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In the geometrical optics approximation, stable and unstable manifolds of periodic orbits, invariant tori, and hyperbolic 
invariant manifolds are shown to exist and produce trapping of bundles of light rays near the axis of a translation-invariant, 
axisymmetric optical fiber whose squared refractive index is a parabolic function of squared radius. Periodic symmetry- 
breaking perturbations in the refractive index are shown to destroy this ray trapping and to produce homoclinic tangles, 
through which nearby trapped rays may escape, and untrapped rays may become at least temporarily trapped. Melnikov's 
technique is used to prove that the perturbations cause the stable and unstable manifolds of the unperturbed periodic orbits, 
invariant tori, and hyperbolic invariant manifolds to develop transverse intersections and therefore, to form homoclinic 
tangles. These tangles imply either homoclinic chaos by the Smale horseshoe mechanism and the Poincar6-Birkhoff-Smale 
theorem, or Arnol'd diffusion. In both situations, lobe dynamics will dominate phase space transport, seen here as a flux of 
(initially) untrapped rays passing through the trapping region. 

1. Introduction 

In geometrical optics, the ray path is deter- 
mined by Fermat's principle of least optical 
length, 

afn ds = 0, 

where n(x, y, z) is the index of refraction at the 
spatial point (x, y, z) and ds is the element of arc 
length along the ray path through that point. 
Choosing coordinates so that the z-axis coincides 
with the optical axis of the fiber, gives 

d s =  [(dx) z + (dy)  2 + (dz)2] '/2 

with ~ = dx/dz and 3)= d y / d z .  Thus, Fermat's 
principle can be written in Lagrangian form, with 
z playing the role of time, 

~fL d z = 0, 

and where the optical Lagrangian is given by 

L =n(x,y,z)[1 +Yc2+~2] 1/2= n__. 
Y 

Here, y = dz/ds and variations are taken in x 
and y at constant z. The Euler-Lagrange equa- 
tions determine the ray path, q(z), in two-compo- 
nent vector form according to 

d 8L 8L 
dz 8# - 8q '  q = ( x , y ) ,  

with 

L=n(q , z ) [ l+  [ql2] 1 / 2 = n .  
,y 

Specifically, the vector Euler-Lagrange equation 
of the light rays is 

d ( d q )  d /  d q ,  8n 
--ds n~-~- = y ~ - - ~ [ n y - f f ~ ]  = 8-q" 

The momentum p canonically conjugate to the 
ray path position q in an "image plane", or 
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Fig. 1. The momentum p canonically conjugate to the coor- 
dinate q on the image plane at z is the projection onto the 
plane of the ray vector n(q, z) through the point q. That is, 
Ipl = n(q, z)cos 0. 

" image screen", at a fixed value of z is given by 

OL 
p = =  3/0, 

and satisfies 

Ip l  2 =  2(1 - 3 / 2 ) .  

Defining sin 0 = d z / d s  = 3/ leads to 

[el = n cos 0, 

also shown in fig. 1. The phase space description 
of the ray path now follows from Hamil ton 's  

equations, 

OH 1 OH l On 2 
~p H P '  / ~ -  ~q - 2 H  ~q"  

Remark. If n = n(q), so that the medium is trans- 
lation invariant along the optical axis, z, then 
H = - n  sin 0 is conserved. (Conservation of H at 
an interface is Snell's law.) For translation- 

invariant media, the vector ray-path equation 

simplifies to 

1 ~n 2 

- 2 H  2 ~q • 

Thus, in this case geometrical ray tracing reduces 
to "Newtonian dynamics" in z, with potential 
- n 2 ( q )  and with " t ime"  rescaled along each path 
by the value of ~ - H  determined from the initial 

conditions for each ray. 

and gives the geometrical picture of the ray path 
shown in fig. 1. Along the optical axis (the z-axis) 
each image plane normal to the axis is pierced at 
a point q = (x, y)  by a vector of magnitude n(q, z)  
tangent to the ray path and that makes an angle 0 
to the plane. The projection of this vector onto 

the image plane is the canonical momentum p. 
This picture of the ray paths captures all but the 
rays of grazing incidence to the image planes. 
Such grazing rays are ignored in what follows. 

Passing now via the usual Legendre transfor- 
mation from the Lagrangian to the Hamil tonian 

description gives 

H = p  " i l - L  =n3/lql 2 n 
3/ 

= - n 3 / =  - z )  - Ip l  2 

Thus, in the geometrical picture, the component  
of the ray-path tangent vector along the optical 
axis is (minus) the Hamiltonian,  i.e. n sin 0 = - H, 

2. Axisymmetric, translation-invariant media 

Axisymmetric, translation-invariant media, in 
which the index of refraction is a function of the 
radius alone, are of considerable theoretical in- 
terest. Axisymmetry implies an additional con- 
stant of motion and, hence, reduction of the 
Hamiltonian system for the light rays to phase 
plane analysis. The resulting ray paths describe, 
in a certain sense, perfect optical instruments [6]. 
For such media, the index of refraction satisfies 

n ( q , z ) = n ( r ) ,  r =  [q[. 

Passing to polar coordinates (r ,  q~) with q = (x, y) 
= r(cos ~p, sin ~p) leads in the usual way to 

2 
[pl 2 2 P~ 

=Pr  + r---Y • 
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Consequently, the optical Hamiltonian, 

V/ 2 P~ 
H= -- n2 ( r )  --pff r2 , 

is independent of the azimuthal angle ~o; so the 
canonically conjugate "angular momentum" p~ is 
conserved. 

Using the relation p • q = rp~ leads to an inter- 
pretation of p~ in terms of the image-screen 
phase space variables p and q. Namely, 

i p × q l Z =  ip121q12_ (p.q)2__pw.2 

The conserved quantity pC = p × q = YPx - xpy is 
called the skewness function, or the Petzval in- 
variant for axisymmetric media [14]. Vanishing of 
p~ occurs for meridional rays, for which p and q 
are collinear in the image plane. On the other 
hand, p~ takes its maximum value for sagittal 
rays, for which p . q = O ,  so that p and q are 
orthogonal in the image plane. (See ref. [2], pp. 
151 and 190, for further discussion of the proper- 
ties of meridional, sagittal, and other special rays.) 

Hamilton's equations for axisymmetric, transla- 
tion-invariant media are expressible as 

OH 1 
Opr I-[ pr '  

Pr 

( 2) 
OH _ 1 d n2(r  ) _ P~ 
0~- 2 H  dr  -~- ' 

OH P~ 
(o = Op~ Hr 2' 

OH 

We shall solve these equations for the case of an 
optical fiber with radially graded index of refrac- 
tion. We choose a radial profile of the fiber's 
refractive index in the following form: 

2 2 n 2 ( r ) = A  2 + ( / x - ~ , r  ) , 

where A 2, ~ and u are positive constants. Accord- 

P r  

r 

Fig. 2. The unshaded region is the physical domain of (r, Pr) 
phase space for p~ = 0. 

ingly, the fiber's refractive index is a parabola in 
the squared radius with its minimum at r 2 = Ix/u.  
In this case, the level surfaces of the Hamiltonian 
form a family of curves in the (r,  pr) phase plane 
given by 

2 
p 2 =  A2 + (/x - ur2) 2 P~ H z. 

r 2 

These curves allow positive H 2 provided 

2 
A 2 + (/z -- wr2)  2 PC 

r z pZ > O. 

This is the physical domain of r and Pr" This 
domain in the (r, Pr) phase plane is shown as the 
unshaded regions of fig. 2, for p~ = 0, and of fig. 
3, for p~ 4= 0. Fig. 2 shows the pair of heteroclinic 
orbits appearing in the (r, pr) phase plane for 
p ,  = 0, while fig. 3 shows the homoclinic orbit 
appearing for p~ 4: 0. In both cases, the stable 
and unstable manifolds of the hyperbolic equilib- 
rium points have branches going off to infinity. A 
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Pr 

r 

Fig. 3. The unshaded  region is the physical domain of (r, Pr) 
phase space for p~ e 0. 

orbit). Namely, 

1 
i" = - --~ Pr ,  

1 t - 2 v r (  L, r2 )  + P'~] 
P~= - H  1 ~ -  r~ ] " 

The equilibria of these equations occur at the 
points where the right-hand sides vanish, along 
the r-axis (i.e. pr = 0) at the values r = ?(p~;/x, A) 
satisfying the following cubic relation in r2: 

2 
P~ 

- - 2 u r 2 ( / ~ - - u r 2 ) +  7T =0. 

The level surfaces of H 2 satisfy this equilibrium 

condition when 

A 2 + ( ~  --  v r 2 )  2 -- H 2 = 2 v r 2 ( t x  - v r 2 ) .  

Thus, the equilibrium points occur in pairs in r 2 
1 2 at the roots of this quadratic, for A 2 < 7(/~ + H2), 

level surface of the Hamiltonian H in (r ,  p~, p~) 
is shown in fig. 4. The intersections of the level 
surfaces of H with a (nonzero) level surface of 
p~ produce the phase space portrait shown in 

fig. 3. 
Hamilton's equations for ( r , p  r) which result 

for this choice of radially graded refractive index 
are equivalent to the dynamics of an ideal (in- 
verted) Duffing oscillator in a rotating frame (up 
to the rescaling of time by the energy on each 

r 

Fig. 4. Level surface of Ho(r, Pr, P , )  away from p ,  = 0. 

1 H 2  . r2 =-3-7u ( 2 ~  + g/~ 2 - 3 A 2 +  ) 

= 1 (~tL2 At the value A 2 ~ + H 2) the homoclinic loop 
I(/x2 closes to a cusp. For A 2 > ~ + H2), no equilib- 

rium occurs in the physical domain. In what fol- 
1(/3.2 lows, we shall assume that 3. 2 < ~ + H 2). 

An equilibrium point is stable, provided at that 

point 

dE{ 
dr  2 n 2 - r2 ] < O. 

In each pair of roots in r 2 of the equilibrium 
condition, the larger one is unstable, while the 
smaller one is stable. The unstable root is con- 
nected to itself by a homoclinic orbit encircling 
the stable root. (The two other orbits connected 
to the unstable root are branches connected to 
plus and minus infinity.) Initial values lying within 
the homoclinic loop are trapped forever within it 
on periodic orbits, while those lying initially out- 
side the loop escape to infinity. 
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The homoclinic orbits (for p~ 4: 0) and hetero- 
clinic orbits (for p~ = 0) are obtained by solving 

t:2 = (/z - ur2) 2 p2 ( ~ 2  __ /~2), 
r 2 

where H is the value of the Hamiltonian at the 
unstable equilibrium point ~. 

In the (degenerate) case, when pC = 0 (i.e. for 
meridional rays) there is an unstable equilibrium 
at r 2 = ~ / u ,  and a stable one at r 2= 0. In this 
case, the two unstable equilibria are connected to 
each other by two heteroclinic orbits. The value 
of the squared Hamiltonian H 2 for this orbit is 
A 2. Hence, the heteroclinic orbits given by solving 
the previous equation in this case are 

r(°)(z) = ~ / ~  tanh( _+z ~f~- ) ,  

p~0)(z) = _+/~ sech2( _+z ~V/~-), 

where _+ distinguishes the two branches connect- 
ing the equilibrium points. 

The explicit expressions for the homoclinic and 
heteroclinic orbits are not actually needed in 
what follows. Only the reflection symmetry of 
these orbits under z --) - z  is needed, in order to 
determine the effects of perturbations of the re- 
fractive index on the stable and unstable mani- 
folds of the hyperbolic equilibrium points. In 
particular, when p¢=O,r(°)(z)  is odd, while 
p~°)(z) is even, as seen from the above equations 
and fig. 2. When p~ 4:0, r(°)(z) is even, while 
p~°)(z) is odd, as seen from fig. 3. From the 
expression ~b = - p ¢ / H r  2 we also see that ~b is 
even for &o 4= 0, so the solution for q~ may be 
written as ~p = q~(°)(z)+ q;0, where q~(°)(z) is odd, 
and q~0 is an arbitrary constant. (The function 
q~(°)(z) is constant for &o = 0.) 

3. Effects of  perturbations of  the refractive index 

We consider the following axial and azimuthal 
perturbations of the refractive index: 

n2 ( r )  = n 2 ( r )  + en2(r, Z,q~). 

Expanding the Hamiltonian 

U =  - ~/n~( r ) - [pl2 + en2( r, z,  qO 

in powers of e, gives H ,  = H o + e H  1 at linear or- 
der, where 

1 2 
H o =  ~/n2(r) - Ip[ 2, H 1 -  2[_ion,(r ,z ,qO. 

This expansion is valid provided H 0 >> e; that is, 
away from grazing incidence to the image screen. 

To linear order in e, the refractive index per- 
turbations appear in Hamilton's equations as 

OI-I~ 1 n 2 
Op r -- H o P r  "}- E ~ o  P r, 

o~ 
Pr Or 

1 d ( n 2 ( r ) _ P 2 1  
2 H  o dr  r 2 ] 

0H, P~ n~ P~ 
(o= O& ° Hor2 + e 2 H  3 r2 ,  

1 Onl 2 ] 

2 H  o Or ' 

P, 
0H~ e 0n 2 

O~ 2 H  0 0V~" 

Explicitly, we consider axially and azimuthally 
periodic perturbations of the refractive index in 
the form 

n~ = a r  sin(toz) + 13 s in(mq0,  

where a , /3  and to are real constants, and m is an 
integer. There are three cases: (I) purely axial 
perturbations, a 4= 0, /3 = 0; (II) purely azimuthal 
ones, a = 0, fl v~ 0; and (Ill)  combined perturba- 
tions, a 4= 0, /3 :~ 0. 
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3.1. Case (I). Purely axial perturbations, 
n 2 = ars in(wz)  

In this case, the four-dimensional phase space 
(r, p r ,¢ ,p~)  is foliated by preserved level sur- 
faces of p~. Moreover, the q>dynamics still sep- 
arates out as a quadrature. Therefore ,  the 
perturbed dynamics reduces to motion in r, Pr 
and z, along level surfaces of pC. 

The periodic perturbation induces a Poincar6 
map of the (r, p,)  plane in the form 

( r , p r ) ( z )  -* ( r , p r ) ( z  + 2 w / w ) .  

Suppose the perturbation causes transverse inter- 
sections of stable and unstable manifolds of the 
hyperbolic equilibria under this Poincar6 map. 
Then, according to the Poincar6-Birkhoff-Smale 
theorem, these intersections imply homoclinic 
chaos via the construction of a horseshoe map 
from an iterate of the Poincar6 map. That is, 
under some number of iterates of the Poincar6 
map, a nearly rectangular region of phase points, 
bounded by segments of the stable and ulnstable 
manifolds of the hyperbolic equilibrium and lying 
initially near the hyperbolic equilibrium, will be- 
come folded, stretched, contracted, and eventu- 
ally mapped back over itself in the shape of a 
horseshoe. This horseshoe map is the underlying 
mechanism for chaos. Forward and backward it- 
eration of the original rectangular region under 
the horseshoe map creates an invariant Cantor 
set structure within the area circumscribed by the 
original rectangular region. This invariant Cantor 
set can be shown to contain countably many 
unstable periodic motions, and uncountably many 
unstable nonperiodic motions. (See refs. [3, 11, 
12] for discussions of the methods of proof of 
these statements and further descriptions of this 
type of homoclinic chaos.) 

In order to prove the existence of transverse 
intersections of stable and unstable manifolds of 
hyperbolic equilibria under this Poincar6 map, we 
use Melnikov's theorem [7]. This theorem states 
that simple zeros in the signed distance between 

the stable and unstable manifolds of a homoclinic 
point at linear order in perturbation theory are 
sufficient to imply transverse intersections of these 
manifolds under the full nonlinear dynamics. In 
the present case, these intersections take place in 
the Poincar6 map of the (r,  pr) plane; so this 
distance takes the well-known scalar form defined 
by [3, 12] 

M(Zo) 

oc 

= f {Ho,H1}(r(°) (z ) ,P~°)(z) ,  z + z o ) d z ,  
oo 

where {H0, H 1} is the canonical Poisson bracket 
between H0 and Hi,  and the integral is taken 
along an unperturbed homoclinic orbit (r(°)(z), 
p~°)(z)), with phase delay z 0 in the explicit time 
dependence.  The Hamiltonian H0 is constant 
along the unperturbed homoclinic orbit. Recall 
that for p¢ 4= O, r(°)(z) is an even function and 
p~°)(z) is odd. (When p~ = O, the function r(°)(z) 
is odd and p~°)(z) is even.) For axial perturba- 
tions we have 

{ H0, H, } (r'°)(z) ,  p?)( z ), z + z0) 

_ Ol 

2~c2 p~°)(z) sin[w( z + z0) ] . 

Hence, expanding sin w(z +z0)  and integrating 
gives (for p~ 4= 0) 

~A 
M ( z o )  - 2H2o c°s(wz0) ,  

with 

A 
J ~ o c  

Since the integrand is even, A 4= 0 and the 
Melnikov function M(zo) has simple zeros at 
half-odd-integer multiples of oJ/2w for pC 4= 0. 
Consequently, the perturbation causes transverse 
intersections in the Poincar6 map of stable and 
unstable manifolds of the hyperbolic equilibrium. 
Hence, horseshoe chaos appears in the Poincar6 
map under this perturbation. (When p¢ = 0, simi- 
lar expressions for M and A occur, but with sin 
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r 

Fig. 5. Poincar~ map showing the homoclinic tangle on a 
level surface of p~, created by a purely axial, periodic pertur- 
bation. 

and cos exchanged; so the zeros of M(z  o) occur 
at integer multiples of to/2"rr in this case.) See 
fig. 5 for a sketch of the homoclinic tangle pro- 
duced in the Poincar6 map by these purely axial, 
periodic perturbations. 

The results of Rom-Kedar et al. [9, 10] show 
that phase space transport takes place within the 
homoclinic tangle on each level surface of the 
skewness p~ as a result of the purely axial pertur- 
bations. This phase space transport is chaotic (in 
the sense of extreme sensitivity to initial condi- 
tions) and may cause trapped rays starting near 
the unperturbed homoclinic orbit to become un- 
trapped, and vice versa. The stable and unstable 
manifolds of the unperturbed hyperbolic equilib- 
rium on each level surface of p~ both form a 
homoclinic orbit and have branches going off to 
infinity. For this topology, the results of Rom- 
Kedar et al. [9, 10] show that no initially un- 
trapped rays may become permanently trapped 
under the perturbation. Hence, the axial pertur- 
bation induces a flux of initially untrapped rays 
through the trapping region on each level surface 
of the skewness p~. This flux may be computed 
numerically using the methods of Rom-Kedar 
et al. 

3.2. Case (II). Purely azimuthal perturbations, 
n ] = fl sin(m~o) 

In this case, the unperturbed dynamics takes 
place in the four-dimensional phase space 

(r, Pr, ~, p¢) on three-dimensional level surfaces 
of H 0. (This case fits into the "System III" frame- 
work of Wiggins [11].) The unstable equilibrium 
in the (r, pr ) phase plane is a periodic orbit S O in 
the full phase space. Each periodic orbit S O lies 
on the intersection of a level surface of H 0 with 
the two-dimensional, normally hyperbolic mani- 
fold .Z/0 coordinatized by (~o, p~). (A level surface 
of H 0 in (r, Pr, P~) coordinates in the region 
away from p~ = 0 is shown in fig. 4. Intersections 
of such level surfaces of H0 with the level sur- 
faces of p~ produce the phase space portrait 
shown in fig. 3.).By persistency of normally hyper- 
bolic manifolds under perturbations, there exists 
a two-dimensional perturbed normally hyperbolic 
manifold .Z¢~ close to the original -~Y0 which is 
intersected transversely along periodic orbits S, 
by level surfaces of H~ = H o + e H  v (See also ref. 
[4].) The stable and unstable manifolds of these 
orbits are each two-dimensional, and lie in the 
three-dimensional level surface of H,.  Thus, to 
apply the Melnikov technique, we must seek con- 
ditions for these two-dimensional manifolds to 
intersect transversely in the three-dimensional 
level surface H~ = constant. (The perturbed 
system is autonomous, but the perturbed ~o- 
dynamics no longer separates out as a quadra- 
ture.) 

The manifold W(S0) of orbits that are homo- 
clinic t.o an orbit S O (periodic in tp ~ [0,2~r)) at 
r = ?(p~;/x, A, u), Pr = 0, and p~ = const, is given 
by 

H ( r , P r , p ~ )  - H ( ~ , 0 ,  p~) = 0, p ,  = const. 

The distance between stable and unstable mani- 
folds of the perturbed periodic orbits S, on .~tv is 
measured along the unperturbed normals to 

W(S0). Namely, 

m 

n 1 = V ( H - H  ), n2=Vp+, 

where the gradient in the four-dimensional phase 
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space is given by 

V =  Or' ap t '  aq~' ap~ 

In the next subsection, where axial and az- 
imuthal perturbations are combined, we will dis- 
cuss in more detail the actual mechanics of 
choosing points on the per turbed stable and un- 
stable manifolds of the per turbed manifold ~t" 
and measuring the distance between them using 
the Melnikov method. For now, we only note that 
intersections of the stable and unstable manifolds 
of .Z¢, occur when the components  of distance 
measured along both normal vectors vanish. In 
the present  case, the relation H~ = const implies 
a functional dependence between these two com- 
ponents  of distance, so both components  vanish if 
either of them does. Thus, for convenience, we 
may choose to compute the distance between 
stable and unstable manifolds along just one com- 
ponent. The component  we choose will be along 
the normal vector nl, since the integrals obtained 
for this choice are exponentially convergent. To 
first order  in e, this distance is proportional to 
the following integral along the unper turbed ho- 
moclinic orbit: 

oo 

M, = f n 1 . g d z ,  

where g is the order e part  of the vector field• In 
this case, 

n l " g =  r 2 72 aq~ • 

Now, anZ/a~p = rn cos{rn[q~(°)(z) + ~o01} , while the 
quantity p ~ / 2 H  2 is constant and the unper- 
turbed radius r(°)(z) is an even function along 
the unper turbed homoclinic orbit for pC 4= 0. (Re- 
call fig. 3.) Consequently, 

m p  ~p . x 
M 1 = B7777,2 cos~mq~0), 

z r t  6 

Fig. 6. Po incar6  map  showing the homocl in ic  t ang le  on a 

level surface of H F created by a purely azimuthal perturba- 
tion. 

where 

B =  :¢ r2 1 )cos[m~pm)(z)]  dz .  ~2 

Being the integral of an even function, B 4= 0, and 
the Melnikov function Ml(q~ 0) has simple zeros at 
~o = + ' r r /2m for p ,  4: 0, thereby implying trans- 
verse intersections of stable and unstable mani- 
folds of the hyperbolic periodic orbits in ~'~ 
under this perturbation. 

A Poincar4 section of the per turbed dynamics 
may be constructed by fixing a value q~ = q~p and 
plotting recurrences of phase points in this 
three-dimensional surface• This three-dimen- 
sional Poincar6 section has a two-dimensional 
intersection with the level surface of H~ contain- 
ing the per turbed periodic orbit. On this two- 
dimensional intersection, the periodic orbit  
appears  as a point, and its stable and unstable 
manifolds appear  as curves, which intersect trans- 
versely in a tangle. The homoclinic tangle pro- 
duced by these intersections in the Poincar4 
section on a level surface of/-/~ is sketched in fig. 
6. The Po inca r4 -Bi rkhof f -Smale  homoclinic 
chaos theorem now implies the existence of a 
horseshoe map for a sufficiently large iterate of 
the Poincar6 map. (See ref. [11], discussion of 
"System III" . )  

Again, the presence of the homoclinic tangle 
implies chaotic phase space transport,  which now 
takes place on each energy surface H,, in the 
region of the tangle under purely azimuthal per- 
turbations• This phase space transport  may cause 
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trapped rays starting near the unperturbed homo- 
clinic orbit to become untrapped, and vice versa. 
The stable and unstable manifolds of the unper- 
turbed hyperbolic equilibrium on each level sur- 
face of energy H 0 form a homoelinic orbit, and 
have branches going off to infinity. For this topol- 
ogy, the results of Rom-Kedar et al. [9, 10] show 
that no initially untrapped rays may become per- 
manently trapped under the perturbation. Hence, 
the azimuthal perturbation will induce a flux of 
initially untrapped rays through the trapping re- 
gion on each level surface of the energy H e. 
Again, this flux could be computed numerically 
using the methods of Rom-Kedar et al. 

3.3. Case (III). Combined perturbations, 
n 2 = arsin(toz) + flsin(mq~) 

In this case of combined perturbations, the 
perturbed dynamics takes place in the five- 
dimensional space (r, Pr,~O,p~,z). The unper- 
turbed fixed points in the ( r , p  r) plane now 
comprise a normally hyperbolic manifold ~"0, fo- 
liated by two-tori T O at p~ = const, and 
parametrized by (~o, z). The manifold ~'0 has 
four-dimensional stable and unstable manifolds, 
W~(Ie" 0) and W0~(j~tro), respectively, whose two 
branches coincide to form the unperturbed ho- 
moclinic manifold W(.~"0). By persistency of nor- 
mally hyperbolic manifolds under perturbations, 

a¢" o will deform to another normally hyperbolic 
manifold, At'~, which will also have four- 
dimensional stable and unstable manifolds, 
W~(atr ) and W~(.4Lr ), respectively. Now the KAM 
theorem shows that most of the tori T O on .4tr 0 
will survive as tori T~ on .~e'~. (See, e.g. refs. [5, 
11].) Moreover, their stable and unstable mani- 
folds W](T~) and W~U(T~) will be three- 
dimensional (T2× R 1) and will be close to the 
unperturbed three-dimensional stable and unsta- 
ble manifolds of the tori T O on .Jtr 0. (Two branches 
of these unperturbed manifolds W~(T o) and 
W0U(T0) coincide, to form the unperturbed homo- 
clinic manifold W(T0).) 

We are now in a position to discuss conditions 
for the occurrence of intersections of the per- 
turbed stable and unstable manifolds of ~tv. We 
shall use the unperturbed manifold W(.4tr 0) to 
provide coordinates for the perturbed manifolds 
W~(~t'~) and Wf(.ct'~). The manifold W(.J¢' 0) is 
given by 

m 

H ( r , P r , p ,  ) - H ( r , 0 ,  p~) : 0. 

Consider the normal vector n 1 at a point a on 
W(~r0). This normal vector cuts W(~tr 0) in pre- 
cisely one point, namely a. Because transverse 
intersections persist under perturbations, the nor- 
mal vector n 1 will also cut both W~(~t'~) and 
W~(~t'~) in discrete points. One chooses to con- 
sider the nearest points (in terms of "time of 
flight", see refs. [11, 12]) to ~f¢~ on each of W~(.~f¢~) 
and W~U(~t'~), which are pierced by the normal 

s and u vector n~. We denote these points by a ,  a t, 
respectively, and measure the (signed) distance 

S U between them along n~ by the difference a~ - a, .  
To first order in e the distance along n~ is 
proportional to 

Ml = f_~on, "g(r (° ) (z ) ,  P~°)(z), q~(°)(z) + ~o o, 

z +z0)  dz 

_ ot A m ~ p ~  B 
2H0 z c°s(~°z0) + ~ c°s(m~P°)' 

where the coefficients A and B are given as in 
cases (I) and (II), respectively. Namely, 

/ . o o  

A J_ p~°)( z ) s i n ( o ~ z ) d z ,  

B =  f ~ (  1 1 ) cos[m~(O)(z)] 
r(O)(z)2 72 dz.  

The function M~ has simple zeros for a discrete 
set of values of z o and q~o. When the distance 
proportional to M~ vanishes, this construction 
(along with the Melnikov theory) implies intersec- 
tion of the stable and unstable manifolds of the 
whole manifold .4tv, but it does not guarantee 
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t h a t  a~ and a~ lie on the stable and unstable 
manifolds of the same perturbed torus, T~.. Thus, 
when M~ vanishes along nl, heteroclinic orbits 
exist connecting (in general) different perturbed 
tori T~ on ~g~:. In this case, the stable and unsta- 
ble manifolds of the whole per turbed manifold 

A" do intersect, but the stable and unstable mani- 
folds of a given per turbed torus (T,, a point on 

~ ' , )  may not intersect. Hence,  a transition chain 
may arise, leading to phase space transport,  but 
no chaos will occur in this case, unless the stable 
and unstable manifolds of each per turbed torus 
T, also intersect. (This requires an additional 
condition.) As we discuss below, the mechanisms 
for phase space transport  in this case include 
both Arnol 'd  diffusion (see, e.g. refs. [1, 5]), as 
well as lobe dynamics, since W~S(.Z/~) and W~U(/Z¢~), 
being of codimension one, can separate regions 
of phase space into lobes. 

Consider now the phase space connections for 
an individual per turbed torus T,, rather  than the 
whole per turbed manifold ~'~. Again we use the 
unper turbed homoclinic manifold W(T 0) in order 
to coordinatize the manifolds W~(T~) and W~°(T~). 
The manifold W(T 0) is given by the two relations 

m 

H ( r , P r , V , ) - H ( ? , O , p ¢ ) = O  , p~ = const. 

At each point a on W(T0), a plane I1 is defined 
by the span of the two normal vectors n I and n 2 
at the point a. The homoclinic manifold W(T 0) 
intersects the plane 11 in precisely one point, 
namely the point a. Under  perturbations, persis- 
tency of transversality implies that the intersec- 
tions of II  with W~S(T~) and W~U(T~) will be 
discrete points. Again, one may choose the near- 
est intersection points in the sense of time of 
flight to T~. Note that these points, a~ and a~, are 
now intersections in the plane 11 of the stable 
and unstable orbits from the same perturbed 

S U torus, T~. Also, the vector a ~ -  a~. now has two 
components  (along the two normal directions n l 
and n 2 in the plane H). Thus, to determine 
whether  the manifolds Wfl and W u intersect we 
need to measure  the distance between them along 

both directions. As before, the distance a~ - a u is 
measured to first order in e by the Melnikov 
method. In this case, a zero of both components  
of the Melnikov vector M = (M~, M 2) implies oc- 
currence of not only transition chains, but also 
homoclinic intersections. The Melnikov vector 
components  are given by 

M 1 = f_~n 1 "gdz 

_ ff Acos(°~z0)  + mjSp~ 2H2 ~ T f  B cos(mq~0), 

m[3 
m 2 = f n2 "gdz  ~ ) C  c o s ( m ~ o ) ,  

where 

00  

c = cos l  )1 d z.  

The component  M 1 is computed as before. The 
integral for M2, however, only converges condi- 
tionally. That  is, sequences {z +} and {zf} with 
zT--+~ and z f-->-o~ can be chosen so that 
Q7 n z . g d z  converges. (See refs. [8, 11].) This 

Melnikov vector M = (M1, M 2) has simple zeros 
when both components  vanish, i.e. when both 

1 1 mq~ 0 = _+ ~av and o~z 0 = _+ Urr. In this case, we 
have both transition chains and homoclinic inter- 
sections. 

At this point we may discuss the implications 
for chaos and phase space transport  of the geo- 
metrical propert ies of these intersections. A given 
per turbed torus T~ has three-dimensional stable 
and three-dimensional unstable manifolds. If both 
components  of the Melnikov vector M vanish, 
these stable and unstable manifolds intersect in 
one dimension (3 + 3 -  5 = 1). This intersection 
is the orbit homoclinic to the per turbed torus. 
The three-dimensional stable manifold of T~ in- 
tersects the four-dimensional unstable manifold 
of A'~ in two dimensions (3 + 4 -  5 = 2). So the 
majority of orbits on the stable manifold of T, do 
not come from A'~. The heteroclinic orbits, which 
do connect to T~ from ~"~, comprise the two- 
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P~ 

Fig. 7. Transition chain with both homoclinic and hetero- 
clinic intersections. 

dimensional intersection of the stable manifold of 
T~ and the unstable manifold of ~t',. Only one 
orbit on this two-dimensional intersection is ho- 
moclinic to T~. Thus, in this case a transition 
chain occurs (shown in fig. 7) and Arnol 'd diffu- 
sion results, because almost all of the connecting 
orbits are from one perturbed torus to a different 
one. The presence of the homoclinic intersections 
may imply a horseshoe map construction from an 
iteration of the Poincar6 map, but this has not 
been shown. Thus, homoclinic chaos in the pres- 
ence of the combined perturbations cannot be 
ruled out, but also has not been proven. 

R e m a r k .  Had only one of the Melnikov compo- 
nents vanished (in particular, the M 1 component), 
then the stable and unstable manifolds of ~t'~ 
would still have had three-dimensional intersec- 
tions; and the stable manifold of a particular 
torus, T~, would still have intersected the unsta- 
ble manifold of ~¢~ in two dimensions. However, 
with M 2 4= 0 there would be no orbit homoclinic 
to the perturbed torus T, itself. (See fig. 8.) In 
this case, one might conclude there would be a 
transition chain and Arnol 'd diffusion, but wi th -  

o u t  chaos. (After all, without self-intersections, 
no horseshoe map could arise.) However, this 
situation is not generic. (See ref. [5], remark 4, 

/ 
r,.,.,., pc +,', 

j P ~  

Fig. 8. Transition chain with only heteroclinic intersections. 

p. 672.) Moreover, this situation does not arise 
here: since both of the conditions on ~00 and z 0 
above are fulfilled, the combined perturbations 
lead to vanishing of both components of the 
Melnikov vector. 

Vanishing of either one, or both, of the 
Melnikov vector components, implies the pres- 
ence of phase space transport by lobe dynamics, 
as discussed in ref. [13]. The basic requirement 
for lobe dynamics to dominate phase space trans- 
port is that the stable and unstable manifolds of 
the hyperbolic set are of codimension one, thereby 
allowing them to separate regions of phase space 
(in most situations). The hyperbolic set in the 
present case is tt'~, whose four-dimensional sta- 
ble and unstable manifolds are of codimension 
one in the five-dimensional phase space. Hence, 
lobe dynamics is the dominant mechanism for ray 
trapping and untrapping in fiber optics, when 
both axial and azimuthal perturbations are 
present. Lobe dynamics is also the dominant 
mechanism for ray trapping and untrapping in 
fiber optics, when only o n e  of these perturbations 
is present. 
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