orbit
manifold is an unbounded surface of revolution, as we saw in Sec-
tion 1.5 also occurs for the hyperbolic onion ray optics.

Resonances of this kind include the Fermi (1 : 2) resonance in the
CO2 molecule. Low-order resonances are important in any physical
studies of perturbed equilibria of Hamiltonian sytems and such sys-
tems have been systematically studied, see, e.g., [Ku1981, Ku1986].

Recall the canonical Poisson bracket relations (4.1.3) for oscilla-
tor variables on C2,

{aj , a∗k} = − 2iδjk and {a∗j , ak} = 2iδjk . (4.4.1)
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Consider the evolution equations generated by the resonance phase
space function R : C2 → R given explicitly by

R =
n

2
|a1|2 +

m

2
|a2|2 , aj = qj + ipj j = 1, 2 . (4.4.2)

The following are the canonical equations of n : m resonant motion:

ȧ1 = {a1, R} = −2i
∂R

∂a∗1
= −nia1 , (4.4.3)

ȧ2 = {a2, R} = −2i
∂R

∂a∗2
= −mia2 , (4.4.4)

whose solutions are,

a1 (t) = e−inta1 (0) and a2 (t) = e−imta2 (0) . (4.4.5)

These solutions represent S1 × S1 = T 2 toroidal motion, wrapping
m times around in one S1 direction and n times around in the other.

Definition 4.4.1 (n : m resonance dynamics)

• The flow φRt of the Hamiltonian vector field XR = { · , R} is the
n : m resonant phase shift. In this flow, the phases of both simple
harmonic oscillations (a1, a2) precess counterclockwise at constant
rates, with a1 ∈ C at rate n and a2 ∈ C at rate m, in arbitrary
frequency units.

• In n : m resonant motion on C2 = C× C, the variable a1 oscillates
n times while a2 oscillates m times.

• Specifically, the canonical Poisson brackets with R generate the fol-
lowing Hamiltonian vector field,

XR =
{
· , R

}
= ȧ1

∂

∂a1
+ ȧ2

∂

∂a2
+ c.c.

= − ina1
∂

∂a1
− ima2

∂

∂a2
+ c.c.
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Definition 4.4.2 The set {In:m} of n : m resonance invariants com-
prises the set of independent phase space functions whose Poisson bracket
vanishes when taken with R in equation (4.4.2) for a given choice of n and
m. That is,

In:m = {I : C2 → R |XRI = { I , R} = 0} .

Definition 4.4.3 The n : m resonance invariants may be expressed con-
veniently by introducing a new variable b ∈ C2 with two complex compo-
nents,

b1 =
am1

m|a1|(m−1)
, b2 =

an2
n|a2|(n−1)

. (4.4.6)

These components of b ∈ C2 satisfy the canonical Poisson bracket rela-
tions; in particular,

{b1, b∗1} = − 2i
m
, {b2, b∗2} = − 2i

n
, (4.4.7)

as may be verified directly. However, this transformation is not globally
defined, because of its multivaluedness at the North and South poles. By
writing these expressions in polar coordinates, as

a1 = r1e
iφ1 , a2 = r2e

iφ2 ,

b1 =
r1

m
eimφ1 , b2 =

r2

n
einφ2 , (4.4.8)

one sees that this multivaluedness derives from the ambiguities of the polar
coordinates at the North and South poles.

Exercise. Compute the relations between the symplectic
forms daj ∧ da∗j and dbj ∧ db∗j for the canonical trans-
formation (4.4.6) and thereby prove the Poisson bracket
relations (4.4.7). Hint: Try this calculation in polar coor-
dinates (4.4.8). F

Proposition 4.4.4 In terms of the two sets of variables (a1, a2) and (b1, b2),
the four independent n : m resonance invariants may be expressed equiv-
alently as

In:m ∈
{
|b1|2 , |b2|2 , b1b∗2, b∗1b2

}
:=

{
|a1|2

m2
,
|a2|2

n2
,
am1 a

∗n
2

Dmn
,
a∗m1 an2
Dmn

}
, (4.4.9)
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where the denominator Dnm is defined as

Dnm = mn|a1|m−1|a2|n−1 . (4.4.10)

Proof. Each of these variables in (4.4.9) is invariant under the n : m
resonance motion in (4.4.3) and (4.4.4), which is canonically gener-
ated by the Hamiltonian vector field XR given by

XR = − ina1
∂

∂a1
− ima2

∂

∂a2
+ c.c.

= − imnb1
∂

∂b1
− imnb2

∂

∂b2
+ c.c.

That is, each of these invariants Poisson-commutes with the phase
space function R.

Remark 4.4.5 Although the functionally independent members of the set
of resonance invariants I ∈ In:m each Poisson-commute with the phase
space function R, they do not Poisson-commute amongst themselves. The
Poisson-bracket relations among these resonance invariants are the subject
of Section 4.4.3.

4.4.1 Poincaré map analog for n : m resonances

The Poincaré map (4.2.3) for the 1 : 1 resonance is the momentum
map J : T ∗C2 ' C2 × C2 7→ su(2)∗ . Accordingly, the map Q =
b ⊗ b∗ ∈ su(2)∗ sends C2 → S2. We shall construct the analog of
Poincaré’s map to the sphere C2 → S2 for the n : m resonance by
transforming variables in the 1 : 1 momentum map, as

Q = b⊗ b∗ =
(
b1b
∗
1 b1b

∗
2

b2b
∗
1 b2b

∗
2

)
=

(
|a1|2/m2 am1 a

∗n
2 /Dmn

a∗m1 an2/Dmn |a2|2/n2

)
, (4.4.11)

where again Dmn = mn|a1|m−1|a2|n−1 in equation (4.4.10). In the
variables a ∈ C2, the Poincaré map C2 → S2 in the variables b ∈ C2

will transform into C2 → S2|pinch, where S2|pinch is a pinched sphere,



4.4. KUMMER SHAPES FOR N : M RESONANCES 253

which will have singularities at its North and South poles created
by being pinched into corners for n,m = 2 and cusps for n,m ≥ 2.
These singularities are inherited from the multivalued nature of the
transformation in equation (4.4.6) at the North and South poles.

4.4.2 The n : m resonant orbit manifold

We shall construct the orbit manifold for n : m resonance by follow-
ing the same procedure of transforming to S1 invariant variables as
we did in in Section 4.1.3 when transforming C2 7→ S3 7→ S2 × S1

for the Poincaré sphere, or Hopf map, for n : m = 1 : 1. For this
purpose, we first define the following n : m resonant S1-invariant
quantities:

R =
n

2
|a1|2 +

m

2
|a2|2 , (4.4.12)

Z =
n

2
|a1|2 −

m

2
|a2|2 , (4.4.13)

X − iY = 2am1 a
∗n
2 . (4.4.14)

Definition 4.4.6 (Quotient map)
The n : m quotient map π : C2\{0} → R3\{0} is defined (for R > 0)
by means of the formulas (4.4.13) and (4.4.14). This map may be rewritten
succinctly as

X := (X − iY, Z) = π(a) . (4.4.15)

Remark 4.4.7 Since {K, R} = 0 for K ∈ {X,Y, Z}, the quotient map
π in (4.4.15) collapses each n : m orbit to a point. The converse also
holds, namely that the inverse of the quotient map π−1X for X ∈ Imageπ
consists of an n : m orbit.

Definition 4.4.8 (Orbit manifold)
The image in R3 of the quotient map π : C2\{0} → R3\{0} in (4.4.15) is
the orbit manifold for the n : m resonance.

Remark 4.4.9 The orbit manifold for the n : m resonance may be con-
veniently described as the zero level set of a function in R3, defined via the
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analogy with the Poincaré sphere. Namely, apply the relation detQ = 0
for the n : m momentum map (4.4.11), which is equivalent to

|X − iY |2 = X2 + Y 2 ,

= 4 |a1|2m |a2|2n ,

= 4
(
R+ Z

n

)m(R− Z
m

)n
.

This identity defines the functional relation for the orbit manifold for n : m
resonance,

C(X, Y, Z, R) := X2+Y 2−4
(
R+ Z

n

)m(R− Z
m

)n
= 0 . (4.4.16)

The result recovers the Poincaré sphere relation (4.1.20) for the 1 : 1
resonance. Consequently, a level set of R in the n : m resonance map
C2 → S2|pinch obtained by transforming to S1 invariants yields an orbit
manifold defined by C(X, Y, Z, R) = 0 in 3D. A selection of these or-
bit manifolds is plotted in Figure 4.3. Since they were introduced by M.
Kummer in [Ku1981, Ku1986] these orbit manifolds are called Kummer
shapes.

Proposition 4.4.10 The orbit manifold C(X, Y, Z, R) = 0 in equation
(4.4.16) is a surface of revolution about the Z-axis. For n : m = 1 : 1,
this surface is a sphere. When either or both of the integers (n, m) exceeds
unity, this surface is closed and is equivalent to a sphere which has been
pinched along the Z-axis at either or both of its poles at the points Z =
±R. These points correspond to placing all of the conserved intensity R
into only one of the oscillators. When either of (n, m) is negative, the
shape C(X, Y, Z, R) = 0 is an open surface of revolution.

Proof. To see these azimuthally symmetric surfaces are pinched,
solve C(X, 0, Z, R) = 0 for X(Z) in the Y = 0 plane for a constant
value of R, to find

X(Z) = 2
(
R+ Z

n

)m/2(R− Z
m

)n/2
.
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n=4, m=2n=2, m=2

n=3, m=3

n=1, m=2

n=1, m=1

Figure 4.3: Kummer shapes are the orbit manifolds defined in equation (4.4.16)
for different n : m resonance values. The points at the top and bottom (Z =
±, R) represent periodic solutions of period 2π/n with a2 = 0 and 2π/m with
a1 = 0, respectively. These points on the reduced manifolds are singular pinches
of the surfaces for n,m 6= 1. The curves drawn on these surfaces of revolution
are intersections with vertical planes representing different level surfaces of the
simple Hamiltonian H = X . The intersection of a vertical plane through one of
the singular points is a homoclinic, or heteroclinic orbit for this Hamiltonian. The
other closed intersections are periodic orbits of the quotient flow defined by the
Nambu bracket in equation (4.4.17).

From this expression, one may compute the derivatives in the Y = 0
plane as

dX

dZ

∣∣∣∣
Y=0

=
(R+ Z)(m−2)/2 (R− Z)(n−2)/2

nm/2mn/2
[m (R− Z)− n (R+ Z)] .
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Figure 4.4: Intersections are shown of level sets of a Hamiltonian represented by
a family of horizontal parabolic cylinders (in blue) with orbit manifolds for n : m
resonance values of 3 : 3, 3 : 2, 1 : 2 and 2 : 2, respectively, (in gold) clockwise
from the upper left. If the radius of curvature of the parabola is less than that of the
orbit manifold at the tangent point in the back, then the critical point is hyperbolic
(unstable). Otherwise, it is elliptic (stable).

At the poles, Z = ±R, these derivatives determine cusps for n > 2,
corners for n = 2 and spheres for n = 1,

dX

dZ

∣∣∣∣
Y=0, Z=R

= 0 for n > 2

dX

dZ

∣∣∣∣
Y=0, Z=−R

= 0 for m > 2

Cusps at both poles (onions).

dX

dZ

∣∣∣∣
Y=0, Z=±R

<∞ for m,n = 2 ,
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Figure 4.5: Because of its two circles of inflection points, the quotient flow on the
Kummer shape for the 3 : 3 resonance has an interesting double pitchfork bifurca-
tion near its upper singular point, for a Hamiltonian represented by an ellipsoid of
revolution about the vertical axis whose center is shifted upward. In this situation,
the singular points at the top and bottom are always centres. The double pitchfork
bifurcation creates a centre and two saddle-centre pairs from a single centre at the
top singular point.

with a “beet" shape for m = 1, n = 2.

dX

dZ

∣∣∣∣
Y=0, Z=±R

→∞ for m,n→ 1 yields the Poincaré sphere.

The azimuthally symmetric, closed Kummer shapes in three dimen-
sions are reminiscent of the natural shapes of fruits and vegetables.
One may indicate what happens at the singular points for m,n 6= 1,
by identifying the shapes with fruits and vegetables, as follows:

m = 2, n > 2→ beet;



258 CHAPTER 4. RESONANCES AND S1 REDUCTION

m = 2, n = 2→ lemon;

m,n > 2→ onion;

m = 2, n = 1→ turnip;

m = 1, n = 1→ orange.

Exercise. What happens to the Kummer shapes when
mn < 0? The 1 : −1 resonance produces the hyperbolic
onion of Chapter 1. For hints about how to answer this
question more generally for the n : −m resonance, re-
fer to papers by Cushman, Kummer, Elipe, Lanchares,
Deprit, Miller and their collaborators, as cited in the ref-
erences. F

4.4.3 n : m Poisson bracket relations

Exercise.

1. Show that the canonical Poisson bracket relations,

{a, a∗} = − 2i and {a∗, a} = 2i ,

imply the useful identities{
|a1|2 , am1

}
= 2imam1 ,

and {
|a1|2 , a∗m1

}
= − 2ima∗m1 ,

as well as

{a∗m1 , an1} = mam−1
1 {a∗1, an1}

= mna∗m−1
1 {a∗1, a1} an−1

1

= 2imna∗m−1
1 an−1

1 .
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2. Show that the n : m resonance invariants,

R =
n

2
|a1|2 +

m

2
|a2|2 ,

Z =
n

2
|a1|2 −

m

2
|a2|2 ,

X − iY = 2am1 a
∗n
2

satisfy the Poisson bracket relations,{
R,X

}
= 0 =

{
R, Y

}
=
{
R,Z

}
,

and

{Z,X − iY } = imn (X − iY ) .

3. Finally, show that{
X,Y

}
= i
{
am1 a

∗n
2 + a∗m1 an2 , a

m
1 a
∗n
2 − a∗m1 an2

}
= −2i

{
am1 a

∗n
2 , a∗m1 an2

}
= 4 |a1|2(m−1) |a2|2(n−1)

(
n2 |a1|2 −m2 |a2|2

)
= − 4nm(X2 + Y 2)

( m

R+ Z
− n

R− Z

)
.

The last step is evaluated on C(X, Y, Z, R) = 0.
Conclude that the {X,Y } brackets do not close lin-
early, but they do close in the space of n : m-invariant
coordinates X,Y, Z ∈ R3. What role is played by
the Jacobi identity in ensuring that the last bracket
would close in terms of the n : m invariants?

F

Question 4.4.11 Why do these brackets close? What motion do they gen-
erate? For the answers to these questions, we return to the R3-bracket
theory of Nambu [Na1973] introduced in Section 1.11.3.
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4.4.4 Nambu, or R3-bracket for n : m resonance

The flow induced by Hamiltonian H : R3 → R on the orbit mani-
fold, the so-called quotient flow, is governed by the Euler-like equa-
tions

Ẋ = {X, H} = ∇C ×∇H . (4.4.17)

A quick qualitative picture of the quotient flow lines (i.e., the flow
lines of H on C = 0) is obtained by cutting the corresponding Kum-
mer shape with the appropriate level sets of the Hamilton H =
const.

Here the Casimir surface for fixed R is given by the zero level
set corresponding to the functional relation found above in equation
(4.4.16),

C(X,Y, Z,R) = X2 + Y 2 − 4
(
R+ Z

n

)m(R− Z
m

)n
= 0 . (4.4.18)

Both C and H are preserved by the quotient flow,

Ċ = ∇C · ∇C ×∇H = 0 ,
Ḣ = ∇C · ∇H ×∇H = 0 .

Remark 4.4.12 The n : m resonant motion takes place in R3 along in-
tersections of a surface C(X,Y, Z,R) = 0 (the orbit manifold for a given
value R =constant) and a level surface of the Hamiltonian, H =constant.

Remark 4.4.13 The equations

Ẋ = ∇C ×∇H

are unchanged by taking linear combinations

Ẋ = ∇ (αC + βH)× (γC + εH)

provided

det
(
α β
γ ε

)
= 1 .

This remark may produce some interesting simplifications when judiciously
applied. See the application to the rotor and pendulum in Section 2.4.4.
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Remark 4.4.14 The singularities at the pinches in the Kummer shapes
may apparently be removed by transforming to the b variables. However,
this apparent regularisation of the singularities comes at the cost of intro-
ducing a multiple-sheeted relationship between the b variables for the re-
sulting Poincaré sphere and the original a variables for the Kummer veg-
etable surfaces. For more details, see the enhanced coursework problem
A.5.4.

4.5 Optical travelling-wave pulses

4.5.1 Background

The problem of a single, polarised, optical laser pulse propagating
as a travelling wave in an anisotropic, cubically nonlinear, lossless
medium may be investigated as a Hamiltonian system,

da
dτ

= {a, H} ,

where a ∈ C2 is the complex two-component electric field ampli-
tude of the optical pulse and s is the travelling wave variable. This
Hamiltonian system describes the nonlinear travelling-wave dynam-
ics of two complex oscillator modes (the two polarisations). Since
the two polarisations of a single optical pulse must have the same
natural frequency, they are in 1 : 1 resonance. An S1 phase in-
variance of the Hamiltonian for the interaction of the optical pulse
with the optical medium in which it propagates will reduce the
phase space to the Poincaré sphere, S2, on which the problem is
completely integrable. In this section, the fixed points and bifur-
cations of the phase portrait on S2 of this system are studied as
the beam intensity and medium parameters are varied. This study
reveals bifurcations involving the creation or destruction of homo-
clinic and heteroclinic connections. For the complete discussion, see
[DaHoTr1990].

Our approach to this problem uses the Stokes description [St1852,
BoWo1965] of polarisation dynamics. In this approach Hamiltonian
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methods are used to reduce the four-dimensional phase space C2

(the two-component, complex-vector electric field amplitude) for
the travelling-wave dynamics to a spherical surface S2 (the Poincaré
sphere). Bifurcations of the phase portrait on S2 may then be deter-
mined as functions of material properties and beam intensity. The
formation of homoclinic and heteroclinic orbits connecting hyper-
bolic fixed points may also be identified. These homoclinic and het-
eroclinic orbits are separatrices (i.e., stable and unstable manifolds
of hyperbolic fixed points) which separate regions on S2 with differ-
ent types of periodic behaviour in the travelling-wave frame. The
bifurcations of these fixed points signal the onset of a change in be-
haviour of the optical pulse in different parameter regimes, due to
the nonlinearity of its interaction with the optical medium.

Remark 4.5.1 (Utility of the Poincaré sphere)

• The Poincaré sphere is still useful in both linear and nonlinear optics
today. For example, it is used in visualising polarisation dynamics
for telecommunications using travelling-wave pulses in optical fi-
bres [DaHoTr1990]. In this application, a given state of polarisation
is represented by a unit vector (Stokes vector) on the Poincaré sphere,
normalised by its intensity R. It is conventional in optics applica-
tions to permute the labels of the Stokes axes as (1, 2, 3)→ (3, 1, 2).
This cyclic permutation of the order of the Pauli matrices in (4.1.16)
will cause no confusion, provided the conventions are checked care-
fully when making explicit applications of formulas based on the
Poincaré sphere. See, for example, Section 4.5.

• After the permutation of the order of the Pauli matrices in (4.1.16),
linear polarisation is represented on the equator of the Poincaré
sphere, while right (resp. left) circular polarisation is located at
its North (resp. South) pole. Super-positions of these polarisations
generate elliptical polarisations, which are uniquely represented
by other directions on the Poincaré sphere (4.1.22). Orthogonal po-
larisations are diametrically opposite across the sphere. Polarisation
dynamics is then strikingly represented as motion along a curve on
the Poincaré sphere.



4.5. OPTICAL TRAVELLING-WAVE PULSES 263

• The surface of the Poincaré sphere corresponds to completely po-
larised light. Its interior corresponds to partially polarised, or par-
tially incoherent, light.

4.5.2 Hamiltonian formulation

Propagation of an optical travelling-wave pulse in a cubically non-
linear medium is described by the following Hamiltonian system of
equations [Sh1984, Bl1965].

i

2
daj
dτ

= χ
(1)
jk ak + 3χ(3)

jklmakala
∗
m . (4.5.1)

Its explicit Hamiltonian form is3

daj
dτ

= {aj , H} = − 2i
∂H

∂a∗j
, (4.5.2)

H = a∗jχ
(1)
jk ak +

3
2
a∗jakχ

(3)
jklmala

∗
m , (4.5.3)

where τ is the independent variable for travelling waves, the indices
j, k, l,m take values 1, 2 for the two polarisations and the complex
two-vector a = (a1, a2)T ∈ C2 represents the electric field ampli-
tude.

Remark 4.5.2 Although we will follow only the formulation of optical
pulse propagation, we note that the Hamiltonian (4.5.3) also includes the
well known Darling-Dennison Hamiltonian for molecular dynamics
[AlEb1975]. In the molecular context, the two modes of oscillation are
called symmetric and antisymmetric stretch.

Remark 4.5.3 (Complex susceptibility tensors)
The complex susceptibility tensors χ(1)

jk and χ(3)
jklm in equation (4.5.3) pa-

rameterise the linear and nonlinear polarisability of the medium, respec-
tively. The susceptibility tensors are taken to be constant and Hermitian

3The optics convention (1, 2, 3)→ (3, 1, 2) is applied in labelling the Stokes axes
and Pauli matrices in this section.
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in each a − a∗ pair, as required for the Hamiltonian H to take real val-
ues. In addition, χ(3)

jklm possesses a permutation symmetry arising from
relabelling of indices:

χ
(1)
jk = χ(1)∗

kj , χ
(3)
jklm = χ(3)∗

kjml , χ
(3)
jklm = χ

(3)
lkjm = χ

(3)
jmlk = χ

(3)
lmjk .

Besides the Hamiltonian, the intensity,

R = |a|2 = |a1|2 + |a2|2 ,

is also conserved because of the 1 : 1 resonance S1 symmetry of the Hamil-
tonian H .

4.5.3 Stokes vectors in polarisation optics

Following [DaHoTr1990] for this problem, we introduce the three-
component Stokes vector, u, given by

u = a∗jσjkak = trQσ , (4.5.4)

with σ = (σ3, σ1, σ2) the standard Pauli spin matrices in equation
(4.1.16) but in permuted order, (1, 2, 3) → (3, 1, 2). As described in
Section 4.1.4, the order (3, 1, 2) is important in the identification of
the types of optical polarisations, linear, circular and elliptical.

The transformation to Stokes vectors is carried out using the op-
tical decomposition (4.5.4) of the coherency matrix, as follows.

H = tr (Qχ(1)) +
3
2

tr (Q · χ(3) ·Q)

=
1
2

tr
((
Rσ0 + u · σ

)
χ(1)

)
+

3
8

tr
((
Rσ0 + u · σ

)
· χ(3) ·

(
Rσ0 + u · σ

))
=

R

2
tr
(
χ(1)

)
+

1
2

u · tr
(
σχ(1)

)
+

3R2

8
tr
(
σ0 · χ(3) · σ0

)
+

3R
4

u · tr
(
σ · χ(3) · σ0

)
+

3
8

u · tr
(
σ · χ(3) · σ

)
· u .
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Thus, in terms of the Stokes parameters u the Hamiltonian function
H in equation (4.5.4) may be rewritten as

H = b · u +
1
2
u ·W · u with b = f + |u|c = f +Rc . (4.5.5)

Geometrically, a level set of H in R3 is an offset ellipsoid (or hy-
perboloid for negative eigenvalues of W ), whose centre has been
shifted by u → u + W−1b. Terms in |u| = R and |u|2 = R2 may be
treated as constants in H because they will Poisson commute with
the Stokes vector u and, thus, will not contribute to its dynamics. In
this transformed Hamiltonian, the constant vectors f and c, and the
constant symmetric tensor W are given by

f =
1
2

tr
(
σχ(1)

)
=

1
2
σkjχ

(1)
jk ,

c =
3
4

tr
(
σ · χ(3) · σ0

)
=

3
4
σkjχ

(3)
jkll ,

W =
3
4

tr
(
σ · χ(3) · σ

)
=

3
4
σkjχ

(3)
jklmσml . (4.5.6)

Remark 4.5.4 (Stokes material parameters)
The material parameters f , c, and W are all real. According to equation
(4.5.6), the parameters f and c represent the effects of anisotropy in the
linear and nonlinear polarisability, respectively. They lead to precession of
the Stokes vector u with (vector) frequency

b = f +Rc ,

which is a function of intensity R.

• In the low intensity case, one ignores χ(3). Then the precession
rate of the Stokes vector due to anisotropy of the linear polarisabil-
ity (linear birefringence) is f , which is constant and independent of
intensity. This effect is called Faraday rotation of the polarisa-
tion vector. In some materials, Faraday rotation may be enhanced
by applying an external magnetic field, in which case it is called a
magneto-optical effect.
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• The nonlinear effects of χ(3) are parameterised by c and W in the
Hamiltonian (4.5.5). The tensor W is symmetric, so a polarisa-
tion basis may always be assumed in which W is diagonal, W =
diag (λ1, λ2, λ3), in analogy to the principal moments of inertia of
a rigid body. However, unlike the rigid body, the entries of W need
not all be positive.

The equations of motion for the Stokes vector u may be expressed
in Hamiltonian form as

du
dτ

= {u, H} with {F, H} = 4u · ∇F (u)×∇H(u) . (4.5.7)

This is written in triple scalar product form, just as in the case of the
rigid body, but with an inessential factor of (−4). As expected, the
intensity R = |u| is the Casimir function for this R3 Poisson bracket.
That is, the intensity R Poisson-commutes with all functions of u in
the applications of the Poisson bracket (4.5.7). Consequently, the
intensity R in the Stokes description of lossless polarised optical
beam dynamics may be regarded simply as a constant parameter.
However, the intensity R is also an experimental control parameter
which may be varied in the study of bifurcations and stability of
travelling-wave polarisation states.

The travelling-wave equation (4.5.1) for polarisation dynamics
thus becomes

du
dτ

= {u, H} = (b +W · u)× u with b = f +Rc , (4.5.8)

in the Stokes vector representation.

4.5.4 Further reduction to the Poincaré sphere

The system of polarisation vector equations (4.5.8) reduces further
to the Poincaré sphere S2 of radius R upon transforming to spheri-
cal coordinates, defined by

(u1, u2, u3) = (R sin θ sinφ,R cos θ,R sin θ cosφ) , (4.5.9)
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written in the nonlinear optics convention with polar angle mea-
sured from the 2-axis. In these coordinates, the symplectic Poisson
bracket on S2 is expressible as in equation (4.2.16) modulo an over-
all sign, {

F, H
}

=
∂F

∂ cos θ
∂H

∂φ
− ∂F

∂φ

∂H

∂ cos θ
, (4.5.10)

and the reduced Hamiltonian function (4.5.5) is

H =
1
2
R2
[(
λ1 sin2 φ+ λ3 cos2 φ

)
sin2 θ + λ2 cos2 θ

]
+ R sin θ

(
b1 sinφ+ b3 cosφ

)
+ b2R cos θ . (4.5.11)

When b = (b1, b2, b3) = 0, this expression reduces to the Hamilto-
nian for the rigid body restricted to a level surface of angular mo-
mentum, modulo the permuted coordinates axes (1, 2, 3)→ (3, 1, 2)
in (4.5.9) for the optics convention.

Example 4.5.5 (Pitchfork bifurcation for optical gyrostat)
The system (4.5.8) is solved easily when (i) two eigenvalues of W coincide,
and (ii) one or more of the components of b vanish. This case recovers the
symmetric Lagrange gyrostat, or rigid body with a flywheel discussed in
Section A.1.4.

For definiteness, we setW = ω diag (1, 1, 2) and b = (b1, b2, 0). Then
equations (4.5.8) read

du1

dτ
= (b2 − ωu2)u3 ,

du2

dτ
= (ωu1 − b1)u3 ,

du3

dτ
= b1u2 − b2u1 .

Hence, a Duffing equation emerges for u3,

d2u3

dτ2
= Au3(B − u2

3) , (4.5.12)

with constant parameters,

A =
1
2
ω2 , B =

2H
ω
−R2 − 2(b21 + b22)

ω2
. (4.5.13)
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The other two components of u may be determined algebraically from the
two constants of motion R and H . When B increases through zero, the
Duffing equation (4.5.12) develops a pair of orbits, homoclinic to the
fixed point u3 (see, e.g., [GuHo1983, Wi1988]). This is the pitchfork bi-
furcation. This particular case suffices to demonstrate that the system
(4.5.8) possesses bifurcations in which homoclinic orbits are created. For
more details and references, see Appendix A of [DaHoTr1990]. See also
[HoKoSu1991, AcHoKoTi1997] for other applications of Hamiltonian bi-
furcations and related ideas in nonlinear optics.

4.5.5 Bifurcation analysis

We now specialise to the case of a non-parity-invariant material
with C4 rotation symmetry about the axis of propagation (the z-
axis), for which material constants take the form W = (λ1, λ2, λ3)
and b = (0, b2, 0). (See [DaHoTr1989, DaHoTr1990] for additional
developments of what follows.)

Let us introduce the following parameters:

µ = λ3 − λ1 , λ =
λ2 − λ1

λ3 − λ1
, β =

b2
R(λ3 − λ1)

. (4.5.14)

In terms of these parameters, the Hamiltonian, Poisson bracket and
equations of motion transform, as follows. First, the Hamiltonian
(4.5.11) for b = (0, b2, 0) reduces to

H =
1
2
µ
[
(R2 − u2) cos2 φ+ λu2 + 2βRu

]
+

1
2
λ1R

2 , (4.5.15)

with u = R cos θ. The canonical Poisson bracket corresponds to a
symplectic form that is equal to the area element on the sphere,

{F, H} =
∂F

∂φ

∂H

∂u
− ∂H

∂φ

∂F

∂u
. (4.5.16)

The canonical equations of motion on the sphere are then

dφ

dτ
= {φ, H} =

∂H

∂u
= µ[βR− (cos2 φ− λ)u] , (4.5.17)

du

dτ
= {u, H} = − ∂H

∂φ
= µ(R2 − u2) cosφ sinφ . (4.5.18)
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We construct the phase portrait of the system and explain how this
portrait changes as the parameters in the equations vary. Fixed
points of (4.5.17) and (4.5.18) occur when the right-hand sides van-
ish. These points are easily located and classified. The locations and
types of these fixed points are listed in Table 4.1, for µ 6= 0.

Fixed point Coordinates Saddle Centre

F, B φ = 0, π λ > 1 λ < 1
cos θ = β/(1− λ)

L, R φ = π/2, −π/2 λ < 0 λ > 0
cos θ = −β/λ

N cos2 φ = λ+ β β ∈ (−λ, 1− λ) β /∈ (−λ, 1− λ)
θ = 0

S cos2 φ = λ− β β ∈ (−λ, 1− λ) β /∈ (−λ, 1− λ)
θ = π

Table 4.1: The fixed points of the Hamiltonian system (4.5.17) and (4.5.18) change
their types (that is, they bifurcate) as the parameters β and λ defined in (4.5.14) are
varied for µ 6= 0. The fixed points F,B (resp. L,R) are constrained by β2 < (1− λ)2

(resp. β2 < λ2).

A circle of fixed points when µ = 0

The special case where µ = 0, i.e., λ3 − λ1 = 0, requires a separate
analysis. In that case, the right-hand side of equation (4.5.8) van-
ishes identically so that the set of fixed points of the system is the
circle

cos θ =
b2

R(λ2 − λ1)
=
β

λ
. (4.5.19)
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Figure 4.6: Pairs of of fixed points at the North and South poles appear or van-
ish as the lines β = ±(1 − λ) and β = ±λ are crossed in the (λ, β) parameter
plane. The (λ, β) parameter plane is partitioned into nine distinct regions R1−R9
separated by four critical lines that intersect in pairs at four points. Because of dis-
crete symmetries it is sufficient to consider the quarter plane given by λ < 1/2 and
β > 0, i.e., to restrict attention to regions R1, R2, R4, and R5. Compare with the
bifurcations shown in Figure 4.7.

Two essential parameters (λ, β) when µ 6= 0

The phase portrait depends on two essential parameters, λ and β,
or equivalently, λ2 − λ1, and b2/R. Bifurcations of the phase por-
trait occur when the inequality constraints in the third column of
Table 4.1 become equalities; hence we observe that the pairs of fixed
points (F,B) and (L,R) appear or vanish as the lines β = ±(1− λ)
and β = ±λ are crossed in the (λ, β) parameter plane (see Figure
4.6).

4.5.6 Nine regions in the (λ, β) parameter plane

The (λ, β) parameter plane is partitioned into nine distinct regions
R1−R9 separated by four critical lines that intersect in pairs at four
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S1 : λ < 0 R1↔ R2↔ R4↔ R7↔ R9
S2 : λ = 0 R1↔ R2↔ R7↔ R9
S3 : 0 < λ < 1

2 R1↔ R2↔ R4↔ R7↔ R9
S4 : λ = 1

2 R1↔ R5↔ R9
S5 : 1

2 < λ < 1 R1↔ R3↔ R5↔ R8↔ R9
S6 : λ = 1 R1↔ R3↔ R8↔ R9
S7 : λ > 1 R1↔ R3↔ R6↔ R8↔ R9

Table 4.2: A choreography of seven possible bifurcation sequences S1 − S7 are
shown that may be executed along vertical lines in the (λ, β) plane of Figure 4.6 by
varying the beam intensity R. The sensitivity of the equilibrium solutions for po-
larisation dynamics to the beam intensity could be of special relevance in telecom
applications of polarised optical pulses.

points. Typical phase portraits corresponding to each of these re-
gions are shown in Figure 4.7. The phase portraits of the system
(4.5.18) and (4.5.17) are invariant under the following discrete sym-
metry transformations:

φ→ φ± π ;
φ→ φ± π , θ → π − θ , β → −β ;
φ→ φ± π/2 , λ→ 1− λ , β → −β ;
φ→ φ± π/2 , λ→ 1− λ , θ → π − θ .

Thus, as far as the configurations of critical orbits on the phase
sphere are concerned, it is sufficient to consider the quarter plane
given by λ < 1/2 and β > 0. That is, we may restrict attention to
regions R1, R2, R4, and R5.

The rigid-body limit lies along the λ-axis

Along the λ-axis (β = 0 in the parameter plane) the set of fixed
points does not change except at λ = 0 and λ = 1. That is, no bi-
furcations occur in general when the λ-axis is crossed. Nonetheless,
this line is special. Indeed, in the interval λ ∈ (0, 1), that is in re-
gion R5, both poles are hyperbolic; to each of them is attached to a
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Region 1

Region 2 Region 3

Region 4 Region 5 Region 6

Region 7 Region 8

Region 9

Figure 4.7: The choreography of bifurcations on the Poincaré sphere is shown
for a polarised optical travelling wave in a cubically nonlinear lossless medium.
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pair of homoclinic loops. When β vanishes, these homoclinic loops
merge together. For β = 0 and 0 < λ < 1, these merged homoclinic
loops form four heteroclinic lines that connect the North pole with
the South pole. This is the familiar phase portrait on the angular
momentum sphere for the rigid body with three unequal moments
of inertia.

On the λ-axis when β = 0, polarisation dynamics on S2 reduces
exactly to rigid-body dynamics. In that case, the phase portrait con-
sists of the poles N and S, and the four other fixed points are lo-
cated on the equator of the Poincaré sphere. (This configuration of
fixed four points distributed symmetrically on the equator is ob-
tained only on the λ-axis.) Two of these, (N,S) or (F,B) or (R,L),
are unstable while the other four are stable. Which pair of critical
points is unstable is decided by the value of λ = (λ2 − λ1)(λ3 − λ1).
The pair (F,B) is hyperbolic when 0 < λ < 1, and the pair (R,L)
is hyperbolic whenever λ > 1. In each of these cases, the unstable
direction is specified by the λk, whose value is intermediate among
the three.

Remark 4.5.6 By representing the orbits of constant angular momentum
as a flow on the Poincaré sphere, one may see at a glance the qualitative
motion for any set of initial conditions. This visualisation also allows one
to characterise the stability properties of the flow geometrically as either
elliptic (stable) or hyperbolic (unstable). One may also see how these so-
lutions bifurcate as the parameters are varied. Thus, one visualises the
equilibrium points, the homoclinic orbits and the bifurcations for the prob-
lem considered, all on a single figure.

Bifurcations that depend on beam intensity R

As the beam intensity R is varied, a vertical line is traced in the pa-
rameter plane along which various bifurcation sequences may oc-
cur. A choreography of the seven possible bifurcation sequences is
shown in Figure 4.2. The figures are plotted as functions of the
bifurcation parameters λ = (λ2 − λ1)/(λ3 − λ1) (horizontal) and
β = (b2/R)/(λ3 − λ1) (vertical). Compare with Figure 4.6. See
[DaHoTr1990] for more information about the bifurcations that may
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take place on the Poincaré sphere when beam intensity R is varied,
on tracking along these vertical lines in the (λ, β) parameter plane.



Chapter 5

Elastic spherical pendulum

5.1 Introduction and problem formulation

This chapter discusses the swinging spring, or elastic spherical pen-
dulum, which has a 1:1:2 resonance arising at cubic order in its
phase-averaged Lagrangian. The corresponding modulation equa-
tions turn out to be the famous three-wave equations that also apply,
for example, in laser-matter interaction in a cavity. Thus, analysis of
the elastic spherical pendulum combines many of the ideas we have
developed so far, and it suggests a strategy for solving even more
examples.

The chapter formulates and analyses the equations for the motion
of an elastic spherical pendulum, as follows.

• Identify degrees of freedom.

• Approximate the Lagrangian for small excitations at cubic or-
der in nonlinearity.

• Average the Lagrangian over its oscillating phases. (The aver-
aging process introduces another S1 phase symmetry.)

• Introduce an additional S1 1:1:2 resonance symmetry by phase
averaging that allows integration of the corresponding Euler-
Lagrange equations.

275
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• Derive the resulting three-wave equations and study their so-
lution behaviour.

5.1.1 Problem statement, approach and results

The elastic pendulum or swinging spring is a simple mechanical
system that exhibits rich dynamics. It consists of a heavy mass sus-
pended from a fixed point by a light spring which can stretch but
cannot bend, moving under gravity. In this chapter, we investigate
the 1:1:2 resonance dynamics of this system in three dimensions.
Its characteristic feature – the regular step-wise precession of its az-
imuthal angle – is also discussed, following [HoLy2002].

When the Lagrangian for the elastic pendulum is approximated
to cubic order and then averaged over its fast dynamics, the re-
sulting modulation equations for the three degrees of freedom have
three independent constants of motion and thus they are completely
integrable. Integrability arises because the averaging process intro-
duces an additional S1 symmetry. These modulation equations turn
out to be identical to the three-wave equations for the 1 : 1 : 2 reso-
nant triad interactions that also occur in fluids and plasmas, and in
laser-matter interaction, as discussed in Chapter 6.

The averaged system is reduced to a form amenable to analyt-
ical solution and the full solution – including the phase – is recon-
structed. The geometry of the solutions in phase space is examined
and used to classify the available motions. As might be expected
from the analysis of the 1 : 2 resonance in Chapter 4, the geometry
of the orbit manifolds for the 1 : 1 : 2 resonant approximation of
the elastic pendulum has a singular point. At this singular point,
the azimuthal angle of the pendulum is undefined, which leads to
the regular step-wise precession seen in its swing-spring motions
nearby.

5.1.2 History of the problem

The first comprehensive analysis of the elastic pendulum appeared
in [ViGo1933]. These authors were inspired by the analogy between
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this system and the 1 : 2 Fermi resonance in a carbon-dioxide molecule
between its bending and vibrating modes. This chapter is also con-
nected with other physical systems of current interest. For example,
the modulation equations for the averaged motion of the swinging
spring may be transformed into the equations for three-wave inter-
actions.

These three-wave equations also appear in analysing fluid and
plasma systems, and in laser-matter interaction. For example, the
three complex equations in this system are identical to the Maxwell-
Schrödinger envelope equations for the interaction between radia-
tion and a two-level resonant medium in a microwave cavity [HoKo1992].
The three-wave equations also govern the envelope dynamics of
light waves in an inhomogeneous material [DaHoTr1990, AlLuMaRo1998,
AlLuMaRo1999]. For the special case where the Hamiltonian takes
the value zero, the equations reduce to Euler’s equations for a freely
rotating rigid body. Finally, the equations are also equivalent to a
complex (unforced and undamped) version of the Lorenz [Lo1963]
three-component model, which has been the subject of many stud-
ies [Sp1982].

Thus, the simple spring pendulum, whose planar dynamics were
first studied as a classical analogue of the quantum phenomenon
of Fermi resonance in the CO2 molecule, now provides a concrete
mechanical system which simulates a wide range of physical phe-
nomena that become tractable by using methods of geometric dy-
namics. In turn, the geometric analysis of the classical singulari-
ties of the spring pendulum has recently produced a new insight
into the corresponding quantum behaviour of the CO2 molecule
[Cu-etal-2004]. Namely, the most important features in the quanti-
sation of a classical system may occur as a result of its singularities.

5.2 Equations of motion

5.2.1 Approaches of Newton, Lagrange & Hamilton

The physical system under investigation is an elastic pendulum, or
swinging spring, consisting of a heavy mass m suspended from a
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fixed point by a light spring which can stretch but not bend. The
mass swings as a pendulum under the force of gravity with con-
stant acceleration g and it oscillates under the restoring force of the
spring. The unstretched spring has length `0 and its spring constant
is denoted as k. In coordinates centred at the point of support, the
mass at the end of the spring has position X = (X,Y, Z) ∈ R3. Thus,
the configuration space for this problem is R3.

X
Y

Z

g

Figure 5.1: Schematic diagram of the elastic pendulum, or swinging spring.
Cartesian coordinates X = (X,Y, Z) ∈ R3 centred at the position of equilibrium
are shown.

Newton’s 2nd Law approach: ma = F

The sum of the forces on the pendulum bob appear in Newton’s
Law as

ma = mẌ = −mg e3︸ ︷︷ ︸
Gravity

+ (− k)
(

1− `0
|X|

)
X︸ ︷︷ ︸

Elastic restoring force

= F . (5.2.1)
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The gravitational force is vertically downward and the restoring
force of the spring points along the vector from the centre of sup-
port to the position of the mass at any time.

Exercise. At the downward equilibrium, show that the
pendulum length is ` = `0 +mg/k. F

The Lagrangian Approach

The motion equations (5.2.1) for the elastic pendulum also arise from
Hamilton’s principle δS = 0 with S =

∫
L dt for the Lagrangian

L : TR3 7→ R with coordinates (X, Ẋ) given by

L(X, Ẋ) = T − Vgrav − Vosc

=
m

2
|Ẋ|2 − g e3 ·X−

k

2
(
|X| − `0

)2
, (5.2.2)

where e3 · X = 〈 e3 , X 〉 is the standard inner product on R3 be-
tween the position vector X and the vertical unit vector e3. This
Lagrangian has partial derivatives

∂L

∂Ẋ
= mẊ =: P ,

∂L

∂X
= −mge3 − k

(
1− `0
|X|

)
X .

This Lagrangian is certainly regular: its canonical momentum P =
∂L/∂Ẋ is linear in the velocity Ẋ. Newton’s equations of motion
for the elastic pendulum may now be recovered in Euler-Lagrange
form,

d

dt

∂L

∂Ẋ
=
∂L

∂X
. (5.2.3)

These may be expressed in Newtonian form as

mẌ = −mge3 − k
(

1− `0
|X|

)
X , (5.2.4)

and they are equivalent to the following equations in canonically
conjugate variables:

Ẋ = P/m and Ṗ = −mge3 − k
(

1− `0
|X|

)
X . (5.2.5)
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Thus, as expected for regular Lagrangians, Newton’s equations and
the Euler-Lagrange equations are equivalent. Alternatively, a di-
rect computation with Hamilton’s principle again yields Newton’s
equations for this problem as,

δS = 0 = −
∫ t2

t1

(
mẌ +mge3 + k

(
1− `0
|X|

)
X
)
· δX dt , (5.2.6)

upon applying integration by parts and using the condition that
variation δX vanishes at the endpoints in time.

Exercise. Show using Noether’s theorem that invariance
of the Lagrangian in equation (5.2.2) under the infinites-
imal action of S1 rotations about the vertical axis

δX = − e3 ×X

yields conservation of the vertical angular momentum,

J3 = e3 ·mẊ×X.

F

Conservation of azimuthal angular momentum

As in solving for the motions of the bead sliding on the rotating
hoop and the spherical pendulum, it is convenient in this case to
use spherical coordinates with azimuthal angle 0 ≤ φ < 2π and po-
lar angle 0 ≤ θ < π measured from the downward vertical. The
Lagrangian (5.2.2) for the elastic spherical pendulum in these coor-
dinates is:

L(R, Ṙ, θ, θ̇, φ̇) =
m

2
(Ṙ2 +R2θ̇2 +R2φ̇2 sin2 θ)

− k

2
(R− `0)2 +mgR cos θ . (5.2.7)
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Its corresponding Euler-Lagrange equations are:

R̈ = − k

m
(R− `0) + g cos θ +Rθ̇2 +Rφ̇2 sin2 θ ,

d

dt
(R2θ̇) = R2φ̇2 sin θ cos θ − gR sin θ , (5.2.8)

d

dt
(R2φ̇ sin2 θ) = 0 .

Thus, as with the spherical pendulum, azimuthal symmetry of the
Lagrangian L(R, Ṙ, θ, θ̇, φ̇) (that is, L being independent of φ) im-
plies conservation of azimuthal angular momentum.

Equilibria The stable equilibria are associated with conical mo-
tion, with R, θ and φ̇ = ω all constant. At equilibrium, the previous
equations of motion reduce to

0 = − k

m
(R− `0) + g cos θ +Rω2 sin2 θ ,

0 = R2ω2 sin θ cos θ − gR sin θ , (5.2.9)
R2ω sin2 θ = h ,

where h is the conserved azimuthal angular momentum. The first
two equilibrium relations determine the spring length in terms of
the cone angle,

(R− `0)ω2
Z cos θ = g , with ω2

Z =
k

m
, (5.2.10)

which is similar to the equilibrium relation (A.1.23) for the bead on
the rotating hoop.

Exercise. For finite spring length, show that the conical
equilibrium must always lie below the horizontal plane
cos θ = 0. F

The Hamiltonian Approach

The Legendre transformation of the Lagrangian in (5.2.2) yields the
Hamiltonian H : T ∗R3 7→ R with canonical coordinates (P,X)
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given by,

H(P,X) = P · Ẋ− L

=
1

2m
|P|2 + ge3 ·X +

k

2
(
|X| − `0

)2
. (5.2.11)

The standard symplectic form on T ∗R3 is

ω = dXj ∧ dPj .

The corresponding canonical Poisson brackets are

{F, H} =
∂F

∂X
· ∂H
∂P
− ∂H

∂X
· ∂F
∂P

. (5.2.12)

These yield Hamilton’s equations for the Hamiltonian H in (5.2.11),

Ẋ = {X, H} =
∂H

∂P
= P/m , (5.2.13)

Ṗ = {P, H} = − ∂H
∂X

= −mge3 − k
(

1− `0
|X|

)
X , (5.2.14)

which again are equivalent to Newton’s equations (5.2.1) for the
elastic pendulum.

Proposition 5.2.1 (Conservation of energy)
Having no explicit time dependence, the Hamiltonian (5.2.11) is conserved.

Proof.
Ḣ = {H, H} = 0 ,

which holds by skew symmetry of the Poisson bracket.

Proposition 5.2.2 (Conserved vertical angular momentum) The mo-
tion equations (5.2.1) preserve the vertical component of angular momen-
tum,

J3 = e3 ·P×X = e3 · J . (5.2.15)
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Proof. By direct calculation from Newton’s equations

d

dt
(P×X) = −mg e3 ×X =⇒ d

dt
(e3 ·P×X) = 0 .

Proposition 5.2.3 (S1 symmetry)
The system (H, T ∗R3, ω) possesses an S1 symmetry given by

S1 × T ∗R3 7→ T ∗R3 : (φ, (Q, P))→ (R−1
φ Q, R−1

φ P) , (5.2.16)

where

Rφ =

 cosφ − sinφ 0
sinφ cosφ 0

0 0 1

 (5.2.17)

is the matrix of rotation about axis e3 by angle φ.

Proof. The Poisson bracket and the Hamiltonian are invariant under
this rotation.

Proposition 5.2.4 (XJ3 generates the S1 symmetry)
The Hamiltonian vector fieldXJ3 generates the S1 symmetry of the Hamil-
tonian.

Proof. By direct computation

d

dφ

∣∣∣
φ=0

(R−1
φ X, R−1

φ P) = (X× e3, P× e3)

= ({X , J3}, {P , J3}) = (XJ3X, XJ3P) .

Here, XJ3 is the Hamiltonian vector field for the S1 symmetry with
diagonal action, (φ, (Q, P))→ (R−1

φ Q, R−1
φ P).

Proposition 5.2.5 (The bracket XJ3H = {H , J3 } vanishes)
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Proof. The action on H of the Hamiltonian vector field XJ3 for J3 =
e3 ·J = e3 ·P×X is obtained from the canonical Poisson bracket by
setting

XJ3H = {H , J3 } = {X , J3 } ·
∂H

∂X
+ {P , J3 } ·

∂H

∂P

= X× e3 ·
∂H

∂X
+ P× e3 ·

∂H

∂P

= X× e3 ·
(
mg e3 + k

(
1− `0
|X|

)
X
)

+ P× e3 · P

= 0 ,

so J3 is conserved, as expected.

Remark 5.2.6 The conservation law J̇3 = {J3 , H} = 0 for J3 = e3 ·
P×X was expected, since the Hamiltonian vector field XJ3 given by

XJ3 = { · , J3 } =
∂J3

∂P
· ∂
∂X
− ∂J3

∂X
· ∂
∂P

= X× e3 ·
∂

∂X
+ P× e3 ·

∂

∂P
,

generates rotations of both X and P by the same angle φ about the vertical
axis e3, and the Hamiltonian in (5.2.11) is invariant under such rotations.

Hamilton’s approach for the elastic pendulum in spherical coor-
dinates

The Legendre transform of the Lagrangian in spherical coordinates
is

π(Ṙ, R; θ̇, θ; φ̇, φ)→
(
P,R ; Pθ, θ ; Pφ, φ

)
=
(∂L
∂Ṙ

,R ;
∂L

∂θ̇
, θ ;

∂L

∂φ̇
, φ
)
.

This transformation yields Hamilton’s canonical equations for the
elastic spherical pendulum in its natural spherical coordinates. In
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particular, the canonical momenta are linearly related to their corre-
sponding velocities by

P =
∂L

∂Ṙ
= mṘ ⇐⇒ Ṙ = P/m ,

Pθ =
∂L

∂θ̇
= mR2 θ̇ ⇐⇒ θ̇ =

Pθ
mR2

, (5.2.18)

Pφ =
∂L

∂φ̇
= mR2 sin2 θ φ̇ ⇐⇒ φ̇ =

Pφ

mR2 sin2 θ
.

Being linear, these relations between the momenta and velocities are
easily solved. This means the Lagrangian (5.2.2) is non-singular.

Canonical Poisson bracket description

The Hamiltonian for the elastic spherical pendulum is obtained by
Legendre transforming its Lagrangian (5.2.7), to produce

H = PṘ+ Pθθ̇ + Pφφ̇− L

=
P 2

2m
+

P 2
θ

2mR2
+

P 2
φ

2mR2 sin2 θ

−mgR cos θ +
k

2
(R− `0)2 . (5.2.19)

This Hamiltonian yields the following canonical motion equations:

Ṗ = {P, H} = − ∂H
∂R

= − k(R− `0) + mg cos θ +
P 2
θ

mR3
+

P 2
φ

mR3 sin2 θ
,

Ṗθ = {Pθ, H} = − ∂H
∂θ

= −mgR sin θ +
P 2
φ

mR2 sin2 θ tan θ
,

Ṗφ = {Pφ, H} = − ∂H
∂φ

= 0 .

As expected from Noether’s theorem, the azimuthal angular mo-
mentum Pφ = J3 is conserved because the Lagrangian for the elastic
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spherical pendulum is independent of the azimuthal angle φ. This
azimuthal symmetry also allows further progress toward character-
ising its motion. In particular, as we have seen, the equilibrium solu-
tions of the elastic spherical pendulum are azimuthally symmetric.

Substituting velocities for the momenta in (5.2.18) recovers the
motion equations (5.2.8). The velocities (5.2.18) may also be recov-
ered in their canonical Hamiltonian forms as

Ṙ = {R, H} =
∂H

∂P
= P/m ,

θ̇ = {θ, H} =
∂H

∂Pθ
=

Pθ
mR2

,

φ̇ = {φ, H} =
∂H

∂Pφ
=

Pφ

mR2 sin2 θ
.

Transformation of coordinates and an approximation

We shift coordinates from the point of support, to the unstretched
spring position

x = X− `0e3 ,

and assume sufficiently small excursions that |x|/`0 = ε � 1. We
then approximate the potential energy of oscillation Vosc to third
order O(ε3) using

√
1 + ε = 1 + ε/2− ε2/8 +O(ε3) for ε� 1 as

Vosc =
k

2
(|X| − `0)2 =

k

2

(
|x + `0e3| − `0

)2

=
k

2
`20

(√
1 +

2e3 · x
`0

+
|x|2
`20
− 1
)2

=
k`20
2

(z2

`20
+
z(x2 + y2)

`30

)
+ o(ε3) ,

in which x = (x, y, z) and o(ε3) denotes neglected higher order
terms. Likewise, we approximate the gravitational potential as

Vgrav = mg`(1− cos θ) =
mg`

2
θ2 +O(θ4)

=
mg

2
(x2 + y2)

`
+ o(ε3) ,
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with θ2 ' (x2 + y2)/`2 < ε2 � 1. The corresponding Lagrangian,
approximated to cubic order in the amplitudes, is

L/m =
1
2

(ẋ2 + ẏ2 + ż2) − 1
2

(ω2
R(x2 + y2) + ω2

Zz
2)

+
1
2
λ(x2 + y2)z , (5.2.20)

where x, y and z are Cartesian coordinates centred at the point of
equilibrium, ωR =

√
g/` is the frequency of linear pendular mo-

tion, ωZ =
√
k/m is the frequency of its elastic oscillations and

λ = −ω2
Z/`.

The Euler-Lagrange equations of motion for the cubically ap-
proximated Lagrangian (5.2.20) may be written as

ẍ+ ω2
Rx = λxz ,

ÿ + ω2
Ry = λyz , (5.2.21)

z̈ + ω2
Zz =

1
2
λ(x2 + y2) .

Ignoring λ-terms yields the linear modes of oscillation around the
downward equilibrium.

Remark 5.2.7 This system of equations has two constants of motion. These
are the total energy E and the vertical angular momentum h given by

E =
1
2
(
ẋ2 + ẏ2 + ż2

)
+

1
2
(
ω2
R(x2 + y2) + ω2

Zz
2
)
− 1

2
λ(x2 + y2)z ,

h = (xẏ − yẋ) .

Remark 5.2.8 The system (5.2.21) is not integrable. Its chaotic motions
have been studied by many authors (see, e.g., references in [Ly2002b]).
Previous studies have considered the two-dimensional case, for which the
angular momentum vanishes, h = 0.

5.2.2 Averaged Lagrangian technique

We confine attention to the resonant case ωZ = 2ωR and apply
the averaged Lagrangian technique [Wh1974]. In the averaged La-
grangian technique, the solution of (5.2.21) is assumed to be of the
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1:1:2 form

x = <[a(t) exp(iωRt)] ,
y = <[b(t) exp(iωRt)] , (5.2.22)
z = <[c(t) exp(2iωRt)] .

The complex coefficients a(t), b(t) and c(t) are assumed to vary on a
time scale which is considerably longer than the period of the oscil-
lations, τ = 2π/ωR.

Remark 5.2.9 The representation of the solution of a dynamical system as
the product of a slowly varying complex amplitude times a rapidly varying
phase factor is often called the slowly varying envelope (SVE) approxi-
mation.

To average the Lagrangian over the rapid time scale τ , one ex-
pands the various products in the Lagrangian and keeps only terms
that have no rapid phase factors. That is, one argues that under time
integration the rapid phase factors will average to zero. This phase
averaging process yields the averaged action 〈S〉 =

∫
〈L〉 dt with

〈L〉 =
1
2
ωR

[
={ȧa∗ + ḃb∗ + 2ċc∗}+ <{κ(a2 + b2)c∗}

]
, (5.2.23)

where κ = λ/(4ωR). Averaging the Lagrangian has injected an S1

symmetry (a, b, c) → (e−2iψa, e−2iψb, e−4iψc) which will lead to an
additional conservation law.

One regards the quantities a, b, c ∈ C3 appearing in 〈L〉 as gener-
alised coordinates. The Euler-Lagrange equations of motion for the
averaged Lagrangian 〈L〉 are then

d

dt

∂〈L〉
∂ȧ

=
∂〈L〉
∂a

, etc.

Explicitly, these Euler-Lagrange equations are

iȧ = κa∗c , iḃ = κb∗c , iċ = 1
4κ(a2 + b2) . (5.2.24)
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Remark 5.2.10 Equations (5.2.24)) are the complex versions of equations (68)–
(73) in [Ly2002a]. The latter were derived using the method of multiple
time-scale analysis, where the small parameter ε for the analysis was
the amplitude of the dependent variables, so that quadratic terms in the
unknowns were second order, whereas linear terms were first order in ε.
Thus, in this case, the averaged Lagrangian technique yields results com-
pletely equivalent to those achieved using multiple time-scale analysis.

Transforming to the three-wave interaction equations

The remaining analysis is facilitated by making the following linear
change of variables

A =
1
2
κ(a+ ib) , B =

1
2
κ(a− ib) , C = κc .

Consequently, the three-wave equations of motion (5.2.24) take the
symmetric form

iȦ = B∗C ,

iḂ = CA∗ , (5.2.25)
iĊ = AB .

These three complex equations are well-known as the three-wave
interaction equations. They appear ubiquitously in nonlinear wave
processes. For example, they govern quadratic wave resonance in
fluids and plasmas. A brief history of these equations is given be-
low.

Canonical form of three-wave interaction The three-wave inter-
action equations (5.2.25) may be written in canonical form with Hamil-
tonian H = <(ABC∗) and Poisson brackets

{A,A∗} = {B,B∗} = {C,C∗} = −2i ,

as

iȦ = i{A,H} = 2∂H/∂A∗ ,
iḂ = i{B,H} = 2∂H/∂B∗ , (5.2.26)
iĊ = i{C,H} = 2∂H/∂C∗ .
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Remark 5.2.11 (Conservation laws for 3-wave equations)
The three-wave equations conserve the following three quantities:

H =
1
2

(ABC∗ +A∗B∗C) = <(ABC∗) , (5.2.27)

J = |A|2 − |B|2 , (5.2.28)
N = |A|2 + |B|2 + 2|C|2 . (5.2.29)

The Hamiltonian vector field XH = { · , H} generates the motion, while
XJ = { · , J} and XN = { · , N} generate S1 symmetries S1×C3 7→ C3

of the Hamiltonian H . The S1 symmetries associated to J and N are the
following:

J :

 A
B
C

→
 e−2iφA

e2iφB
C

 N :

 A
B
C

→
 e−2iψA

e−2iψB
e−4iψC


The constant of motion J represents the angular momentum about the ver-
tical in the new variables, while N is the new conserved quantity arising
from phase-averaging in the Lagrangian L to obtain 〈L〉.

The following positive-definite combinations ofN and J are physically
significant:

N+ ≡
1
2

(N + J) = |A|2 + |C|2 , N− ≡
1
2

(N − J) = |B|2 + |C|2 .

These combinations are known as the Manley-Rowe invariants in the
extensive literature about three-wave interactions. The quantities H , N+

and N− provide three independent constants of the motion.

Thus, the modulation equations for the swinging spring are trans-
formed into the three-wave equations, which are known to be com-
pletely integrable. See [AlLuMaRo1998] for references to the three
wave equations and an extensive elaboration of their properties as
a paradigm for Hamiltonian reduction.

5.2.3 A brief history of the three-wave equations

Fluids and plasmas.
The three-wave equations (5.2.25) model the nonlinear dynamics of
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the amplitudes of three waves in fluids or plasmas [Br1964]. These
include, for example, interactions between planetary Rossby waves
in the atmosphere in three-wave resonance [HaMi1977, LoGi1967].
The correspondence between Rossby waves in the atmosphere and
drift waves in plasma has been thoroughly explored in [HoHa1994].
Resonant wave-triad interactions also play an essential role in the
generation of turbulence and in determining the statistics of its power
spectrum.

Laser-matter interaction.
The three-wave equations (5.2.25) are also equivalent to the Maxwell-
Schrödinger envelope equations for the interaction between radia-
tion and a two-level resonant medium in a microwave cavity. We
shall take up these equations again in this context in (6.1.8) in Chap-
ter 6. As shown in [HoKo1992] perturbations of this system lead
to homoclinic chaos, but we shall not explore that issue here. A
forced and damped version of the three-wave equations was used in
[WeFiOt1980] to study instability saturation by nonlinear mode cou-
pling, and irregular solutions were discovered there indicating the
presence of a strange attractor. See also [Ot1993] and [HoKoWe1995]
for more detailed studies of the perturbed three-wave system.

Nonlinear optics.
The three-wave system also describes the dynamics of the envelopes
of light-waves interacting quadratically in nonlinear material. The
system has been examined in a series of papers [AlLuMaRo1998,
AlLuMaRo1999, LuAlMaRo2000] using a geometric approach, which
allowed the reduced dynamics for the wave intensities to be repre-
sented as motion on a closed surface in three dimensions.

5.2.4 A special case of the three-wave equations

In the special case H = 0 the system (5.2.25) reduces to three real
equations. Let

A = iX1 exp(iφ1) , B = iX2 exp(iφ2) , C = iX3 exp(i(φ1 + φ2)) ,
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where X1, X2 and X3 are real and the phases φ1 and φ2 are con-
stants. The modulation equations become

Ẋ1 = −X2X3 , Ẋ2 = −X3X1 , Ẋ3 = +X1X2 . (5.2.30)

These equations are re-scaled versions of the Euler equations for
the rotation of a free rigid body. The dynamics in this special case is
expressible as motion on R3, namely

Ẋ = 1
8∇J ×∇N = 1

4(∇N+ ×∇N−) , (5.2.31)

where

N+ =
1
2

(X2
1 +X2

3 ) and N− =
1
2

(X2
2 +X2

3 ) . (5.2.32)

Considering the constancy of J and N , we can describe a trajec-
tory of the motion as an intersection between a hyperbolic cylin-
der (J constant, see (5.2.28)) and an oblate spheroid (N constant;
see (5.2.29)). Equation (1) provides an alternative description. Here
we have used the freedom in the R3 Poisson bracket exploited in
[HoMa1991, DaHo1992] and discussed in Section 2.4.4 to represent
the equations of motion on the intersection of two orthogonal cir-
cular cylinders, the level surfaces of the Manley-Rowe quantities,
N+ and N−. The invariance of the trajectories means that while the
level surfaces of J and N differ from those of N+ and N−, their in-
tersections are precisely the same. For this particular value of H = 0,
the motion may be further reduced by expressing it in the coor-
dinates lying on one of these two circular cylinders, on which it
becomes pendular motion. See Section 2.4.4 for the correspond-
ing transformation of rigid-body motion into pendular motion. See
[DaHo1992, AlLuMaRo1998, AlLuMaRo1999] for discussions of ge-
ometric phases in this situation.

Exercise.

a. Characterise the equilibrium points of the dynamical
system (1) geometrically in terms of the gradients
of N±. How many are there? Which are stable?
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b. Choose cylindrical polar coordinates along the axis of
the circular cylinder that represents the level set of
N+ and show that the R3 Poisson bracket restricted
to that level set is canonical.

c. Write the equation of motion on the level set of N+ as
a pendulum equation.

d. For any closed orbits on the level set of N+, write for-
mulas for its geometric and dynamic phases.

F

5.3 Reduction and reconstruction of solutions

To reduce the system for H 6= 0, we employ a further canonical
transformation, introduced in [HoKo1992]. The goal is to encapsu-
late complete information about the Hamiltonian in a single vari-
able Z by using the invariants of the motion. Once Z is found, the
Manley-Rowe relations yield the remaining variables. We set:

A = |A| exp(iξ) ,
B = |B| exp(iη) , (5.3.1)
C = Z exp(i(ξ + η)) .

This transformation is canonical – it preserves the symplectic form

dA ∧ dA∗ + dB ∧ dB∗ + dC ∧ dC∗ = dZ ∧ dZ∗ .

In these variables, the Hamiltonian is a function of only Z and Z∗

H =
1
2

(Z + Z∗) ·
√
N+ − |Z|2 ·

√
N− − |Z|2 .

The Poisson bracket is {Z,Z∗} = −2i and the canonical equations
reduce to

iŻ = i{Z,H} = 2
∂H

∂Z∗
.

This provides the slow dynamics of both the amplitude and phase
of Z = |Z|eiζ .
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The amplitude |Z| = |C| is obtained in closed form in terms of
Jacobi elliptic functions as the solution of(

dQ
dτ

)2

=
[
Q3 − 2Q2 + (1− J 2)Q+ 2E

]
, (5.3.2)

where Q, J , E and τ are normalised by the constant of motion N as

Q =
2|Z|2

N
, J =

J

N
, E = − 4H2

N3
, τ =

√
2Nt . (5.3.3)

Once |Z| is known, |A| and |B| follow immediately from the Manley-
Rowe relations,

|A| =
√
N+ − |Z|2 , |B| =

√
N− − |Z|2 .

The phases ξ and η may now be determined. Using the three-wave
equations (5.2.25) together with (5.3.1), one finds

ξ̇ = − H

|A|2
, η̇ = − H

|B|2
, (5.3.4)

so that ξ and η can be integrated by quadratures once |A|(t) and
|B|(t) are known. Finally, the phase ζ of Z is determined unam-
biguously by

d|Z|2

dt
= − 2H tan ζ and H = |A||B||Z| cos ζ . (5.3.5)

Hence, we can now reconstruct the full solution as,

A = |A| exp(iξ) , B = |B| exp(iη) , C = |Z| exp
(
i(ξ + η + ζ)

)
.

5.3.1 Phase portraits

Consider the plane C in phase space defined by A = B = 0. This is
a plane of unstable equilibrium points, representing purely vertical
oscillations of the spring. The Hamiltonian vanishes identically on
this plane, as does the angular momentum J . Each point c0 in C
has a heteroclinic orbit linking it to its antipodal point −c0. Thus,
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C

|A|+|B|2
2( )1/2

Figure 5.2: C is the plane of critical points, A = 0 = B. The vertical axis is
R = |A|2 + |B|2. The vertical plane contains heteroclinic semi-ellipses passing
from c0 to −c0.

the plane C of critical points is connected to itself by heteroclinic
orbits. In Figure 5.2, the horizontal plane is C and the vertical plane
contains heteroclinic orbits from c0 to −c0.1

The vertical axis is R =
√
|A|2 + |B|2. Since N = R2 + 2|C|2

is constant, each heteroclinic orbit is a semi-ellipse. Motion starting
on one of these semi-ellipses will move towards an endpoint, taking
infinite time to reach it.

In Figure 5.3, taken from [HoKo1992], we present another view
of the trajectories for J = 0. The Hamiltonian is

H =
1
2

(Z + Z∗)
(1

2
N − |Z|2

)
.

Accessible points lie on or within the circle |Z|2 = N/2. For H = 0
the trajectory is the segment of the imaginary axis within the cir-

1Figures in this chapter are from [HoLy2002], with publisher’s permission.
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1

2Z

Z

Figure 5.3: Phase portrait in the Z-plane for J = 0. The motion is confined
within the circle |Z|2 = N/2. The segment of the imaginary axis within this circle
is the homoclinic orbit.

cle. This is the homoclinic orbit. For H 6= 0, one may solve for the
imaginary part of Z = Z1 + iZ2,

Z2 = ±
√
−Z2

1 +
1
2
N − (H/Z1) .

This relation determines the trajectories in the complex Z plane for
the range of H in which real solutions exist. There are two equilib-
rium points, at Z = ±

√
N/6, corresponding to solutions in which

no energy is exchanged between the vertical and horizontal compo-
nents. These correspond to the cup-like and cap-like solutions first
discussed in [ViGo1933].
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5.3.2 Geometry of the motion for fixed J

The vertical amplitude is governed by equation (5.3.2), which may
be rewritten as

1
2

(
dQ
dτ

)2

+ V(Q) = E , (5.3.6)

with the potential V(Q) parameterised by J in (5.3.3) and given by

V(Q) = −1
2
[
Q3 − 2Q2 + (1− J 2)Q

]
. (5.3.7)

The potential V(Q) has three zeros, Q = 0, Q = 1 − J and Q =
1 + J . Equation (5.3.6) is an energy equation for a particle of unit
mass, with position Q and energy E , moving in a cubic potential
field V(Q). Figure 5.4 plots Q̇, given by (5.3.6), against Q for the
cases J = 0 (left panel) and J = 0.25 (right panel), for a set of
values of E given by

E ∈ {−0.0635,−0.0529,−0.0423,−0.0317,−0.0212,−0.0106, 0} .
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Figure 5.4: Plots of Q̇ versusQ for J = 0 and J = 0.25 for a range of values of E .

Each curve represents the projection onto the reduced phase-
space of the trajectory of the modulation envelope. The centres are
relative equilibria, corresponding to the elliptic-parabolic solutions
in [Ly2002a], which are generalisations of the cup-like and cap-like
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solutions of [ViGo1933]. The case J = 0 includes the homoclinic
trajectory, for which H = 0.

5.3.3 Geometry of the motion for H = 0

For arbitrary J , the H = 0 motions lie on a surface in the space
with coordinates (Q, Q̇, J ). This surface is depicted in Figure 5.5.
It has three singular points (i.e., it is equivalent to a sphere with
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H.P.

J

TRICORN SURFACE

Q

Q
DO

T

Figure 5.5: Tricorn surface, upon which motion takes place when H = 0. The
coordinates are J,Q, Q̇. The motion takes place on the intersections of this surface
with a plane of constant J (such planes are indicated by the stripes). This surface
has three singular points. The homoclinic point is marked H.P.

three pinches) and its shape is similar to a tricorn hat. The motion
takes place on an intersections of this surface with a plane of con-
stant J . There are three equilibrium solutions: the first corresponds
to J = 0. This is marked in Figure 5.5 with the letters H.P. denot-
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ing the homoclinic point at the extremity of the homoclinic trajectory.
This homoclinic point corresponds to purely vertical oscillatory mo-
tion. The other two equilibrium solutions with J = ±1 correspond
to purely horizontal motion, clockwise or counterclockwise, with
the spring tracing out a cone. The purely vertical motion is unsta-
ble; while the two conical motions are stable. (The linear evolu-
tion equations for perturbations about conical motion were investi-
gated in [Ly2002a].) The dynamics on the tricorn surface is similar
to the motion of a free rigid body. The instability at the singular
homoclinic point is responsible for the step-wise switching of the
azimuthal angle when it undergoes nearly vertical oscillations.

5.3.4 Three-wave surfaces

There is yet another way to depict the motion in a reduced phase-
space. Let us consider a reduced phase-space with x and y axes
X = <{ABC∗} and Y = ={ABC∗} and z-axis Q = 2|Z|2/N . We
note that X ≡ H . It follows from (5.2.27) and (5.2.28) that

X2 + Y 2 = |A|2|B|2|C|2 = 1
4 |Z|

2
[
(2|Z|2 −N)2 − J2

]
.

We define X = (2/N3/2)X and Y = (2/N3/2)Y , then write

X 2 + Y2 =
1
2
[
Q3 − 2Q2 + (1− J 2)Q

]
= −V(Q) , (5.3.8)

where V is defined in (5.3.7). We note that X 2 = −E and Y2 =
1
2(dQ/dτ)2. Equation (5.3.8) implies that the motion takes place on
a surface of revolution about the Q-axis. The radius for a given
value of Q is the square-root of the cubic −V(Q). The physically
accessible region is 0 ≤ Q ≤ 1 − |J |. Several such surfaces (for
J ∈ {0.0, 0.1, 0.2, 0.3}) are shown in Figure 5.6.

Since X 2 = H2 = 4H2/N3, the motion in R3 with coordinates
X ,Y,Q for given J takes place on the intersection of the corre-
sponding three-wave surface of revolution in equation (5.3.8) with
a plane of constant X . These intersections recover the closed orbits
shown in Figure 5.4 .
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Figure 5.6: Surfaces of revolution about the Q-axis for J ∈ {0.0, 0.1, 0.2, 0.3}.
The radius for given Q is determined by the square-root of the cubic −V (Q). For
given J , the motion takes place on the intersection of the corresponding surface
with a plane of constant X .

Motion on the tricorn surface is related to motion on the three-
wave surfaces of revolution, as follows. The tricorn surface refers
to H = 0; the reduced 1 : 1 : 2 resonant motion for H 6= 0 is repre-
sented by trajectories inside this surface. Slicing the tricorn surface
in a plane of fixed J produces a set of closed trajectories, the out-
ermost of these is for H = 0 the others arise for H 6= 0 The cases
J = 0 and J = 0.25 are plotted in Figure 5.4 above. If the J -section
is distorted into a cup-like surface, by taking H as a vertical coor-
dinate and plotting each trajectory at a height depending on its H
value, one finds half of a closed surface. Each trajectory is selected
by a H-plane section. Alteration of the sign of H corresponds to
reversal of time. Completing the surface by reflection in the plane
H = 0 gives the surface generated by rotating the root-cubic graph
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√
−V(Q) about the Q-axis, i.e., the surface given by (5.3.8). These

surfaces are called three-wave surfaces in [AlLuMaRo1998]. They
foliate the volume contained within the surface for J = 0.

5.3.5 Precession of the swing plane

The characteristic feature of the behaviour of the physical spring is
its step-wise precession, which we shall now discuss. As the motion
changes cyclically from horizontal swinging to vertical springing
oscillations, one observes that each successive horizontal swinging
excursion departs in a direction rotated from the previous swing-
plane by a constant angle about the vertical. The horizontal projec-
tion of the motion appears as an ellipse of high eccentricity and the
swinging motion is primarily confined to a vertical plane. The ver-
tical plane through the major axis of this ellipse is called the swing
plane. Starting from nearly vertical initial oscillations, the motion
gradually develops into an essentially horizontal swinging motion.
This horizontal swinging does not persist, but soon passes back
again into nearly vertical springing oscillations similar to the ini-
tial motion. Subsequently, a horizontal swing again develops, but
now in the rotated swing plane as shown in Figure 5.7. The step-
wise precession of this exchange between springing and swinging
motion continues indefinitely in the absence of dissipation and is
the characteristic experimental feature of the swinging spring. An
expression for the characteristic step-wise change in direction of the
swing plane from one horizontal excursion was derived by using
a method called pattern evocation in [HoLy2002]. In general, this
method yields only approximate results. However, in this case, the
result yielded by pattern evocation turns out to be exact, as was
shown by using the monodromy method in [DuGiCu2004].

The pattern evocation method and its prediction for the step-
wise dynamics of the precession angle in Figure 5.7 may be ex-
plained by returning to the solution (5.2.22) of (5.2.21) in the 1 : 1 : 2
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Figure 5.7: A projection of the regular step-wise precession of the swing plane
of the pendulum after each return to its springing motion makes a star-shaped
pattern. The magnitude of the precession angle is determined from the initial con-
ditions.

resonant form,

x = <[a(t) exp(iωRt)] ,
y = <[b(t) exp(iωRt)] , (5.3.9)
z = <[c(t) exp(2iωRt)] .

One defines the precession angle in terms of the horizontal (x, y)
projection of the trajectory of the pendulum. Recall that the full
solution for the horizontal components is

x = <{a exp(iωRt)} = |a| cos(ωRt+ α) ,
y = <{b exp(iωRt)} = |b| cos(ωRt+ β) ,

where α and β are the phases of a and b. The amplitudes and phases
are assumed to vary slowly. If they are regarded as constant over
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a period τ = 1/ωR of the fast motion, these equations describe a
central ellipse,

Px2 + 2Qxy +Ry2 = S , (5.3.10)

where P = |b|2, Q = −|ab| cos(α−β), R = |a|2 and S = J2. The area
of the ellipse is easily calculated and is found to have the constant
value πJ . Its orientation is determined by eliminating the cross-
term in (5.3.10) by rotating the axes through an angle θ, given by

tan 2θ =
2Q

P −R
=

2|ab| cos(α− β)
|a|2 − |b|2

. (5.3.11)

The semi-axes of the ellipse are given by

A1 =
J√

P cos2 θ +Q sin 2θ +R sin2 θ
,

A2 =
J√

P sin2 θ −Q sin 2θ +R cos2 θ
.

The area of the ellipse is πA1A2 = πJ and its eccentricity may be
calculated immediately. In the case of unmodulated motion, the in-
stantaneous ellipse corresponds to the trajectory. The amplitudes
in the modulated motion are only approximations to the trajectory,
but one may define the orientation or azimuth of the swing plane at
any time to be the angle θ given by (5.3.11). This is the basis of the
pattern evocation method.

The approximate and exact solutions of the swing plane azimuthal
angle θ in (5.3.11) were found by [HoLy2002] in numerical simu-
lations to track each other essentially to machine error. The rea-
son for this was later explained by [DuGiCu2004] who showed that
the step-wise precession angle of the swing plane of the resonant
spring pendulum is a topological winding number depending only
on initial conditions whose value was unaffected by the integrable
approximation introduced here. This explanation is beyond our
present scope, but its lesson is clear. Namely, implementing structure-
preserving approximations may sometimes preserve exactly what is
needed to understand the global behaviour of a nonlinear dynami-
cal system.
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Chapter 6

Maxwell-Bloch laser-matter
equations

This chapter brings us to the threshold of modern applications of
geometric mechanics. It investigates the real-valued Maxwell-Bloch
equations on R3 as a Hamiltonian dynamical system obtained by
applying an S1 symmetry reduction to an invariant subsystem of a
dynamical system on C3. These equations on R3 are bi-Hamiltonian
and possess several inequivalent Lie-Poisson structures parameterised
by classes of orbits in the group SL(2,R), as discussed in [DaHo1992].
Each Lie-Poisson structure possesses an associated Casimir func-
tion. When reduced to level sets of these functions, the motion takes
various symplectic forms, ranging from that of the pendulum to that
of the Duffing oscillator. The values of the geometric and dynamic
phases obtained in reconstructing the solutions are found to depend
upon the choice of Casimir function, that is, upon the parameterisa-
tion of the reduced symplectic space.

6.1 Self-induced transparency

In self-induced transparency, radiation energy leaves the leading
edge of an optical laser pulse, coherently excites the atoms of a reso-
nant dielectric medium, and then returns to the trailing edge of the

305



306 CHAPTER 6. MAXWELL-BLOCH EQUATIONS

pulse with no loss, but with a delay caused by temporary storage
of pulse energy in the atoms. (This delay shows up as an anoma-
lously slow pulse, whose velocity may be one-thousandth, or less,
than the speed of light in a vacuum.) The physics of self-induced
transparency is reviewed in [AlEb1975]. To the extent that resonant
interaction of coherent light with a medium calls into play only a
single atomic transition and the laser may be taken to be monochro-
matic, the medium has effectively only two levels.

For sufficiently short pulse duration, the coherent interaction
between the pulse and the medium leading to self-induced trans-
parency may be taken to be lossless. For most lasers and most
atoms, this two-level lossless model is an excellent approximation
and is quite adequate for an understanding of the basic physics
behind many coherent transient phenomena. Self-induced trans-
parency equations based upon this model are derived from the Maxwell-
Schrödinger equations in [HoKo1991] by averaging over fast phases
in the variational principle for the Maxwell-Schrödinger equations.
A sketch of that derivation is given now in order to facilitate the
considerations of the rest of the chapter.

6.1.1 The Maxwell-Schrödinger Lagrangian

The dimensionless Maxwell-Schrödinger equations on space-time
parameterised by (z, t) ∈ R× R are,

Ezz − Ë = 2κP̈ ,

ȧ+ =
1

2κ
a+ − Ea− , (6.1.1)

ȧ− =
1

2κ
a− − Ea+ ,

where E(z, t) denotes the electric field and P (z, t) is the polarisabil-
ity. The latter may be written in terms of the two atomic-level am-
plitudes a+ and a− as

P = a+a
∗
− + a∗+a− . (6.1.2)

The ratio of frequencies, κ = ωc/ω0 << 1, is a small parameter. Here
ω0 is the atomic transition frequency, and ωc = (2πrnd2ω0/~)1/2 is
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the cooperative frequency of the medium with dipole density n and
atomic dipole moment d. The wave equation for the linearly po-
larised electric field E follows from Maxwell’s equations

Ḋ = Bz, Ḃ = Ez , (6.1.3)

where D = E + 2κP is the electric displacement and B is the mag-
netic field. Introducing the magnetic vector potentialA that satisfies
the relations Ȧ = E and Az = B allows the Maxwell-Schrödinger
equations to be written as stationarity conditions for Hamilton’s
principle, δS = 0, with action S given by

S =
∫ [

1
2
Ȧ2 − 1

2
A2
z + 2κȦ

(
a+a

∗
− + a∗+a−

)
−
(
|a+|2 − |a−|2

)
+iκ

(
a∗+ȧ+ − a+ȧ

∗
+ − a∗−ȧ− − a−ȧ∗−

) ]
dzdt .

The third term in the integrand of the action S is the interaction
term, which couples the electromagnetic field to the matter fields.
Stationary variations with respect to A, a∗−, and a∗+ give

δA : Ä+ 2κṖ −Azz = 0 ,

δa∗+ : iȧ+ −
1

2κ
a+ + Ea− = 0 ,

δa∗− : iȧ− +
1

2κ
a− + Ea+ = 0 .

6.1.2 Envelope approximation

The Maxwell-Schrödinger equations may be simplified by writing
the atomic amplitudes as modulated travelling waves,

a+ = ue−i(t−z)/2κ, a− = ve+i(t−z)/2κ , (6.1.4)

with complex envelope functions u, v ∈ C. We also take the vector
potential to be a modulated rightward moving wave, also in the
envelope form,

A = iκwe−i(t−z)/κ − iκw∗ei(t−z)/κ , (6.1.5)
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with the complex envelope function w. In these expressions, the
complex envelope functions u, v and w are assumed to depend only
on time, t. Now the electric field is given by

E = Ȧ = we−i(t−z)/κ + w∗ei(t−z)/κ +O(κ) . (6.1.6)

Thus, to first order in κ � 1, the quantity w is the complex electric
field envelope.

6.1.3 Averaged Lagrangian for envelope equations

Averaging the action S over the fast phases, performing the integra-
tion in z, dividing by 4κ, and dropping terms of higher order in κ
yields the phase-averaged action

S̄ :=
∫ [

i(w∗ẇ − wẇ∗) + i(u∗u̇− uu̇∗)

+ i(v∗v̇ − vv̇∗) + wu∗v + w∗uv∗
]
dt . (6.1.7)

Varying the phase-averaged action S̄ yields

δS̄ =
∫ [

δw∗
(
iẇ + uv∗

)
+ δw

(
− iẇ∗ + u∗v

)
+ δu∗

(
iu̇+ wv∗

)
+ δu

(
− iu̇∗ + v∗w∗

)
+ δv∗

(
iv̇ + uw∗

)
+ δv

(
− iv̇∗ + u∗w

)]
dt .

Thus, stationarity of the phase-averaged action S̄ implies the fol-
lowing Maxwell-Schrödinger envelope (MSE) equations

u̇ = ivw , v̇ = iuw∗ , ẇ = iuv∗ . (6.1.8)

These equations for the wave envelopes (u, v, w) recover the three-
wave equations (5.2.25) for the 1 : 1 : 2 resonance of the swinging
spring (or elastic spherical pendulum) treated in Chapter 5 under
the map (u, v, w)→ (−C,−A,−B). Thus, the analysis of the swing-
ing spring from Chapter 5 will also apply here, and the further anal-
ysis in this chapter for the wave envelope equations will also apply
to the swinging spring.
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The Maxwell-Schrödinger envelope equations (6.1.8) are canon-
ically Hamiltonian on C3 with symplectic form,

Ω =
1
−2i

[
dw ∧ dw∗ + du ∧ du∗ + dv ∧ dv∗

]
. (6.1.9)

The Hamiltonian function in these variables is given by,

H (u, v, w) = − 1
2

(u∗vw + uv∗w∗) = −<(u∗vw) . (6.1.10)

The MSE equations (6.1.8) also conserve the Manley-Rowe invari-
ants,

C = |u|2 + |v|2 and C ′ = |u|2 + |w|2 . (6.1.11)

These two conservation laws arise because of invariance of the Hamil-
tonian (6.1.11) under the two S1 phase shifts,

u −→ eiθu, v −→ eiθv, and u −→ eiϕu w −→ eiϕw, (6.1.12)

generated by C and C ′, respectively. The Hamiltonian vector field
for the MSE Hamiltonian H(u, v, w, u∗, v∗, w∗) is given by

XH = 2i
(
∂H

∂u

∂

∂u∗
− ∂H

∂u∗
∂

∂u

)
+ 2i

(
∂H

∂v

∂

∂v∗
− ∂H

∂v∗
∂

∂v

)
(6.1.13)

+ 2i
(
∂H

∂w

∂

∂w∗
− ∂H

∂w∗
∂

∂w

)
.

6.1.4 Complex Maxwell-Bloch equations

The five-dimensional Maxwell-Bloch system [AlEb1975] is obtained
by reducing the system (6.1.8) on C3 by using the S1 group action
in θ generated by the constant C. We introduce the following trans-
formation to coordinates which are invariant under the S1 action
generated by C,

ix = 2w, y = 2uv∗, z = |u|2 − |v|2 , C = |u|2 + |v|2 . (6.1.14)
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This is the Hopf fibration in the (u, v) coordinates for C2. Physically,
the variables x, y, and z represent the electric field, the polarisation,
and the population inversion, respectively. Transformation (6.1.14)
gives us a five-dimensional system on the space C2 × R, coordina-
tised by (x, y, z). The Hamiltonian function, the Hamiltonian vector
field for H , the equations of motion, and the new constants formed
from those in (6.1.11) become

H =
i

2
(x∗y − xy∗) = −=(x∗y), (6.1.15)

XH = 2i
(
∂H

∂x

∂

∂x∗
− ∂H

∂x∗
∂

∂x

)
+ 2iz

(
∂H

∂y

∂

∂y∗
− ∂H

∂y∗
∂

∂y

)
+ iy

(
∂H

∂y

∂

∂z∗
− ∂H

∂z

∂

∂y

)
+ iy∗

(
∂H

∂z

∂

∂y∗
− ∂H

∂y∗
∂

∂z

)
,

ẋ = y, ẏ = xz, ż =
1
2

(x∗y + xy∗) , (6.1.16)

K = z +
1
2
|x|2 and L = |y|2 + z2 .

Physically,K is the sum of the atomic excitation energy and the elec-
tric field energy, while L = 1, for unitarity. The phase space geome-
try of the solutions of the Maxwell-Bloch system (6.1.16) on C2 × R
and its three Hamiltonian structures are discussed in [FoHo1991], in
the context of Lax pairs for soliton theory.

6.1.5 Real Maxwell-Bloch equations

In the remainder of this chapter, we shall discuss the phase space
geometry and Hamiltonian structure of the invariant subsystem of
(6.1.16) obtained by restricting to real-valued x and y. Thus, the
dynamics of this invariant subsystem lie on the zero-level surface
of the Hamiltonian function H in (6.1.15), with coordinates x1 =
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<(x), x2 = <(y), and x3 = z. The equations of motion (6.1.16) then
become the three-dimensional real-valued Maxwell-Bloch system,

ẋ1 = x2, ẋ2 = x1x3, ẋ3 = −x1x2 , (6.1.17)

which is amenable to the methods of geometric mechanics devel-
oped in the present text. Equations (6.1.17) also appear as the large
Rayleigh number limit of the famous Lorenz system (see [Sp1982]).

6.2 Classifying Lie-Poisson Hamiltonian structures
for real-valued Maxwell-Bloch

The real-valued Maxwell-Bloch system (6.1.17)

ẋ1 = x2 , ẋ2 = x1x3 , ẋ3 = −x1x2 , (6.2.1)

is expressible in three-dimensional vector notation as

ẋ = ∇H1 ×∇H2 , (6.2.2)

where H1 and H2 are the two conserved functions

H1 =
1
2

(x2
2 + x2

3) and H2 = x3 +
1
2
x2

1 . (6.2.3)

Geometrically, equation (6.2.2) implies that the motion takes place
on intersections of level sets of the functions H1 and H2 in the space
R3 with coordinates (x1, x2, x3). In fact, this geometic characterisa-
tion is not unique.

Proposition 6.2.1 Equations (6.2.2) may be re-expressed equivalently as

ẋ = ∇H ×∇C , (6.2.4)

in which H and C are the following SL(2,R) combinations of the func-
tions H1 and H2,[

H
C

]
=
[
α β
µ ν

] [
H1

H2

]
with αν − βµ = 1 . (6.2.5)
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Proof. For the proof, it suffices to verify

ẋ = ∇H ×∇C
= ∇(αH1 + βH2)×∇(µH1 + νH2)
= (αν − βµ)∇H1 ×∇H2

= ∇H1 ×∇H2 .

Remark 6.2.2 Thus, the real-valued Maxwell-Bloch equations (6.2.1) are
unchanged when the conserved functions H1 and H2 are replaced by the
SL(2,R) combinations H and C. Consequently, the solutions, which rep-
resent motion in R3, will remain the same under reparameterisation of the
Hamiltonians by the SL(2,R) group action (6.2.6). Geometrically, the in-
variance of the trajectories in R3 means that while the level surfaces of H
and C may differ from those of H1 and H2, their intersections are exactly
the same.

6.2.1 Lie-Poisson structures

Let us now examine the Lie-Poisson structure of our system. Be-
cause of the invariance of (6.2.6) under the above action of SL(2,R),
this structure will not be unique. We shall adopt Hamiltonian vector
fields as our basic working objects. The correspondence of Hamil-
tonian vector fields with Poisson brackets is given by the anti-iso-
morphism (1.11.9) in Lemma 1.11.4. Namely,

XHF = −XFH =
{
F, H

}
, (6.2.6)

which implies by (1.11.9) that

X{F,H} = − [XF , XH ] . (6.2.7)

In view of (6.2.4) the Hamiltonian vector field for any function G :
R3 → R is expressed as

XG = (∇G×∇C) · ∇ , with C = µH1 + νH2 . (6.2.8)
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In component form, this is expressed as

XG = (ν + µx3)
(
∂G

∂x2

∂

∂x1
− ∂G

∂x1

∂

∂x2

)
+ νx1

(
∂G

∂x3

∂

∂x2
− ∂G

∂x2

∂

∂x3

)
(6.2.9)

+ µx2

(
∂G

∂x1

∂

∂x3
− ∂G

∂x3

∂

∂x1

)
,

and any dynamical quantity Q evolves with time according to

Q̇ = XHQ , with XH = (∇H ×∇C) · ∇ . (6.2.10)

Expression (6.2.9) explicitly depends on the parameters µ and ν,
through its dependence on the distinguished function, or Casimir
C, as prescribed in Proposition 6.2.1. The Hamiltonian function
H = αH1 + βH2 also contains real parameters α and β, with the
proviso that αν − βµ = 1. The Lie algebra structure underlying the
Poisson structure is determined from the Lie brackets among the
Hamiltonian vector fields associated with the coordinate functions
xi, with i = 1, 2, 3. These are,

X1 := Xx1 = µx2∂3 − (ν + µx3)∂2 ,

X2 := Xx2 = (ν + µx3)∂1 − νx1∂3 , (6.2.11)
X3 := Xx3 = νx1∂2 − µx2∂1 ,

where ∂i = ∂/∂xi. The commutators among the Hamiltonian vector
fields for the coordinate functions are found to be

[X1, X2] = −µX3, [X2, X3] = −νX1, [X3, X1] = −µX2 . (6.2.12)

The Lie algebra spanned by the divergence-free vector fields Xi

with i = 1, 2, 3, depends on the values of µ and ν. This dependence
is correlated with the type of orbits in the group SL(2,R). Thus,
three cases can arise.

Case 1: µ = 0, ν 6= 0. Define

Y1 := −νX1 , Y2 := X2 , Y3 := X3 .



314 CHAPTER 6. MAXWELL-BLOCH EQUATIONS

The commutation relations of the Lie algebra for this case are

[Y1, Y2] = 0, [Y2, Y3] = Y1, [Y3, Y1] = 0 . (6.2.13)

These are the commutation relations of the Heisenberg alge-
bra.

Case 2: µ 6= 0, ν = 0. Define

Y1 := −X1/µ , Y2 := X2 , Y3 := X3 .

The commutation relations among the Hamiltonian vector fields
for the coordinate functions in this case are

[Y1, Y2] = Y3, [Y2, Y3] = 0, [Y3, Y1] = Y2 . (6.2.14)

These are the commutation relations of the Euclidean algebra
of the plane.

Case 3: µ = εµ 6= 0, ν = εν 6= 0, where εσ = Sign(σ). Define the
re-scaled Hamiltonian vector fields,

Y1 = −ενX1/ |µ| , Y2 =
X2

(|µ| |ν|)1/2
, Y3 =

X3

(|µ| |ν|)1/2
.

The commutation relations among the Hamiltonian vector fields
in this case are

[Y1, Y2] = εY3, [Y2, Y3] = Y1, [Y3, Y1] = εY2 , (6.2.15)

in which ε = εµν = Sign(µν). Two subcases arise.

Subcase 3a: ε = 1. The Lie algebra is isomorphic to so(3).

Subcase 3b: ε = −1. The Lie algebra is isomorphic to so(2, 1)
and so(1, 2).

6.2.2 Classes of Casimir functions

Cases 1, 2 and 3 above are each associated with a particular class of
Casimir function C.
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Case 1: µ = 0, ν 6= 0.
The level sets of C are parabolic cylinders oriented along the
x2-axis (see Figure 6.1),

C = ν

(
x3 +

1
2
x2

1

)
.

Figure 6.1: Parabolic cylinder level sets for Case 1.

Case 2: µ 6= 0, ν = 0.
For this second case, the level sets are circular cylinders ori-
ented along the x1-axis (see Figure 6.2), defined wheneverC/µ >
0,

C =
1
2
µ
(
x2

2 + x2
3

)
.

Subcase 3a: µ 6= 0, ν 6= 0, with µν > 0. µ = εµ 6= 0, ν = εν 6= 0,
where εσ = Sign(σ). The level sets are ellipsoids of revolu-
tion (see Figure 6.3), with semimajor axis r1 = r, r2 = r3 =
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Figure 6.2: Circular cylinder level sets for Case 2.

(ν/µ)1/2r, centred at (0, 0,−ν/µ); they are defined whenever
4µC + ν2 > 0.

x2
1 +

µ

ν

[
x2

2 +
(
x3 +

ν

µ

)2
]

=
2C
ν

+
ν

2µ
=: r2 .

Subcase 3b: µ 6= 0, ν 6= 0, with µν < 0. These level sets are non-
compact surfaces. They are two-sheeted hyperboloids of revo-
lution if 4µC+ν2 < 0, one-sheeted hyperboloids if 4µC+ν2 >
0, and a cone whenever 4µC+ν2 = 0 (see Figure 6.4). The two
varieties of hyperboloids correspond to the two choices of the
algebra, either so(2, 1), or so(1, 2).

Remark 6.2.3 Each of the above classes, in addition to giving us a type
for the function C, also gives a prescription for the Hamiltonian function
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Figure 6.3: Ellipsoidal level sets for Case 3a.

H . In fact, the admissible pairs (H,C) are prescribed by (6.2.6) where the
corresponding SL(2,R) matrices are given as follows:

Case 1 : g1 =
[

1/ν β
0 ν

]
, H =

H1

ν
+ βH2 , C = νH2 ,

Case 2 : g2 =
[
α −1/µ
µ 0

]
, H =αH1 −

H2

µ
, C = µH1 ,

Case 3 : g3 =
[
α β
µ ν

]
, H =αH1 + βH2, µν 6= 0 ,

with αν − βµ = 1 in the last case. In any of these three cases, the locus of
the Hamiltonian function H depends on the values of the parameters α or
β. Therefore, it is not unique. Indeed, bifurcations may occur as we vary
the parameters. For instance, a change in sign may change a level surface
of energy from an ellipsoid to a hyperboloid. Nonetheless, the intersections
of the level surfaces of C and H do not see these bifurcations. In fact, they
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Figure 6.4: Hyperbolic level sets for Case 3b.

do not depend on the parameters at all. However, the representation of
the dynamics does depend on the choice of parameters. For example, as
we shall see in the next section, Case 1 yields Duffing oscillator dynamics,
while Case 2 yields pendulum dynamics.

6.3 Reductions to the two-dimensional level sets
of the distinguished functions

Each of the three cases presented in Section 6.2 yields a distinct re-
duction of the real-valued Maxwell-Bloch system (6.1.17) in R3 to
a symplectic system on a two-dimensional manifold specified by a
level set of the corresponding Casimir function C. The three reduc-
tions give different coordinate representations of the same solutions
in R3. This section illustrates the process of reduction by deriving
the reduced phase spaces for Cases 1 and 2.
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Figure 6.5: Phase portrait for Case 1.

For more details about the nature of reduction and techniques
used to perform it, the reader is referred, for example, to [AbMa1978,
Ol2000]. For the explicit reductions of the real-valued Maxwell-
Bloch system (6.1.17) to symplectic systems on two-dimensional man-
ifolds for the remaining Cases 3a and 3b, see [DaHo1992].

Case 1: µ = 0, ν 6= 0.
A level set of H2 = x3 + 1

2x
2
1 is a parabolic cylinder oriented

along the x2-direction. On a level set of H2, one has

H1 =
1
2
x2

2 +
1
2

(
H2 −

1
2
x2

1

)2

,

so that

d 3x = dx1 ∧ dx2 ∧ dx3 = dx1 ∧ dx2 ∧ dH2 .

The R3 bracket restricts to such a level set as{
F, H

}
d 3x =

1
ν
dH2 ∧

{
F, H1

}
p−cyldx1 ∧ dx2 ,
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where the Poisson bracket on the parabolic cylinder H2 =
const is symplectic,{

F, H1

}
p−cyl =

∂F

∂x1

∂H1

∂x2
− ∂H1

∂x1

∂F

∂x2
.

Hence, the equations of motion are

ẋ1 =
∂H1

∂x2
= x2 , (6.3.1)

ẋ2 = −∂H1

∂x1
= x1

(
H2 −

1
2
x2

1

)
. (6.3.2)

Therefore, an equation of motion for x1 emerges, which may
be expressed in the form of Newton’s Law,

ẍ1 = x1

(
H2 −

1
2
x2

1

)
. (6.3.3)

This is the Duffing oscillator. It has critical points at

(x1, x2) =
(
0, 0

)
and

(
±
√

2H2, 0
)
.

The first of these critical points is unstable (a saddle point) and
the other two are stable (centres). See Figure 6.5.

Case 2: µ 6= 0, ν = 0.
A level set of H1 = 1

2(x2
2 + x2

3) is a circular cylinder oriented
along the x1-direction. On a level set of H1, one has polar
coordinates (x2, x3) = (r cosϕ, r sinϕ), where r2 = 2H1. so
that

d 3x = dx1 ∧ dx2 ∧ dx3 = dx1 ∧ dH1 ∧ dϕ = dH1 ∧ dϕ ∧ dx1 .

The R3 bracket restricts to such a level set as{
F, H

}
d 3x = − 1

µ
dH1 ∧

{
F, H2

}
c−cyldϕ ∧ dx1 ,

where the Poisson bracket on the circular cylinder H1 = const
is symplectic,{

F, H2

}
c−cyl =

∂F

∂ϕ

∂H1

∂x1
− ∂H2

∂ϕ

∂F

∂x1
.
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Hence, the equations of motion are

ϕ̇ =
{
ϕ, H2

}
p−cyl =

∂H2

∂x1
, (6.3.4)

ẋ1 =
{
x1, H2

}
p−cyl = −∂H2

∂ϕ
, (6.3.5)

where

H2 =
1
2
x2

1 + x3 =
1
2
x2

1 +
√

2H1 sinϕ . (6.3.6)

Therefore, an equation of motion for ϕ results, which may be
expressed in the form of Newton’s Law,

ϕ̈ = −
√

2H1 cosϕ = −
√

2H1 sin(ϕ+ π/2) . (6.3.7)

This is the equation for a simple pendulum in the angle ϕ+π/2.
It has critical points at ϕ + π/2 = (0, π). The first of these is
stable and the other one is unstable. See Figure 6.6.

6.4 Remarks on geometric phases

The reduced motion takes place on symplectic manifolds, which are
the level sets of the constants of motion. The choice of these con-
stants of motion allows considerable freedom in phase space pa-
rameterisation. When reconstructing the solutions from the reduced
system, especially for periodic solutions, phases arise as a result of
travelling over one period in the reduced space (in our case, on a
level surface of C). These phases are associated with the group ac-
tion of the reduction. Let M be a Poisson manifold on which a Lie
group G acts as a Hamiltonian Lie group of symmetry transforma-
tions with corresponding Lie algebra g, and let C : M → g∗ be
the associated momentum map. For the Nambu bracket reductions
considered in this chapter, the canonical 1-form is

Θ := pidqi = pdq + Cdϕ , (6.4.1)
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Figure 6.6: Phase portrait for Case 2.

where p and q are the symplectic coordinates for the level surface of
C on which the reduced motion takes place. Rearranging gives

Cdϕ = − pdq + pidqi . (6.4.2)

The total phase change around a particular periodic orbit on a level
set of C may now be obtained by integrating this equation around
the orbit and writing the result as the sum of the following two
parts:∮

Cdϕ = −
∮
pdq︸ ︷︷ ︸

Geometric

+
∮
pidqi︸ ︷︷ ︸

Dynamic

= C∆ϕgeom + C∆ϕdyn. (6.4.3)

Hence, we identify

∆ϕgeom = − 1
C

∮
∂S

p dq = − 1
C

∫
S

dp ∧ dq , (6.4.4)
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where the second equality uses Green’s theorem. (In this formula,
∂S denotes a periodic orbit on the reduced phase space, and S is
the surface enclosed by this orbit.) For each of the reductions to
symplectic motion on level surfaces of the Casimir functions C de-
scribed in Sections 6.2 and 6.3, there is a corresponding geometric
phase given by (6.4.4), which is proportional to the area enclosed by
any periodic orbit. In addition, the dynamical phase is defined by

∆ϕdyn =
1
C

∮
∂S

pi dqi =
1
C

∫
∂S

(pq̇ + Cϕ̇) dt . (6.4.5)

Naturally, the total phase ∆ϕtot = ∆ϕdyn + ∆ϕgeom is given by the
sum of expressions (6.4.4) and (6.4.5). For Hamiltonian functions
that are quadratic in each of the momenta, expression (6.4.5) adopts
a particularly simple form,

∆ϕdyn =
1
C

∮
∂S

(
p
∂H

∂p
+ C

∂H

∂C

)
dt

=
1
C

∮
∂S

2(H − V ) dt

=
2T
C

[H − 〈V 〉] , (6.4.6)

where T is the period of the orbit on which the integration is per-
formed and 〈V 〉 denotes the average of the potential energy over the
orbit [Mo1991].

Remark 6.4.1 Compare the geometric phase relation (6.4.6) for quadratic
Hamiltonians with formula (4.3.5) for the geometric phase of the optical
travelling-wave pulse.

Clearly, the values of the geometric and dynamics phases, ∆ϕgeom
and ∆ϕdyn, respectively, depend upon the values of the functions
H and C. However, the total phase is an intrinsic property of the
orbit and, thus, is independent of any phase space reparameterisa-
tions. However, for a given orbit ∂S, one could choose the values
of H and C such that ∆ϕdyn = 0, and the total phase (for that orbit)
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would then be completely geometrical. This means the value of the
geometric phase is not intrinsic. Rather, its value depends upon the
choice of parameterisation of the reduced phase space.

Exercise. Examples of geometric phases for two reductions
Compute the geometric phases for the two reductions by
symmetry of the Maxwell-Bloch equations in Section 6.3,
one onto a parabolic cylinder and the other onto a circu-
lar cylinder. F



Appendix A

Enhanced coursework

A.1 Problem formulations & selected solutions

Exercise. Formulate the following simple mechanical
problems using (a) Newton’s approach, (b) Lagrange’s
approach and (c) Hamilton’s approach.

• Bead sliding on a rotating hoop

• Spherical pendulum in polar coordinates

• Charged particle in a magnetic field

• Kaluza-Klein variational principle

• Rigid body with flywheel

• Canonical transformations

• Complex phase space

• A single harmonic oscillator

• Resonant coupled oscillators

• Kepler problem

• Lie derivatives and differential forms

• A cubically nonlinear oscillator

F

325
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A.1.1 The bead sliding on a rotating hoop

x
y

z

g
a

mψ

φ

ω

Figure A.1: A bead sliding without friction on a rotating hoop.

Newton’s 2nd Law approach F = ma

Forces

• Gravity: −mgk̂;

• Constraint Forces:
In directions êr and êθ that keep the particle on the hoop.

In a fixed inertial frame at the centre of the hoop, one chooses spher-
ical coordinates with azimuthal angle 0 ≤ φ < 2π and polar angle
0 ≤ θ < π measured from the downward vertical as in Figure A.1,

x = R sin θ cosφ ,
y = R sin θ sinφ ,
z = −R cos θ .

(A.1.1)
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The components of the accelerations are

ẍ = −ω2x− θ̇2x+ (R cos θ cosφ)θ̈ − 2Rωθ̇ cos θ sinφ ,

ÿ = −ω2y − θ̇2y + (R cos θ sinφ)θ̈ + 2Rωθ̇ cos θ cosφ ,

z̈ = −zθ̇2 + (R sin θ)θ̈ ,

(A.1.2)

and the unit vector in the positive θ-direction is

êθ = cos θ cosφ î + cos θ sinφ ĵ + sin θ k̂ . (A.1.3)

Newton’s Law F = ma is written in these coordinates, as follows:

• êφ and êr components give constraint forces;

• The equations of motion comes from the êθ component of the
force, F · êθ = ma · êθ.

Using the expression for êθ yields:

F · êθ = −mg sin θ ,
ma · êθ = m(ẍ cos θ cosφ+ ÿ cos θ sinφ+ z̈ sin θ)

= mR(θ̈ − ω2 sin θ cos θ) .

(A.1.4)

Consequently, one finds the Newtonian equation of motion,

Rθ̈ − ω2R sin θ cos θ + g sin θ = 0 . (A.1.5)

For the case when the rotation vanishes (ω = 0) this simplifies to

Rθ̈ = − g sin θ , (A.1.6)

which not unexpectedly is the equation for the pendulum.

However, the presence of ω 6= 0 acts to reduce the gravitational
restoring force as

Rθ̈ = − (g − ω2R cos θ) sin θ . (A.1.7)
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The Lagrangian Approach

In terms of the velocity,

v = Rθ̇ êθ + (ωR sin θ) êφ , (A.1.8)

the kinetic energy of the bead sliding on the hoop is expressed as

T =
m

2
|v|2 =

mR2

2
(θ̇2 + ω2 sin2 θ) , (A.1.9)

and its potential energy is

V = −mgR cos θ . (A.1.10)

The corresponding Lagrangian for this mechanical system is

L = T − V =
mR2

2
(θ̇2 + ω2 sin2 θ) +mgR cos θ . (A.1.11)

The Euler-Lagrange equation in these coordinates is

d

dt

∂L

∂θ̇
=
∂L

∂θ
. (A.1.12)

Evaluating each of the partial derivatives yields

∂L

∂θ̇
= mR2θ̇,

∂L

∂θ
= mR2ω2 sin θ cos θ −mgR sin θ.

(A.1.13)

So, on dividing through by mR2 the motion equation (A.1.5) is re-
covered,

mR2θ̈ −mR2ω2 sin θ cos θ +mgR sin θ = 0. (A.1.14)

Hamilton’s Approach

The Legendre transform of the Lagrangian coordinates

π(θ̇, θ)→ (P, θ) =
(∂L
∂θ̇
, θ
)

(A.1.15)
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gives the phase space coordinates in which Hamilton’s equation is
expressed. The canonical angular momentum is

P =
∂L

∂θ̇
= mR2θ̇ , (A.1.16)

is related to the angular velocity by

θ̇ =
P

mR2
. (A.1.17)

Legendre transforming the Lagrangian to the Hamiltonian gives

H = P θ̇ − L

=
P 2

mR2
− P 2

2mR2
− mR2ω2

2
sin2(θ)−mgR cos θ

=
P 2

mR2
−mgR cos θ − mR2ω2

2
sin2 θ.

(A.1.18)

Remark A.1.1 Note: This Hamiltonian is not the sum of the kinetic and
potential energies of the particle.

Hamilton’s equations are:

Ṗ = −∂H
∂θ

= −mgR sin θ +mR2ω2 sin θ cos θ ,

θ̇ =
∂H

∂P
=

P

mR2
.

(A.1.19)

Substituting for the momentum recovers the motion equations (A.1.5)
and (A.1.14).

Notice that the motion equation may be rewritten as Newton’s
Law for an effective potential Veff (θ) as

θ̈ = −
∂Veff (θ)

∂θ
, (A.1.20)

with effective potential

Veff (θ) = −(g/R) cos θ − (ω2/2) sin2 θ . (A.1.21)
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Equilibrium solutions

In the stationary solutions (equilibria) of these equations, the bead
does not move. These are solutions for which θ̈ = θ̇ = 0.

Equilibria

• θ̇ = 0, θ̈ = 0 gives the equilibrium condition as

Rω2 sin θ cos θ = g sin θ . (A.1.22)

• θ = 0 and θ = π are equilibrium solutions corresponding to
the particle position at the top and bottom of the hoop.

• If θ 6= 0 or θ 6= π then the equilibrium condition is

Rω2 cos θ = g . (A.1.23)

• This has two solutions if g/(Rω2) < 1.

• ωc =
√
g/R is the critical rotation frequency.

• ωc is also the frequency of linearised oscillations for the simple
pendulum

Rθ̈ + gθ = 0 . (A.1.24)

• When ω < ωc there are two solutions θ = 0 and θ = π.

• When ω > ωc the solutions are θ = 0, π ± cos−1(g/(Rω2)).

• By plotting the effective potential Veff (θ) in (A.1.21) one sees
that the solution for the bead at the bottom of the hoop (θ = 0)
changes stability at a critical frequency, given by

ω2 < g/R .

The solution for the bead at the bottom of the hoop is stable
(a minimum in potential) for slow angular rotation velocity,
below critical. It is unstable (a maximum in potential) when
the hoop rotates faster than critical.
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• The loss of stability of an equilibrium solution accompanied
by the development of of two new stable equilibria is called a
pitchfork bifurcation. See [MaRa1994] for more discussions
and examples of pitchfork bifurcations. Of course, the solu-
tion with the bead balancing at the top of the hoop (θ = π) is
always unstable.

A.1.2 Spherical pendulum in polar coordinates

mg

Figure A.2: Spherical pendulum.

Lagrangian approach

As for the bead on the rotating hoop, we use spherical coordinates
with azimuthal angle 0 ≤ φ < 2π and polar angle 0 ≤ θ < π mea-
sured from the downward vertical defined in terms of Cartesian co-
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ordinates by (note minus sign in z)

x = R sin θ cosφ ,
y = R sin θ sin θ ,
z = −R cos θ .

(A.1.25)

Kinetic Energy

In Cartesian coordinates, the kinetic energy is

T =
m

2
(ẋ2 + ẏ2 + ż2) . (A.1.26)

Upon translating into spherical polar coordinates, the velocity com-
ponents become

ẋ = Rθ̇ cos θ cosφ−Rφ̇ sin θ sinφ ,

ẏ = Rθ̇ cos θ sinφ−Rφ̇ sin θ cosφ ,

ż = Rθ̇ sin θ ,

(A.1.27)

and the kinetic energy becomes

T =
mR2

2
(θ̇2 + φ̇2 sin2 θ) . (A.1.28)

This is the standard form for the particle kinetic energy in spherical
coordinates.

Potential Energy

The potential energy of the spherical pendulum is

V = mgz = −mgR cos θ . (A.1.29)

Lagrangian

Its Lagrangian is similar to equation (A.1.11) for the rotating hoop

L = T − V =
mR2

2
(θ̇2 + φ̇2 sin2 θ) +mgR cos θ . (A.1.30)
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• θ equation

The Euler-Lagrange equation is

d

dt

∂L

∂θ̇
− ∂L

∂θ
= 0 , (A.1.31)

in which for the spherical pendulum Lagrangian,

∂L

∂θ̇
= mR2θ̇ ,

∂L

∂θ
= φ̇2mR2 sin θ cos θ −mgR sin θ .

(A.1.32)

Consequently, one finds an equation similar in form to the mo-
tion equation (A.1.5) or (A.1.14) for the bead on the rotating
hoop,

mR2θ̈ − φ̇2mR2 sin θ cos θ +mgR sin θ = 0 . (A.1.33)

• φ equation The Euler-Lagrange equation in φ is

d

dt

∂L

∂φ̇
− ∂L

∂φ
= 0 . (A.1.34)

Consequently, one computes that

∂L

∂φ̇
= mR2φ̇ sin2 θ ,

∂L

∂φ
= 0 ,

d

dt

∂L

∂φ̇
=

d

dt
(mR2φ̇ sin2 θ) = 0 .

(A.1.35)

Thus, as guaranteed by Noether’s theorem, azimuthal sym-
metry of the Lagrangian (that is, L being independent of φ)
implies conservation of azimuthal angular momentum.
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Hamiltonian approach

One computes the canonical momenta and solves for velocities in
terms of momenta and coordinates as:

Pθ =
∂L

∂θ̇
= mR2θ̇ , so θ̇ =

Pθ
mR2

, (A.1.36)

Pφ =
∂L

∂φ̇
= mR2φ̇ sin2 θ , so φ̇ =

Pφ

mR2 sin2 θ
.

The Hamiltonian is obtained by the Legendre transforming the La-
grangian, as

H = Pθθ̇ + Pφφ̇− L

=
P 2
θ

2mR2
+

P 2
φ

2mR2 sin2 θ
−mgl cos θ .

This Hamiltonian has canonical motion equations,

Ṗθ = − ∂H
∂θ

= −mgl sin θ +
P 2
φ

mR2

cos θ
sin3 θ

,

Ṗφ = − ∂H
∂φ

= 0 .

The angular frequencies are recovered in their canonical form from
the Hamiltonian as

θ̇ =
∂H

∂Pθ
=

Pθ
mR2

,

φ̇ =
∂H

∂Pφ
=

Pφ

mR2 sin2 θ
.

By Noether’s theorem, the azimuthal angular momentum Pφ is con-
served because the Lagrangian (and hence the Hamiltonian) of the
spherical pendulum are independent of φ. This symmetry also al-
lows further progress toward characterising the spherical pendular
motion. In particular, the equilibria are azimuthally symmetric.

Substituting for φ̇2 in equation (A.1.33) from (A.1.36) yields

mR2θ̈ = −mgR sin θ +
( Pφ

mR2 sin2 θ

)2
mR2 sin θ cos θ . (A.1.37)
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This may be rewritten in terms of an effective potential Veff (θ) as

θ̈ = −
∂Veff (θ)

∂θ
, (A.1.38)

with

Veff (θ) = − (g/R) cos θ +
P 2
φ

2mR2 sin2 θ
. (A.1.39)

This approach enables a phase plane analysis in (θ, Pθ). Combining
this with conservation of energy defined as

E/(mR2) = θ̇2/2 + Veff (θ) ,

leads easily to a solution for θ(t) as a quadrature integral,

t− t0 =
1√
2

∫
dθ√

E/(mR2)− Veff (θ)
.

In principle, a formula for the solution for the azimuthal angle φ(t)
would follow via another quadrature obtained from the conserva-
tion of angular momentum Pφ. However, in practice, one may wish
to resort to a more direct approach, such as numerical integration of
(A.1.39).

A.1.3 Charged particle in a given magnetic field

The problem is to formulate the equations of motion for an electri-
cally charged particle in a given magnetic field, first by using the
traditional minimal coupling method in physics, and then by using
the Kaluza-Klein method. In the latter approach, the coupling con-
stant between the field and the particle (its charge) emerges as a con-
served momentum that is canonically conjugate to an internal S1 di-
mension associated with the particle. In this approach the equations
are reinterpreted as geodesic motion with respect to the Kaluza-
Klein metric defined on the tangent bundle TQKK = R3 × S1.
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Lagrangian approach: minimal coupling

Consider a particle of charge e and mass m moving in a magnetic
field B, where B = ∇×A is a given magnetic field on R3. The La-
grangian for the motion is given by the minimal coupling prescription

L(q, q̇) =
m

2
‖q̇‖2 +

e

c
q̇ ·A(q) , (A.1.40)

in which the constant c is the speed of light and ‖q̇‖2 = q̇ · q̇ in R3.
This is the J ·A (jay-dot-ay) prescription with current J = eq̇/c. The
derivatives of this Lagrangian are

∂L

∂q̇
= mq̇ +

e

c
A =: p and

∂L

∂q
=
e

c
∇AT · q̇ ,

in which∇AT · q̇ =
∑

j q̇j∇Aj . Hence, the Euler-Lagrange equation
for this system is, with notation∇A · q̇ = q̇j∂A/∂xj ,

m q̈ =
e

c
(∇AT · q̇−∇A · q̇) =

e

c
q̇×B , (A.1.41)

which is Newton’s equation for the Lorentz force.
The Lagrangian L in equation (A.1.40) is hyperregular, because

the fibre derivative

p =
∂L(q, q̇)
∂q̇

= mq̇ +
e

c
A(q)

is linearly invertible

q̇ =
∂H(q,p)

∂p
=

1
m

(
p− e

c
A(q)

)
.

The corresponding Hamiltonian is given by the invertible change of
variables,

H(q,p) = p · q̇− L(q, q̇) =
1

2m

∥∥∥p− e

c
A(q)

∥∥∥2
. (A.1.42)

Finally, the canonical equations for this Hamiltonian recover New-
ton’s equations (A.1.41) for the Lorentz force law.
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Charged particle, magnetic field, Kaluza-Klein construction

Although the minimal-coupling Lagrangian in equation (A.1.40) is
not expressed as the kinetic energy of a metric, Newton’s equations
for the Lorentz force law (A.1.41) may still be obtained as geodesic
equations. This is accomplished by suspending them in a higher
dimensional space by using the Kaluza-Klein construction, which
proceeds as follows.

Let QKK be the manifold R3×S1 with variables (q, θ). On QKK
introduce the Kaluza-Klein Lagrangian LKK : TQKK ' TR3 ×
TS1 7→ R as

LKK(q, θ, q̇, θ̇) =
1
2
m‖q̇‖2 +

1
2

(
A · q̇ + θ̇

)2
. (A.1.43)

The Lagrangian LKK is positive definite in (q̇, θ̇); so it may be re-
garded as the kinetic energy of a metric, the Kaluza-Klein met-
ric on TQKK . This means the Euler-Lagrange equation for LKK
will be the geodesic equation of this metric for integral curves on
QKK = R3 × S1. (This construction fits the idea of U(1) gauge sym-
metry for electromagnetic fields in R3. It could be generalized sub-
stantially, but this would take us beyond our present scope.) The
Legendre transformation for LKK gives the momenta

p = mq̇ + (A · q̇ + θ̇)A and π = A · q̇ + θ̇. (A.1.44)

Since LKK does not depend on θ, the Euler-Lagrange equation

d

dt

∂LKK

∂θ̇
=
∂LKK
∂θ

= 0 ,

shows that π = ∂LKK/∂θ̇ is conserved. The charge is now defined
by e := cπ. The Hamiltonian HKK associated to LKK by the Legen-
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dre transformation (A.1.44) is

HKK(q, θ,p, π) = p · q̇ + πθ̇ − LKK(q, q̇, θ, θ̇)

= p · 1
m

(p− πA) + π(π −A · q̇)

− 1
2
m‖q̇‖2 − 1

2
π2

= p · 1
m

(p− πA) +
1
2
π2

− πA · 1
m

(p− πA)− 1
2m
‖p− πA‖2

=
1

2m
‖p− πA‖2 +

1
2
π2. (A.1.45)

On the constant level set π = e/c, the Kaluza-Klein Hamiltonian
HKK is a function of only the variables (q,p) and is equal to the
Hamiltonian (A.1.42) for charged particle motion under the Lorentz
force up to an additive constant. This example provides an easy but
fundamental illustration of the geometry of (Lagrangian) reduction
by symmetry. The canonical equations for the Kaluza-Klein Hamil-
tonian HKK now reproduce Newton’s equations for the Lorentz
force law, reinterpreted as geodesic motion with respect to the Kaluza-
Klein metric defined on the tangent bundle TQKK in (A.1.43).

A.1.4 Rigid body with flywheel: Lagrange gyrostat

Formulation of the problem

Rigid body with flywheel
Formulate and analyse the equations of motion for a rigid body

that has a flywheel attached and aligned with its intermediate prin-
cipal axis. The kinetic energy for this system is given as

KE =
1
2
λ1Ω2

1 +
1
2
I2Ω2

2 +
1
2
λ3Ω2

3 +
1
2
J2(α̇+ Ω2)2 ,

where Ω = (Ω1,Ω2,Ω3) is the angular velocity vector, α̇ is the ro-
tational frequency of the flywheel about the intermediate principal
axis, and λ1, I2, J2, λ3 are positive constants.
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• Write the Lagrangian for this system.

• Find the angular momenta Π ∈ R3 and `2 ∈ R1.

• Legendre transform to obtain the Hamiltonian and Poisson
bracket in the variables Π, `2, α.

• Write the equations of motion for this system.

• Consider the case when I2 = λ1, write the equation for Π3 in
the Newtonian form,

d2Π3

dt2
= − ∂

∂Π3
V (Π3) ,

and perform the phase plane analysis required to understand
the bifurcation of the solutions of this system. What sorts of
bifurcations are available for it?

Analysis

This problem integrates the various approaches of Newton, Lagrange
and Hamilton, and takes insight from each approach.

Just as for the isolated rigid body, the energy is purely kinetic; so
one may define the kinetic energy Lagrangian for this system L :
TSO(3)/SO(3)× TS1 → R3 as

L(Ω, α̇) =
1
2
λ1Ω2

1 +
1
2
I2Ω2

2 +
1
2
λ3Ω2

3 +
1
2
J2(α̇+ Ω2)2 ,

where Ω = (Ω1,Ω2,Ω3) is the angular velocity vector, α̇ is the ro-
tational frequency of the flywheel about the intermediate principal
axis, and λ1, I2, J2, λ3 are positive constants corresponding to the
principle moments of inertia, including the presence of the flywheel.
Because the Lagrangian is independent of the angle α, its canoni-
cally conjugate angular momentum, `2 := ∂L/∂α̇will be conserved.
This suggests a move into the Hamiltonian picture, where the con-
served `2 will become a constant parameter.
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• Legendre transforming this Lagrangian allows us to express
its Hamiltonian in terms of the angular momenta Π = ∂L/∂Ω ∈
R3 and `2 = ∂L/∂α̇ ∈ R1 of the rigid body and flywheel, re-
spectively,

H(Π, `2) = Π ·Ω + `2α̇− L(Ω, α̇) (A.1.46)

=
Π2

1

2λ1
+

Π2
3

2λ3
+

1
2I2

(
Π2 − `2

)2︸ ︷︷ ︸
Offset along Π2

+
`22

2J2
.

This Hamiltonian is an ellipsoid in coordinates Π ∈ R3, whose
centre is offset in the Π2-direction by an amount equal to the
conserved angular momentum `2 of the flywheel.

The offset of the energy ellipsoid by `2 along the Π2-axis radi-
cally alters its intersections with the angular momentum sphere
|Π| = const. Its dynamical behaviour governed as motion
along these altered intersections is quite different from the
rigid body, which has no offset of its energy ellipsoid.

In fact, the dynamics of the rigid body and flywheel system is
almost identical to the dynamics of the optical travelling-wave
pulses in Section 4.5. Figures 4.6 and 4.7 are particularly useful
for envisoning the choreography of bifurcations available to
the rigid body and flywheel system.

• The Poisson bracket in the variables

Π, `2, α ∈ so(3)∗ × T ∗S1 ,

is a direct sum of the rigid body bracket for Π ∈ so(3)∗ ' R3

and the canonical bracket for the flywheel phase space coordi-
nates (`2, α) ∈ T ∗S1.

{F , H} = −Π ·
(
∂F

∂Π
× ∂H

∂Π

)
+
∂F

∂α

∂H

∂`2
− ∂H

∂α

∂F

∂`2

= − εklm Πk
∂F

∂Πl

∂H

∂Πm
+
∂F

∂α

∂H

∂`2
− ∂H

∂α

∂F

∂`2
.
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• The Hamiltonian equations of motion for this system are, thus,

Π̇1 = {Π̇1, H} =
( 1
λ3
− 1
I2

)
Π2Π3 +

`2
I2

Π3 ,

Π̇2 = {Π̇2, H} =
( 1
λ1
− 1
λ3

)
Π1Π3 ,

Π̇3 = {Π̇3, H} =
( 1
I2
− 1
λ1

)
Π1Π2 −

`2
I2

Π1 ,

˙̀
2 = {`2, H} = 0 ,

α̇ = {α, H} =
∂H

∂`2
=
`2
J2
− 1
I2

(
Π2 − `2

)
=

`2
J2
− Ω2 .

• The constants of motion for this system are `2, |Π| and H . The
system is integrable in the Πi variables. The dynamics of the
flywheel angle α decouples from the rest and may be found
separately, after solving for Πi, i = 1, 2, 3.

• We consider the case when I2 = λ1, for which the offset energy
ellipsoid in (A.1.46) is cylindrically symmetric about an axis
parallel to the Π3-axis. In this case, the motion equation for Π3

will simplify to Newtonian form.

When I2 = λ1, the quadratic rigid body nonlinearity in the
Π3-equation vanishes and its dynamics simplifies to

Π̈3 = −`2
I2

Π̇1 =
(
− `22
λ2

1

+
( 1
λ1
− 1
λ3

)`2Π2

λ1

)
Π3 .

The Hamiltonian in this case produces a linear relationship
between Π2 and Π2

3, whose coefficients involve only system
constants and constants of the motion, namely,

H =
1

2λ1
|Π|2 +

1
2

( 1
λ3
− 1
λ1

)
Π2

3

− Π2`2
λ1

+
1
2

( 1
λ1

+
1
J2

)
`22 .
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One may rearrange this relationship into the following form,
that will conveniently allow Π2 to be eliminated in the equa-
tion for Π3. This form is,( 1

λ1
− 1
λ3

)`2Π2

λ1
= A− 1

2

( 1
λ3
− 1
λ1

)2
Π2

3 ,

where A is a constant of motion given by

A =
( 1
λ1
− 1
λ3

)( 1
2λ1
|Π|2 −H +

1
2

( 1
λ1

+
1
J2

)
`22

)
.

Upon eliminating Π2 from the equation above for Π3, one finds
the following second order differential equation involving Π3

alone,

Π̈3 =
(
A− `22

λ2
1

− 1
2

( 1
λ3
− 1
λ1

)2
Π2

3

)
Π3 . (A.1.47)

• Discussion of equation (A.1.47)
Equation (A.1.47) may be expressed in Newtonian form,

Π̈3 = − ∂

∂Π3
V (Π3) ,

with a quartic potential

V (Π3) = −
(
A− `22

λ2
1

)
Π2

3 +
1
8

( 1
λ3
− 1
λ1

)2
Π4

3 ,

and a conserved energy

E =
1
2

Π̇2
3 + V (Π3) .

Equation (A.1.47) for Π3 has equilibria at

Π3 = 0 and Π3 =
±λ1λ3

√
2(Aλ2

1 − `22)
λ1 − λ3

.

It has one unstable equilibrium at Π3 = 0 and two stable equi-
libria away from Π3 = 0 when A is sufficiently large and pos-
itive. Otherwise, it has only one stable equilibrium at Π3 = 0.
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Equation (A.1.47) has a pitchfork bifurcation when Aλ2
1 − `22

passes through zero. At this point, the equilibrium at Π3 = 0
loses its stability as two new stable equilibria are created on
either side of it. This pitchfork bifurcation may be studied and
illustrated using classical methods of phase plane analysis.

• Equation (A.1.47) is an example of the famous Duffing oscil-
lator equation, which has been very well studied.

For example, he text [GuHo1983] provides a wide-ranging treat-
ment of various aspects of the Duffing equation, including the
chaotic response of its solutions to periodic perturbations.

• See [Ko1984] for further analysis of this problem, including its
development of Hamiltonian chaos under periodic perturba-
tions. Homoclinic chaos certainly involves geometric mechan-
ics, but this topic is beyond the scope of the present text.

A.2 Introduction to oscillatory motion

A.2.1 Criteria for canonical transformations

(A) Let Z = (P, Q) and z = (p, q). The canonical Poisson bracket is

{F,H}Z =
(
∂F

∂z

)T ( 0 −1
1 0

)
∂H

∂z
. (A.2.1)

Under a phase space transformation z → Z(z), the chain rule
is used to transform Poisson brackets as

{F,H}Z =
(
∂F

∂Z

)T (∂Z
∂z

)T ( 0 −1
1 0

)
∂Z
∂z

∂H

∂Z

=
(
∂F

∂Z

)T ( 0 −1
1 0

)
∂H

∂Z
. (A.2.2)
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Therefore, the canonical Poisson bracket will be preserved,
provided(

∂Z
∂z

)T ( 0 −1
1 0

)
∂Z
∂z

=
(

0 −1
1 0

)
. (A.2.3)

2N × 2N matrices S satisfying

STJS = J, with J =
(

0 −1
1 0

)
, (A.2.4)

are said to be symplectic and are denoted S ∈ Sp(2N).

Remark A.2.1 According to (A.2.3) a phase space transformation
T ∗RN → T ∗RN given by z → Z(z) is canonical, if its Jacobian is
symplectic; that is, if ∂Z/∂z ∈ Sp(2N).

(B) If the transformed one-form satisfies PdQ− pdq = dF , then∮
c
PdQ =

∮
c
pdq , (A.2.5)

for every closed contour which is contractible to a point. By
Stokes theorem, this implies∫

A
dQ ∧ dP =

∫
A
dq ∧ dp , (A.2.6)

for a surface whose boundary forms the closed contour, ∂A =
c. Consequently, a transformation that changes the canonical
one-form by an exact form preserves the area in phase space
defined by the symplectic two-form.

Remark A.2.2 A transformation that multiplies the canonical one-form
by a constant may also be regarded as canonical, because the constant may
be simply absorbed, e.g., into the units of time.

Exercise. Show that the following transformations of co-
ordinates are each canonical.
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1. T ∗R2/{0} → T ∗R+ × T ∗S1, given by

x+ iy = reiθ , px + ipy = (pr + ipθ/r)eiθ.

2. T ∗R2 → C2, given with k = 1, 2 by

ak = qk + ipk, a∗k = qk − ipk.

3. T ∗R2/{0} → R2
+ × T 2, given with k = 1, 2 by

Ik =
1
2

(q2
k + p2

k) , φk = tan−1(pk/qk).

F

Answer.

1. Evaluating the real part, <
(
(px + ipy)(dx − idy)

)
= <

(
(pr +

ipθ/r)(dr − irdθ)
)

yields

pxdx+ pydy = prdr + pθdθ.

Taking exterior derivative gives

dpx ∧ dx+ dpy ∧ dy = dpr ∧ dr + dpθ ∧ dθ.

2. da ∧ da∗ = (dqk + idpk) ∧ (dqk − idpk) = −2idq ∧ dp

3. For each k (no sum) define

ak = qk + ipk , rk = |ak| = (q2
k + p2

k)
1/2 , φk = tan(pk/qk)

Then for each k (no sum) with Ik = 1
2r

2
k and

dIk ∧ dφk = 1
2dr

2
k ∧ dφk

= (qkdqk + pkdpk) ∧
qkdpk − pkdqk

q2
k + p2

k

=
q2
kdqk ∧ dpk − p2

kdpk ∧ dqk
q2
k + p2

k

= dqk ∧ dpk

N
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Summary

The symplectic form on an even-dimensional manifold M is a
closed nondegenerate 2-form ω = dq ∧ dp. Canonical transfor-
mations preserve the symplectic structure.

Theorem 1 (Darboux) Local coordinates always exist in which ω may
be written in the canonical form

ω =
N∑
j=1

dqj ∧ dpj . (A.2.7)

Here ω provides a linear isomorphism from TM → T ∗M

ω(XH , ·) = dH , (A.2.8)

where XH is a vector field generated by H , the Hamiltonian. The
inverse mapping T ∗M → TM is

XH = { · , H}

= Hp
∂

∂q
−Hq

∂

∂p

= q̇
∂

∂q
+ ṗ

∂

∂p
.

(A.2.9)

Check:

ω(XH , ·) = XH (dq ∧ dp)
= q̇dp− ṗdq
= Hpdp+Hqdq

= dH .

(A.2.10)

Theorem A.2.3 (Poincaré’s theorem) Flow by Hamilton’s canonical equa-
tions occurs as a canonical transformation.
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Proof.

d

dt
dq ∧ dp = dq̇ ∧ dp+ dq ∧ dṗ

= dHp ∧ dp− dq ∧ dHq

= d(Hpdp+Hqdq)

= d2H = 0 .

(A.2.11)

Hence, we have proved Poincaré’s theorem,

dp(t) ∧ dq(t) = dp(0) ∧ dq(0) , (A.2.12)

for Hamiltonian flows.

Definition A.2.4 (Phase Space Volume) The phase space volume is

dq1 ∧ dp1 ∧ · · · ∧ dqn ∧ dpn = dV ol . (A.2.13)

For Hamiltonian flows, each dqi∧dpi is preserved. Hence, so is dV ol.
This is known as Liouville’s theorem.

A.2.2 Complex phase space for a single oscillator

A single oscillator

The Hamiltonian for a single linear oscillator is given by

H =
ω

2
(q2 + p2) . (A.2.14)

The transformation to oscillator variables (q, p) → (a, a∗) for is de-
fined by

a := q + ip and a∗ := q − ip , (A.2.15)

or [
a∗

a

]
=
[

1 −i
i 1

] [
q
p

]
, (A.2.16)

for a single oscillator degree of freedom. This transformation is
canonical,

−1
2

Im (da ∧ da∗) =
−1
2i
da ∧ da∗ = dq ∧ dp . (A.2.17)
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As a check, the difference of canonical one-forms in these two sets
of variables is an exact differential,

1
2

Im (a da∗)− pdq =
1
2
d(pq) . (A.2.18)

The Hamiltonian (A.2.14) for the linear oscillator is given in these
variables by

H =
ω

2
(q2 + p2) =

ω

2
|a|2, (A.2.19)

with a = q+ ip and a∗ = q− ip. For this particular Hamiltonian, the
oscillator variables a and a∗ evolve as

ȧ = −iωa , a(t) = exp(−iωt) ,
ȧ∗ = iωa∗, a∗(t) = exp(iωt) .

(A.2.20)

Thus, for a linear oscillator, the variables a and a∗ evolve on the
unit circle in the complex plane with the same constant phase speed
(linear phase shift) but in opposite directions.

For an arbitrary Hamiltonian, the evolution of the complex os-
cillator variable a ∈ C1 is governed by

ȧ = q̇ + iṗ =
∂H

∂p
− i∂H

∂q

=
(∂H
∂a

∂a

∂p
+
∂H

∂a∗
∂a∗

∂p

)
− i
(∂H
∂a

∂a

∂q
+
∂H

∂a∗
∂a∗

∂q

)
= −2i

∂H

∂a∗
= {a,H} .

(A.2.21)

An identical calculation gives the complex conjugate equation for
the evolution of a∗

ȧ∗ = 2i
∂H

∂a
= {a∗, H} . (A.2.22)

Note that the Poisson bracket of {a, a∗} satisfies

{a, a∗} = {q + ip , q − ip} = −2i{q , p} = −2i .

Now consider the Hamiltonian vector field

XH = ȧ
∂

∂a
+ ȧ∗

∂

∂a∗

= − 2i
(∂H
∂a∗

∂

∂a
− ∂H

∂a

∂

∂a∗

)
= {·, H} . (A.2.23)
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Contraction of the Hamiltonian vector field with the symplectic two-
form in oscillator variables yields

XH
−1
2i
da ∧ da∗ =

−1
2i

(−2i)
(∂H
∂a∗

da∗ +
∂H

∂a
da
)

= dH . (A.2.24)

Remark A.2.5 (Summary for one degree of freedom)
The natural configuration space of variables for a single degree of freedom
is the real line R with coordinate q. Making the identification T ∗R '
R2 ' C yields a canonical transformation which is particularly apt for
oscillators.

A.3 Planar Isotropic Simple Harmonic
Oscillator (PISHO)

A.3.1 Formulations of PISHO equations

Newton’s Law (ma = F) for PISHO with displacement X ∈ R2,

Ẍ = −X on TTR2 (A.3.1)

is equivalent to the Euler-Lagrange equation,

d

dt

∂L

∂Ẋ
=
∂L

∂X
, (A.3.2)

which follows from stationarity δS = 0 of the action function

S =
∫ b

a
L(X, Ẋ) dt ,

for the Lagrangian L : TR2 → R given by the difference between the
kinetic and potential energies for PISHO

L(X, Ẋ) =
1
2

(
|Ẋ|2 − |X|2

)
= KE − PE . (A.3.3)

Note:
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1. Newton’s Law for PISHO (A.3.1) conserves the sum of ener-
gies, KE + PE. (Prove this statement!)

2. The Lagrangian for PISHO (A.3.3) only depends on the mag-
nitudes of the vectors X and Ẋ.

By defining the momentum P as the fibre derivative of the La-
grangian,

P :=
∂L

∂Ẋ
(X, Ẋ) ∈ T ∗R2 , (A.3.4)

one transforms (X, Ẋ) ∈ TR2 to new variables (Q,P) ∈ T ∗R2 with
Q := X and P := ∂L/∂Ẋ. Then the Legendre transformation to the
Hamiltonian H(Q,P)

H(Q,P) := P · Q̇− L(Q, Q̇)

allows the Euler-Lagrange equation (A.3.2) to be rewritten as Hamil-
ton’s canonical equations

Q̇ =
∂H

∂P
and Ṗ = − ∂H

∂Q
. (A.3.5)

In general, Hamilton’s canonical equations are equivalent to the cor-
responding Euler-Lagrange equation, provided the fibre derivative
in (A.3.4) can be solved for the velocity Ẋ as a function of (Q,P).
This is always possible if the fibre derivative is a diffeomorphism
(smooth invertible map, whose inverse is also smooth), in which
case the Lagrangian is said to be hyper-regular. For PISHO, the Leg-
endre transformation yields momentum P = Q̇ and the Hamilto-
nian is,

H =
1
2

(
|P|2 + |Q|2

)
, (A.3.6)

which is the conserved total energy, written as a function of the
Legendre-transformed variables (Q,P).

Remark A.3.1
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1. Stationarity δS = 0 of the action function

S =
∫ b

a
L(X, Ẋ) dt , (A.3.7)

implies the Euler-Lagrange equation in (A.3.2),

0 = δS = δ

∫ b

a
L(X(t), Ẋ(t)) dt

=:
d

ds

∣∣∣
s=0

∫ b

a
L(X(s, t), Ẋ(s, t)) dt

=
∫ b

a

(
− d

dt

∂L

∂Ẋ
+
∂L

∂X

)
· δX dt+

[
∂L

∂Ẋ
· δX

]b
a

after integrating by parts in time t for any smoothly parameterized
variation

δX(t) =
d

ds

∣∣∣
s=0

X(s, t)

that vanishes at the endpoints in time. This derivation of the Euler-
Lagrange equation (A.3.2) by stationarity δS = 0 under variations
of the action function (A.3.7) is called Hamilton’s principle.

2. If δS vanishes when the Euler-Lagrange equation is satisfied for a
variation δX(t) that is a symmetry of the Lagrangian and does not
vanish at the endpoints, then the endpoint term arising in the inte-
gration by parts must be a constant of the Euler-Lagrange motion.

This is Noether’s theorem: Every continuous symmetry of the ac-
tion function S implies a conservation law under the motion ob-
tained from the Euler-Lagrange equation.

For example, the PISHO Lagrangian in (A.3.3) is invariant under
rotations around the vertical axis, for which δX(t) = Ẑ×X. In this
case, the endpoint term is

LZ = Ẋ · Ẑ×X = Ẑ ·X× Ẋ ,

which is recognised as the vertical component of angular momen-
tum.
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3. Likewise, substitution of the Legendre transformation into Hamil-
ton’s principle yields Hamilton’s canonical equations (A.3.5)

0 = δS = δ

∫ b

a

(
P · Q̇−H(Q,P)

)
dt

=
∫ b

a

((
Q̇− ∂H

∂P

)
· δP−

(
Ṗ +

∂H

∂P

)
· δQ

)
dt

+
[
P · δQ

]b
a

for any smoothly parameterized variation δQ(t) that vanishes at the
endpoints in time.

A.3.2 The solution of PISHO in polar coordinates

Since the Lagrangian (A.3.3) for PISHO depends only on the mag-
nitudes of the displacement and velocity in the plane, it is invariant
under S1 rotations about the origin of coordinates in R2. Conse-
quently, one may transform the motion in Euclidean coordinates
X = (x, y) to polar coordinates (r, θ) defined by x + iy = reiθ, to
find the Lagrangian

L(r, ṙ, θ̇) =
1
2
(
ṙ2 + r2θ̇2 − r2

)
.

Since the transformed Lagrangian has no explicit θ dependence; it
is invariant under θ → θ + ε for any constant ε ∈ S1. Just as in
Cartesian coordinates, in polar coordinates Noether’s Theorem for
this S1-invariance of the Lagrangian implies a conservation law. In
this case, the symmetry under translations in θ implies conservation
of the fibre derivative,

∂L

∂θ̇
= r2θ̇ =: pθ,

which we may again identify as the angular momentum about the
axis of rotation. For a given pθ, the evolution of the angle θ(t) may be
obtained from the motion for r(t) by integrating the reconstruction
equation,

θ̇(t) =
pθ
r2(t)

. (A.3.8)
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The Hamiltonian in these polar coordinates is given by

H(r, pr, pθ) =
1
2

(
p2
r +

p2
θ

r2
+ r2

)
,

and Hamilton’s canonical equations may be written as

ṙ =
∂H

∂pr
= pr , ṗr = − ∂H

∂r
= − r +

p2
θ

r3
,

θ̇ =
∂H

∂pθ
=
pθ
r2
, ṗθ = − ∂H

∂θ
= 0 .

However, after writing Hamilton’s canonical equations, instead of
setting about solving them for their solutions (which are well known
in this familiar case), we may notice something about their geomet-
rical meaning. Namely, the level sets of the Hamiltonian H = const
and angular momentum pθ = const may be regarded as two sur-
faces in R3 with coordinates χ = (r, pr, pθ). In these R3 coordinates,
Hamilton’s equations may be written as

χ̇(t) = ∇H ×∇pθ , where ∇ :=
∂

∂χ
. (A.3.9)

This means that the evolution in R3 with coordinates χ = (r, pr, pθ)
takes place along the intersections of the level sets of the constants of
motion pθ andH . This realisation is an opportunity to start thinking
geometrically about mechanics.

Remark A.3.2

1. The process of obtaining the geometrical picture of the solution set
did not depend on the particular choice of the Hamiltonian, only its
on its θ-independence.

2. Instead of transforming to polar coordinates, one could have chosen
to transform directly to S1-invariant variables, such as |P|2, |Q|2,
P ·Q and p2

θ = |P×Q|2. We will consider this option later.
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A.3.3 Geometric and dynamic phases for PISHO

The phase θ may be reconstructed from the solution for r2(t) by
integrating the reconstruction equation (A.3.8), once an expression
for the radial motion r(t) has been found. However, more geometric
insight into the solution may be found by considering the relation

(px + ipy)(dx− idy) = (pr + ipθ/r)(dr − irdθ)

whose real part yields the action 1-form,

p · dq := pxdx+ pydy = pθdθ + prdr . (A.3.10)

Hence, integration around a periodic solution in the (r, pr) plane on
a level surface of pθ yields the phase relation,∮

pθ dθ = pθ∆θ = −
∮
pr dr︸ ︷︷ ︸

Geometric

+
∮

p · dq︸ ︷︷ ︸
Dynamic

. (A.3.11)

In this formula, the total phase change around a closed periodic
orbit of period T in (r, pr) plane decomposes into the sum of two
parts. On writing this decomposition of the phase as

∆θ = ∆θgeom + ∆θdyn , (A.3.12)

one sees that the geometric part, given by Stokes theorem as

pθ∆θgeom = −
∮
pr dr

= −
∫∫

dpr ∧ dr = Orbital area , (A.3.13)

is the area enclosed by the periodic orbit in the radial phase plane,
written in terms of the antisymmetric wedge product of differential
forms, ∧. Thus, the name: geometric phase for ∆θgeom, because this
part of the phase only depends on the geometric area of the periodic
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orbit. The rest of the phase is given by

pθ∆θdyn =
∮

p · dq =
∫ T

0
p · q̇ dt

=
∫ T

0

(
pr
∂H

∂pr
+ pθ

∂H

∂pθ

)
dt

=
∫ T

0

(
p2
r +

p2
θ

r2

)
dt

=
∫ T

0

(
2H − r2

)
dt

= T
(

2H −
〈
r2
〉)
, (A.3.14)

where the integral
∫ T

0 r2dt = T 〈r2〉 defines the time average 〈r2〉
over the orbit of period T of the squared orbital radius. This part
of the phase depends on the Hamiltonian, orbital period and the
time average over the orbit of the squared radius. Thus, the name:
dynamic phase for ∆θdyn, because this part of the phase depends on
the Hamiltonian responsible for the dynamics of the orbit, not just
its area.

Exercise. Write the Hamiltonian forms of the PISHO
equations in terms of S1-invariant quantities, for the fol-
lowing two cases:

1. x = |Q|2, y = |P|2, z = P ·Q and p2
θ = |P×Q|2

2. R = |a1|2 +|a2|2,X1 +iX2 = 2a∗1a2 andX3 = |a1|2−
|a2|2, with ak := qk + ipk.

F

Exercise. Write the Poisson brackets among the vari-
ables in the two cases in the previous exercise. F
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A.4 Complex phase space for two oscillators

Two uncoupled oscillators

The configuration space of variables for two oscillators is R×R ' R2

and the cotangent bundle is T ∗R2 ' C2. In the transformation to
oscillator variables, aj = qj + ipj , j = 1, 2, the symplectic two-form
is computed from

2∑
j=1

dqj ∧ dpj =
−1
2i

2∑
j=1

d(qj + ipj) ∧ d(qj − ipj)

=
1
−2i

2∑
j=1

daj ∧ da∗j . (A.4.1)

So the transformation to oscillator variables is canonical. The corre-
sponding Poisson bracket is,

{aj , a∗k} = {qj + ipj , qk − ipk} = −2i {qj , pk} = −2i δjk .

Consequently, the canonical motion equations in oscillator vari-
ables become

ȧj = {aj , H} = − 2i
∂H

∂a∗j
and (A.4.2)

ȧ∗j = {a∗j , H} = 2i
∂H

∂aj
.

The Hamiltonian for two uncoupled linear oscillators with angular
frequencies ω1 and ω2 is expressed in the variables (a1, a2) ∈ C2 as

H =
2∑
j=1

ωj
2

(q2
j + p2

j ) =
2∑
j=1

ωj
2
|aj |2, with aj = qj + ipj . (A.4.3)

This Hamiltonian is invariant under two independent phase shifts,
or circle actions SO(2)× SO(2) ' S1 × S1, which are also the solu-
tions of the equations of motion in (A.4.2).

aj(t) = aj(0)e−iωjt and a∗j (t) = a∗j (0)eiωjt , (A.4.4)

for j = 1, 2, with no sum on j implied.
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A.5 2D resonant oscillators

Many problems in physics involve oscillator Hamiltonians that are
invariant under the n : m circle action in which ω1 : ω2 = n : m, for
integers n,m ∈ Z. In that case, the two oscillators are said to be in
n : m resonance. The corresponding circle action is

φn:m : C2 → C2 as (a1, a2)→ (einφa1, e
imφa2) (A.5.1)

and (a∗1, a
∗
2)→ (e−inφa∗1, e

−imφa∗2) .

The simplest of these modifications is to break directional isotropy,
Consider the 2D oscillator Hamiltonian H : C2 → R,

H =
1
2

2∑
j=1

ωj |aj |2 (A.5.2)

=
1
4

(ω1 + ω2)
(
|a1|2 + |a2|2

)
+

1
4

(ω1 − ω2)
(
|a1|2 − |a2|2

)
.

Definition A.5.1 When ω1 = ω2 in (A.5.2) the 2D oscillator is isotropic,
otherwise it is anisotropic.

Remark A.5.2

• H in (A.5.2) is invariant under aj → a′j = exp(iφj)aj and the
solution of

ȧj = {aj , H} = − 2i
∂H

∂a∗j
,

is aj(t) = exp(−iωjt)aj(0). This is motion at constant speed on
S1 × S1 ' T 2 (the 2-torus).

• 2D positive resonance occurs when ω1 : ω2 = m : n with m,n ∈
Z+.

• The relation ω1 : ω2 = n : m with n : m ∈ Z is called a reso-
nance because the phase shifts match for n oscillations of a1 and m
oscillations of a2.

• H in (A.5.2) is the sum of a 1 : 1 resonant oscillator and a 1 : −1
oscillator.
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A.5.1 1 : 1 resonance

Exercise. What quadratic monomials in (a1, a2) ∈ C2

are invariant under ω1 : ω2 = 1 : 1 diagonal S1 phase
changes? F

Answer. The following quadratic monomials in (a1, a2) ∈ C2 are
invariant under 1 : 1 phase shifts: {a1a

∗
1, a2a

∗
2, a1a

∗
2, a
∗
1a2}. Choose

|a1|2 + |a2|2 = R ,

|a1|2 − |a2|2 = Z ,

2a1a
∗
2 = X − iY .

(A.5.3)

N

Exercise. Find the linear transformations generated by
X,Y, Z,R on a1, a2. Express them as matrix operations.

F

Answer. The infinitesimal transformations are given by

XRaj = {aj , R} = − 2i
∂R

∂a∗j
= − 2i aj ,

XZa1 = {a1, Z} = − 2i a1 ,

XZa2 = {a2, Z} = + 2i a2 ,

XXa1 = {a1, X} = − 2i a2 ,

XXa2 = {a2, X} = − 2i a1 ,

XY a1 = {a1, Y } = − 2a2 ,

XY a2 = {a2, Y } = + 2a1 .

These infinitesimal transformations may be expressed as the matrix
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operations,

XZ

[
a1

a2

]
= −2i

(
1 0
0 −1

)[
a1

a2

]
,

XX

[
a1

a2

]
= −2i

(
0 1
1 0

)[
a1

a2

]
,

XY

[
a1

a2

]
= −2i

(
0 −i
i 0

)[
a1

a2

]
,

or, in vector notation, as

XZa = − 2i σ3a , XXa = − 2i σ1a , XY a = − 2i σ2a .

From these expressions, one recognises that the finite transforma-
tions, or flows, of the Hamiltonian vector fields for (X,Y, Z) are ro-
tations about the (X,Y, Z) axes, respectively. N

Exercise. Define the Poincaré sphere.

How are the S1 invariant quadratic monomials (X,Y, Z)
for ω1 : ω2 = 1 : 1 related to the Poincaré sphere? F

Answer.

Definition A.5.3 The Poincaré sphere is the orbit manifold for invari-
ant 1 : 1 resonance dynamics. Being invariant under the flow of the
Hamiltonian vector field XR = { · , R}, each point on the Poincaré sphere
consists of a resonant orbit under the 1 : 1 circle action

φ1:1 : C2 → C2 as (a1, a2)→ (eiφa1, e
iφa2)

and (a∗1, a
∗
2)→ (e−iφa∗1, e

−iφa∗2) .

The S1 invariant quadratic monomials (X,Y, Z) for ω1 : ω2 = 1 : 1
satisfy

R2 = Z2 +X2 + Y 2

= (|a1|2 − |a2|2)2 + 4|a1|2|a2|2

= (|a1|2 + |a2|2)2.

(A.5.4)

The zero level set R2 − (X2 + Y 2 +Z2) = 0 is the Poincaré sphere.
N
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Exercise. Given {aj , a∗k} = −2iδjk compute the Poisson
brackets among the S1 invariants X,Y, Z,R for the 1 : 1
resonance.

F

Answer. {R,Q} = 0, for Q ∈ {X,Y, Z}, and {X,Y } = Z, plus cyclic
permutations of (X,Y, Z). N

Exercise. For the Hamiltonian,

H =
ω1

2
(R+ Z) +

ω2

2
(R− Z)

=
1
2

(ω1 + ω2)R+
1
2

(ω1 − ω2)Z ,
(A.5.5)

write the equations Ẋ, Ẏ , Ż, Ṙ for the S1 invariants X ,
Y , Z, R of the 1 : 1 resonance. Also write these equa-
tions in vector form, with X = (X,Y, Z)T . Describe this
motion in terms of level sets of the Poincaré sphere and
the Hamiltonian H . F

Answer. The dynamics is given by the Poisson bracket relation,

Ḟ = {F,H} = −∇R
2

2
· ∇F ×∇H(X,Y, Z)

= − 1
2

(ω1 − ω2)∇R
2

2
· ∇F ×∇Z .

Then Ṙ = 0 = Ż and

Ẋ =
1
2

(ω1 − ω2)Y , Ẏ = − 1
2

(ω1 − ω2)X .

In vector form, with X = (X,Y, Z)T , this is

Ẋ =
1
2

(ω1 − ω2)X× Ẑ ,
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where Ẑ is the unit vector in the Z-direction (cos θ = 0). This motion
is uniform rotation in the positive direction along a latitude of the
Poincaré sphere R = const. This azimuthal rotation on a latitude
at fixed polar angle on the sphere occurs along the intersections of
level sets of the Poincaré sphere R = const and the planes Z =
const, which are level sets of the Hamiltonian for a fixed value of R.

N

Exercise. How is angular momentum L := ε3jkpjqk =
p1q2−p2q1 related to the 1 : 1 resonance invariants (X,Y, Z)?
What transformation does L apply to these variables?
Check your answer explicitly. F

Answer. The transformation of the 1 : 1 resonant variables is found
by noticing that

L = ε3jkpjqk = p1q2 − p2q1 = Im(a1a
∗
2) = −Y

2
,

and computing the Poisson bracket,

dF

dφ
= −1

2

{
F, Y

}
=

1
2
∇R

2

2
· ∇F ×∇Y = −1

2
∇F ·X× Ŷ .

This is a counterclockwise rotation of the (X,Y, Z) coordinate frame
about the Y -axis. The flow of the Hamiltonian vector field XL =
{ · , L} is given by

φ(exp tXL) =

 cos t 0 sin t
0 1 0

− sin t 0 cos t

 .

To check this result explicitly, compute the skew-symmetric matrix,

( d
dt
φ(exp tXL)φ(exp−tXL)

)∣∣∣∣
t=0

=

 0 0 1
0 0 0
−1 0 0

 ,
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and apply it to confirm that 0 0 1
0 0 0
−1 0 0

 X
Y
Z

 =

 Z
0
−X

 = −X× Ŷ .

N

A.5.2 1 : −1 resonance

Exercise. What quadratic monomials in a1 and a2 that
are invariant under resonant S1 phase changes, ω1 : ω2 =
1 : −1. What is the orbital manifold? How are the solu-
tions related to ray optics? F

Answer. The quadratic monomials of a1 and a2 that are left invari-
ant under 1 : −1 resonant S1 phase shifts are:{

|a1|2, |a2|2, a1a2, a
∗
1a
∗
2

}
.

Consequently, the following are also invariant:

S = |a1|2 − |a2|2,
Y1 = |a1|2 + |a2|2,
Y2 + iY3 = 2a1a2 .

(A.5.6)

These satisfy

Y 2
2 + Y 2

3 = 4|a1|2|a2|2 = Y 2
1 − S2 ,

so the level sets of the orbital manifold are the hyperboloids of rev-
olution around the Y1-axis parameterised by S. That is,

S2 = Y 2
1 − Y 2

2 − Y 2
3 . (A.5.7)

We remark that:
S = |a1|2 − |a2|2 = const is an hyperboloid in both C2 and R3.
Y1 = |a1|2 + |a2|2 = const is a sphere S3 ∈ C2, and it is a plane in R3.
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For the 1 : −1 resonance Hamiltonian H = Y1, the evolution of
S, Y2, Y3 is described by

Ẏ = ∇S2 × Ŷ1 = 2Ŷ1 ×Y

Ṡ = {S,H} = 0,

Ẏ1 = {Y1, H} = {Y1, Y1} = 0,

Ẏ2 = {Y2, H} = {Y2, Y1} = −2Y3,

Ẏ3 = {Y3, H} = {Y3, Y1} = 2Y2 .

(A.5.8)

Thus, S is invariant under the flow generated by the Hamiltonian
H = Y1, while Y2 and Y3 rotate clockwise around the Y1-axis in a
plane at Y1 = const. This is the same motion as in equation (1.12.8)
for the paraxial harmonic guide. Looking more closely, one sees that
the Lie-Poisson bracket for the paraxial rays is identical to that for
the 1 : −1 resonance. This is a coincidence that occurs because the
Lie algebras sp(2,R) and su(1, 1) happen to be identical.

N

Exercise. How do a1 and a2 evolve under the Hamilto-
nian H = Y1?

Is this evolution consistent with the R3-evolution?

If not, why not? F

Answer. The motion under the Hamiltonian H = Y1 is given by

a1(t) = exp(−2it)a1(0), a2(t) = exp(−2it)a2(0) .

This is demonstrated by computing

{Y2 + iY3, Y1} = −2Y3 + 2iY2 = 2i(Y2 + iY3) . (A.5.9)

Hence, we have the evolution,

Y2(t) + iY3(t) = exp(2it)
(
Y2(0) + iY3(0)

)
. (A.5.10)

This is a clockwise rotation. However, the previous solution for the
oscillator variables would have given a counterclockwise rotation
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and at rate 4. This is no real surprise, because the map from oscil-
lator variables to R3-variables is defined modulo an arbitrary con-
stant factor, corresponding to a multiple of the units of time. It can
be rectified by introducing a constant, for example, by taking either
t→ −2t, or S2 → −2S2. N

Exercise. Find the transformations generated by Y2 and
Y3 on a1, a2. F

Answer. The infinitesimal transformations are given by

{a1, Y2} = − 2i a∗2 , {a2, Y2} = − 2i a∗1 ,
{a1, Y3} = 2 a∗2 , {a2, Y3} = 2 a∗1 .

N

Exercise. For the 1 : −1 resonance, consider the follow-
ing hyperbolic analogue of the Riemann stereographic
projection obtained from the mapping

ζ =
Y2 + iY3

Y1 + 1
. (A.5.11)

Using hyperbolic polar coordinates as in (1.12.2) with
S = 1,

Y1 = coshu , Y2 = sinhu cosψ , Y3 = sinhu sinψ ,
(A.5.12)

find that ζ = eiψ cothu. Show that

Y1 =
1 + |ζ|2

1− |ζ|2
and Y2 + iY3 =

2ζ
1− |ζ|2

. (A.5.13)

Compute the Poisson brackets for {ζ, ζ∗} on the com-
plex plane. F



A.5. 2D RESONANT OSCILLATORS 365

A.5.3 Hamiltonian flow for m1 : m2 resonance

A convenient canonical transformation for the m1 : m2 resonance is
given by

aj = qj + ipj for j = 1, 2,

for which

{qj , pk} = δjk implies {aj , a∗k} = −2i δjk .

The m1 : m2 resonance is the flow of the Hamiltonian vector field

XR = { · , R} = − 2i
mj

aj
∂

∂aj
+

2i
mj

a∗j
∂

∂a∗j
,

which is generated by the Poisson bracket with

R =
1
m1
|a1|2 +

1
m2
|a2|2 .

The characteristic equations for this Hamiltonian vector field are,

ȧj = {aj , R} = −2i
∂R

∂a∗j
= − 2i

mj
aj (no sum) for j = 1, 2,

whose flow solutions are

aj (t) = e−2it/mjaj (0) (no sum) for j = 1, 2 .

This flow leaves invariant the quantity,

am1
1 (t) a∗m2

2 (t) = am1
1 (0) a∗m2

2 (0) .

A.5.4 Multi-sheeted polar coordinates

The symplectic 2-form in canonically conjugate coordinates satisfy-
ing the Poisson bracket relation {q, p} = 1 is

ω = dq ∧ dp .
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Under the canonical transformation to oscillator variables, a = q +
ip ∈ C, this becomes

da ∧ da∗ = (dq + idp) ∧ (dq + idp)
= −2i (dq ∧ dp) = − 2i ω ,

and the corresponding Poisson bracket is {a, a∗} = −2i.

One transforms to multi-sheeted polar coordinates in b ∈ C by
introducing another complex variable, defined by

b =
1√
m
|a|1−m am

=
1√
m
|a| eimϕ ,

with ϕ ∈ [0, 2π). In ordinary polar coordinates, this is

a = |a| eiϕ ,

ϕ = tan−1 p

q
,

and
a = reiϕ =

√
q2 + p2 eiϕ .

The corresponding symplectic forms are given by

da ∧ da∗ = d
(
reiϕ

)
∧ d
(
re−iϕ

)
= eiϕ (dr + irdϕ) ∧ e−iϕ (dr − irdϕ)
= −2i rdr ∧ dϕ ,

and

db ∧ db∗ =
1
m
d
(
reimϕ

)
∧ d
(
re−imϕ

)
=

1
m
eimϕ (dr + imrdϕ) ∧ e−imϕ (dr − imrdϕ)

=
1
m

(−2imrdr ∧ dϕ)

= − 2i rdr ∧ dϕ .

The associated Poisson bracket is {b, b∗} = −2i.
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A.5.5 Resonant m1 : m2 torus

Define the quotient map π : C2 → R3 for them1 : m2 resonant torus
as

n = bkσklb
∗
l = π (b) ,

where σ is th 3-vector of 2×2 Pauli matrices. Explicitly, this is given
by

n0 = |b1|2 + |b2|2 =
1
m1
|a1|2 +

1
m2
|a2|2 ,

n3 = |b1|2 − |b2|2 =
1
m1
|a1|2 −

1
m2
|a2|2 ,

and

n1 + in2 = 2b1b∗2 =
2

√
m1m2

am1
1

|a1|m1−1

a∗m2
2

|a2|m2−1 .

One computes the corresponding Poisson brackets on R3 as,

{nj , nk} = −εjklnl ,
{n0, nk} = 0 .

The orbit manifold is defined by the algebraic relation,

n2
1 + n2

2 + n2
3 = |n1 + in2|2 + n2

3

= 4 |b1|2 |b2|2 +
(
|b1|2 − |b2|2

)2

=
(
|b1|2 + |b2|2

)2
= n2

0 ,

whose locus is a sphere centred at the origin in R3.

For R3 ∈ imageπ, the inverse of the quotient map

π−1 : R3 → C2 ,

satisfies the formulas,

n0 + n3 =
2
m1
|a1|2 , |a1|2 =

m1

2
(n0 + n3) ,

n0 − n3 =
2
m2
|a2|2 , |a2|2 =

m2

2
(n0 − n3) .
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Thus, each point on a sphere given by a level set of

n0 = |b1|2 + |b2|2 =
1
m1
|a1|2 +

1
m2
|a2|2 ,

corresponds to an m1 : m2 resonant torus.

A.6 A quadratically nonlinear oscillator

Consider the Hamiltonian dynamics on a symplectic manifold of
a system comprising two real degrees of freedom, with real phase
space variables (x, y, θ, z), symplectic form

ω = dx ∧ dy + dθ ∧ dz

and Hamiltonian

H = 1
2y

2 + x
(

1
3x

2 − z
)
− 2

3z
3/2 (A.6.1)

whose potential energy

V (x, z) = x
(

1
3x

2 − z
)

(A.6.2)

is a cubic in the coordinate x.

1. Write the canonical Poisson bracket for this system.

Answer.

{F , H} = HyFx −HxFy +HzFθ −HθFz

N

2. Write Hamilton’s canonical equations for this system. Explain
how to keep z ≥ 0, so that H and θ remain real.

Answer. Hamilton’s canonical equations for this sys-
tem are

ẋ = {x,H} = Hy = y ,

ẏ = {y,H} = −Hx = −(x2 − z) ,
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and

θ̇ = {θ,H} = Hz = −(x+
√
z ) ,

ż = {z,H} = −Hθ = 0 .

For H and θ to remain real, one need only choose
the initial value of the constant of motion z ≥ 0. N

3. At what values of x, y and H does the system have stationary
points in the (x, y) plane?

Answer. The system has (x, y) stationary points when
its time derivatives vanish: at y = 0, x = ±

√
z and

H = −4
3z

3/2. N

4. Propose a strategy for solving these equations. In what order
should they be solved?

Answer. Since z is a constant of motion, the equa-
tion for its conjugate variable θ(t) decouples from
the others and may be solved as a quadrature after
first solving for x(t) and y(t) on a level set of z. N

5. Identify the constants of motion of this system and explain
why they are conserved.

Answer. There are two constants of motion:
(i) The Hamiltonian H for the canonical equations
is conserved, because the Poisson bracket in Ḣ =
{H,H} is antisymmetric.
(ii) The momentum z conjugate to θ is conserved,
because Hθ = 0. N

6. Compute the associated Hamiltonian vector fieldXH and show
that it satisfies

XH ω = dH

Answer.

XH = { · , H} = Hy∂x −Hx∂y +Hz∂θ −Hθ∂z

= y∂x − (x2 − z)∂y − (x+
√
z)∂θ,
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so that

XH ω = ydy + (x2 − z)dx− (x+
√
z )dz = dH

N

7. Write the Poisson bracket that expresses the Hamiltonian vec-
tor field XH as a divergenceless vector field in R3 with coor-
dinates x = (x, y, z) ∈ R3. Explain why this Poisson bracket
satisfies the Jacobi identity.

Answer. Write the evolution equations for x = (x, y, z)T ∈
R3 as

ẋ = {x, H} = ∇H ×∇z = (Hy,−Hx, 0)T

= (y, z − x2, 0)T

= (ẋ, ẏ, ż)T .

Hence, for any smooth function F (x),

{F,H} = ∇z · ∇F ×∇H = FxHy −HxFy .

This is the canonical Poisson bracket for one degree
of freedom, which is known to satisfy the Jacobi iden-
tity. N

8. Identify the Casimir function for this R3 bracket. Show explic-
itly that it satisfies the definition of a Casimir function.

Answer. Substituting F = Φ(z) for a smooth func-
tion Φ into the bracket expression yields

{Φ(z), H} = ∇z·∇Φ(z)×∇H = ∇H·∇z×∇Φ(z) = 0,

for all H . This proves that F = Φ(z) is a Casimir
function for any smooth Φ. N

9. Sketch a graph of the intersections of the level surfaces in R3 of
the Hamiltonian and Casimir function. Determine the direc-
tions of flow along these intersections. Identify the locations
and types of any relative equilibria at the tangent points of
these surfaces.
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Answer. The sketch should show a saddle-centre
fish shape pointing rightward in the (x, y) plane with
elliptic equilibrium at (x, y) = (

√
z, 0), hyperbolic

equilibrium at (x, y) = (−
√
z, 0). The directions of

flow have sign(ẋ)=sign(y). The saddle-centre shape
is sketched in the lower panel of Figure A.3. N

Figure A.3: Upper panel: sketch of the cubic potential V (x, z) in equation (A.6.1)
at constant z. Lower panel: sketch of its (x, y) phase plane, comprising several
level sets of H(x, y, z) at constant z. This is the saddle-centre fish shape.

10. Linearise around the relative equilibria on a level set of the
Casimir (z) and compute its eigenvalues.

Answer. On a level surface of z the (x, y) coordi-
nates satisfy ẋ = y and ẏ = z − x2. Linearising
around (xe, ye) = (±

√
z, 0) yields with (x, y) = (xe+

ξ(t), ye + η(t)) [
ξ̇
η̇

]
=
[

0 1
−2xe 0

] [
ξ
η

]
.
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Its characteristic equation,

det
[
λ −1

2xe λ

]
= λ2 + 2xe = 0,

yields λ2 = −2xe = ∓2
√
z.

Hence, the eigenvalues are,
λ = ±i

√
2z1/4 at the elliptic equilibrium (xe, ye) =

(
√
z, 0), and

λ = ±
√

2z1/4 at the hyperbolic equilibrium (xe, ye) =
(−
√
z, 0). N

11. As shown in Figure A.3, the hyperbolic equilibrium point is
connected to itself by a homoclinic orbit. Reduce the equation
for the homoclinic orbit to an indefinite integral expression.

Answer. On the homoclinic orbit the Hamiltonian
vanishes, so that

H = 1
2y

2 + x
(

1
3x

2 − z
)
− 2

3z
3/2 = 0.

Using y = ẋ, rearranging and integrating implies
the indefinite integral expression, or “quadrature”,∫

dx√
2z3/2 − x3 + 3zx

=
√

2
3

∫
dt .

After some work this integrates to

x(t) +
√
z

3
√
z

= sech2

(
z1/4t√

2

)
.

From this equation, one may also compute the evo-
lution of θ(t) on the homoclinic orbit by integrating
the θ-equation,

dθ

dt
= −(x(t) +

√
z ).

N

12. Consider the solutions in the complex x-plane for H < 0. Also
consider what happens in the complex x-plane when z < 0.
To get started, take a look at [BeBrHo2008].
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A.7 Lie derivatives and differential forms

Exterior calculus and actions of vector fields.

1 Operations on differential forms
(i) Verify the following exterior derivative formulas,

(a) df = ∇f · dx ,
(b) d(v · dx) = curl v · dS ,
(c) d(ω · dS) = divω d 3x .

What does d2 = 0 mean for each of (a), (b) and (c)
above?
What does Stokes theorem

∫
Ω dα =

∮
∂Ω α say about

each of these relations?
(ii) Verify the following contraction formulas for X =

X · ∇,
(a) X v · dx = X · v ,
(b) X ω · dS = ω ×X · dx ,
(c) X f d 3x = fX · dS.

(iii) Verify the exterior derivatives of these contraction
formulas for X = X · ∇,
(a) d(X v · dx) = d(X · v) = ∇(X · v) · dx ,
(b) d(X ω·dS) = d(ω×X·dx) = curl (ω×X)·dS ,
(c) d(X f d 3x) = d(fX · dS) = div (fX) d 3x .

(iv) Verify the following Lie derivative formulas,
(a) £Xf = X df = X · ∇f ,
(b) £X (v · dx) =

(
− X× curl v +∇(X · v)

)
· dx ,

(c) £X(ω · dS) =
(
curl (ω ×X) + X divω

)
· dS

=
(
−ω·∇X+X·∇ω+ω div X

)
·dS ,

(c’) (∗£X ∗ ω[)] = [X,ω] + (div X)ω,
with ω[ := ω · dx and ∗ω[ := ω · dS,

(d) £X(f d 3x) = (div fX) d 3x.

(v) Verify the following Lie derivative identities by us-
ing Cartan’s formula,

£Xα = X dα+ d(X α) ,



374 APPENDIX A. ENHANCED COURSEWORK

for a k-form α, k = 0, 1, 2, 3 in R3,

(a) £fXα = f£Xα+ df ∧ (X α) ,
(b) £Xdα = d

(
£Xα

)
,

(c) £X(X α) = X £Xα ,

(d) £X(α ∧ β) = (£Xα) ∧ β + α ∧£Xβ .

2 Operations among vector fields
The Lie derivative of one vector field by another is
called the Jacobi-Lie bracket, defined as

£XY := [X , Y ] := ∇Y ·X −∇X · Y = −£YX .

In components, the Jacobi-Lie bracket is

[X , Y ] =
[
Xk ∂

∂xk
, Y l ∂

∂xl

]
=
(
Xk ∂Y

l

∂xk
− Y k ∂X

l

∂xk

)
∂

∂xl
.

The Jacobi-Lie bracket among vector fields satisfies
the Jacobi identity,

[X , [Y , Z] ] + [Y , [Z , X] ] + [Z , [X , Y ] ] = 0 .

Verify the following formulas:

(a) X (Y α) = −Y (X α) ,
(b) [X , Y ] α = £X(Y α)−Y (£Xα) , for zero-

forms (functions) and one-forms.
(c) £[X ,Y ]α = £X£Y α−£Y £Xα , as a result of (b).
(d) Verify the Jacobi identity for the action of Lie

derivatives with respect to vector fields X , Y ,
Z, on a differential form α.

F
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Answer.
Problems 1(i)-1(iv) are verified easily from Cartan’s formula,

£Xα = X dα+ d(X α) ,

for α ∈ Λk . Problems 1.v(a)-(d) are answered as follows:

1 Lie derivative identities by using Cartan’s formula

1.v(a) By its linearity, contraction satisfies

d(fX α) = fd(X α) + df ∧ (X α) .

Hence, the Lie derivative satisfies,

£fXα = fX dα+ d(fX α)
= fX dα+ fd(X α) + df ∧ (X α)
= f£Xα+ df ∧ (X α) .

1.v(b) Cartan’s formula implies £Xdα = d
(
£Xα

)
by comparing the

definitions:

£Xdα = X d2α+ d(X dα) ,
d
(
£Xα

)
= d(X dα) + d2(X α) .

By d2 = 0, these both equal d(X dα) and the result follows.

1.v(c) One also proves £X(X α) = X £Xα by comparing the
definitions:

£X(X α) = X d(X α) + d(X (X α)) ,
X £Xα = X d(X α) +X (X dα) .

By X (X α) = 0, these both equal X d(X α) and the
result follows.

1.v(d) £X(α ∧ β) = (£Xα) ∧ β + α ∧£Xβ

This important identity follows immediately from the product
rule for the dynamical definition of the Lie derivative in (3.4.1)

£Xα =
d

dt

∣∣∣∣
t=0

(φ∗tα) ,
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and the formula (3.3.7) for the action of the pull-back on the
wedge product of differential forms, rewritten here as

φ∗t (α ∧ β) = φ∗tα ∧ φ∗tβ .

The product rule for the Lie derivative also follows from Car-
tan’s formula, when the two defining properties for contrac-
tion

X (α ∧ β) = (X α) ∧ β + (−1)kα ∧ (X β) ,

and exterior derivative

d(α ∧ β) = (dα) ∧ β + (−1)kα ∧ dβ ,

are invoked. (The corresponding underlined terms cancel in
the computation below.)

£X(α ∧ β) = (X dα) ∧ β + [(−1)k+1dα ∧ (X β)]

+ [(−1)k(X α) ∧ dβ ] + (−1)2kα ∧ (X dβ)

+ d(X α) ∧ β + [(−1)k−1(X α) ∧ dβ ]

+ [(−1)kdα ∧ (X β)] + (−1)2kα ∧ d(X β)
= (X dα+ d(X α)) ∧ β

+ (−1)2kα ∧ (X dβ + d(X β))
= (£Xα) ∧ β + α ∧£Xβ .

2 Verifying the formulas for operations among vector fields

2(a) By direct substitution

X (Y α) = X lY mαmli3...ikdx
i3 ∧ · · · ∧ dxik

= −X lY mαlmi3...ikdx
i3 ∧ · · · ∧ dxik

= −Y (X α) ,

by antisymmetry of αmli3...ik in its first two indices.
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2(b) For zero-forms (functions) all terms in the formula vanish iden-
tically. The formula

[X , Y ] α = £X(Y α)− Y (£Xα) ,

is seen to hold for a one-form α = v · dx by comparing

[X , Y ] α = (XkY l
,k − Y kX l

,k)vl ,

with

£X(Y α)− Y (£Xα)
= Xk∂k(Y lvl)− Y l(Xkvl,k + vjX

j
,l) ,

to see that it holds in an explicit calculation.

(By a general theorem [AbMa1978], verification for zero-forms
and one-forms is sufficient to imply the result for all k-forms.
Notice that exercise 1.iv(c) is an example for 3-forms. Try writ-
ing the formula in vector notation for 2-forms!)

Remark A.7.1 In fact, the general form of the relation required
in part 2(b) follows immediately from the product rule for the
dynamical definition of the Lie derivative. By equation (3.3.10),
insertion of a vector field into a k-form transforms under the
flow φt of a smooth vector field Y as

φ∗t (Y (m) α) = Y (φt(m)) φ∗tα .

A direct computation using the dynamical definition of the Lie
derivative in (3.4.1)

£Xα =
d

dt

∣∣∣∣
t=0

(φ∗tα) ,

then yields

d

dt

∣∣∣
t=0

φ∗t
(
Y α

)
=

( d
dt

∣∣∣
t=0

Y (φt(m))
)

α

+ Y
( d
dt

∣∣∣
t=0

φ∗tα
)
.
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Hence, we recognise the desired formula in part 2(b) written as
a product rule:

£X(Y α) = (£XY ) α+ Y (£Xα) ,

which may also be written in an equivalent notation as

£X(Y (α)) = (£XY )(α) + Y (£Xα) .

For Lie derivative £u of a 2-form ω2 this is

£uω(v1, v2) = (£uω)(v1, v2) + ω(£uv1, v2) + ω(v1,£uv2) ,

and for a k-form,

£uω(v1, v2, . . . , vk) = (£uω)(v1, v2, . . . , vk)
+ ω(£uv1, v2, . . . , vk) + . . .

+ ω(v1, v2, . . . ,£uvk) .

2(c) Given [X , Y ] α = £X(Y α)−Y (£Xα) as verified in part
2(b) we use Cartan’s formula to compute

£[X ,Y ]α = d([X , Y ] α) + [X , Y ] dα

= d
(
£X(Y α)− Y (£Xα)

)
+ £X(Y dα)− Y (£Xdα)

= £Xd(Y α)− d(Y (£Xα)
+ £X(Y dα)− Y d(£Xα)

= £X(£Y α)−£Y (£Xα) ,

as required. Thus, the product rule for Lie derivative of a con-
traction obtained in answering problem 2(b) provides the key
to solving 2(c).
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Consequently,

£[Z , [X ,Y ] ]α = £Z£X£Y α−£Z£Y £Xα

− £X£Y £Zα+ £Y £X£Zα ,

and summing over cyclic permutations immediately verifies
that

£[Z , [X ,Y ] ] α + £[X , [Y , Z] ] α + £[Y , [Z ,X] ] α = 0 .

This is the Jacobi identity for the Lie derivative.

N
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Appendix B

Exercises for review and
further study

B.1 The reduced Kepler problem: Newton [1686]

Newton’s equation [Ne1686] for the reduced Kepler problem of plan-
etary motion is

r̈ +
µr
r3

= 0 , (B.1.1)

in which µ is a constant and r = |r|with r ∈ R3.

Scale invariance of this equation under the changes R → s2R
and T → s3 T in the units of space R and time T for any constant
(s) means that it admits families of solutions whose space and time
scales are related by T 2/R3 = const. This is Kepler’s Third Law.

1. Show that Newton’s equation (B.1.1) conserves the quantities,

E =
1
2
|ṙ|2 − µ

r
(energy) ,

L = r× ṙ (specific angular momentum) .

Since, r · L = 0, the planetary motion in R3 takes place in a
plane to which vector L is perpendicular. This is the orbital
plane.

381
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2. The unit vectors for polar coordinates in the orbital plane are
r̂ and θ̂. Show that these vectors satisfy

dr̂
dt

= θ̇ θ̂ and
dθ̂

dt
= − θ̇ r̂ , where θ̇ =

L

r2
.

Show that Newton’s equation (B.1.1) also conserves the fol-
lowing two vector quantities,

K = ṙ− µ

L
θ̂ (Hamilton’s vector),

J = ṙ× L− µr/r (Laplace-Runge-Lenz vector) ,

which both lie in the orbital plane, since J·L = 0 = K·L. Hint:
How are these two vectors related? Their constancy means
that certain attributes of the orbit, particularly, its orientation,
are fixed in the orbital plane.

3. From their definitions, show that these conserved quantities
are related by

L2 +
J2

(−2E)
=

µ2

(−2E)
(B.1.2)

and J ·K× L = K2L2 = J2 ,

where J2 := |J|2, etc. and −2E > 0 for bounded orbits.

4. Orient the conserved Laplace-Runge-Lenz vector vector J in
the orbital plane to point along the reference line for the mea-
surement of the polar angle θ, say from the center of the or-
bit (Sun) to the perihelion (point of nearest approach, at mid-
summer’s day), so that

r · J = rJ cos θ = r · (ṙ× L− µ r/r) .

Use this relation to write the Kepler orbit r(θ) in plane polar
coordinates, as

r(θ) =
L2

µ+ J cos θ
=

l⊥
1 + e cos θ

, (B.1.3)
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with eccentricity e = J/µ and semi latus rectum l⊥ = L2/µ.
The expression r(θ) for the Kepler orbit is the formula for a
conic section. This is Kepler’s First Law. How is the value of
the eccentricity associated to the types of orbits?

5. Use conservation of L to show that constancy of magnitude
L = |L|means the orbit sweeps out equal areas in equal times.
This is Kepler’s Second Law. For an elliptical orbit, write the
period in terms of angular momentum and the area.

6. Use the result of Part 5 and the geometric properties of ellipses
to show that the period of the orbit is given by(

T

2π

)2

=
a3

µ
=

µ2

(−2E)3

The relation T 2/a3 = constant is Kepler’s Third Law. The
constant is Newton’s constant.

7. Write the Kepler motion equation (B.1.1) in Hamiltonian form

q̇ =
∂H

∂p
, ṗ = − ∂H

∂q
.

Identify the position q and its canonical momentum p in terms
of r and ṙ. Write the Hamiltonian H(q,p) explicitly.

8. Fill in a table of canonical Poisson brackets{
F, H

}
:=

∂F

∂q
· ∂H
∂p
− ∂F

∂p
· ∂H
∂q

, (B.1.4)

among the variables in the set {qk, pk, |q|2, |p|2, q · p}.

9. Write the Poisson brackets among the set of quadratic combi-
nations

X1 = |q|2 ≥ 0 , X2 = |p|2 ≥ 0 , X3 = p · q , (B.1.5)

as an R3-bracket and identify its Casimir function.



384 APPENDIX B. FURTHER STUDY

10. Three fundamental conserved phase-space variables in the Ke-
pler problem are its Hamiltonian H , its angular momentum L
and its Laplace-Runge-Lenz (LRL) vector J. These are given
by

H = 1
2 |p|

2 − µ

|q|
,

L = q× p ,

J = p× (q× p)− µq/|q|
= − (q · p) p− 2H q .

What does preservation of the LRL vector J and angular mo-
mentum vector L imply about the shape and orientation of a
given planar orbit?

11. Check whether the Poisson brackets amongst the components
of the vectors L and J satisfy the following relations:

{Li, Lj} = εijkLk ,

{Li, Jj} = εijkJk ,

{Ji, Jj} = − 2HεijkLk .

(Note the sign of last term: −2H > 0 for bounded orbits.)
Importantly, this means that

{Ji, J2} = − 4HεijkJjLk = − 4H(J× L)i = − 2H{L2, Ji} .

The conservation laws {L2, H} = 0 and {Ji, H} = 0 allow
the use of formula (B.1.2) to check consistency of the previous
Poisson bracket relations, since that formula implies{

Ji,
(
J2 − 2H L2

)}
=
{
Ji, µ

2
}

= 0 .

Upon referring to the relationships between the orbital param-
eters and the conservation laws derived in (B.1.3), explain how
the canonical transformations generated by J affect the (i) en-
ergy, (ii) eccentricity and (iii) width of the orbit.
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12. Suppose Newton had postulated the Yukawa potential with
length scale α > 0

V (r) = −µe
−r/α

r

as the potential energy for planetary motion. Which of Ke-
pler’s Laws would have survived? Write the evolution equa-
tion for the LRL vector for Newtonian dynamics with a Yukawa
potential.

B.2 Hamiltonian reduction by stages

1. For two R3 vectors M and N, write Hamilton’s equations us-
ing the Poisson brackets among the components,

{Mi, Mj} = εijkMk , {Ni, Nj } = εijkNk , {Mi, Nj} = 0 ,

2. Compute the equations of motion and identify the function-
ally independent conserved quantities for the following two
Hamiltonians

H1 = ẑ · (M×N) and H2 = M ·N . (B.2.1)

3. Determine whether these Hamiltonians have sufficiently many
symmetries and associated conservation laws to be completely
integrable (i.e., reducible to Hamilton’s canonical equations
for a single degree of freedom) and explain why.

4. Transform the Hamiltonians in (B.2.1) from Cartesian compo-
nents of the vectors (M,N) ∈ R3 × R3 into spherical coordi-
nates (θ, φ) ∈ S2 and (θ̄, φ̄) ∈ S2, respectively.

5. Use the S1 symmetries of the Hamiltonians H1, H2 and their
associated conservation laws to reduce the dynamics of (M, N)
in R3×R3 to canonical Hamiltonian equations. First reduce to
S2 × S2 and then to S2 by a two-stage sequence of canonical
transformations.
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B.3 R3 bracket for the spherical pendulum

1. Identify the degrees of freedom for the spherical pendulum in
TR3 and show that the constraint of constant length reduces
the number of degrees of fredom from three to two by sending
TR3 → TS2.

2. Formulate the constrained Lagrangian in TR3 and show that
its symmetry under rotations about the vertical axis implies a
conservation law for angular momentum via Noether’s theo-
rem.

3. Derive the motion equations on TR3 from Hamilton’s princi-
ple. Note that these equations preserve the defining condi-
tions for

TS2 : {(x, ẋ) ∈ TR3
∣∣ ‖x‖2 = 1 and x · ẋ = 0} .

That is, TS2 is an invariant manifold of the equations in R3.
Conclude that the constraints for remaining on TS2 may be
regarded as dynamically preserved initial conditions for the
spherical pendulum equations in TR3.

4. Legendre transform the Lagrangian defined on TR3 to find a
constrained Hamiltonian (Routhian) with variables (x,y) ∈
T ∗R3 whose dynamics preserves TS2.

5. There are six independent linear and quadratic variables in
T ∗R3/S1

σ1 = x3 σ3 = y2
1 + y2

2 + y2
3 σ5 = x1y1 + x2y2

σ2 = y3 σ4 = x2
1 + x2

2 σ6 = x1y2 − x2y1

These are not independent. They satisfy a cubic algebraic rela-
tion. Find this relation and write the TS2 constraints in terms
of the S1 invariants.

6. Write closed Poisson brackets among the six independent lin-
ear and quadratic S1-invariant variables

σk ∈ T ∗R3/S1, k = 1, 2, . . . , 6.
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7. Show that the two quantities

σ3(1− σ2
1)− σ2

2 − σ2
6 = 0 and σ6

are Casimirs for the Poisson brackets on T ∗R3/S1.

8. Use the orbit map TR3 → R6

π : (x,y)→ {σj(x,y), j = 1, . . . , 6} (B.3.1)

to transform the energy Hamiltonian to S1-invariant variables.

9. Find the reduction T ∗R3/S1 ∩ TS2 → R3. Show that the mo-
tion follows the intersections of level surfaces of angular mo-
mentum and energy in R3. Compute the associated Nambu
bracket in R3 and use it to characterise the types of motion
available in the motion of this system.

10. Write the Hamiltonian, Poisson bracket and equations of mo-
tion in terms of the variables σk ∈ T ∗R3/S1, k = 1, 2, . . . , 3.

11. Interpret the solutions geometrically as intersections of Hamil-
tonian level sets (planes in R3) with a family of cup-shaped
surfaces (Casimirs of the R3 bracket depending on angular
momentum) whose limiting surface at zero angular momen-
tum is a pinched cup.

12. Show that this geometrical interpretation implies that the two
equilibria along the vertical axis at the North and South poles
have the expected opposite stability. Explain why this was to
be expected.

13. Show that the unstable vertical equilibrium at the North pole
is connected to itself by homoclinic orbits.

14. Show that all other orbits are periodic.

15. Reduce the dynamics on a family of planes representing level
sets of the Hamiltonian to single particle motion in a phase
plane and compute the behaviour of its solutions. Identify its
critical points and their stability.
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16. See [CuBa1997] for further analysis of this problem, includ-
ing a study of its monodromy by using the energy-momentum
map.

B.4 Maxwell-Bloch equations

The real-valued Maxwell-Bloch system for x = (x1, x2, x3)T ∈ R3 is
given by

ẋ1 = x2 , ẋ2 = x1x3 , ẋ3 = −x1x2 .

1. Write this system in three-dimensional vector R3-bracket no-
tation as

ẋ = ∇H1 ×∇H2 ,

where H1 and H2 are two conserved functions, one of whose
level sets (let it be H1) may be taken as circular cylinders ori-
ented along the x1-direction and the other (let it be H2) whose
level sets may be taken as parabolic cylinders oriented along
the x2-direction.

2. Restrict the equations and their R3 Poisson bracket to a level
set of H2. Show that the Poisson bracket on the circular cylin-
der H2 = const is symplectic.

3. Derive the equation of motion on a level set of H2 and express
them in the form of Newton’s Law. Do they reduce to some-
thing familiar?

4. Identify steady solutions and determine which are unstable
(saddle points) and which are stable (centers).

5. Determine the geometric and dynamic phases of a closed orbit
on a level set of H2.

B.5 Modulation equations

The real 3-wave modulation equations on R3 are

Ẋ1 = X2X3 , Ẋ2 = X3X1 , Ẋ3 = −X1X2 .
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1. Write these equations using an R3 bracket of the form,

Ẋ = ∇C ×∇H ,

where level sets of C and H are each circular cylinders.

2. Characterise the equilibrium points geometrically in terms of
the gradients of C and H . How many are there? Which are
stable?

3. Choose cylindrical polar coordinates along the axis of the cir-
cular cylinder that represents the level set of C and restrict the
R3 Poisson bracket to that level set. Show that the Poisson
bracket on the parabolic cylinder C is symplectic.

4. Write the equations of motion on that level set. Do they reduce
to something familiar?

5. Determine the geometric and dynamic phases of a closed orbit
on a level set of C.

B.6 The Hopf map

In coordinates (a1, a2) ∈ C2, the Hopf map C2/S1 → S3 → S2 is ob-
tained by transforming to the four quadratic S1-invariant quantities

(a1, a2)→ Qjk = aja
∗
k , with j, k = 1, 2 .

Let the C2 coordinates be expressed as

aj = qj + ipj

in terms of canonically conjugate variables satisfying the fundamen-
tal Poisson brackets

{qk, pm} = δkm with k,m = 1, 2.

1. Compute the Poisson brackets {aj , a∗k} for j, k = 1, 2.
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2. Is the transformation (q, p) → (a, a∗) canonical? Explain why,
or why not.

3. Compute the Poisson brackets among theQjk, with j, k = 1, 2.

4. Make the linear change of variables,

X0 = Q11 +Q22 , X1 + iX2 = Q12 , X3 = Q11 −Q22 .

Compute the Poisson brackets among the (X0, X1, X2, X3).

5. Express the Poisson bracket {F (X), H(X)} in vector form among
functions F and H of X = (X1, X2, X3)

6. Show that the quadratic invariants (X0, X1, X2, X3) themselves
satisfy a quadratic relation. How is this relevant to the Hopf
map?

B.7 2:1 resonant oscillators

The Hamiltonian C2 → R for a certain 2 : 1 resonance is given by

H = 1
2 |a1|2 − |a2|2 + 1

2 Im(a∗1
2a2) ,

in terms of canonical variables (a1, a
∗
1, a2, a

∗
2) ∈ C2 whose Poisson

bracket relation is

{aj , a∗k} = −2iδjk, for j, k = 1, 2.

is invariant under the 2 : 1 resonance S1 transformation

a1 → eiφ and a2 → e2iφ.

1. Write the motion equations in terms of the canonical variables
(a1, a

∗
1, a2, a

∗
2) ∈ C2

2. Introduce the orbit map C2 → R4

π : (a1, a
∗
1, a2, a

∗
2)→ {X,Y, Z,R)} (B.7.1)
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and transform the HamiltonianH on C2 to new variablesX,Y, Z,R ∈
R4 given by

R = 1
2 |a1|2 + |a2|2 ,

Z = 1
2 |a1|2 − |a2|2 ,

X + iY = 2a∗1
2a2 ,

that are invariant under the 2 : 1 resonance S1 transformation.

3. Show that these variables are functionally dependent, because
they satisfy a cubic algebraic relation C(X,Y, Z,R) = 0.

4. Use the orbit map π : C2 → R4 to make a table of Pois-
son brackets among the four quadratic 2 : 1 resonance S1-
invariant variables X,Y, Z,R ∈ R4.

5. Show that bothR and the cubic algebraic relationC(X,Y, Z,R) =
0 are Casimirs for these Poisson brackets.

6. Write the Hamiltonian, Poisson bracket and equations of mo-
tion in terms of the remaining variables X = (X,Y, Z)T ∈ R3.

7. Describe this motion in terms of level sets of the Hamilto-
nian H and the orbit manifold for the 2:1 resonance, given by
C(X,Y, Z,R) = 0.

8. Restrict the dynamics to a level set of the Hamiltonian and
show that it reduces there to the equation of motion for a point
particle in a cubic potential. Explain its geometrical meaning.

9. Compute the geometric and dynamic phases for any closed
orbit on a level set of H .

B.8 A steady Euler fluid flow

A steady Euler fluid flow in a rotating frame satisfies

£u(v · dx) = − d(p+ 1
2 |u|

2 − u · v) ,
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where £u is Lie derivative with respect to the divergenceless vector
field u = u · ∇, with ∇ · u = 0, and v = u + R, with Coriolis
parameter curlR = 2Ω.

1. Write out this Lie-derivative relation in Cartesian coordinates.

2. By taking the exterior derivative, show that this relation im-
plies that the exact two-form

curlv d 3x = curlv·∇ d 3x = curlv·dS = d(v·dx) =: dΞ∧dΠ

is left invariant under the flow of the divergenceless vector
field u, where we have used Darboux’s theorem to introduce
smooth potentials Ξ and Π to parameterise the exact 2-form.

3. Show that Cartan’s formula for the Lie derivative in the steady
Euler flow condition implies that

u
(

curlv d 3x
)

= dH(Ξ,Π)

and identify the function H .

4. Use the result of (3) to write £uΞ = u · ∇Ξ and £uΠ = u · ∇Ξ
in terms of the partial derivatives of H .

5. What do the results of (4) mean geometrically? Hint: Is a sym-
plectic form involved?

B.9 Dynamics of vorticity gradient

1. Write Euler’s fluid equations in R3

∂tu + u · ∇u = −∇p , div u = 0 , (B.9.1)

in geometric form using the Lie derivative of the circulation
1-form.

2. State and prove Kelvin’s circulation theorem for Euler’s fluid
equations in geometric form.
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3. The vorticity of the Euler fluid velocity u = (u, v, w) ∈ R3 is
given by ω := curl u. Write the Euler fluid equation for vor-
ticity by taking the exterior derivative of the geometric form
in part 1 above.

4. For Euler fluid motion restricted to the (x, y) plane with nor-
mal unit vector ẑ, the vorticity equation forω = ωẑ with scalar
vorticity ω(x, y, t) simplifies to

∂tω + u · ∇ω = 0 with u = (u, v, 0).

Using this scalar vorticity dynamics, compute the equation for(
∂

∂t
+ £u

)
(dz ∧ dω)

and express it as a 2D vector equation for the quantity

B := ẑ×∇ω ∈ R2.

5. How is B related to u? Compare the result of part 4 for the
dynamics of B with the dynamical equation for the vorticity
vector in part 3 and the defining equation for the flow velocity
in terms of the stream function.

B.10 The C. Neumann problem [1859]

For the origin of this problem see [Ne1859] and for some recent
progress on it, see [De1978, Ra1981].

1. Derive the equations of motion

ẍ = −Ax + (Ax · x− ‖ẋ‖2)x

of a particle of unit mass moving on the sphere Sn−1 under
the influence of a quadratic potential

V (x) = 1
2Ax · x = 1

2a1x
2
1 + 1

2a2x
2
2 + · · ·+ 1

2anx
2
n ,
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for x ∈ Rn, where A = diag(a1, a2, . . . , an) is a fixed n × n di-
agonal matrix. Here V (x) is a harmonic oscillator with spring
constants that are taken to be fully anisotropic, with a1 < a2 <
· · · < an.

Hint: These are the Euler-Lagrange equations obtained when
a Lagrange multiplier µ is used to restrict the motion to a
sphere by adding a term,

L(x, ẋ) = 1
2‖ẋ‖

2 − 1
2Ax · x− µ(1− ‖x‖2) , (B.10.1)

on the tangent bundle

TSn−1 = {(x, ẋ) ∈ Rn × Rn| ‖x‖2 = 1, x · ẋ = 0}.

2. Form the matrices

Q = (xixj) and L = (xiẋj − xj ẋi) ,

and show that the Euler-Lagrange equations for the Lagrangian
in (B.10.1) are equivalent to

Q̇ = [L,Q] and L̇ = [Q,A] .

Show further that for a constant parameter λ these Euler-Lagrange
equations imply

d

dt
(−Q+ Lλ+Aλ2) = [−Q+ Lλ+Aλ2,−L−Aλ] .

Explain why this formula is important from the viewpoint of
conservation laws.

3. Verify that the energy

E(Q,L) = − 1
4

trace(L2) +
1
2

trace(AQ)

is conserved for this system.
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4. Prove that the following (n−1) quantities for j = 1, 2, . . . , n−1
are also conserved

Φj = ẋ2
j +

1
2

∑
i 6=j

(xiẋj − xj ẋi)2

aj − ai
,

where (x, ẋ) = (x1, x2, . . . , xn, ẋ1, ẋ2, . . . , ẋn) ∈ TSn−1 and the
aj are the eigenvalues of the diagonal matrix A.
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for the diffeomorphism group. In The Breadth of Sym-
plectic and Poisson Geometry, A Festshrift for Alan We-
instein, pp. 203-235, Progr. Math., 232, J.E. Marsden
and T.S. Ratiu, Editors, Birkhäuser Boston, Boston, MA.
http://arxiv.org/abs/nlin.CD/0312048

[HoMaRa1998a] Holm, D. D., Marsden, J. E. and Ratiu, T. S. [1998a]
The Euler-Poincaré equations and semidirect products with
applications to continuum theories. Adv. in Math. 137, 1-81.



406 BIBLIOGRAPHY

[HoMaRa1998b] Holm, D. D. Marsden, J. E. and Ratiu, T. S. [1998b]
Euler-Poincaré models of ideal fluids with nonlinear disper-
sion. Phys. Rev. Lett. 80, 4173-4177.

[HoMaRa2002] Holm, D. D. Marsden, J. E. and Ratiu, T. S. [2002]
The Euler-Poincaré equations in geophysical fluid dynamics.
In Large-Scale Atmosphere-Ocean Dynamics 2: Geometric Meth-
ods and Models. Edited by J. Norbury and I. Roulstone, Cam-
bridge University Press: Cambridge, pp. 251-299.

[HoRaTrYo2004] Holm, D. D., Rananather, J. T., Trouvé,
A. and Younes, L. [2004] Soliton dynamics in com-
putational anatomy. NeuroImage 23, S170-178 (2004).
http://arxiv.org/abs/nlin.SI/0411014

[HoMaRaWe1985] Holm, D. D., Marsden, J. E., Ratiu, T. S. and
Weinstein, A. [1985] Nonlinear stability of fluid and plasma
equilibria. Physics Reports 123 1-116.

[HoSt2002] Holm, D. D. and Staley, M. F. [2002] Wave Structures
and Nonlinear Balances in a Family of 1+1 Evolutionary
PDEs. http://arxiv.org/abs/nlin.CD/0202059.

[HoWo1991] Holm, D. D. and Wolf, K. B. [1991] Lie-Poisson de-
scription of Hamiltonian ray optics. Physica D 51, 189-199.

[Ho1931] Hopf, H. [1931] Über die Abbildungen der dreidimen-
sionalen Sphäre auf die Kugelfläche. Mathematische Annalen
104, 637-665.

[HoHa1994] Horton, W. and Hasegawa, A. [1994] Quasi-two-
dimensional dynamics of plasmas and fluids. Chaos 4, 227-
251.

[HuZh1994] Hunter, J. K. and Zheng, Y. [1994] On a completely in-
tegrable nonlinear hyperbolic variational equation. Physica
D 79, 361-386.

[Is1999] Isham, C. J. [1999] Differential Geometry for Physicists. World
Scientific Lecture Notes in Physics 61.



BIBLIOGRAPHY 407

[JoSa98] José, J. V. and Saletan, E. J. [1998] Classical Dynamics : A
Contemporary Approach. Cambridge University Press.

[Jo1998] Jost, J. [1998] Riemannian Geometry and Geometric Analysis.
University Text. Springer-Verlag, second edition.

[KaKoSt1978] Kazhdan, D., Kostant, B., and Sternberg, S. [1978]
Hamiltonian group actions and dynamical systems of
Calogero type, Comm. Pure Appl. Math. 31, 481–508.

[Ke1962] Keller, J. B. [1962] Geometrical theory of diffraction, J. Op-
tical Soc. America 52, 116–130.

[Ke1869] Kelvin, L., [1869] On vortex motion. Trans. Roy. Soc. Edin.
25, 217-260; Maximum and minimum energy in vortex mo-
tion. Mathematical and Physical Papers, vol. 4, Cambridge
Univ. Press, 172-183.

[KhMis03] Khesin, B. and Misiolek, G. [2003] Euler equations on
homogeneous spaces and Virasoro orbits, Adv. in Math. 176,
116-144.

[Ki1979] Kibble, T. [1979] Geometrization of quantum mechanics,
Comm. Math. Phys. 65, 189-201.

[KnHj2001] Knudsen, J. M. and Hjorth, P. G. [2001] Elements of New-
tonian Mechanics: Including Nonlinear Dynamics. Springer-
Verlag, New York, third edition, second printing.

[Ko1984] Koiller, J. [1984] A mechanical system with a “wild”
horseshoe. J. Math. Phys. 25, 1599-1604.

[Ko1966] Kostant, B. [1966] Orbits, symplectic structures and repre-
sentation theory. Proc. US-Japan Seminar on Diff. Geom., Kyoto.
Nippon Hyronsha, Tokyo 77.

[KrSc2001] Kruse, H. P., Schreule, J. and Du, W. [2001] A two-
dimensional version of the CH equation. In Symmetry and
Perturbation Theory: SPT 2001 Edited by D. Bambusi, G.
Gaeta and M. Cadoni. World Scientific: New York, pp 120-
127.



408 BIBLIOGRAPHY

[Ku1999] Kuipers, J. B. [1999] Quaternions and Rotation Sequences: a
Primer with Applications to Orbits, Aerospace and Virtual Real-
ity. Princeton University Press.

[Ku1976] Kummer, M. [1976] On resonant nonlinearly coupled os-
cillators with two equal frequencies. Commun. Math. Phys. 48,
53-79 (1976).

[Ku1978] Kummer, M. [1978] On resonant classical Hamiltonians
with two equal frequencies. Commun. Math. Phys. 58, 85-112.

[Ku1981] Kummer, M. [1981] On the construction of the reduced
phase space of a Hamiltonian system with symmetry. Indiana
Univ. Math. J. 30, 281-291.

[Ku1986] Kummer, M. [1986] in Local and Global Methods in Nonlin-
ear Dynamics, Lecture Notes in Physics Vol. 252, edited by A.
V. Sáenz, Springer-Verlag, New York, pp. 19-31.

[La1999] Lang, S. [1999] Fundamentals of Differential Geometry. Vol-
ume 191 of Graduate Texts in Mathematics. Springer-Verlag,
New York.

[Le2003] Lee, J. [2003] Introduction to Smooth Manifolds, Springer-
Verlag.

[LiMa1987] Libermann, P. and Marle, C.-M. [1987] Symplectic Geom-
etry and Analytical Mechanics. Reidel.

[Lie1890] Lie, S. [1890] Theorie der Transformationsgruppen. Zweiter
Abschnitt. Teubner.

[LoGi1967] Longuet-Higgins, M. S. and Gill, A. E. [1967] Resonant
interactions between planetary waves. Proc. Roy. Soc. Edin-
burgh Sect. A. 299, 120-140.

[Lo1963] Lorenz, E. N. [1963] Deterministic non-periodic flow. J. At-
mospheric Sci. 20, 130-141.

[LuAlMaRo2000] Luther, G. G., Alber, M. S., Marsden, J. E. and
Robbins, J. M. [2000] Geometric analysis of optical frequency



BIBLIOGRAPHY 409

conversion and its control in quadratic nonlinear media, J.
Opt. Soc. Amer. B Opt. Phys. 17, 932-941.

[Ly2002a] Lynch, P. [2002] Resonant motions of the three-
dimensional elastic pendulum, Internat. J. Non-Linear Mech.
37, 345-367.

[Ly2002b] Lynch, P. [2002] The swinging spring: A simple model
for atmospheric balance, in Large-Scale Atmosphere-Ocean Dy-
namics: Vol II: Geometric Methods and Models, Cambridge Uni-
versity Press, Cambridge, UK, pp. 64-108.

[Mac1970] Mac Lane, S. [1970] Hamiltonian mechanics and geome-
try, American Mathematical Monthly, 77, 570-586.

[Man1976] Manakov, S. V. [1976] Note on the integration of Euler’s
equations of the dynamics of and n-dimensional rigid body.
Funct. Anal. and its Appl. 10, 328–329.

[Mar1976] Marle, C.-M. [1976] Symplectic manifolds, dynamical
groups, and Hamiltonian mechanics, in Differential Geome-
try and Relativity, Cahen, M. and Flato, M. eds., D. Reidel,
Boston, 249–269.

[Ma1981] Marsden, J. E. [1981] Lectures on Geometric Methods in
Mathematical Physics. Volume 37, SIAM, Philadelphia.

[Ma1992] Marsden, J. E. [1992] Lectures on Mechanics. Volume 174 of
London Mathematical Society Lecture Note Series. Cambridge
University Press.

[MaHu1983] Marsden, J. E. and Hughes, T. J. R. [1983] Mathematical
Foundations of Elasticity. Prentice Hall. Reprinted by Dover
Publications, NY, 1994.

[MaMiOrPeRa2007] Marsden, J. E., Misiolek, G., Ortega, J.-P., Perl-
mutter, M., and Ratiu, T. S. [2007] Hamiltonian Reduction by
Stages. Lecture Notes in Mathematics, 1913. Springer-Verlag.

[MaMoRa1991] Marsden, J. E., Montgomery, R., and Ratiu, T. S.
[1991] Reduction, symmetry, and phases in mechanics. Mem-
oirs Amer. Math. Soc. 88, (436) 1–110.



410 BIBLIOGRAPHY

[MaRa1994] Marsden, J. E. and Ratiu, T. S. [1994] Introduction to Me-
chanics and Symmetry. Volume 75 of Texts in Applied Math-
ematics, second printing of second edition 2003. Springer-
Verlag.

[MaRa95] Marsden, J. E. and Ratiu, T. S. [2003] Geometric Fluid Dy-
namics. Unpublished notes.

[MaRa03] Marsden, J. E. and Ratiu, T. S. [2003] Mechanics and Sym-
metry. Reduction Theory. In preparation.

[MaRaWe84a] Marsden, J. E., Ratiu, T. S., and Weinstein, A. [1984a]
Semidirect products and reduction in mechanics. Trans.
Amer. Math. Soc. 281, (1) 147–177.

[MaRaWe84b] Marsden, J. E., Ratiu, T. S., and Weinstein, A. [1984b]
Reduction and Hamiltonian structures on duals of semidi-
rect product Lie algebras. Contemporary Math., 28, 55–100.

[MaWe74] Marsden, J. E. and Weinstein, A. [1974] Reduction of
symplectic manifolds with symmetry. Rep. Math. Phys. 5,
121–130.

[MaWe83] Marsden, J. E. and Weinstein, A. [1983] Coadjoint or-
bits, vortices and Clebsch variables for incompressible flu-
ids, Physica D, 7, 305–323.

[MaWil989] Mawhin, J. and Willem, M. [1989] Critical Point Theory
and Hamiltonin Systems. Volume 74 of Applied Mathematical
Sciences. Springer-Verlag, second edition.

[McSa1995] McDuff, D. and Salamon, D. [1995] Introduction to Sym-
plectic Topology. Clarendon Press.

[MeDe1993] Melbourne, I. and Dellnitz, M. [1993] Normal forms
for linear Hamiltonian vector fields commuting with the ac-
tion of a compact Lie group. Proc. Camb. Phil. Soc. 114, 235–
268.

[Mi1963] Milnor, J. [1963] Morse Theory. Princeton University Press.



BIBLIOGRAPHY 411

[MiFo1978] Mishchenko, A. S. and Fomenko, A. T. [1978] Euler
equations on finite dimensional Lie groups. Izv. Acad. Nauk
SSSR, Ser. Matem. 42, (2) 396-415 (Russian); English transla-
tion: Math. USSR-Izv. 12, (2) 371-389.

[Mi2002] Misiolek, G. [2002] Classical solutions of the periodic
Camassa-Holm equation. Geom. Funct. Anal., 12, 1080–1104.

[Mo1969] Moffatt, H. K. [1969] The degree of knottedness of tan-
gled vortex lines. J. Fluid. Mech. 106, 117-129.

[Mo1981] Moffatt, H. K. [1981] Some developments in the theory of
turbulence. J. Fluid Mech. 106, 27-47.

[Mo1985] Moffatt, H. K. [1985] Magnetostatic equilibria and anal-
ogous Euler flows of arbitrarily complex topology, Part 1. J.
Fluid Mech. 159, 359-378; Part 2 [1986] J. Fluid Mech. 166, 359-
378.

[MoTs1992] Moffatt, H. K. and Tsinober, A. [1992] Helicity in lami-
nar and turbulent flow. Ann. Rev. Fluid Mech. 24, 281-312.

[Mo1991] Montgomery, R. [1991] How much does the rigid body
rotate? A Berry’s phase from the 18th Century, Am. J. Phys.
59, 394-398.

[Na1973] Nambu, Y. [1973] Generalized Hamiltonian mechanics,
Phys. Rev. D 7, 2405-2412.

[Ne1859] Neumann, C. [1859] De problemate quodam mechanica,
quod ad primam integralium ultra-ellipticorum classem re-
vocatur, J. Reine Angew. Math. bf 56, 54-66.

[Ne1686] Newton, I. [1686] Principia Mathematica Philosophiae Natu-
ralis. Reprinted by University of California Press, Berkeley,
California, 1934.

[No1918] Noether, E. [1918] Nachrichten Gesell. Wissenschaft. Göt-
tingen 2, 235. See also C. H. Kimberling [1972] Am. Math.
Monthly 79, 136.



412 BIBLIOGRAPHY

[OcoRo1998] O’Connor, J. J. and Robertson, E. F., [1998] Sir William
Rowan Hamilton, http://www-groups.dcs.st-and.
ac.uk/~history/Mathematicians/Hamilton.html

[Ol2000] Olver, P. J. [2000] Applications of Lie Groups to Differential
Equations. Springer: New York.

[OrRa2004] Ortega, J.-P. and Ratiu, T. S. [2004] Momentum Maps and
Hamiltonian Reduction. Volume 222 of Progress in Mathematics.
Birkhäuser.

[Ot1993] Ott, E. [1993] Chaos in Dynamical Systems, Cambridge Uni-
versity Press, Cambridge, UK, p. 385.

[OKh87] Ovsienko, V. Y. and Khesin, B. A. [1987] Korteweg-de Vries
superequations as an Euler equation. Funct. Anal. Appl., 21,
329-331.

[Pa1968] Palais, R. [1968] Foundations of Global Non-Linear Analysis,
W. A. Benjamin, Inc., New York-Amsterdam.

[Po1892] Poincaré H. [1892] Theorie Mathematique de la Lumiere, (ed.)
George Carre, Paris, p. 275.

[Po1901] Poincaré, H. [1901] Sur une forme nouvelle des équations
de la méchanique C.R. Acad. Sci. 132, 369-371.

[Ra1980] Ratiu, T. [1980] The C. Neumann problem as a completely
integrable system on an adjoint orbit. Trans. Amer. Math. Soc.
264, 321-329.

[Ra1981] Ratiu, T. [1981] The motion of the free n-dimensional rigid
body. Indiana U. Math. J. 29, 609-627.

[RaTuSbSoTe2005] Ratiu, T. S., Tudoran, R., Sbano, L., Sousa Dias,
E., Terra, G. [2005] A crash course in geometric mechanics,
in Geometric Mechanics and Symmetry: The Peyresq Lectures,
edited by J. Montaldi and T. Ratiu, London Mathematical So-
ciety Lecture Notes Series 306, Cambridge University Press.

[Ru1959] Rund, H. [1959] The Differential Geometry of Finsler Spaces,
Springer-Verlag.



BIBLIOGRAPHY 413

[SaCa1981] Sarlet, W. and Cantrijn, F. [1981] Generalizations of
Noether’s theorem in classical mechanics. SIAM Review 23, 467-
494.

[Sc1987] Schmid, R. [1987] Infinite Dimensional Hamiltonian Systems.
Bibliopolis.

[Se1992] Serre, J.-P. [1992] Lie Algebras and Lie Groups, Volume 1500
of Lecture Notes in Mathematics. Springer-Verlag.

[ShWi1989] Shapere, A. and Wilcek, F. [1989] Geometric Phases in
Physics, World Scientific: Singapore.

[Sh1984] Shen, Y. R. [1984] The Principles of Nonlinear Optics, Wiley-
lnterscience, New York.

[Sh1998] Shkoller, S. [1998] Geometry and curvature of diffeomor-
phism groups with H1 metric and mean hydrodynamics J.
Funct. Anal. 160, 337-365.

[Sh2000] Shkoller, S. [2000] Analysis on groups of diffeomorphisms
of manifolds with boundary and the averaged motion of a
fluid J. Diff. Geom. 55, 145-191.

[Si1913] Silberstein, L. [1913] Vectorial Mechanics, MacMillan and
Co., Limited. London. 2nd ed. (1926).

[Sm1970] Smale, S. [1970] Topology and mechanics, Inv. Math. 10,
305-331; 11, 45-64.

[So1970] Souriau, J. M. [1970] Structure des Systèmes Dynamiques,
Dunod, Paris.

[Sp1982] Sparrow, C. [1982] The Lorenz Equations: Bifurcations, Chaos
and Strange Attractors, Springer-Verlag, New York, p. 269.

[Sp1979] Spivak, M. [1979] Differential Geometry, Volume I. New
printing with corrections. Publish or Perish, Inc. Houston,
Texas.

[St1852] Stokes, G. G. [1852] Trans. Camb. Phil. Soc. 9, 399.



414 BIBLIOGRAPHY

[Sy1937] Synge, J. L. [1937] Geometrical Optics: An Introduction to
Hamilton’s Method, Cambridge U. Press, London.
Ibid [1937] Hamilton’s method in geometrical optics, J. Opt.
Soc. Am. 27, 75-82. http://www.opticsinfobase.org/
abstract.cfm?URI=josa-27-2-75
Ibid [1960] Classical Dynamics, in Handbuch der Physik, edited
by S. Flügge Springer-Verlag, Berlin, Vol. III/1, p. 11.

[Ta1994] Takhtajan, L. [1994] On foundation of the generalized
Nambu mechanics. Commun. Math. Phys. 160, 295-315.

[Ur2003] Urbantke, H. K. [2003] The Hopf fibration - seven times in
physics. J. Geom. Phys. 46 125-150.

[Va1996] Vaisman, I. [1996] Lectures on the Geometry of Poisson Man-
ifolds. Volume 118 of Progress in Mathematics, Birkhäuser.

[ViGo1933] Vitt, A. and Gorelik, G. [1933] Kolebaniya uprugogo
mayatnika kak primer kolebaniy dvukh parametricheski
svyazannykh linejnykh sistem, Zh. Tekh. Fiz. (J. Tech. Phys.),
3, pp. 294Ð307. Available in English translation: Oscillations
of an Elastic Pendulum as an Example of the Oscillations of
Two Parametrically Coupled Linear Systems, Translated by
Lisa Shields with an Introduction by Peter Lynch, Historical
Note 3, Met Eireann, Dublin, 1999.

[Wa1983] Warner, F. W. [1983] Foundation of Differentiable Manifolds
and Lie Groups. Volume 94 of Graduate Texts in Mathematics,
Springer-Verlag.

[We1983] Weinstein, A. [1983a] Sophus Lie and symplectic geome-
try, Exposition Math. 1, 95-96.

[We1983b] Weinstein, A. [1983b] The local structure of Poisson
manifolds. Journ. Diff. Geom 18, 523–557.

[We2002] Weinstein, A. [2002] Geometry of momentum (preprint);
ArXiv:math/SG0208108 v1.



BIBLIOGRAPHY 415

[WeFiOt1980] Wersinger, J.-M., Finn, J. M. and Ott, E. [1980] Bifur-
cations and strange behavior in instability saturation by non-
linear mode coupling. Phys. Rev. Lett. 44, 453-456.

[Wh1974] Whitham, G. B. [1974] Linear and Nonlinear Waves, John
Wiley and Sons, New York.

[Wi1988] Wiggins, S. [1988] Global Bifurcations and Chaos – Analytical
Methods, Springer. Berlin.

[Wo2004] Wolf, K. B. [2004] Geometric Optics on Phase Space,
Springer. ISBN 3540220399.

[Wo1958] Woltjer, L. [1958] A theorem on force-free magnetic fields.
Proc. Nat. Acad. Sci. USA 44, 489-491.



Index

acceleration, 96
action-angle pair, 230
action-reaction, 99
advection, 211
angular momentum, 100, 105

body, 124
spatial, 124
closed system, 102
definition, 105

antisymmetric tensor symbol, 79
arc-length, 5, 12
averaged Lagrangian

elastic pendulum, 287
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choreography, 69, 267
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orbit manifold, 69
parameter, 273
phase portraits, 267
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density matrix, 236
body angular momentum, 124
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bundle
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properties, 135
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Casimir

definition, 60
Casimir function, 154
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path, 137

characteristic equations, 166
charged particle

Kaluza-Klein method, 335
magnetic field, 335
minimal coupling, 335

choreography
bifurcation sequences, 273

Christoffel coefficients, 89
Christoffel symbols, 120

Fermat’s principle, 121
Clebsch representation, 205
closed system, 98, 100
codifferential, 216
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dynamics, 240
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matrix, 54
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configuration space, 168
ray trajectory, 13
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contraction, 113, 169

through wedge product, 188
vector field and k-form, 186

contravariant, 114
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covariant, 114
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density matrix, 236
diagonal action
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differential, 178
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differential form
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co-closed, 218
co-exact, 218
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distinguished function
definition, 60

dual basis, 112, 180
duality relations, 169
Duffing equation, 267
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Maxwell-Bloch, 320

Duffing oscillator
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ray optics, 37
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Fermat’s principle, 3
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Ertel’s theorem, 212
Euler’s equations
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electromagnetic analogy, 223
Lamb surfaces, 203
steady solutions, 203
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Hodge-star form in R4, 224
Maxwell form, 222, 225
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elastic pendulum, 279
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on a manifold, 115
particle/magnetic field, 336
rigid body motion, 126, 144
spherical pendulum, 154, 333

exterior calculus
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exterior derivative, 192
product rule, 190

exterior product, 182

Faraday rotation, 265
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spherical pendulum, 161
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definition, 136

Hamilton’s
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Hamilton-Jacobi equation, 9, 174
Hamiltonian, 129
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orbit, 52
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optics, 32
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screen optics, 23
vector field, 27, 28, 44, 137,
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Hamiltonian vector field, 169
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Helmholtz vorticity equation, 200,
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Ibn Sahl-Snell law, 10, 11
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inertial frames, 97
integral curve, 111
interior product

vector field and k-form, 186
Iwasawa decomposition, 50

Jacobi identity, 26, 135
for vector fields, 78
Lie derivative, 379

Jacobi-Lie bracket, 202
Jacobian, 115, 179

Kaluza-Klein
construction, 337
Lagrangian, 337

Kelvin’s circulation theorem, 200
Kepler problem, 381
Kronecker delta, 113
Kummer shapes, 249

Lagrange
gyrostat, 267, 338
multiplier, 132

Lagrange’s invariant, 35
Lagrangian, 5, 116

averaged, 287
hyperregular, 20, 173
non-degenerate, 20, 130, 173
singular, 93, 130
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Lamb
surface, 203
vector, 199, 200, 203

Laplace-Beltrami operator, 216
Laplace-deRham operator, 217
Laplacian of a vector, 217
Legendre transformation, 23, 30,

129
Leibnitz, 26, 135
Lie algebra

definition, 54
structure constants, 55

Lie bracket, 54
Lie derivative, 194

Cartan formula, 194
dynamical meaning, 195
exercises, 197
Jacobi identity, 198
Jacobi-Lie bracket, 198
product rule

with contraction, 197
with wedge product, 198

Lie group
definition, 49, 136
orthogonal, 71
quasi-orthogonal, 72
special unitary, 229
symplectic, 50
unitary, 229

Lie symmetry reduction, xx
spherical pendulum, 156

Lie-Poisson bracket, 92, 140
Maxwell-Bloch system, 311
ray optics, 69
rigid body dynamics, 143

Lie-Poisson structures, 312
Liouville one-form, 173

manifold
definition, 106, 168
embedded, 168
submersion, 109
unit sphere, 109

Manley-Rowe invariants, 290, 309
MASER, 235
matrix commutator, 54
Maxwell’s equations

Hodge-star form, 226
Maxwell-Bloch equations, 388
Maxwell-Schrödinger

dimensionless equations, 306
envelope equations, 308

metric pairing, 96
minimal coupling

jay-dot-ay prescription, 335
modulation equations, 388
moment of inertia, 99, 105
moment of momentum, 39
momentum

canonical
for ray optics, 6
in axial ray optics, 20

momentum conservation, 99
momentum map, 39, 41, 67, 205,

238, 252
T ∗C2 7→ su(2)∗, 238
canonical symplectic form, 238
Clebsch, 205
cotangent lift, 39, 140
Poincaré sphere, 239
Poisson map, 66, 140
properties, 67
ray optics, 66
reduced space, 68
n:m resonance, 252
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motion, 96

Nambu bracket, 80, 145, 154, 160,
259

Casimir function, 160
rigid body, 145
spherical pendulum, 154, 160
n:m resonance, 259

Newton’s Law
eikonal equation, 7

Newton’s Laws, 97
Newton’s second law, 176
Newtonian dynamics

paraxial optics, 29
Noether’s theorem, 16, 125, 139,

155, 280
axisymmetric ray optics, 31
elastic pendulum, 280
Hamiltonian form, 139, 284
harmonic escillator, 351
rigid body, 125
spherical pendulum, 155

notation
subscript-comma, 180
summation convention, 110

object screen, 29
optical

action, 14
axis, 12
Hamiltonian, 23, 30

axisymmetric medium, 36
Lagrangian, 13, 20
length, 1
momentum, 6, 20

Ibn Sahl-Snell law, 90
orbit manifold

axisymmetric ray optics, 42

bifurcation, 69
Hopf fibration, 222
spherical pendulum, 157
1:1 resonance, 235
n:m resonance, 253

orbits
Hamiltonian flows, 52

orthogonal
matrix Lie group, 71

oscillator variables, 347, 356

pairing
symmetric, 113

paraxial rays, 19
pendulum, 327

and rigid body, 152
elastic spherical, 275
Maxwell-Bloch reduction, 321
spherical, 332
three-wave reduction, 293

pendulum equation, 151, 321
Petzval invariant, 40
phase plane

saddle-centre, 162
phase space, 131

ray trajectory, 22
area, 167

pitchfork bifurcation, 267, 331, 343
Poincaré invariants, 196
Poincaré sphere, 232, 239

Hopf fibration, 239
momentum map, 239
polarisation optics, 266
stereographic projection, 245
1:1 resonance, 235, 239

Poincaré’s lemma, 218
Poincaré’s theorem, 167, 194
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point transformation, 139
Poisson bracket

closure, 91
definition, 26
Jacobi identity, 26
on R3, 259
on a sphere, 242
on the Riemann plane, 243

Poisson map
momentum map, 140
spherical pendulum, 160

position, 96
potential energy, 101
potential vorticity, 212
Poynting vector, 223
product rule

determinants, 229
differential forms, 167, 171
exterior derivative, 190
Lie derivative, 198, 375, 378
Poisson bracket, 26, 135, 240
vector fields, 137

pull-back, 171, 181, 183
push-forward, 181, 183

quadrature, 33, 91
quasi-orthogonal

matrix Lie group, 72
qubit, 235
quotient flow, 259
quotient map, 41, 42, 153

azimuthal symmetry, 41
orbit manifold, 91
plane polar coordinates, 40
quadratic S1 invariants, 41
spherical pendulum, 153, 157
1:1 resonance, 234

n:m resonance, 253

ray optics
characteristic equations, 48
free propagation, 48
squeezing, 48
thin lens, 48
transformations, 48

rays
meridional, 36
sagittal, 36
skew, 36

reconstruction formula, 124
reduced space

momentum map, 68
refraction, 10
resonant oscillators, 357, 367

1:1 , 358
1: - 1 , 362

Riemann sphere, 107–109, 244
Riemannian metric, 87, 120
rigid body

SO(3) geodesic motion, 122
and pendulum, 152
angular momentum, 124
with flywheel, 338

rotor and pendulum, 147

saddle-centre
phase plane, 162

self-induced transparency, 306
sign conventions

in optics and mechanics, 36
Silberstein-Ertel theorem, 211
singular Lagrangian, 130
skewness function, 34
slowly varying envelope approx-

imation, 288
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smooth manifold
definition, 106

Sommerfeld
shall ye know them, 114

spatial angular momentum, 124
special unitary

matrix Lie group, 229
spherical pendulum, 153, 280, 386

R3 reduced space, 159
geometric phase, 161
Lie symmetry reduction, 156
orbit manifold, 157
quotient map, 157
polar coordinates, 331, 386

stationary action principle, 13
stereographic projection, 107, 243

Poisson bracket, 243
Stokes theorem, 193, 203
Stokes vector, 233

polarisation optics, 264
structure constants

Lie algebra, 55
submanifold, 168

embedded, 168
submersion, 109
subscript-comma notation, 180
summation convention, 110, 119
symmetric pairing, 113
symmetry

Lie group, 91
Noether’s theorem, 16, 31, 155

symplectic, 167
flow, 167, 171
Lie algebra, 56
Lie group, 56
manifold, 165, 203, 206
matrices, 49, 90

matrix Lie group, 50
Poisson bracket, 189
two-form, 167

tangent
bundle, 13, 168, 178, 181
lift, 179
space, 115, 178
vector, 168

three-wave interaction equations,
289

time, 96
time-dependent vector field, 111
transformation

canonical, 136
group, 136
properties, 114

translation invariance, 28

uniform rectilinear motion, 96
unitary

matrix Lie group, 229

variation, 14
variational derivative, 3, 15, 118
vector

basis, 112
field, 111, 180, 312
potential, 307

vector field
definition, 111, 180
Hamiltonian, 169

velocity, 96
vorticity

Helmholtz equation, 200

wave front
Huygens, 8

wedge product, 182


