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Abstract. Kazhdan and Lusztig identified the affine Hecke algebra H with an equivariant K-

group of the Steinberg variety, and applied this to prove the Deligne-Langlands conjecture,

i.e., the local Langlands parametrization of irreducible representations of reductive groups
over nonarchimedean local fields F with an Iwahori-fixed vector. We apply techniques from

derived algebraic geometry to pass from K-theory to Hochschild homology and thereby iden-

tify H with the endomorphisms of a coherent sheaf on the stack of unipotent Langlands
parameters, the coherent Springer sheaf. As a result the derived category of H-modules is

realized as a full subcategory of coherent sheaves on this stack, confirming expectations from

strong forms of the local Langlands correspondence (including recent conjectures of Fargues-
Scholze, Hellmann and Zhu). We explain how this refines the more familiar description of

representations, one central character at a time, in terms of categories of perverse sheaves (as
previously observed in local Langlands over R).

In the case of the general linear group our result allows us to lift the local Langlands

classification of irreducible representations to a categorical statement: we construct a full
embedding of the derived category of smooth representations of GLnpF q into coherent sheaves

on the stack of Langlands parameters.
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1. Introduction

Our goals in this paper are to provide a spectral description of the category of representations
of the affine Hecke algebra and deduce applications to the local Langlands correspondence. We
begin with a quick review of Springer theory and then discuss our main results starting in
Section 1.3.

We will work in the setting of derived algebraic geometry over a field k of characteristic zero,
as presented in [GR17]. In particular all operations, sheaves, categories etc will be derived unless
otherwise noted.

1.1. Springer theory and Hecke algebras. We first review some key points of Springer
theory, largely following the perspective of [CG97, GB98]. Let G denote a complex reductive
group with Lie algebra g and Borel B Ă G. We denote by B » G{B the flag variety, N the

nilpotent cone, µ : rN “ T˚B Ñ N the Springer resolution, and Z “ rN ˆN rN the Steinberg
variety.

The Springer correspondence provides a geometric realization of representations of the Weyl
group W of G. The Weyl group is in bijection with the Bruhat double cosets BzG{B “

GzpB ˆ Bq, and hence with the conormals to the Schubert varieties, which form the irreducible
components of the Steinberg variety Z. In fact the group algebra of the Weyl group can be
identified with the top Borel-Moore homology of Z under the convolution product

CW » HBM
d pZ;Cq,

where d “ dimpN q “ dimp rN q “ dimpZq. This realization of W can be converted into a
sheaf-theoretic statement. The Springer sheaf

S “ µ˚C
ĂN rds P PervpN {Gq

is the equivariant perverse sheaf on the nilpotent cone given by the pushforward of the (shifted)
constant sheaf on the Springer resolution. Thanks to the definition of Z as the self-fiber-product

Z “ rN ˆN rN , a simple base-change calculation provides an isomorphism

HBM
d pZ;Cq » EndN {GpSq

between the endomorphisms of S and the top homology of Z, i.e., the group algebra CW .
Since the abelian category PervpN {Gq is semisimple, all objects are projective and we may
interpret this isomorphism as a full embedding of the abelian category of representations of W
into equivariant perverse sheaves on the nilpotent cone,

ReppW q “ CW -mod » xSy Ă PervpN {Gq.
One important role for this embedding is provided by the representation theory of Chevalley

groups. The universal unipotent principal series representation1

CGpFqq œ CrBpFqqs
has as endomorphism algebra the finite Hecke algebra

Hf “ CrBpFqqzGpFqq{BpFqqs “ EndGpFqqpCrGpFqq{BpFqqsq,

1Note that the finite Hecke algebra and hence the unipotent principal series is insensitive to Langlands duality.
From our perspective it is in fact more natural to consider here representations of the Langlands dual Chevalley
group G_pFqq.
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which (after choosing a square root of q) may be identified with CW . Thus Springer theory
provides a full embedding

tunipotent principal series of GpFqqu » Hf -mod
„
ÝÑ xSy Ă PervpN {Gq

where we say a representation of GpFqq is in the unipotent principal series if it is generated by
its BpFqq-invariants.

1.2. Affine Hecke algebras. We now let G be a reductive group, Langlands dual to a split
group G_pF q over a nonarchimedean local field F with ring of integers O and residue field Fq.
We write rG “ GˆGm as shorthand.

Definition 1.1. Let G be a reductive group with maximal torus T . The (extended) affine
Weyl group of the dual group G_ is the semidirect product Wa “ W ˙X‚pT

_q “ W ˙X‚pT q
of the finite Weyl group with the cocharacter lattice of T_. The affine Hecke algebra H is a
certain q-deformation of the group ring CWa such that specializing q at a prime power gives the
Iwahori-Hecke algebra:

Hq “ CcrIzG_pF q{Is “ EndReppG_pF qqpCcrG_pF q{Isq
where I Ă G_pF q is an Iwahori subgroup. Explicit presentations of the affine Hecke algebra can
be found, for example, in Section 7.1 of [CG97]. Unlike the finite Hecke algebra, Hq fi CWa.

Our starting point is the celebrated theorem of Kazhdan-Lusztig [KL87] (as later extended
and modified by Ginzburg (see [CG97] and Lusztig [Lu98]), providing a geometric realization of
the affine Hecke algebra in terms of the Steinberg variety.

Theorem 1.2. [KL87, CG97, Lu98] Suppose that G has simply connected derived subgroup.

There is an isomorphism of algebras H » K0pZ{ rGq, compatible with the Bernstein isomorphism

ZpHq » Cr rGs rG » K
rG

0 pptqbZ C between the center of H and the ring of equivariant parameters.

Kazhdan and Lusztig famously applied Theorem 1.2 to prove the Deligne-Langlands conjec-
ture, as refined by Lusztig. The category of representations of Hq is identified with the “Iwahori
block”, the (smooth) representations of G_pF q that are generated by their I-invariants (i.e.,
“appear in the decomposition of CcrG_pF q{Is”). Equivalently this is the unramified principal
series, the representations of G_pF q appearing in the parabolic induction of unramified char-
acters of a split torus (i.e., “appear in the decomposition of CrG_pF q{N_pF qT_pOqs”). The
Deligne-Langlands conjecture provides a classification of irreducible representations in the Iwa-
hori block (i.e. with an Iwahori fixed vector), or equivalently irreducible Hq modules, in terms
of Langlands parameters:

Theorem 1.3. [KL87, Re02] The irreducible representations of Hq are in bijection with G-
conjugacy classes of q-commuting pairs of semisimple and nilpotent elements in G

ts P Gss, n P N : gng´1 “ qnu{G,

together with a G-equivariant local system on the orbit of ps, nq which appears in the decompo-
sition of a corresponding Springer sheaf.

For fixed ps, qq the variety N ps,qq of ps, qq-fixed points on the nilpotent cone can be interpreted
as a variety of Langlands parameters, representations of the Weil-Deligne group of F into G
with fixed image of Frobenius. Representations with a fixed Langlands parameter ps, nq form
an L-packet, and are described in terms of irreducible representations of the component group
of the stabilizer. These representations can then be interpreted as equivariant local systems
on the orbit of the Langlands parameter. Indeed general conjectures going back to work of
Lusztig [Lu83], Zelevinsky [Ze81] and Vogan [Vo93] describe the representation theory of G_pF q
at a fixed central character with the geometry of equivariant perverse sheaves on suitable spaces
of Langlands parameters, generalizing the appearance of N ps,qq above.

However, unlike the classical Springer theory story for Hf
q » CW , the realization of H

by equivariant K-theory in Theorem 1.2 does not immediately lead to a realization of H as
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endomorphisms of a sheaf, and therefore to a sheaf-theoretic description of the entire category
of H-modules. Rather, in applications equivariant K-theory is used as an intermediate step
on the way to equivariant Borel-Moore homology, which leads back to variants of the Springer
correspondence. Namely, by fixing a central character for H, i.e. a Weyl group orbit of ps, qq P
T ˆGm, the central completions of equivariant K-theory are identified by Lusztig [Lu88, Lu89]
with graded Hecke algebras, which have a geometric description where we replace the nilpotent

cone N , Springer resolution rN and Steinberg variety Z by their ps, qq-fixed points. For example,
the Chern character identifies the completion of H at the trivial central character with the
rG “ G ˆ Gm-equivariant homology of the Steinberg variety Z. This algebra is identified via
Theorem 8.11 of [Lu95a] with the full Ext-algebra of the Springer sheaf in the equivariant derived
category

Hgr » HBM
‚ pZ{ rG;Cq “ RΓpZ{ rG,ωZ{ rGq » Ext‚N { rGpSq.

Moreover, by a theorem of Rider [Ri13] this Ext algebra is formal, hence we obtain a full
embedding

(1.1) Hgr-mod » xSy Ă ShpN { rGq

of representations of Hgr into the equivariant derived category of the nilpotent cone. More
generally, for ps, qq P T ˆGm, we have an identification

Hgr
ps,qq » HBM

‚ pZps,qq{ rGps,qq;Cq » Ext‚N ps,qq{ rGps,qq
pSps,qqq

of the corresponding graded Hecke algebra in terms of an ps, qq-variant of the Springer sheaf.
This provides a geometric approach to constructing and studying modules2 of H, see [CG97].

These developments give satisfying descriptions of the representation theory of H at a fixed
central character. However there are numerous motivations to seek a description of families of
representations of varying central character, including classical harmonic analysis (for example in
the setting of spherical varieties [SV17]), K-theory and the Baum-Connes conjecture [ABPS17],
and modular and integral representation theory [EH14, H20, HM18].

1.3. Coherent Springer Theory. In this paper we apply ideas from derived algebraic geome-
try to deduce from Theorem 1.2 a different, and in some sense simpler, geometric realization of
the affine Hecke algebra, in which we first replace K-theory by Hochschild or cyclic homology,
and then derive a description of its entire category of representations as a category of coherent
sheaves (without the need for specifying central characters). For technical reasons, we will need

to replace the nilpotent cone N with its formal completion pN Ă g, and likewise the Steinberg

variety Z “ rN ˆg
rN will be defined via a derived fiber product. For precise definitions of objects

in this context, see Section 1.7.3.

Theorem 1.4 (Theorem 2.29, Corollary 2.38). Let k be an algebraically closed field of charac-
teristic 0, and G a reductive algebraic group over k.

(1) The trace map from connective K-theory to Hochschild homology on CohpZ{ rGq factors
through an isomorphism of K0 and HH‚ (which is concentrated in cohomological degree
zero):

KpCohpZ{ rGqq bZ k //

��

HH‚pCohpZ{ rGqq

»

��
K0pCohpZ{ rGqq bZ k

» // HH0pCohpZ{ rGqq.

2Further if one had an ps, qq-version of Rider’s formality theorem, one could deduce a full embedding of

the corresponding module categories into equivariant derived categories of constructible sheaves on N ps,qq. See
Theorem 3.1 of [Kat15] for an accounting.
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(2) The Steinberg stack satisfies Hochschild-to-cyclic degeneration: fixing an isomorphism
H‚pBS1q » krruss, there is an isomorphism

Hrruss » HNpCohpZ{ rGqq
between the affine Hecke algebra and the negative cyclic homology of the Steinberg stack.

Remark 1.5. Our results also allow for an identification of monodromic variants of the affine
Hecke category. See Remark 2.34 for details.

The Hochschild homology of categories of coherent sheaves admits a description in the derived
algebraic geometry of loop spaces. In particular, we deduce an isomorphism of the affine Hecke
algebra with volume forms on the derived loop space to the Steinberg stack,

H » RΓpLpZ{ rGq, ωLpZ{ rGqq.

More significantly, the geometry of derived loop spaces provides a natural home for the entire
category of H-modules, without fixing central characters.

Definition 1.6. Let pN Ă g be the formal completion of the nilpotent cone, rN the usual

(reduced) Springer resolution and µ : rN Ñ N ãÑ pN the composition of the Springer resolution

with the inclusion. The coherent Springer sheaf SG P CohpLp pN { rGqq (or simply S) is the

pushforward of the structure sheaf under the loop map Lµ : Lp rN { rGq Ñ Lp pN { rGq:

SG “ Lµ˚OLpĂN { rGq P CohpLp pN { rGqq.

Equivalently, SG is given by applying the parabolic induction correspondence

Lpxt0u{T q Lppn{Bq “ Lp prN {Gqoo // Lp pN {Gq

to the (reduced) structure sheaf of Lpt0u{T q.

A priori the coherent Springer sheaf is only a complex of sheaves. However we show, using the
theory of traces for monoidal categories in higher algebra, that its Ext algebra is concentrated in
degree zero, and is identified with the affine Hecke algebra. This provides the following “coherent
Springer correspondence”, realizing the representations of the affine Hecke algebra as coherent
sheaves.

Theorem 1.7 (Theorem 4.12). Let G be a reductive algebraic group over an algebraically closed
field of characteristic 0.

(1) There is an isomorphism of algebras HG » EndLpN { rGqpSGq and all other Ext groups of

SG vanish.
(2) There is a full, compact-object preserving embedding

DpHGq » xSGy Ă QC!
pLp pN { rGqq.

(3) The embedding takes the anti-spherical module to the projection of the dualizing sheaf
to the Springer subcategory

DpHGq Q IndH
Hf psgnq ÞÝÑ prSGpωLpxN { rGqq P QC!

pLp pN { rGqq.

(4) The embedding is compatible with parabolic induction of affine Hecke algebras, i.e. if P
is a parabolic subgroup of G with Levi quotient M , then there is a commuting diagram

DpHM q QC!
pLp pNM{ĂMqq

DpHGq QC!
pLp pNG{ rGqq,

HGbHM´ Lµ˚˝Lν˚

where Lµ˚ ˝Lν˚ is the pull-push along the correspondence obtained by applying L to the
usual parabolic induction correspondence

Lp pNM{ĂMq Lp pNP { rP q Lp pNG{ rGq.
Lµ Lν
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In particular, Lµ˚Lν˚SM » SG.
(5) Fixing an isomorphism H‚pBS1q » krruss, there is a full embedding of the derived

category of perfect modules for the trivial u-deformation Hrruss into the u-deformation

CohpLp pN { rGqqS1

.

One consequence of the theorem is an interpretation of the coherent Springer sheaf as a
universal family of H-modules.

We also conjecture (Conjecture 4.15) – and check for SL2 – that S is actually a coherent
sheaf (i.e., lives in the heart of the standard t-structure on coherent sheaves). The vanishing of
all nonzero Ext groups of S suggests the existence of a natural “exotic” t-structure for which S
is a compact projective object in the heart. For such a t-structure we would then automatically
obtain a full embedding of the abelian category H-mod into “exotic” coherent sheaves, where
one could expect a geometric description of simple objects. See Section 5.3 for a discussion.

We will explain in Section 1.5 how equivariant localization and Koszul duality patterns in
derived algebraic geometry (as developed in [BN13, Ch20a, Ch21]) provides the precise com-
patibility between this coherent Springer theory and the usual perverse Springer theory, one
parameter at a time.

1.4. Applications to the local Langlands correspondence. We will consider a derived
stack Luq,G of unipotent Langlands parameters, which parametrizes the unipotent Weil-Deligne
representations for a local field F with residue field Fq, and whose set of k-points is a variant
of the set of Deligne-Langlands parameters in Theorem 1.3 (with semisimplicity of s dropped).
Note that the following notions make sense for any q P C, with applications to local Langlands
when q is a prime power, and that, in line with expectations, the stack of unipotent Langlands
parameters depends only on order of the residue field of F .

Definition 1.8. Let q “ pr be a prime power.

(1) The stack of unipotent Langlands parameters Luq,G “ p pN {Gqq (or simply Luq ) is the

derived fixed point stack of multiplication by q P Gm on pN {G. Equivalently, it is the
fiber of the loop (or derived inertia) stack of the nilpotent cone over q P Gm,

Luq,G //

��

Lp pN { rGq

��
tqu // Lppt {Gmq “ Gm{Gm.

Thus informally

Luq,G » tg P G,n P N : gng´1 “ qnu{G.

By Proposition 4.3 this a priori derived stack has no derived nor infinitesimal structure,

i.e. p pN {Gqq “ pg{Gqq and we may equivalently define Luq,G using the classical fiber
product of the reduced nilpotent cone N .

(2) The q-coherent Springer sheaf Sq,G P CohpLuq q (or simply Sq) is the ˚-specialization of
SG to the fiber Luq over q. Equivalently, Sq,G is given by applying the parabolic induction
correspondence

Luq,T Luq,Boo // Luq,G
to the structure sheaf of Luq,T » T ˆBT .

Specializing Theorem 1.7 to q P Gm we obtain the following. Note that we implicitly identify,
in this case where q P R`, the category of perfect complexes for Hq with the category of
complexes with coherent cohomology via Theorem 2.2 of [OS09].

Theorem 1.9 (Theorem 4.12). Suppose that q “ pr is a prime power, and let G be a reductive
algebraic group an algebraically closed field of characteristic 0.
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(1) There an isomorphism of algebras Hq,G » EndLq,GpSq,Gq and a full embedding

Df.g.pHq,Gq » xSq,Gy Ă CohpLuq,Gq.
In particular, this gives a full embedding of the principal block of G_pF q into coherent
sheaves on the stack of unipotent Langlands parameters.

(2) The embedding takes the anti-spherical module to the structure sheaf OLuq,G P CohpLuq,Gq.
(3) The embedding is compatible with parabolic induction, i.e. if P_ Ă G_ is a parabolic

with quotient Levi M_, then we have a commutative diagram

tunramified principal series of M_pF qu » Df.g.pHq,M q CohpLuq,M q

tunramified principal series of G_pF qu » Df.g.pHq,Gq CohpLuq,Gq,

iG
_

P_ pµqq˚˝pν
q
q
˚

where iG
_

P_ : Repsmf.g.pM
_pF qq Ñ Repsmf.g.pG

_pF qq is the parabolic induction functor from

smooth finitely-generated3 reprentations of M_pF q to G_pF q restricted to the unrami-
fied principal series, and the map pµqq˚ ˝pν

qq˚ is the pull-push along the correspondence
obtained by applying taking derived q-invariants of the usual parabolic induction corre-
spondence

Luq,M Luq,P Luq,G.
µq νq

In particular, pµqq˚pν
qq˚Sq,M » Sq,G.

Note that due to Proposition 4.3, in the q-specialized setting of the above theorem the stack

of parameters has no infinitesimal structure, i.e. pg{Gqq “ p pN {Gqq. This has two consequences:
first, due to Proposition 3.12, which does not apply in the context of Theorem 1.7, we may
identify the anti-shperical sheaf at specialized q with the structure sheaf, which is equivalent to
the dualizing sheaf. Second, the anti-spherical sheaf at specialized q is a compact object in the
category, i.e. a coherent sheaf, whereas the sheaf appearing in Theorem 1.7 is not.

The existence of such an equivalence was conjectured independently by Hellmann in [He20],
whose work we learned of at a late stage in the preparation of his paper. Indeed, the above result
resolves Conjecture 3.2 of [He20]. Hellmann’s work also gives an alternative characterization
of the (q-specialized) coherent Springer sheaf as the Iwahori invariants of a certain family of
admissible representations on Luq,G constructed by Emerton and the third author in [EH14].

A much more general categorical form of the local Langlands correspondence is formulated
by Fargues-Scholze [FS21] and Zhu [Zh20], as well as compatibility with a categorical global
Langlands correspondence. In loc. cit. a forthcoming proof by Hemo and Zhu [HZ] of a result
closely parallel to ours is also announced.

Remark 1.10. The local Langlands correspondence depends on a choice of Whittaker normal-
ization; that is, a choice of a pair pU,ψq, where U is the unipotent radical of a Borel subgroup
of G_ and ψ is a generic character of UpF q, up to G_pF q-conjugacy, and indeed, the conjecture
in [He20] and the announced result in [HZ] depend on such a choice. In the formulation of
Theorem 1.9 no such choice appears explicitly, but instead comes from the integral structure on
G_, which in particular gives us a distinguished hyperspecial subgroup G_pOq of G_pF q.

Indeed, for any unramified group G_ over F there is a natural bijection between G_pF q-
conjugacy classes of Whittaker data pU,ψq for G_ and G_pF q-conjugacy classes of triples
pKx, Ux, ψxq, where Kx is a hyperspecial subgroup of G_pF q, Ux is the unipotent radical of
a Borel subgroup of the reductive quotient G_x of Kx, and ψx is a generic character of Ux. This
bijection has the property that if pU,ψq corresponds to pKx, Ux, ψxq, then the summand of the

compact induction cInd
G_pF q
UpF q ψ corresponding to the unipotent principal series block is isomor-

phic to cInd
G_pF q
Kx

Stx, where Stx denotes the inflation to Kx of the Steinberg representation of

the reductive quotient G_x . In particular the “unipotent principal series part” of cInd
G_pF q
UpF q ψ

3I.e. the corresponding modules for Hecke algebras are finitely generated.
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depends only on the conjugacy class of hyperspecial subgroup associated to pU,ψq, and not the
whole tuple pKx, Ux, ψxq. This means that the restriction of the local Langlands correspondence
to the unramified principal series depends only on a choice of hyperspecial subgroup (which we
have fixed).

Note in particular that for any choice of Whittaker datum pU,ψq compatible with our hy-

perspecial subgroup G_pOq, the Hq,G-module associated to the compact induction cInd
G_pF q
UpF q ψ

is precisely the antispherical module, so property (2) of Theorem 1.9 is consistent with (and
indeed, equivalent to) the Whittaker normalization appearing in [He20].

In the case of the general linear group and its Levi subgroups, one can go much further.
Namely, in Section 6 we combine the local Langlands classification of irreducible representations
due to Harris-Taylor and Henniart with the Bushnell-Kutzko theory of types and the ensuing
inductive reduction of all representations to the principal block. The result is a spectral descrip-
tion of the entire category of smooth GLnpF q representations. To do so it is imperative to first
have a suitable stack of Langlands parameters. These have been studied extensively in mixed
characteristic, for instance in [H20] in the case of GLn, or more recently in [BG19, BP19], and
[DHKM20] for more general groups. Since in our present context we work over C, the results
we need are in general simpler than the results of the above papers, and have not appeared
explicitly in the literature in the form we need.

Theorem 1.11 ([H20]). Let F be a local field with residue field Fq. There is a classical Artin
stack locally of finite type LF,GLn , with the following properties:

(1) The k-points of LF,GLn are identified with the groupoid of continuous n-dimensional
representations of the Weil-Deligne group of F .

(2) The formal deformation spaces of Weil-Deligne representations are identified with the
formal completions of LF,GLn .

(3) The stack Luq,GLn
of unipotent Langlands parameters is a connected component of LF,GLn .

We then deduce a categorical local Langlands correspondence for GLn and its Levi subgroups
as follows:

Theorem 1.12 (Theorems 6.13, 6.15, and 6.17). For each Levi subgroup M of GLnpF q, there
is a full embedding

DpMq ãÑ QC!
pLF,M q

of the derived category of smooth M -representations into ind-coherent sheaves on the stack of
Langlands parameters, uniquely characterized by the following properties.

(1) If π is an irreducible cuspidal representation of M , then the image of π under this
embedding is the skyscraper sheaf supported at the Langlands parameter associated to π.

(2) Let M 1 be a Levi subgroup of G, and let P be a parabolic subgroup of M 1 with Levi
subgroup M . There is a commutative diagram of functors:

DpMq QC!
pLF,M q

DpM 1q QC!
pLF,M 1q

iM
1

M
µ˚ν

˚

in which iM
1

M is the parabolic induction functor and the right-hand map is obtained by
applying the correspondence

LF,M LF,P LF,M 1 .
µ ν

Note that the local Langlands correspondence for cuspidal representations of GLn and its
Levis, is an input to the above result. We do not expect the functor to be an equivalence, see
Remark 4.13.
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As with Theorem 1.9 our results here were independently conjectured by Hellmann (see in
particular Conjecture 3.2 of [He20]) for more general groups G; these results also fit the general
categorical form of the local Langlands correspondence formulated by Fargues-Scholze [FS21]
and Zhu [Zh20].

1.4.1. Discussion: Categorical Langlands Correspondence. Theorems 1.9 and 1.12 match the
expectation in the Langlands program that has emerged in the last couple of years for a strong
form of the local Langlands correspondence, in which categories of representations of groups over
local fields are identified with categories of coherent sheaves on stacks of Langlands parameters.
Such a coherent formulation of the real local Langlands correspondence was discovered in [BN13],
while the current paper finds a closely analogous picture in the Deligne-Langlands setting. As
this paper was being completed Xinwen Zhu shared the excellent overview [Zh20] on this topic
and Laurent Fargues and Peter Scholze completed the manuscript [FS21], to which we refer the
reader for more details. We only briefly mention three deep recent developments in this general
spirit.

The first derives from the work of V. Lafforgue on the global Langlands correspondence over
function fields [La18a, La18b]. Lafforgues’ construction in Drinfeld’s interpretation (cf. [LaZ19,
Section 6], [La18b, Remark 8.5] and [Ga16]) predicts the existence of a universal quasicoherent
sheaf AX on the stack of representations of π1pXq into G corresponding to the cohomology of
moduli spaces of shtukas. The theorem of Genestier-Lafforgue [GL18] implies that the category
of smooth G_pF q representations sheafifies over a stack of local Langlands parameters, and
the local version A of the Drinfeld-Lafforgue sheaf is expected [Zh20] to be a universal G_pF q-
module over the stack of local Langlands parameters. In other words, the fibers Aσ are built
out of the G_pF q-representations in the L-packet labelled by σ. The expectation is that the
coherent Springer sheaf, which by our results is naturally enriched in Hq-modules, is identified
with the Iwahori invariants of the local Lafforgue sheaf Sq » AI .

The second is the theory of categorical traces of Frobenius as developed in [Ga16, Zh18,
GKRV20]. When applied to a suitably formulated local geometric Langlands correspondence, we
obtain an expected equivalence between an automorphic and spectral category. The automorphic
category is ShpG_pF q{FrG_pF qq, the category of Frobenius-twisted adjoint equivariant sheaves
on G_pF q, with orbits given by the Kottwitz set BpG_q of isomorphism classes of G_-isocrystals.

The spectral category is expected to be a variant of a category QC!
pLF,Gq of ind-coherent sheaves

over the stack LF,G of Langlands parameters into G. The former category contains the categories
of representations of G_pF q and its inner forms as full subcategories, hence we expect a spectral
realization in the spirit of Theorems 1.9 and 1.12.

The last of these developments is the program of Fargues-Scholze [Fa16], [FS21] in the context
of p-adic groups, which interprets the local Langlands correspondence as a geometric Langlands
correspondence. On the automorphic side one considers sheaves on the stack BunG_ of bundles
on the Fargues-Fontaine curve, whose isomorphism classes |BunG_ | “ BpG_q are given as
before by the Kottwitz set of G_-isocrystals. This category of sheaves admits a semiorthogonal
decomposition indexed by BpG_q, in which the factor corresponding to b P BpG_q is naturally
equivalent to the category of smooth representations of the inner form G_b pF q arising from b.
On the spectral side of the picture is the same category of ind-coherent sheaves on the moduli
stack of Langlands parameter that we study. Fargues-Scholze construct a spectral action of the
category of perfect complexes on this moduli stack on the category of `-adic sheaves on BunG_ ,
and conjecture that there is an equivalence of this category with the category of ind-coherent
sheaves on the moduli stack of Langlands parameters compatible with this spectral action. Such
an equivalence necessarily has the properties given in Theorem 1.12, although we do not attempt
to verify that our construction is compatible with that of Fargues-Scholze.

1.5. Compatibility of coherent and perverse Springer theory. In this section we explain
how equivariant localization and Koszul duality patterns in derived algebraic geometry (as
developed in [BN13, Ch20a, Ch21]) provide the precise compatibility between this coherent
version of the local Langlands correspondence and the more familiar model [Ze81, Lu83, Vo93]
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for local Langlands categories with fixed central character via categories of perverse sheaves.
This pattern was developed in the context of the real local Langlands correspondence: the
work of Adams, Barbasch and Vogan [ABV92, Vo93] and Soergel’s conjecture [So01] describe
representations of real groups with fixed infinitesimal character by equivariant perverse sheaves
on spaces of Langlands parameters, while [BN13] gives a conjectural description of the full
categories of representations in terms of coherent sheaves. Likewise, the solution to the Deligne-
Langlands conjecture in [KL87] realizes the irreducible representations of affine Hecke algebras,
one central parameter ps, qq at a time, in terms of simple equivariant perverse sheaves (or
equivalently D-modules) on a collection of spaces N ps,qq. On the other hand, Theorem 1.7
provides a uniform description of all representations of H in terms of coherent sheaves on single
parameter space.

The underlying mechanism in passing between the coherent sheaves on our algebro-geometric

parameter space LuG and perverse sheaves or D-modules on variants of the nilpotent cone N ps,qq
G

is the interpretation of D-modules in the derived algebraic geometry of loop spaces [BN12,
BN13, TV11, TV15, Pr15, Ch20a], a unification of Connes’ description of de Rham cohomology
as periodic cyclic homology and of the Koszul duality between D-modules and modules for the
de Rham complex [BeDr91, Ka91]. Recall that the loop space, or derived inertia, of a stack X
is defined by the mapping space from the circle, or equivalently the (derived) self-intersection
of the diagonal

LX “ MappS1, Xq “ X ˆXˆX X “ ∆X∆.

For X “ SpecpRq affine, the loop space is the spectrum of the (derived) algebra of Hochschild
chains HH‚pRq “ R bRbR R. More generally for any scheme X, we have the (Hochschild-
Kostant-Rosenberg) identification

LX » TX r´1s “ SpecX Sym‚XpΩ
1
X r1sq

of the loop space with the relative spectrum of (derived) differential forms. Under this identifi-
cation the loop rotation action of S1 on LX (Connes’ B-differential on the level of Hochschild
homology) becomes encoded by the de Rham differential.

Theorem 1.13 (Koszul duality [BN12, TV11, Pr15]). For X an algebraic space almost of finite
type over k a field of characteristic zero, there is a natural equivalence of kppuqq-linear categories

CohpLXqS
1

bkrruss -mod kppuqq -mod » DX -perf bk -mod kppuqq -mod

where u P H‚pBS1; kq is the degree 2 Chern class.

When X is a stack, we only have an equivalence between D-modules and S1-equivariant

sheaves on the formal loop space pLX, i.e. the formal completion of the loop space LX at
constant loops. The loop space of a smooth global quotient stack LpX{Gq lies over a parameter
space LpBGq “ G{G, and the equivariant localization patterns in [Ch20a] realize the formal
completion (resp. specialization) of LpX{Gq over a semisimple parameter z P G{G as the formal

loop space of the Gz-equivariant classical z-fixed points pLpXz{Gzq (resp. the non-equivariant
loop space LpXzq). In particular, in the setting of Deligne-Langlands, specializing at a parameter

z recovers the loop space of the fixed point schemes Lp pN s,qq, and we can pass to D-modules on
the correpsonding analytic space via Koszul duality.

In order to formulate the equivalence at completed parameters, we need to renormalize the
category of coherent sheaves to include objects such as the structure sheaf or sheaf of distribu-
tions on formal completions. This form of Koszul duality is developed by one of the authors
in [Ch21] (see Section 5.2 for the details). We call objects in this category Koszul-perfect sheaves

KPerfppTX r´1sq on the formal odd tangent bundle, and they have the following favorable proper-
ties: (1) they are preserved by smooth pullback and proper pushforward in X, (2) for a smooth
Artin stack X, Koszul-perfect objects are those which pull back to Koszul-perfect objects along
a smooth atlas and (3) for smooth schemes X they are just the coherent complexes. These
properties mirror the properties enjoyed by the subcategory of coherent D-modules on QCA
stacks (which do not coincide with compact objects in general, see [DG13]).
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Theorem 1.14 (Theorem 5.23, [Ch21]). Let X{G be a global quotient stack and let F D̆pX{Gq
denote the category of filtered renormalized (i.e. ind-coherent) D-modules on the global quotient
stack X{G. There is an equivalence of categories

KPerfp pLpX{GqqBGa¸Gm » F D̆pX{Gq.

Applying this theorem requires choosing, at each parameter, a graded lift of the z-completed
(or specialized) coherent Springer sheaf. There is a natural geometric or Hodge graded lift, and
using this lift, we establish in Corollary 5.3 that the coherent Springer sheaf is Koszul dual at
each parameter to the corresponding perverse Springer sheaves:

Corollary 1.15. Fix a semisimple parameter ps, qq P rG, and let dps, qq “ dimpN ps,qqq. Then
the ps, qq-specialization of the coherent Springer sheaf S is Koszul dual to the ps, qq-Springer
sheaf µz˚CĂN ps,qqrdps, qqs, i.e. the pushforward of the (shifted) constant sheaf along ps, qq-fixed
points of the Springer resolution.

More precisely, the ps, qq-specialization Sps, qq of S has a Hodge graded lift, which is Koszul
dual to the ps, qq-Springer sheaf Sps, qq equipped with its Hodge filtration. Likewise, the Hodge

graded lift of the ps, qq-completion Spxs, qq is naturally isomorphic to the rGps,qq-equivariant ps, qq-
Springer sheaf Spxs, qq equipped with the Hodge filtration.

1.6. Methods. We now discuss the techniques underlying the proofs of Theorems 1.4 and 1.7
– namely, Bezrukavnikov’s Langlands duality for the affine Hecke category and the theory of
traces of monoidal dg categories.

1.6.1. Bezrukavnikov’s theorem. The Kazhdan-Lusztig theorem (Theorem 1.2) has been fa-
mously categorified in the work of Bezrukavnikov [Bez06, Bez16], with numerous applications
in representation theory and the local geometric Langlands correspondence.

Theorem 1.16. [Bez16] Let F “ Fqpptqq. Let I Ă GpF q be an Iwahori subgroup, and define

the Steinberg stack Z{G over Q`. There is an equivalence of monoidal dg categories

DpIzG_pF q{I;Q`q » CohpZ{Gq

intertwining the automorphisms pullback by geometric Frobenius and pullback by multiplication
by q.

Remark 1.17. In view of Theorem 1.16, we define the affine Hecke category to be H :“
CohpZ{Gq. It is natural to expect a mixed version, identifying the mixed affine Hecke cate-

gory Hm :“ CohpZ{ rGq with the mixed Iwahori-equivariant sheaves on the affine flag variety
(as studied in [BY13]). Indeed such a version is needed to directly imply the Kazhdan-Lusztig
Theorem 1.2 by passing to Grothendieck groups, rather than its specialization at q “ 1.

Theorem 1.16 establishes the “principal block” part of the local geometric Langlands corre-
spondence. Namely, it implies a spectral description of module categories for the affine Hecke
category (the geometric counterpart of unramified principal series representations) as suitable
sheaves of categories on stacks of Langlands parameters.

We apply Theorem 1.16 in Section 2 to construct a semiorthogonal decomposition of the
affine Hecke category. This allows us to calculate its Hochschild and cyclic homology and to
establish the comparison with algebraic K-theory.
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1.6.2. Trace Decategorifications. To prove Theorem 1.7 we use the relation between the “hori-
zontal” and “vertical” trace decategorifications of a monoidal category, and the calculation of
the subtler horizontal trace of the affine Hecke category in [BNP17b].

Let pC, ˚q denote a monoidal dg category. Then we can take the trace (or Hochschild homol-
ogy) trpCq “ HHpCq of the underlying (i.e. ignoring the monoidal structure) dg category C,
which forms an associative (or A8-)algebra ptrpCq, ˚q thanks to the functoriality (specifically the
symmetric monoidal structure) of Hochschild homology, as developed in [TV15, HSS17, CP19,
GKRV20]. This is the naive or “vertical” trace of C. On the other hand, a monoidal dg category
has another trace or Hochschild homology TrpC, ˚q using the monoidal structure which is itself
a dg category – the categorical or “horizontal” trace of pC, ˚q. This is the dg category which is
the universal receptacle of a trace functor out of the monoidal category C. In particular, the
trace of the monoidal unit of C defines an object r1Cs P TrpC, ˚q – i.e., TrpC, ˚q is a pointed
(or E0-)category4. Moreover, as developed in [CP19, GKRV20] the categorical trace provides a
“delooping” of the naive trace: we have an isomorphism of associative algebras

ptrpCq, ˚q » EndTrpC,˚qpr1Csq.

In particular taking Hom from r1Cs defines a functor

Hompr1Cs,´q : TrpC, ˚q ÝÑ pHHpCq, ˚q-mod.

Under suitable compactness assumptions the left adjoint to this functor embeds the “naive”
decategorification (the right hand side) as a full subcategory of the “smart” decategorification
(the left hand side).

More generally, given a monoidal endofunctor F of pC, ˚q, we can replace Hochschild homology
(trace of the identity) by trace of the functor F , obtaining two decategorifications (vertical and
horizontal) with a similar relation

(1.2) Hompr1Cs,´q : TrppC, ˚q, F q ÝÑ ptrpC, F q, ˚q-mod.

Remark 1.18 (Trace of Frobenius). When C is a category of `-adic sheaves on a stack over Fq and
Fr is the Frobenius morphism, Gaitsgory has explained [Ga16] that one expects a formalism of
categorical traces to hold realizing the function-sheaf correspondence – i.e. trpShpXq,Fr˚q should
be the space of functions on XpFqq. Likewise the monoidal version of trace decategorification
would then allow us to pass from Hecke categories to categories of representations directly.
Zhu [Zh18] explains some of the rich consequences of this formalism that can already be proved
directly.

Example 1.19 (Finite Hecke Categories and unipotent representations). For the finite Hecke
category C “ ShpBzG{Bq, the main theorem of [BN15] identifies TrpC, ˚q with the full category
of Lusztig unipotent character sheaves on G. The object r1Cs is the Springer sheaf itself, and
modules for the naive decategorification ptrppCq, ˚q, idCq gives the Springer block, or unipotent
principal series character sheaves, as modules for the graded Hecke algebra. Likewise the trace
of Frobenius on pC, ˚q is studied in [Zh18, Section 3.2] (see also [Ga16, Section 3.2]) – here the
categorical trace is the category of all unipotent representations of GpFqq, not only those in the
principal series.

1.6.3. Trace of the affine Hecke category. We now consider the two kinds of trace decategori-
fication for the affine Hecke category H. First our description of the Hochschild homology of
the Steinberg stack provides a precise sense in which the affine Hecke category categorifies the
affine Hecke algebra. The following Corollary is a result of Theorems 1.16 and 1.4.

Corollary 1.20. The (vertical/naive) trace of Frobenius on the affine Hecke category is identi-
fied with the affine Hecke algebra H » trpH,Fr˚q. Hence the naive decategorification of H-mod
is the category of unramified principal series representations of G_pF q.

4The horizontal trace is also the natural receptacle for characters of C-module categories, and rCs appears

as the character of the regular left C-module, see Definition 3.2.
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Remark 1.21. Note that this corollary would follow directly from Theorem 1.16 if we had avail-
able the hoped-for function-sheaf dictionary for traces of Frobenius on categories of `-adic sheaves
(Remark 1.18). After this paper was complete Xinwen Zhu informed us that Hemo and he have
a direct argument for this corollary, see the forthcoming [HZ]. Combined with Bezrukavnikov’s
theorem and Theorem 1.22 this gives an alternative argument for the identification of Hq with
the Ext algebra of the coherent Springer sheaf.

The results of [BNP17b] (based on the technical results of [BNP17a]) provide an affine analog
of the results of [BN15, BFO12] for finite Hecke categories and (thanks to Theorem 1.16) a
spectral description of the full decategorification of H. Statement (1) is directly taken from
Theorem 4.4.1 in [BNP17b], statements (2)-(3) follow immediately from the same techniques
and Theorem 3.8.5 of [GKRV20] (see Theorems 3.4 and 3.23 and Lemma 3.24), and the absence
of a singular support condition is discussed in Remark 4.14.

Theorem 1.22 ([BNP17b]). Let G be a reductive group over a field of characteristic 0.

(1) The (horizontal/categorical) trace of the monoidal category pCohpZ{Gq, ˚q is identified
as

TrpCohpZ{Gq, ˚q “ CohpLp pN {Gqq.
The same assertion holds with G replaced by rG “ GˆGm.

(2) The trace of multiplication by q P Gm acting on the monoidal category pCohpZ{Gq, ˚q is
identified as

TrppCohpZ{Gq, ˚q, q˚q “ CohpLuq q.
(3) The distinguished object r1Cs in each of these trace decategorifications is given by the

coherent Springer sheaf S (or its q-specialized version Sq). Hence the endomorphisms
of the coherent Springer sheaf recover the affine Hecke algebra (the vertical trace, as in
Theorem 1.7), and the natural functor in Theorem 3.4 is identified with

HompSq,´q : CohpLuq q ÝÑ Hq-mod.

In other words, we identify the entire category of coherent sheaves on the stack of unipotent
Langlands parameters as the categorical trace of the affine Hecke category. Inside we find the
unramified principal series as modules for the naive trace (the Springer block). Just as the
decategorification of the finite Hecke category (Example 1.19) knows all unipotent representa-
tions of Chevalley groups, the horizontal trace CohpLuq q of the affine Hecke category contains in
particular all unipotent representations of G_pF q – i.e., the complete L-packets of unramified
principal series representations – thanks to Lusztig’s remarkable Langlands duality for unipotent
representations:

Theorem 1.23 ([Lu95b]). The irreducible unipotent representations of G_pF q are in bijection
with G-conjugacy classes of triples ps, n, χq with s, n q-commuting as in Theorem 1.3 and χ an
arbitrary G-equivariant local system on the orbit of ps, nq.

It would be extremely interesting to understand Theorem 1.23 using trace decategorifica-
tion of Bezrukavnikov’s Theorem 1.16. In particular we expect the full category of unipotent

representations to be embedded in QC!
pLuq q as well as its cyclic deformation QC!

pLuq qS
1

.

1.7. Assumptions and notation. We work throughout over a field k of characteristic zero.
We will sometimes work in the specific case of k “ Q` (e.g. in Section 2.2), and our main results
require in addition that the field is algebraically closed. This requirement that k is algebraically
closed is also used in Section 5 in order to apply equivariant localization. All functors and
categories are dg derived unless noted otherwise. All (co)chain complexes are cohomologically
indexed, even if referred to as a chain complex. We abusively use HH to denote the Hochschild
chain complex rather than its homology groups, and use H‚pHHq to denote the latter (and
similarly for its cyclic variants HC,HP ).
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1.7.1. Categories. Let A be a Noetherian dg algebra. We let A -mod denote the dg derived
category of A-modules, A -perf denote the full subcategory of perfect complexes, and A -coh
denote the subcategory of coherent objects, i.e. cohomologically bounded complexes with co-
herent cohomology over π0pAq “ H0pAq. Let C denote a symmetric monoidal dg category, and
A P AlgpCq an algebra object. We denote by A -modC the category of A-module objects in C.
We denote the compact objects in a stable 8-category C by Cω, i.e. the objects X P C for
which HomCpX,´q commutes with all infinite direct sums (i.e. at least the countable cardinal
ω).

Let C be a stable k-linear8-category (or a k-linear triangulated category or a pretriangulated
dg category). These come in two primary flavors, “big” and “small”: dgCatk is the 8-category
of presentable stable k-linear 8-categories (with colimit-preserving functors), and dgcatk is
the 8-category of small idempotent-complete stable k-linear 8-categories (with exact functors).
Both dgCatk and dgcatk are symmetric monoidal8-categories under the Lurie tensor product,
with units Vectk “ k -mod and Perfk “ k -perf “ k -coh the dg categories of chain complexes
of k-vector spaces and perfect chain complexes, respectively. We have a symmetric monoidal
ind-completion functor:

Ind : dgcatk Ñ dgCatk.

It defines an equivalence between dgcatk and the subcategory of dgCatk defined by compactly
generated categories and compact functors (functors preserving compact objects, or equivalently,
possessing colimit preserving right adjoints).

Assume that C is either small or that it is compactly generated, and let X P C be an object,
which we require to be compact in the latter case. We denote by xXy the subcategory (classicaly
or weakly) generated by X.

1.7.2. Algebraic geometry. We work in the setting of derived algebraic geometry over a field k
of characteristic zero, in the setting presented in [GR17]. Namely, this is a version of algebraic
geometry in which functors of (discrete) categories from rings to sets are replaced by prestacks,
functors of (8-)categories from connective commutative dg k-algebras to simplicial sets. Ex-
amples of prestacks are given by both classical schemes and stacks and topological spaces (or
rather the corresponding simplicial sets of singuar chains) such as S1, considered as constant
functors.

We will only be concerned with QCA (derived) stacks as in [DG13], i.e., quasi-compact
stacks of finite presentation with affine5 finitely-presented diagonal (in fact only with quotients
of schemes by affine group-schemes), and use the term stack to refer to such an object. A stack X
carries a symmetric monoidal8-category (i.e., a commutative algebra object in dgCatk) QCpXq
of quasicoherent sheaves, defined by right Kan extension from the case of representable functors
X “ SpecpRq which are assigned QCpSpecRq “ R-mod. For all stacks we will encounter (and
more generally for perfect stacks in the sense of [BFN10]), we have QCpXq » IndpPerfpXqq, i.e.,
quasicoherent sheaves are compactly generated and the compact objects are perfect complexes
(PerfpXq P dgCatk forms a small symmetric monoidal dg category).

We can also consider the category QC!
pXq “ IndpCohpXqq P dgCatk of ind-coherent sheaves,

whose theory is developed in detail in the book [GR17] (see also the earlier [Ga13]). The category

QC!
pXq (under our assumption that X is QCA) is compactly generated by CohpXq, the objects

which are coherent after smooth pullback to a scheme (see Theorem 3.3.5 of [DG13]). For
smooth X, the notions of coherent and perfect, hence ind-coherent and quasicoherent, sheaves
are equivalent.

A crucial formalism developed in detail in [GR17] is the functoriality of QC!. Namely for a

map p : X Ñ Y of stacks, we have colimit-preserving functors of pushforward p˚ : QC!
pXq Ñ

QC!
pY q and exceptional pullback p! : QC!

pY q Ñ QC!
pXq, which form an adjoint pair pp˚, p

!q

for p proper. These functors satisfy a strong form of base change, which makes QC! a functor

5The notion of a QCA stack in [DG13] is slightly more general; only automorphism groups at geometric points
are required to be affine, and they are not required to be of finite presentation.
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– in fact a symmetric monoidal functor6 – out of the category of correspondences of stacks (the
strongest form of this result is [GR17, Theorem III.3.5.4.3, III.3.6.3]).

See Definition 2.3.1 of [Ch20a] for a definition of the derived loop space Lp´q. For a stack
X with a self-map f , we define Xf to be the derived fixed points of f , i.e. the derived fiber
product

Xf X

X X ˆX.

pf,idXq

∆

When f “ idX , we have Xf “ LX. Given a group action G on a scheme X, and f : X Ñ X
commuting with the G-action, we have via Proposition 2.1.8 of [Ch20a]:

pX{Gqf pX ˆGq{G

X{G pX ˆXq{G

pf˝α,idXq

∆

where α is the action map.
When f is multiplication by g P G, we sometimes write Xg “ LgpXq » LpX{Gq ˆLpBGq tgu,

as in Definition 4.1. Depending on whether we view the group G as an input to the construction
or not, we adopt slightly different notation, e.g. the specialized loop space in Definition 5.1 is
denoted L1gpX{Gq, and we have LgpXq “ L1gpX{Gq.

1.7.3. Representation theory. In Sections 1-4 of the paper, unless otherwise noted, G denotes
a reductive group over a field k of characteristic 0 with Borel B and torus T Ă B with uni-
versal Cartan H and (finite) universal Weyl group Wf . The extended affine Weyl group is
denoted Wa :“ X‚pT q¸Wf . We denote by ReppGq “ QCpBGq the derived category of rational
representations of G.

Morally, we view G as a group on the spectral side of Langlands duality. On the automorphic
side, one is interested in representations of G_pF q, where we let F denote a non-archimedian
local field with ring of integers O. We will sometimes denote G_pF q by G, with corresponding
Iwahori I (and pro-unipotent radical I0), defined by the fixed Borel subgroup B_ Ă G_ and
maximal hyperspecial G_pOq Ă G_pF q. In Section 6.1, we will reverse this convention for ease
of reading, and G will denote a split reductive group over a the non-archimedian local field F .

We will often be interested in equivariance with respect to the trivial extension of G, which

we denote7
rG “ GˆGm. Likewise, g “ LiepGq, b “ LiepBq, et cetera.

Let B “ G{B denote the flag variety, NG denote the nilpotent cone, and pNG its formal

neighborhood inside g formal neighborhood of the nilpotent cone of g. We let rNG denote the

(reduced) Springer resolution, and denote by µ : rNG “ T˚pG{Bq Ñ NG ãÑ pNG the composition
of the Springer resolution with the inclusion, and rg the Grothendieck-Springer resolution, which

is rG-equivariant. Sometimes, we take the codomain of µ to be all of g. Let ZG “ rNG ˆg
rNG

denote the derived Steinberg scheme, Z 1G “ rNG ˆg rg denote the non-reduced Steinberg scheme,
and S^G “ prg ˆg rgq

^ denote the formal Steinberg scheme via completing along the nilpotent

6In general QC! is only right-lax symmetric monoidal but thanks to [DG13] it is strict on QCA stacks. Also

the full correspondence formalism in [GR17] only includes pushforward for [inf,ind-]schematic maps.
7We explain this choice of notation. In the usual convention (opposite to ours), G denotes a group on the

“automorphic” side of Langlands and LG is used to denote its Langlands dual on the “spectral” side. It was

proposed in [BG14] [Ber20] to replace G with a (possibly nontrivial) central extension of G by Gm, denoted rG,

whose Langlands dual would be denoted CG. When G is adjoint (therefore LG simply connected), the center is

trivial and therefore rG “ GˆGm is a trivial extension, and CG “ LGˆGm. Note that in our work is mostly on
the spectral side so we depart from this convention in using G to denote a group on the spectral side rather than
LG for convenience. We note there is an inherent asymmetry since taking Langlands duals flips the ordering in

the short exact sequence 1 Ñ Gm Ñ GÑ rGÑ 1.
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elements. We denote by π0pZGq the classical Steinberg variety, which coincides with pZ 1Gqred “
pZ^G qred. We will drop the subscript if there is no ambiguity regarding the group G in discussion.

We denote the affine Hecke algebra by HG; we use a Coxeter presentation, i.e. a definition
on the spectral side, which can be found e.g. in Definition 7.1.9 of [CG97]. It is a krq, q´1s-
algebra whose specializations at prime powers q “ pr are isomorphic to the Iwahori-Hecke alge-
bras Hq,G » HpG_pF q, Iq :“ FuncpIzG

_pF q{Iq of compactly supported Iwahori-biequivariant
functions on a loop group (or p-adic group). More generally, for a locally compact totally dis-
connected group G, a compact open subgroup K Ă G and a representation τ of K, we denote
its Hecke algebra by HpG,K, τq :“ EndGpcIndG

K τq.

The mixed affine Hecke category is defined by Hm
G :“ CohpZ{ rGq, while the affine Hecke

category is defined to be HG :“ CohpZ{Gq. Note that we define these categories directly on the
spectral side of Langlands duality, while they are usually defined on the automorphic side. That
is, we implicitly pass through (proven and conjectural versions of) Bezrukavnikov’s theorem
(Theorem 1.16).

We define the coherent Springer sheaf and the coherent q-Springer sheaf by:

SG :“ Lµ˚OLpĂN { rGq » Lµ˚ωLpĂN { rGq P CohpLp pN { rGqq,

Sq,G :“ pµqq˚OpĂN {Gqq » pµ
qq˚ωpĂN {Gqq P Cohpp pN {Gqqq.

The coherent q-Springer sheaf is a coherent sheaf on the stack of unipotent Langlands parameters:

Luq,G :“ p pNG{Gq
q “ Lqp pNG{Gq.

Note that this definition is functorial and makes sense for any affine algebraic group G (still
completing along nilpotents), and thus the coherent q-Springer sheaf may be realize by applying
parabolic induction

Luq,H Luq,B Luq,G
ν µ

to the structure sheaf of Luq,H , i.e. Sq,G “ µ˚ν
˚OLuq,H .

By Proposition 4.3, if G is reductive then Luq,G is a classical stack (i.e. no derived and no

infinitesimal structure) when q is not a root of unity. Note that other authors [BG19, BP19,
H20, DHKM20, Zh20] have defined a moduli stack of Langlands parameters XF,G for a given
local field F and a reductive group G_ with coefficients in F . Our stack embeds as a connected
component of tame Langlands parameters.

We fix once and for all a coordinate z P Gm. For any geometric vector space or bundle V (e.g.
the Springer resolution), by convention the coordinate will act on geometric fibers by weight -1,
i.e. z ¨ x “ z´1x for x P V , and therefore on functions by weight 1 (i.e. z ¨ fp´q “ zfp´q for
f P V ˚). This negative sign convention is forced by the requirement that the z “ q fixed points

of N { rG correspond to unipotent Langlands parameters ps,Nq for a local field with residue Fq,
i.e. ps,N, qq ¨N “ sNs´1q´1 “ N . We note that, given an identification H » trpHm, idHmq as
in Theorem 2.29, this implies an identification Hq » trpH, q˚q “ trpH,q˚q » trpH,Fr˚q, where
q denotes the action of q P Gm, while q denotes the multiplication by q map corresponding to
the geometric Frobenius Fr under Bezrukavnikov’s equivalence in [Bez16]. This convention is
compatible with [KL87, CG97, AB09, Bez16].

1.8. Acknowledgments. We would like to thank Xinwen Zhu for very enlightening conver-
sations on the topic of categorical traces, the Drinfeld-Lafforgue sheaf and its relation to the
coherent Springer sheaf and for sharing with us an early draft of his paper [Zh20], Pramod Achar
for discussions of purity and Tate-ness properties in Springer theory, and Sam Raskin for sug-
gestions related to renormalized categories of sheaves on formal odd tangent bundles. We would
also like to thank Matthew Emerton for comments regarding Whittaker normalizations, Xuhua
He for pointing out the reference [Re02], and Gurbir Dhillon for numerous helpful discussions.



COHERENT SPRINGER THEORY AND CATEGORICAL DELIGNE-LANGLANDS 17

2. Hochschild homology of the affine Hecke category

In this section we calculate the Hochschild and cyclic homology of the affine Hecke category.
In particular in Corollary 2.26 we prove that the Chern character from K-theory factors through
an isomorphism between K0 and Hochschild homology. For this we use Bezrukavnikov’s Lang-
lands duality for the affine Hecke category to construct a semiorthogonal decomposition on the
equivariant derived category of the Steinberg stack with simple components, from which the
calculation of localizing invariants is immediate.

The results of Subsection 2.1.1 apply for any field k of characteristic zero. The results of
Subsections 2.1.4 and 2.2 specifically apply to the case k “ Q`. In Corollary 2.26 we will pass
to Hochschild homology, where statements will hold for any field of characteristic zero. Finally,
in Subsection 2.4 we will use a theorem of Ginzburg-Kazhdan-Lusztig which further requires k
to be algebraically closed.

2.1. Background. We first review some standard notions regarding Hochschild homology and
equivariant `-adic sheaves that we need for our arguments.

2.1.1. Trace decategorifications and Hochschild homology. An extended discussion of the notions
of this subsection can be found in [GKRV20], [BN19] and [Ch20a]. We recall the notion of a
dualizable object X of a symmetric monoidal 8-category Cb with monoidal unit 1b.

Definition 2.1. The object X is dualizable if there exists an object X_ and coevaluation and
evaluation morphisms

ηX : 1b Ñ X bX_, εX : X_ bX Ñ 1b

satisfying a standard identity. Dualizability is a property rather than an additional structure
on X (see Remark 2.7). The trace of an endomorphism f P EndCpXq of a dualizable object is
defined by

trpX, fq “ εX ˝ pf b 1q ˝ ηX P EndCbp1bq.

We are interested in the case when X is an algebra object in the symmetric monoidal 8-
category Cb, and the resulting algebra structure on traces. To formulate this, we note that
traces are canonically symmetric monoidal with respect to the monoidal structure in Cb and
composition in EndCbp1bq. In addition, we require a natural functoriality enjoyed by the
abstract construction of traces in the higher-categorical setting, see [TV15, HSS17, GKRV20]
(see also [BN19] for an informal discussion). Namely the trace of an object is covariantly
functorial under right-dualizable morphisms.

Definition 2.2. A morphism of pairs pF,ψq : pX, fq Ñ pY, gq is a right-dualizable morphism
F : X Ñ Y (i.e. has a right adjoint G) along with a commuting structure8 ψ : F ˝ f Ñ g ˝ F .
Given a morphism of pairs pF,ψq, it defines a map trpF,ψq on traces via the composition

trpX, fq trpX,GFfq trpX,GgF q trpY, gFGq trpY, gq
trpX,ηF idf q trpX,idGψq » trpY,idgεF q

where ηF and εF are the unit and counit of the adjunction pF,Gq, and the equivalence in the
middle is via cyclic symmetry of traces (see also Definition 3.24 of [BN19]).

Thus, the trace construction enhances to a symmetric monoidal functor from the 8-category
of endomorphisms of dualizable objects in Cb to endomorphisms of the unit EndCbp1bq,
see [HSS17, 2], [TV15, 2.5] and [GKRV20, 3] for details. In particular, if X is an algebra
object in Cb and f is an algebra endofunctor, then trpX, fq is an algebra object in EndCbp1bq.

In this paper, we consider the case Cb “ dgCatk, the 8-category of cocomplete k-linear
dg categories, with morphisms given by left adjoint (i.e. cocomplete) functors, with monoidal
product the Lurie tensor product. We now specialize to this case.

8Note we do not require this to be an equivalence, though it always will be in this paper.
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Example 2.3. Any compactly generated dg category C “ IndpCωq P dgCatk is dualiz-
able, with dual given by taking the ind-completion of the opposite of compact objects C_ “
IndpCω,opq. Thus we may speak of traces of its endofunctors, which are endomorphisms of the
unit, i.e. chain complexes

EnddgCatkpVectkq » Vectk.

Furthermore, note that a morphism of pairs of compactly generated dg categories is a functor
that has a continuous right adjoint, or equivalently for compactly generated categories, a functor
which preserves compact objects.

Definition 2.4. The Hochschild homology of a dualizable (for instance, compactly generated)
k-linear dg category C P dgCatk is the trace of the identity functor

HHpC{kq :“ trpC, idCq P Vectk.

We often omit k from the notation above. More generally, the Hochschild homology of C with
coefficients in a continuous endofunctor F is HHpC, F q “ trpC, F q P Vectk.

Remark 2.5 (Large vs. small categories). The above definition is formulated in terms of large
categories, but can be defined for small categories by taking ind-completions. Since every com-
pactly generated category is dualizable but not conversely, the notion of Hochschild homology
for large categories is general. We will often not distinguish between the two.

We have a notion of characters of compact objects in categories, defined via functoriality of
traces.

Definition 2.6. Let C P dgCatk be dualizable, and F : C Ñ C an endofunctor. Any object
c P ObpCq defines a functor αc : Vectk Ñ C by action on the object c, and a map ψ : cÑ F pcq
defines a commuting structure. If C is compactly generated and c is a compact object, then αc
is right dualizable. Thus, by functoriality of traces, we have a map

trpαc, ψq : HHpVectkq “ k ÝÑ HHpC, F q

and we define the character9 rcs “ trpαc, ψqp1q of c to be the image of 1 P k under this map.

Remark 2.7. We highlight a few properties of Hochschild homology which we use in our argu-
ments:

(1) Hochschild homology is computed via a choice of dualizing structure, and the space of
such choices is contractible by Proposition 4.6.1.10 in [Lur18]. In particular, for any
two choices there is a canonical quasi-isomorphism of Hochschild chain complexes. Our
arguments will play off two dualizing structures on the category CohpZq where Z is a
reasonable stack. One is categorical or algebraic (and makes sense for any dg category),
while the other uses the geometry of Z.

(2) Hochschild homology is additive and exact in the Morita model structure (in the lan-
guage of [BGT13], it is a localizing invariant) by Theorem 5.2 of [Ke06], and in particular
in the explicit algebraic model of Definition 2.11 one can replace ObpCq with any set of
generating objects.

(3) Hochschild homology takes (possibly bi-infinite) F -stable semiorthogonal decomposi-
tions (see Section 2.3) of C to direct sums. This is a consequence of (2) since semiorthog-
onal decompositions give rise to split exact sequences of categories.

(4) Let A be a dg algebra, M an dg A-bimodule, and define FM p´q “ M bA ´. Then,
HHpA -perf, FM q “ AbLAbkAopM . This derived tensor product can be computed via a
bar resolution or otherwise.

(5) The Hochschild homology receives an S1-equivariant Chern character map from the
connective K-theory spectrum (see Definition 2.14).

Example 2.8. We give a toy example to illustrate a canonical identification of two calcula-
tions of Hochschild homology. Let C “ CohpP1q. It is well-known that Op´1q ‘ O generates

9This may also sometimes be referred to as a trace, but we call it a character to avoid overloading the term.
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the category, with endomorphism algebra represented by the Kronecker quiver. Since the Kro-
necker quiver has no cycles, we have an identification HHpCohpP1qq » k2. The character
map is the (twisted) algebraic Euler characteristic: rLs “ pχpP1,Lp1qq, χpP1,Lqq. On the other
hand, Hochschild-Kostant-Rosenberg produces an identification HHpCohpP1qq » H0pP1,OP1q‘

H1pP1,Ω1
P1q » k2. The character map is the Chern character, i.e. rOpnqs “ p1, nq; compatibility

of traces forces a particular identification H0,0pP1q ‘H1,1pP1q » EndpOp´1qq ‘ EndpOq.

2.1.2. De-equivariantization and the Block-Getzler complex. Hochschild homology has an alge-
braic realization via the cyclic bar complex. For dg categories with a ReppGq-action, there is an
explicit algebraic model for the Hochschild homology due to Block and Getzler [BG94] obtained
by passing to the de-equivariantization. We fix the following set-up for the rest of the subsection.

Definition 2.9. Let G be a reductive group over a field k of characteristic zero, and C
a compactly generated cocomplete dg category with a ReppGq-action. We define the de-
equivariantization to be Cdeq :“ CbReppGqVectk, where ReppGq acts on Vectk trivially. There

is a canonical functor C Ñ Cdeq and we denote its image by Cdeq
0 ; this category is naturally

enriched in ReppGq, which we establish below.

Lemma 2.10. The de-equivariantization functor C Ñ Cdeq preserves compact objects, and Cdeq

is compactly generated, and generated under colimits by Cdeq
0 . Furthermore, Cdeq

0 is naturally
enriched in ReppGq, and we have

HomCpX,Y q “ HomCdeq
0
pX,Y qG.

In particular, if E P C is a compact generator for Cdeq, then E is a compact ReppGq-generator
of C, i.e. C is equivalent to modules in ReppGq for the internal endomorphism algebra

A “ EndpEqop P AlgpReppGqq.

Proof. The lemma is an application of the rigidity of ReppGq and the Barr-Beck-Lurie monadic-
ity theorem. Explicitly, recall (e.g. in Chapter 1, Definition 9.1.2 of [GR17]) that by Corollary
9.3.3 of op. cit., rigidity implies that the deequivariantization functor F : C Ñ Cdeq has a con-
tinuous right adjoint G : Cdeq Ñ C given by tensoring with the regular representation OpGq,
and hence preserves compact objects. Furthermore, since Cdeq “ C bReppGq Vectk, it is the
colimit of the usual cyclic bar complex, thus it is generated under colimits by the image of F .
This implies compact generation as well, since F preserves compact objects.

The internal Hom may be defined in the following way. For any X P C, the functor actX :
ReppGq Ñ C given by action on X has a ReppGq-linear continuous right adjoint ΨXp´q “

HomReppGqpX,´q. We define HomCdeqpF pXq, F pY qq “ ΨXpY q. More explicitly, we have

HomCdeqpF pXq, F pY qq “ HomCpX,Y bOpGqq “
à

V PIrrpGq

HomCpX,Y b V q b V
˚.

Note that the trivial isotypic component is given by the summand HomCpX,Y q.
For the second claim, note that ΨE takes E to the internal endomorphism algebra, which

represents the corresponding monad ΨE ˝ actE on ReppGq. Since F pEq is a compact generator
for Cdeq, the functor

Ψdeq
E p´q “ HomCdeqpF pEq,´q : Cdeq Ñ A -mod

is an equivalence, giving us the commuting square of left adjoint functors:

C A -modReppGq

Cdeq A -mod

ΨE

F F 1

Ψdeq
E

»

where F 1 is the forgetful functor. Applying Barr-Beck to the functors F, F 1 and their right

adjoints, the comonads in Cdeq and A -mod are identified under the equivalence Ψdeq
E and

therefore ΨE : C Ñ A -modReppGq is an equivalence. �
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Block and Getzler defined a chain complex in [BG94] associated to any dg category C1

enriched in ReppGq (morally, C1 “ Cdeq,ω
0 is the image of the compact objects of a ReppGq-

category C in its de-equivariantization). We review this notion here.

Definition 2.11. Let G be a reductive group, and let C1 be a small dg category enriched in
ReppGq equipped with an dg-endofunctor F . For any V P ReppGq, we abusively denote by
γ : V Ñ V b krGs the coaction map. The Block-Getzler complex (over k) BG‚pC1, F ;Gq is
defined10 to be the sum totalization of the simplicial object in chain complexes with

BG´npC1, F ;Gq “
à

X0,...,XnPObpC1q

´

Hom‚pX0, X1q b ¨ ¨ ¨ bHom‚pXn, F pX0qq b krGs
¯G

where the face maps di : BG´n Ñ BG´pn´1q (for i “ 0, . . . , n) compose morphisms, i.e.

dipf0 b ¨ ¨ ¨ b fn b gq “ f0 b ¨ ¨ ¨ fifi`1 b ¨ ¨ ¨ b fn b g, i “ 0, . . . , n´ 1

dnpf0 b ¨ ¨ ¨ b fn b gq “ γpfnqF pf0q b F pf1q b ¨ ¨ ¨ b F pfn´1q b g.

We define the enhanced Block-Getzler complex to BG‚pC1, F ;Gq to be the complex above, but
without taking G-invariants.11 Finally, for a specified g P Gpkq we define

BG‚gpC
1, F ;Gq “ BG‚pC1, F ;Gq bkrGs kg

where kg is the skyscraper module at g P G. Note that there is a canonial map

BG‚pC1, F ;Gq ãÑ BG‚pC1, F ;Gq Ñ BG‚gpC
1, F ;Gq.

When it is understood, we often omit G from the notation.

We are interested in comparing the Hochschild homology of C with the Hochschild homology
of Cdeq twisted by the action of a particular g P G. If C has a ReppGq-action, then any fixed

g P G determines an endofunctor g˚ : Cdeq
0 Ñ Cdeq

0 and an equivalence ψ : g˚ » idCdeq
0

.12 Let F

be a ReppGq-linear endofunctor; this provides a canonical identification Fg :“ F ˝ g˚ » g˚ ˝ F .
We have a natural map of pairs pC, F q Ñ pCdeq, Fgq, with commuting structure given by ψ
above, and we have the following compatibility.

Proposition 2.12. Let G be a reductive group (over k) and let C be a dg category with a

ReppGq-action. Then, the map BG‚pCdeq,ω
0 , F deqq Ñ BG‚gpC

deq,ω
0 , F deq

g q computes the map in

Hochschild homology HHpC, F q Ñ HHpCdeq, F deq
g q.

Proof. The first claim is similar to Proposition 2.3.6 of [Ch20a]. Let S be a set of compact objects
of C that generate under ReppGq. By Lemma 2.10, their images under the de-equivariantization
functor Sdeq generate Cdeq. We can use the cyclic bar complex on the generators S to compute
Hochschild homology, whose nth term is

à

XiPS

à

ViPIrrpGq

HomCpX0 b V0, X1 b V1q bk ¨ ¨ ¨ bk HomCpXn b Vn, F pX0q b V0q

»
à

XiPS

à

ViPIrrpGq

HomCdeqpX0 b V0, X1 b V1q
G bk ¨ ¨ ¨ bk HomCdeqpXn b Vn, F pX0q b V0q

G

»
à

XiPS

à

ViPIrrpGq

pV ˚0 bHomCdeqpX0, X1q b V1q
G bk ¨ ¨ ¨ bk pV

˚
n bHomCdeqpXn, F pX0qq b V0q

G.

By Proposition 2.3.2 of op. cit. we have

»
à

XiPSdeq

à

V0PIrrpGq

pV ˚0 bHomCdeqpX0, X1q bk ¨ ¨ ¨ bk HomCdeqpXn, F pX0qq b V0q
G.

10Note that we use cohomological gradings; thus the index has a negative sign.
11Note that if F is the identity functor, then the the Block-Getzler simplicial chain complex is a cyclic object,

and thus the associated chain complex has the natural structure of a mixed complex. However, the enhanced
Block-Getzler complex is not cyclic, since the “rotation” twists by the coaction γ which can be nontrivial on

nontrivial G-isotypic components. One can view this object as an S1-equivariant object in QCpG{Gq.
12This arises via de-equivariantization: the category Cdeq is a Vectdeq

k “ QCpGq-module category, and the

functor is given by action by the skyscraper sheaf at g P G.
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By Peter-Weyl, we have

à

XiPSdeq

pHomCdeqpX0, X1q bk ¨ ¨ ¨ bk HomCdeqpXn, F pX0qq b krGsq
G.

We leave to the reader the verification that these identifications are compatible with the face
maps. The second claim follows from the observation that BG‚gpC

deq, F deq
g q is just the cyclic

bar complex, passing through the identification g˚X0 » X0. Verification that the equivalence
in loc. cit. is functorial for the above map is left to the reader. �

Example 2.13. Recall the standard examples:

ReppGqdeq » Vectk, Vectdeq
k » ReppGq.

The Block-Getzler complex for ReppGqdeq » Vectk (where Homs are equipped with the trivial
G-action) is simply BG‚pVectkq “ krGsG, which by Peter-Weyl is equivalent to the cyclic bar
complex for ReppGq, i.e.

À

V PIrrpGq k. On the other hand, one can check (e.g. via the argument

in loc. cit.) that the Block-Getzler complex for Vectdeq
k » ReppGq is quasi-equivalent to k.

2.1.3. Chern character from K-theory to Hochschild homology. Finally, we will use the universal
S1-equivariant trace map from connective K-theory to Hochschild homology constructed in
[BGT13].

Definition 2.14. For any small k-linear dg-category C, the connective K-theory spectrum KpCq
is the connective K-theory of the corresponding Waldhausen category defined in Section 5.2 of
[Ke06]. The universal cyclic Chern character13 is the map

ch : KpCq Ñ HHpCq.

This assignment is functorial in C.

Remark 2.15. We note two important properties of the Chern character that we use. Note that
unlike in the definition of Hochschild homology, in this discussion we restrict ourselves to small
categories C (i.e. the compact objects of a compactly generated cocompelte category).

‚ Via functoriality of the Chern character, for any object X P ObpCq, the Chern character
sends rXs P K0pCq ÞÑ rXs P HH0pCq, i.e. equivalence classes in the Grothendieck group
to their characters in Hochschild homology in the sense of Definition 2.6.

‚ Using the lax monoidal structure of K-theory, we see that for a monoidal category C
the Chern character defines a map of algebras (see also Theorem 1.10 of [BGT14]).

Often in applications to geometric representation theory, we are only interested in (or able
to) compute the Grothendieck group K0. In order to compare K0 with Hochschild homology, we
require certain vanishing conditions to hold. We say that C has a 0-truncated Chern character
if we have a factorization

KpCq HHpCq

K0pCq

ch

13We use this terminology to avoid overloading the word “trace.”
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2.1.4. Equivariant `-adic sheaves, weights, and Tate type. In this subsection we review some
standard notions concerning weights and the `-adic cohomology of BG. In this section and the
following one, we fix a prime power q “ pr and a prime ` ‰ p, and will work with `-adic sheaves
F on Fq-schemes X. All schemes and sheaves on them that arise are defined over Fq, i.e., X
will come with a geometric Frobenius automorphism Fr and F with a Fr-equivariant (Weil)
structure, which will be left implicit.

Fix a square root of q in Q`, thereby defining a notion of half Tate twist (this choice can
be avoided by judicious use of extended groups as in [BG14, Zh17, Ber20]). For F P ShpXq
where X is over Fq, we will denote the Tate twist by Fpn{2q for n P Z. For a scheme X over

Fq with a group action G, we denote by ShpX{Gq “ ShGpXq the bounded derived category of

finite G-equivariant Q`-sheaves on X (see Section 1.3 of [BY13] and [BL94]). In this context,
the cohomology of a sheaf H‚pX,´q will be understood to mean étale cohomology.

Following the Appendix of [Ga00], this notion can be extended to G-equivariant ind-schemes,
where G is a pro-affine algebraic ind-group acting in a sufficiently finite way. We say a G-
action on X is nice if the following two properties hold: (1) every closed subscheme Z Ă X is
contained in a closed G-stable subscheme Z 1 Ă X such that the action of G on Z 1 factors through
an quotient of G which is affine algebraic, and (2) G contains a pro-unipotent subgroup of finite
codimension, i.e. if G “ lim

nÑ8
Gn, then there is an n such that kerpGÑ Gnq is a projective limit

of unipotent affine algebraic groups. If G is a pro-affine group scheme acting nicely on X, and
X “ colim

iÑ8
Xi with affine quotient Gi acting on Xi, then we define14 ShGpXq “ colim

iÑ8
ShGipXiq.

Finally, we need a notion of Frobenius weights acting on a Q`-vector space V , which for us
will be étale cohomology groups. We will generally only be concerned with the weak notion of
weights and will omit the adjective “weak” for brevity.

Definition 2.16. Let V be a finite-dimensional Q`-vector space equipped with an endomor-
phism F , and fix a prime power q “ pr. We say V is strongly pure of weight n if every eigenvalue
of F is equal to qn{2. We say V is weakly pure of weight n if every eigenvalue of F is equal
to ζqn{2 for varying roots of unity ζ P Q`. If V is a (cohomologically) graded vector space
with finite-dimensional homogeneous parts V k, then we say V is strongly (resp. weakly) pure of
weight n if V k is strongly (resp. weakly) pure of weight n` k.

Finally we recall the `-adic cohomology ring of BG, whose description we repeat for conve-
nience following [Vi15] (in the Hodge-theory context).

Proposition 2.17. Let G be a pro-affine group scheme with split reductive quotient over k.
Then, H‚pBG,Q`q is polynomial, generated in even degrees, and pure of weight 0. In particular,
H2kpBG,Q`q has weight 2k.

Proof. First, since G is pro-affine, there is a reductive (finite type) algebraic group G0 such that
the kernel kerpG Ñ G0q is pro-unipotent. By Theorem 3.4.1(ii) in [BL94] we may assume that
G is reductive (and finite type).

It is a standard calculation that H‚pGm,Q`q “ H0pGm,Q`q‘H1pGm,Q`q with H0 of weight
0 and H1 of weight 2. By Corollary 10.4 of [LO08], H‚pBGm,Q`q » Q`rus where u has
cohomological degree |u| “ 2 and weight 2. In particular, by the Kunneth formula (Theorem
11.4 in op. cit.) we have that for a split torus T , H‚pBT ;Q`q is pure of weight 0 and polynomial
in even degrees. Thus, the claim is true when G “ T is a torus. Now, assume T is a split torus
inside a reductive group G, and B is a Borel subgroup with T Ă B Ă G. Applying Theorem
3.4.1(ii) of [BL94] again, we have H‚pBB;Q`q » H‚pBT ;Q`q. By Theorem 1.1 of [Vi16],
H‚pBG;Q`q is a polynomial subring of H‚pBB;Q`q » H‚pBT ;Q`q, completing the claim. �

14This definition is independent of the choice of presentation, since by [BL94] Theorem 3.4.1(ii) if Gi Ñ Gj

is a surjection with unipotent kernel, then ShGj pY q Ñ ShGi pY q is an equivalence for any Y on which Gj acts.

See also Section A.4 of [Ga00].
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2.2. Automorphic and spectral realizations of the affine Hecke category. We follow
the set-up of Bezrukavnikov in [Bez16], except that we view the group on the automorphic side
as dual to a chosen group on the spectral side for ease of notation. Let G be a fixed reductive
algebraic group over Q` on the spectral side of Langlands duality, and let G_ be its dual group.

Choose a form of G_ split over Fq. Let F “ Fqpptqq and O “ Fqrrtss. We denote G :“ G_pF q

to be its dual group with coefficients in F , which we consider as an ind-group scheme over Fq,
and its subgroup G0 :“ G_pOq, a pro-affine group scheme over Fq. The Iwahori subgroup of G

is I :“ G0 ˆG_pFqq B
_pFqq, which inherits its structure as a closed subgroup and is therefore

also a pro-affine group. We let I0 :“ G0 ˆG_pFqq U
_pFqq denote its pro-unipotent radical.

On the automorphic side, we are interested in equivariant Q`-sheaves on the affine flag variety
Fl “ G{I, an ind-proper ind-scheme constructed in the Appendix of [Ga00]. It carries a left
action of I whose orbits are of finite type and naturally indexed the affine Weyl group Wa for
the group G_. For w PW , we denote by Flw the corresponding orbit. Denote by jw : Flw ãÑ Fl
the inclusion of the corresponding I-orbit. Let ` : Wa Ñ Zě0 denote the length function on the
affine Weyl group.

On the spectral side, the stacks that appear are defined over Q`. Recall the derived Steinberg

variety Z “ rN ˆg
rN and the classical non-reduced Steinberg variety Z 1 “ rgˆg

rN (see Section
1.7.3). The following is Theorem 1 of [Bez16], while the Frobenius property of Φ appears as
Proposition 53.

Theorem 2.18 (Bezrukavnikov). There are equivalences of categories Φ and Φ1 and a commu-
tative diagram

ShI0
pFlq CohpZ 1{Gq

ShI
pFlq CohpZ{Gq

Φ1

»

Φ
»

π˚ i˚

where π : I0zFlÑ IzFl is the quotient map and i : Z{G ãÑ Z 1{G is the inclusion. Moreover the
functors admits the following natural structures:

‚ Φ is naturally an equivalence of monoidal categories, and

‚ Φ and Φ1 intertwine the action of Frobenius on ShI
pFlq (resp. ShI0

pFlq) with the action
of q P Gm on CohpZ{Gq (resp. CohpZ 1{Gq).

We point out certain distinguished sheaves in ShI
pFlq and ShI0

pFlq (computed explicitly for
G “ SL2, PGL2 in Examples 2.2.3-5 in [NY19]).

(a) Let λ P X˚pT
_q “ X˚pT q Ă Wa be a character of the maximal torus of G, considered

as an element of the affine Weyl group of the dual group. The Wakimoto sheaves Jλ
are defined as follows. When λ is dominant, we take Jλ “ jλ,˚Q`Flλrx2ρ, λys. When λ

is antidominant, we take Jλ “ jλ,!Q`Flλrx2ρ,´λys. In general, writing λ “ λ1 ´ λ2, we

define Jλ “ Jλ1
˚ J´λ2

, which is independent of choices due to Corollary 1 in Section
3.2 of [AB09].

(b) For any w P Wa, we define the corresponding costandard (resp. standard) object by
∇w :“ jw,˚Q`Flw r`pwqs (resp. ∆w :“ jw,!Q`Flw r`pwqs). They are monoidal inverses by

Lemma 8 in Section 3.2 of [AB09]. By Lemma 4 of [Bez16], we have ∇w ˚∇w1 “ ∇ww1

(and likewise for standard objects) when `pwq``pw1q “ `pww1q. If λ P X˚pT
_q “ X˚pT q

is dominant, then the Wakimoto is costandard Jλ “ ∇λ; if λ is antidominant, the
Wakimoto is standard Jλ “ ∆λ.

(c) Let w0 P Wf Ă Wa be the longest element of the finite Weyl group. The antispherical

projector or big tilting sheaf Ξ P ShI0
pFlq is defined to be the tilting extension of the

constant sheaf Q`Flw0
off Flw0 to Fl, as in Proposition 11 and Section 5 of [Bez16]. Note

that this object does not descend to ShI
pFlq.
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We abusively use the same notation to denote sheaves in ShI0
pFlq; note that π˚∆w » ∆w and

π˚∇w » ∇w by base change. All sheaves above are perverse sheaves, since the inclusion of
strata are affine.

For our applications, we need to work not with Z{G but with Z{ rG (recall that rG “ GˆGm).
The following proposition is the key technical argument we need to construct the semiorthogonal

decomposition of CohpZ{ rGq and hence deduce results on its homological invariants – a graded
lift of standards and costandards under Bezrukavnikov’s theorem. It is conjectured in [Bez16]
that the equivalences in Theorem 2.18 should have mixed versions, relating a mixed form of the

Iwahori-equivariant category of Fl with a Gm-equivariant version of CohpZ{Gq, i.e. CohpZ{ rGq,
which would immediately give us the desired result. In particular, see Example 57 in [Bez16] for
an expectation of what the sheaves Φp∆wq are explicitly and note that they have Gm-equivariant
lifts.

Proposition 2.19. The objects Φp∇wq,Φp∆wq P CohpZ{Gq have lifts to objects in CohpZ{ rGq
for all w PWa, compatible with the action of Frobenius under the equivalence in Theorem 2.18.

Proof. We will prove the statements for the standard objects; the statements for costandards
follows similarly. Wakimoto sheaves are sent to twists of the diagonal ΦpJλq » O∆pλq by
Section 4.1.1 of [Bez16], which evidently have Gm-equivariant lifts. Convolution is evidently
Gm-equivariant, so the convolution of two sheaves with Gm-lifts also has a Gm-lift. Assuming
that the standard objects corresponding to finite reflections have Gm-lifts, by Lemma 4 of
[Bez16] we can write the standard for the affine reflection as a convolution of Wakimoto sheaves
and standard objects for finite reflections. Thus, we have reduced to showing that all standard
objects Φp∆wq have Gm-lifts for w a simple finite reflection.

By Corollary 42 of [Bez16] Φ1 has the favorable property that Z 1 is a classical (non-reduced)

scheme, and that it restricts to a map on abelian categories on PervU
_

pG_{B_q Ă PervI0
pFlq

taking values in CohpZ 1{Gq♥ (though it is not surjective). In particular, by Proposition 26 and
Lemma 28 in [Bez16] it takes the tilting sheaf Ξ to OZ1{G, which manifestly has a Gm-lift.

We claim that Gm-lifts for the Φ1p∆wq P CohpZ 1{Gq for w P Wf induce Gm-lifts for the

Φp∆wq P CohpZ{Gq. Since Z is a derived scheme, the functor i˚ : CohpZ{ rGq Ñ CohpZ 1{ rGq is
not fully faithful (i.e. objects on the left may have additional structure). But since Φ1p∆wq »

i˚Φp∆wq are in the heart and i˚ is t-exact (for the standard t-structures) and conservative,
we have that Φp∆wq P CohpZ{Gq♥. In particular, the restriction of i˚ to CohpZ{Gq♥ is fully
faithful, proving the claim. Thus, we have reduced to showing that the finite simple standard
objects Φ1p∆wq P CohpZ 1{Gq♥ have Gm-lifts; in particular these are objects in the abelian
category of coherent sheaves.

By Lemma 4.4.11 in [BY13], Ξ is a successive extension of standard objects ∆wp`pwq{2q for
w P Wf . Thus, there is a standard object ∆wp`pwq{2q and a Frobenius-equivariant surjection
Ξ � ∆wp`pwq{2q. This implies that the kernel K “ kerpΞ � ∆wp`pwq{2qq is a Frobenius-
equivariant subobject of K. On the spectral side, using Proposition 53 in op. cit., this means
that Φ1pKq Ă Φ1pΞq » O{Z1{G is a q-equivariant subobject with quotient Φ1p∆wp`pwq{2qq. We
wish to show that the quotient has a Gm-equivariant lift, which amounts to showing that Φ1pKq
is a Gm-equivariant subobject.

Since ΦpKq is already endowed with a Gm-equivariant structure, q-equivariance for a subob-
ject of a Gm-equivariant object is property, not an additional structure. We claim that for q
not a root of unity, any q-closed subsheaf of a Gm-equivariant sheaf on a quotient stack must be
Gm-closed as well (i.e. the isomorphism defining the Gm-equivariant structure restricts to the
subsheaf). Assuming this claim, and iterating the above argument replacing Ξ with the kernel
K, we find that Φ1p∆wq has a Gm-equivariant lift for every w PWf (since the big tilting object
contains every ∆w as a subquotient), completing the proof.

We now justify the claim. First, if F is a sheaf on a quotient stack X{G with a Gm-action,
we can forget the G-equivariance (i.e. base change to the standard atlas X Ñ X{G). Now, by
reducing to an open affine Gm-closed cover of X, we can assume X is affine. On an affine scheme
X “ SpecpAq, the Gm-action gives the structure of a Z-grading on A, and a submodule of a
graded A-module M 1 Ă M is q-equivariant if it is a sum of q-eigenspaces, and Gm-equivariant
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if it is a sum of homogeneous submodules. The claim follows from the observation that any
m PM 1 can only have eigenvalues qn for n P Z, which are distinct, so the q-eigenspaces entirely
determine the Gm-weights. �

2.3. A semiorthogonal decomposition. In this section, we describe an “Iwahori-Matsumoto”

semiorthogonal decomposition of the category CohpZ{ rGq, arising from the stratification of the
affine flag variety Fl on the automorphic side of Bezrukavnikov’s equivalence Theorem 2.18 and
the lifting result in Proposition 2.19. This will, in turn, induce a direct sum decomposition on
Hochschild homology. First, let us establish terminology.

Definition 2.20. Let tSnunPN denote a collection of full subcategories of a small dg category
C. We say that tSnu defines a semiorthogonal decomposition of C if there is an exhaustive left
admissible filtration FnC of C such that Sn is the left orthogonal of Fn´1C inside FnC. In
particular, in this case Hom‚CpXn, Xmq » 0 for Xi P Si and n ą m.

The following result is standard.

Proposition 2.21. Let G be a pro-affine group scheme acting nicely on an ind-scheme X.
Assume that the stabilizer of each orbit is connected. Let I be an indexing set for the G-orbits
Xi under the (partial) closure relation, i.e. Xn Ă Xm implies m ě n, and let jn : Xn ãÑ X

denote the inclusion. Then, xjn!Q`Xny defines a semiorthogonal decomposition of ShGpXq, where
the ordering is given by any choice of extension of the partial order to a total order.

Proof. It is standard that stratifications of stacks give rise to semi-orthogonal decompositions
on categories of `-adic sheaves. We note that each orbit is equivariantly equivalent BH where
H is the stabilizer (connected by assumption), and ShpBHq is generated by the constant sheaf
Q` when H is connected. �

Corollary 2.22. Fix a Bruhat ordering of the affine Weyl group Wa. The standard objects
x∇w “ jn!Q`Xny give a semiorthogonal decomposition of ShGpFlq.

Remark 2.23. The costandard objects ∆w “ jn˚Q`Xn define a semiorthogonal decomposition
in the reverse order.

We would like to lift the above semiorthogonal decomposition of CohpZ{Gq to CohpZ{ rGq. We
do so by applying Lemma 2.10 to the Gm-equivariant lifts of the objects Φp∆wq from Proposition
2.19. Adopting the notation in Section 2.1.1 (but replacing the group with H), we take:

C “ Hm “ CohpZ{ rGq, Cdeq “ H “ CohpZ{Gq, H “ Gm “ Spec krz, z´1s.

Corollary 2.24. Let k be a field of characteristic zero, H a group-scheme over k, and C a
compactly generated cocomplete ReppHq-module dg category, and let p´qdeq : C Ñ Cdeq “

C bReppHq Vectk denote the de-equivariantization functor. Let tEn P C | n P Nu be a linearly

ordered set of objects such that xEdeq
n y defines a semiorthogonal decomposition of Cdeq. Denote

by An “ EndCdeqpEdeq
n qop the ReppHq-algebras from Lemma 2.10. Then, we have

HHpCq »
à

α

HHpAn -modReppHqq.

Proof. Let C1n :“ xEdeq
n y be the category generated by Edeq

n , and let Cn be the preimage un-
der p´qdeq. We have a semiorthogonal decomposition of C by the categories Cn. Hochschild
homology is a localizing invariant in the sense of [BGT13], and in particular takes semiorthog-
onal decompositions to direct sums (this can also easily be seen directly via the dg model for

Hochschild homology). Thus we have an equivalence HHpCq “
à

nPZ
HHpCnq. Applying the

Lemma 2.10, we find HHpCq “
à

nPZ
HHpAn -modReppGmqq. �

We now compute the endomorphism algebras Aw as algebras in ReppGmq, using the graded
lifts from Proposition 2.19 and the semiorthogonal decomposition in Corollary 2.22.
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Proposition 2.25. Let Ew denote the Gm-lifts of Φp∆wq constructed in Proposition 2.19, and
Aw “ EndCohpZ{ rGqpE

deq
w q. We have a quasi-isomorphism Aw » SymQ` h

˚r´2s where h˚r´2s is

the universal dual Cartan shifted into cohomological degree 2 with Gm-weight 1. In particular,
Aw is formal.

Proof. Recall that the pullback along multiplication by q corresponds under Φ to the Frobenius
automorphism, i.e. Frobenius acts on the nth homogeneous graded piece of Tw! by multiplication
by qn. Since q is not a root of unity, we can determine Gm-weights by (necessarily integral)
Frobenius weights as in the proof of Proposition 2.19.

Further, since Φ is an equivalence of categories we can compute Aw on the automorphic side.
The unit map F Ñ j!j!F is an equivalence for j a locally closed immersion, so that

Aw “ Hompjw,!Q`Flw , jw,!Q`Flwq “ HompQ`Flw , j
!
wjw,!Q`Flwq » RΓpIzFlw,Q`Flwqq.

Since Flw is an I-orbit, letting Iw denote its stabilizer for a choice of base point in Flw, we
find that Aw » C‚pBIw;Q`q is the equivariant cohomology chain complex for BIw with Q`-
coefficients under the cup product. The reductive quotient (i.e. by the pro-unipotent radical)
of Iw is T , so Aw » C‚pBT ;Q`q. By Proposition 2.17, the Frobenius weight is equal to the
cohomological degree, and the Frobenius weight is equal to twice15 the Gm-weight, proving the
claim regarding Gm-weights.

Finally, we need to show formality of Aw as an algebra. By purity, any cohomological degree
2n class in C‚pBT ;Q`q has Gm-weight n (or Frobenius weight 2n). By a standard weight-degree
shearing argument, this implies formality. �

We now apply Corollary 2.24 to the set-up in the above proposition. We will see that since
Hochschild homology is insensitive to field extensions and all our stacks of interest are defined
over Q, the following results hold for any field k of characteristic 0 (i.e. not just k “ Q`).

Corollary 2.26. Let k be any field of characteristic 0. The isomorphism from above induces
an isomorphism of krz, z´1s-modules

HHpHm{kq “ kWa bk krz, z
´1s.

In particular, we have that

(1) the Hochschild homology HHpHm{kq is cohomologically concentrated in degree zero,
(2) the Chern character KpHmq Ñ HHpHm{kq factors through K0pH

mq,
(3) the map K0pH

mq bZ k Ñ HHpHm{kq is an equivalence,
(4) Hm satisfies Hochschild-to-cyclic degeneration, i.e. HNpHm{kq » HHpHm{kqrruss.

Proof. Fix a Bruhat order on Wa, extended to a total order. Let us first prove the case k “ Q`.
Applying Corollary 2.24 in the case C “ Hm “ CohpZ{ rGq, C “ H “ CohpZ{Gq, and H “ Gm,
we have a canonical equivalence

HHpHm{Q`q » Q`Wa bQ` HHpA -perfReppGmq {Q`q

where A “ Sym‚Q`
h˚r´2s » Aw is the algebra from Proposition 2.25 (which does not depend

on w PWa).
Let us briefly consider the case of general k of characteristic 0, and let A “ Sym‚k h

˚r´2s.
The Hochschild homology of of A -perfReppGmq is computed by the Block-Getzler complex of

Definition 2.11, which we can compute explicitly. Its terms are pAbn`1bkrz, z´1sqGm , and since
z has Gm-weight 0, there is an isomorphism pAbn`1 b krz, z´1sqGm » pAbn`1qGm b krz, z´1s

and we observe that pAbn`1qGm “ k since each A is generated over k by positive weights. Thus,
the natural map BG‚pkq Ñ BG‚pAq is a quasi-isomorphism, so the first claim claim follows.
Factorization through K0 follows since the Hochschild homology is coconnective.

15Often, e.g. in Remark 1 of [AB09], the Gm-scaling action is defined to have geometric weight ´2; under
this differing convention, the Frobenius weight is equal to the Gm-weight.



COHERENT SPRINGER THEORY AND CATEGORICAL DELIGNE-LANGLANDS 27

To show that the map K0pA -modReppGmqq bZ Q` Ñ HHpA -modReppGmq {Q`q is an equiva-

lence, first note that since HHpA -modReppGmq {Q`q is concentrated in degree zero, the Chern
character factors through K0, i.e. we have a commuting diagram for each summand

KpReppGmqq bZ k K0pReppGmqq bZ k HHpReppGmq{Q`q

KpA -perfReppGmqq bZ k K0pA -perfReppGmqq bZ k HHpA -modReppGmq {Q`q.

»

»

By Remark 2.15, the map K0pReppGmqq Ñ K0pA -perfReppGmqq is an equivalence, since both

sides are freely generated by K0pReppGmqq “ HHpReppGmqq by the character of a single object
rAs, i.e. the free object. Using the semiorthogonal decomposition, these equivalences induce
an equivalence K0pH

mq bZ Q` » HHpHm{Q`q, which is an equivalence of algebras by Remark
2.15.

Next, to prove the equivalence for general fields k, note that all stacks and algebras in question
are well-defined over Q. Consider the field extension Q Ă Q`. To conclude the result for k “ Q,
we need to show that the Q-subspaces

HHpCohpZk{ rGkq{Qq Ă HHpCohpZQ`{
rGQ`q{Q`q, kWabQQrz, z´1s Ă Q`WabQ` Q`rz, z

´1s

coincide under the equivalence; this follows from the calculation of HHpA -perfReppGmqq via
the Block-Getzler complex, i.e. on each summand coming from the semiorthogonal decompo-
sition, the map K0pA -perfReppGmqq “ Zrz, z´1s Ñ HHpA -perfReppGmq {Q`q “ Q`rz, z´1s is an

injection, with rAs “ 1 on both sides.
Now, let Q Ă k be a field extension. By the change of rings formula in Hochschild homology,

we have a canonical equivalence

HHpCohpZk{ rGkq{kq » HHpCohpZQ{ rGQq{Qq bQ K » kWa bk krz, z
´1s.

Thus the result holds for k. Since every field of characteristic 0 is an extension of Q, the result
holds for any field k of characteristic 0. �

We also have the following result for the non-Gm-equivariant version.

Corollary 2.27. The map of algebras KpCohpZ{Gqq Ñ HHpCohpZ{Gqq factors through K0

and we have an isomorphism as dg k-modules

HHpCohpZ{Gqq » kWa bk Sym‚kph
˚r´1s, h˚r´2sq.

Furthermore, the Connes B-differential is given by the extending identity map h˚r´2s Ñ h˚r´1s,
so that applying the Tate construction we have an isomorphism of modules

kWa bk kppuqq » K0pCohpZ{Gqq bk kppuqq Ñ HP pCohpZ{Gqq.

Proof. Essentially the same as the previous corollary, along with a direct calculation of the
Hochschild homology of the formal dg ring

HHpShT pptqq “ HHpkrhr´2ss -modq.

�

2.4. Hochschild and cyclic homology of the affine Hecke category. Recall the notation
rG “ G ˆ Gm, and that Hm “ CohpZ{ rGq denotes the mixed affine Hecke category, while
H “ CohpZ{Gq denotes the affine Hecke category. In this section, we will show that their trace
decategorifications are the affine Hecke algebra H and a derived variant of the group algebra of
the extended affine Weyl group kWa. We assume that G has simply connected derived subgroup
until Section 2.4.2, where we remove the assumption.

We begin by quoting the following celebrated theorem by Ginzburg, Kazhdan and Lusztig.
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Theorem 2.28 (Ginzburg-Kazhdan-Lusztig). Let k be an algebraically closed field of character-
istic 0, and assume that G has simply connected derived subgroup. Then there is an equivalence
of associative algebras H Ñ K0pH

mq bZ k, compatibly with an identification of the center with

K0pRepp rGqq bZ k. Likewise, there is an equivalence of associative algebras kWa » K0pHq bZ k
with center K0pReppGqq.

Proof. The only difference between our statement and that in [KL87] [CG97] is their Steinberg

stack is the classical stack π0pZq{ rG, which has no derived structure. On the other hand, we

are interested in Z{ rG which has better formal properties. The statement follows from the fact
that the Grothendieck group is insensitive to derived structure, i.e. the ideal sheaf for the

embedding π0pZq{ rG ãÑ Z{ rG acts nilpotently on any coherent complex. Finally, note that while
the statement of Theorem 3.5 of [KL87] and Theorem 7.2.5 in [CG97] are made for k “ C,
the proofs do not employ topological methods and apply to any algebraically closed field of
characteristic zero. �

We combine the above theorem with Corollary 2.26 to arrive at the following main theorem.
We will remove the simply connectedness assumption in Section 2.4.2.

Theorem 2.29. Assume that G has simply connected derived subgroup over an algebraically
closed field k of characteristic 0. There is an equivalence of algebras, and an identification of
the center:

H HHpHmq

krGsG bk krq, q
´1s HHpReppGˆGmqq.

»

»

Proof. That the map is an isomorphism is a combination of Theorem 1.2 and Corollary 2.26. �

The following may also be of interest, and is the analogue to Corollary 2.27. Note that in
this case, the map to Hochschild homology is not an equivalence, though it does induce an
equivalence on HH0 and on periodic cyclic homology HP .

Corollary 2.30. With the assumptions above, there is a commuting diagram of algebras:

kWa bk Sym‚kph
˚r´1s ‘ h˚r´2sq HHpHq

krGsG HHpReppGqq.

»

»

Taking the Tate construction, there is an equivalence of kppuqq-algebras, and an identification of
the center:

kWappuqq HP pHq

krGsGppuqq HP pReppGqq.

»

»

Proof. By Corollary 2.27, the Hochschild homology HHpCohpZ{Gqq is coconnective, so the
Chern character from KpCohpZ{Gqq factors through K0pCohpZ{Gqq bZ k “ kWa. Thus we
have a map of algebras kWa Ñ HHpCohpZ{Gqq which induces an equivalence on H0. Next,

note that the subcategory ShI
pFlq generated by the monoidal unit (i.e. the skyscraper sheaf

δe), which is closed under the monoidal structure, is in the center of CohpZ{Gq, so that the
subalgebra HHpxδeyq » Sym‚kphr´1s ‘ hr´2sq Ă HHpCohpZ{Gqq is central. This defines a
map of algebras HHpxδeyq -mod Ñ HHpCohpZ{Gqq, which defines a map of algebras out of the
tensor product HHpxδeyq bk kWa Ñ HHpCohpZ{Gqq which is an equivalence when restricted
to each tensor factor; thus we can calculate that it is an equivalence. �
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2.4.1. q-specializations of the affine Hecke algebra. Let q : Z{GÑ Z{G be the action by q P Gm
under our conventions, i.e. multiplying by q´1. In this section we compute the trace of the
functor16 q˚ on the category H “ CohpZ{Gq. First, we make the general observation that if F
is an automorphism of a category C and E P C, then an F -equivariant structure on E induces
an automorphism of the dg algebra A “ EndCpEq, and thus an automorphism of the category
A -mod, which we will abusively also denote F .

Proposition 2.31. Let q ‰ 1 and let Aw denote the algebras from Proposition 2.25. Then,
HHpAw, q˚q “ k.

Proof. First, observe that the functor q˚ induces the automorphism on the algebra Aw »

Symk h
˚r´2s arising via the q-scaling map on h (in particular, h˚ has weight ´1). The claim is

a direct calculation using the complex CqpAw,Gmq from Definition 2.11 via Koszul resolutions:
CqpAw,Gmq is the derived tensor product Aw b

L
AwbAw

Aw where Aw is the diagonal bimodule
for one factor and is twisted by q˚ on the other factor.

Rather than a direct calculation, we give a geometric argument. First, note that q˚ preserves
the Gm-weights of Aw » Sym‚k h

˚r´2s (i.e. since q P Gm is central). We apply a Tate shearing
(i.e. sending bidegree pa, bq to pa ´ 2b, bq) to the algebra Symk h

˚r´2s to obtain the algebra
Ophq “ Sym‚k h

˚. Note that HHpPerfphq, q˚q “ Ophqq, i.e. functions on the derived fixed points
of action by q. When q ‰ 1 we have hq “ t0u, so HHpPerfphq, q˚q “ k. Undoing the shearing,
we find that the natural map HHpAw, q˚q Ñ HHpk, q˚q is an equivalence. �

Corollary 2.32. Let Hq denote the specialization of the affine Hecke algebra at q P Gm. If
q ‰ 1, we have an equivalence of algebras

HHpH, q˚q » Hq.

Proof. The calculation in Proposition 2.31 shows that specialization at q P Gm induces an
equivalence on Block-Getzler complexes (viewing Aw as an algebra in ReppGmq):

BG‚pAwq bkrz,z´1s kq Ñ BG‚pAwq bkrz,z´1s kq Ñ BG‚qpAwq

inducing an equivalence HHpCohpZ{ rGqq bkrz,z´1s kq » HHpCohpZ{Gq, q˚q, since the trace of
an endofunctor F on a category C takes semiorthogonal decompositions preserved by F to direct

sums. Consequently, under the identification of algebras HHpCohpZ{ rGqq » H, specialization
at q defines an equivalence HHpCohpZ{Gq, q˚q » Hq. �

Remark 2.33. The above corollary is evidently untrue for q “ 1, since H is flat over krz, z´1s

but HHpHq has derived structure by Corollary 2.30.

Remark 2.34. Our methods also allow for an identification of the following monodromic variants

of the affine Hecke category introduced in [Bez16] (where Z 1 “ rg ˆg
rN and Z^ is the formal

completion of rgˆg rg along Z):

HHpCohpZ 1{ rGqq » HHpCohpZ^{ rGqq » H,
HHpCohpZ 1{Gq, q˚q » Hq,

HHpCohpZ^{Gq, q˚q »

#

kWa bk Sym‚kph
˚ ‘ h˚r´1sq q “ 1

Hq q ‰ 1,
.

Note that the category CohpZ 1{ rGq is not monoidal, so it does not make sense to ask that it
is identified with H as an algebra. However, it is equivalent to H as a (right) module for

HHpCohpZ{ rGqq » H.

On the other hand, the category CohpZ^{ rGq does not have a monoidal unit, and the monoidal
product is poorly behaved (for example, when G “ T is a torus, the product is zero on

Hochschild homology). However, one expects that there is a renormalization of CohpZ^{ rGq
whose Hochschild homology satisfies the same good properties as (and in fact, is Koszul dual
to) Hm.

16Note that our q˚ corresponds to q˚ in [AB09].
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The only difference in these cases is that the generating objects Ew “ Q`Flw for the semiorthog-

onal decomposition live in different categories on the automorphic side, so the resulting en-
dormorphism algebra Aw may differ (i.e. as in Proposition 2.25). Recall that for Z, we had
Aw “ Sym‚Q`

h˚r´2s. For Z 1, the derived category of sheaves on each orbit is equivalent to Dpptq,

so Aw “ Q`. For Z^, the category is equivalent to DupH Hq » Q`rhs -modh´nil, the category
of weakly H-equivariant sheaves on H with unipotent monodromy, and Aw “ Sym‚Q`

h˚r´1s.

2.4.2. Groups of non-simply connected type. In this section we will remove the simply connect-
edness assumptions from earlier theorems. We work in the following set-up. Let G be a reductive
algebraic group with simply connected derived subgroup, and φ : GÑ G1 a central isogeny with
kernel Z (i.e. a quotient by a finite subgroup Z of the center). Following Section 1.5 of [Re02],
this induces a Z-action on HG via the formula

z ¨ pTw b e
λq “ λpzqpTw b e

λq, w PWf , λ P X
˚pT q, z P Z

and an injection of affine Hecke algebras

HG1 » HZ
G ãÑ HG.

We define an analogous action on Hochschild homology in the following general set-up.

Definition 2.35. Let Z Ă G be central, and G1 “ G{Z, and let C be a ReppGq-module
category equipped with a Z-trivialization, i.e. a ReppG1q-linear category C1 and an equivalence
C » C1 bReppG1q ReppGq (see also Definition 5.12). In this setting, we have a natural action of
Z on the Hom-spaces of ReppGq (using that Z is central), compatible with the ReppG1q-action.
This induces a Z-action on the Hom-spaces of C1 bReppG1q ReppGq, and thus a Z-action on
HHpC, F q.

Proposition 2.36. There is a functorial equivalence for ReppGq-categories C equipped with a
Z-trivialization

HHpC1q » HHpCqZ .

Proof. The Z-trivialization defines an equivalence between the ReppGq de-equivariantization of
C with the ReppG1q de-equivariantization of C1:

Cdeq :“ CbReppGq Vectk » C1 bReppGq1 ReppGq bReppGq Vectk » C1 bReppGq1 Vectk.

Thus we have explicit models

HHpC, F q “ BG‚pCdeq, F ;Gq, HHpC1, F q “ BG‚pCdeq, F ;G1q.

Tracing through the identifications in Proposition 2.12, one can identify the Z-action on the
Block-Getzler complex BG‚pCdeq, F ;Gq as follows: level-wise, it only acts non-trivially on the
tensor factor krGs by

pz ¨ fqpgq “ fpzgq “ fpgzq, z P Z, f P krGs, g P G.

The result is now immediate from the observation that krGsZ “ krG1s for the above action. �

It remains to show that these Z-actions agree, which we do so in the following.

Proposition 2.37. The identification H » HHpHmq intertwines the Z-actions above.

Proof. The action of Z on H defined in [Re02] decomposes into eigenspaces indexed by Wf

double cosets WfλWf Ă Wa for λ P X‚pT q, spanned by Iwahori-Matsumoto basis elements
Tw for w P WfλWf , with eigenvalue λ|Z . This claim can be directly verified, e.g. using the
Bernstein relations in Section 7.1 of [CG97]. Thus, it suffices to show that Z acts by the same
eigenvalues on Hochschild homology, with basis given by tridΦp∆wqs | w P Wau, i.e. identity
maps for the spectral-side standard objects Φp∆wq described in Section 2.2.

By functoriality, for any functor F : C Ñ D of categories in our set-up, if ridX s P HH0pCq is
a λ-eigenvector for Z, then ridF pXqs P HH0pDq is as well; the converse is true if F is faithful on

the homotopy category (i.e. H0pHom‚pX,Xqq Ñ H0pHom‚pF pXq, F pXqq is injective). We will

use this fact repeatedly. In particular, since the forgetful functor CohpZ{ rGq Ñ CohpZ{Gq is
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faithful, we can forget Gm-equivariance, and since the Z-action is compatible with convolution,
it suffices to check our statement for finite reflections and the lattice.

For the lattice, we have Φp∆λq » ∆˚O
ĂN pλq “ ∆˚p

˚Vλ P CohpZ{Gq, where p : rN {G Ñ BB
is the projection. The eigenvalue for the identity map of Vλ P CohpBBq is evidently λ|Z . For
finite simple reflections, since i˚ is fully faithful on the homotopy category we may instead
consider the equivalence Φ1. Here, the spectral-side object corresponding to the automorphic
big tilting object is OZ1{G. By applying functoriality to the pullback from a point we see that
the identity on any structure sheaf has trivial Z-eigenvalue, and therefore any subquotient does,
thus Φ1p∆wq and Φp∆wq do. �

Corollary 2.38. The statements of Theorem 2.29, Corollary 2.30 and Corollary 2.32 hold
without the assumption that G has simply connected derived subgroup.

Proof. By Theorem 2.29, we have an identification HHpHm
Gq » HG. Since Z acts on Z and Z 1

trivially, the categories CohpZ{Gq and CohpZ 1{Gq come equipped with natural Z-trivializations,
and thus their Hochschild homologies have Z-actions as defined above. By Proposition 2.37 the
two Z-actions coincide under our equivalence, proving the claim. �

3. Traces of representations of convolution categories

We have seen in Theorem 2.29 that the affine Hecke algebra H is identified with the Hochschild

homology of the (mixed) affine Hecke category Hm “ CohpZ{ rGq. In this section we describe a
general theory of categorical traces in derived algebraic geometry to explain why this is a useful
realization. Namely, as an application we will see in Section 4 that the geometric realization of
Hochschild homology via derived loop spaces implies a realization of the affine Hecke algebra as
endomorphisms of a coherent sheaf on the loop space of the stacky nilpotent cone, the coherent
Springer sheaf, and hence a localization description of its category of modules as a category of
coherent sheaves.

3.1. Traces of monoidal categories. In this section we present the two different trace de-
categorifications for a monoidal category and their relation. See [BFN10, HSS17, CP19, BN19,
GKRV20] for detailed exposition.

Definition 3.1. Let pA, ˚q denote an E1-monoidal compactly generated cocomplete k-linear
dg category and F a monoidal endofunctor. There are two notions of its Hochschild homology
or trace. See definitions in Section 2.1.1.

‚ The naive or vertical trace (or Hochschild homology) is a chain complex trpA, F q “
HHpA, F q. Via functoriality of traces, and under the assumptions that the multiplica-
tion functor ˚ : A bA Ñ A preserves compact objects and that the monoidal unit is
compact, it has the additional structure of an associative (or E1-)algebra pHHpAq, ˚q.

‚ The 2-categorical or horizontal trace (or monoidal/categorical Hochschild homology) is
a dg category17 TrppA, ˚q, F q “ A bAbArv AF where AF is the monoidal category
whose left action is twisted by F .18 Via functoriality of traces, the horizontal trace is
the tautological receptacle for characters in A:

r´s : A Ñ TrppA, ˚q, F q.

The monoidal unit 1A itself defines an object r1As P TrppA, ˚q, F q, i.e. TrppA, ˚q, F q is
a pointed (or E0-)category.

We sometimes omit the monoidal product ˚ from the notation, and when F “ idC we also
sometimes omit it from the notation. Both traces admit S1 actions.

We define the notion of characters in horizontal traces more precisely and generally below.

17The category Arv is obtained by reversing the monoidal product, not taking opposite morphisms.
18More generally, the horizontal trace may take as an input an A-bimodule category Q.
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Definition 3.2. One can view the horizontal trace as a trace decategorification in the sense
of Definition 2.1 in the following way, following Section 3.6 of [GKRV20]. We consider the
symmetric monoidal “Morita” category Mork, whose objects are A-mod, i.e. 2-categories of
module categories for a monoidal category A, and whose 1-morphisms are given by bimodule
categories. Then, for a monoidal endofunctor F : A Ñ A, we have trpA-mod, F q “ TrpA,AF q.

We can apply Definition 2.6 to obtain the following more general notion of character map for
the horizontal trace (see Section 3.8.2 in [GKRV20]). That is, the horizontal trace TrpA, F q can
be viewed as the tautological receptacle for characters rpM, FMqs of left A-module categories M
equipped with an F -semilinear endofunctor FM, i.e. a map of A-module categories FM : M Ñ

MF :“ AF bA M.19

The trace rAs of objects A P A in Definition 3.1 above is a special case in the following
way: consider M :“ A as the usual (left) regular A-module category; for A P ObpAq, we define
FAp´q :“ F p´q˚A. In this case, we have rAs “ rA, FAs. In particular, the trace of the monoidal
unit20 is r1As “ rA, F s, i.e. the trace of the regular representation.

Moreover, the categorical trace provides a “delooping” of the naive trace. To make the
relationship between the two traces precise, we first recall the notion of a rigid monoidal category
(see Definition 9.1.2 and Lemma 9.1.5 in [GR17]).

Definition 3.3. Let A be a compactly generated stable monoidal 8-category, with multiplica-
tion µ : A bA Ñ A. We say A is rigid if the monoidal unit is compact, µ preserves compact
objects, and if every compact object of A admits a left and right (monoidal) dual.

We have the following relationship between vertical and horizontal traces of [GKRV20], which
may be interpreted via Theorem 1.1 of [CP19] as a compatibility of iterated traces. Let A be a
monoidal category, and F a monoidal endofunctor. We denote by pA, F q-mod the 1-category
(i.e. forget the 2-morphisms) of A-module categories with F -semilinear endofunctors as in
Definition 3.2.

Theorem 3.4 (Theorem 3.8.5 [GKRV20], Theorem 1.1 [CP19]). Assume that A is compactly
generated and rigid monoidal, and F a monoidal endofunctor. Then, there is an equivalence of
algebras

HHpA, F q » EndTrpA,F qprA, F sq
op,

More generally, there is an equivalence of functors:

HHp´q » HomTrpA,F qprA, F s, r´sq : pA, F q-mod ÝÑ HHpA, F q -mod .

In particular, assuming that rA, F s is a compact object, then the left adjoint to the functor
HomTrpA,F qprA, F s,´q defines a fully faithful embedding which preserves compact objects, whose
essential image is the category generated by rA, F s:

HHpA, F q-mod TrpA, F q

xrA, F sy.

»

rA,F sbEndprA,F sq´

HomprA,F s,´q

3.2. Traces in geometric settings. The geometric avatar for Hochschild homology is the
derived loop space (or more generally, the derived fixed points of a self-map), see [BN19, BN12]
for extended discussions.

Definition 3.5. Let X be a derived stack.

19Roughly, this is the data of FM P EndpMq with natural compatibility isomorphisms FMpA ˚ Mq »

F pAq ˚ FMpMq for A P A,M PM, i.e. for a functor to be A-linear is a structure, not merely a property.
20There is a natural F -equivariant structure on 1A encoded by the structure of F being a monoidal endo-

functor, corresponding to the F -semilinear endofunctor being F itself.
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‚ We define the derived loop space LX (or derived inertia stack) to be

LX “ MapDStk
pS1, Xq » X ˆ

XˆX
X

i.e. the derived mapping stack from a circle, or more concretely the derived self-
intersection of the diagonal.

‚ More generally, if φ : X Ñ X is a self-map, we define the derived fixed points or φ-twisted
loop space LφX to be the fiber product

LφX X

X X ˆX.

ev Γφ

∆

i.e. the derived intersection of the diagonal with the graph Γφ “ idX ˆ φ of φ. Note
that the derived fixed points of the identity is the derived loop space, i.e. LidXX “ LX.

‚ We fix a base point on the circle, e.g. the identity, and denote by ev : LφX Ñ X the
evaluation at this base point.21

‚ The formation of derived loop spaces and derived fixed points are functorial, i.e. if
f : X Ñ Y is map of derived stacks, and φX , φY are compatible self-maps, then we have
a map of derived stacks Lφf : LφX Ñ LφY.

Example 3.6. For X a scheme we have that the derived loop space LX » TX r´1s is the total
space of the shifted tangent complex to X, while for X “ pt {G we have LX “ G{G » LocGpS

1q,
i.e. the classical inertia stack. For a general stack the loop space is a combination of the shifted
tangent complex with the inertia stack.

Example 3.7. For us, the proper self-maps above will arise via a proper action of a group G
on X, i.e. for g P Gpkq we obtain a proper map g : X Ñ X. Then, we have the relationship
LgX “ LpX{Gq ˆLpBGq tgu.

Note the parallel between the loop space, which is the self-intersection of the diagonal (the
identity self-correspondence from X) and Hochschild homology (the trace of the identity on a
category). As a result the push-pull functoriality of categories of sheaves under correspondences
implies an immediate relation between their Hochschild homology and loop spaces. Since QC
is functorial under ˚-pullbacks and QC! under !-pullbacks, this produces the following answers,
both of which hold in particular for QCA stacks (see Corollary 4.2.2 of [DG13], [BN19], and
Example 2.2.10 in [Ch20a]):

HHpQCpXq, φ˚q » ΓpLφX,OLφXq, HHpQC!
pXq, φ˚q » ΓpLφX,ωLφXq.

In other words, taking φ “ idX , the Hochschild homology of QCpXq (respectively QC!
pXq) is

given by functions (respectively volume forms) on the derived loop space. For X “ SpecpRq a
smooth affine scheme this recovers the Hochschild-Kostant-Rosenberg identification of Hochschild
homology of R-mod with differentials on R,

HHpR-modq “ OpLXq “ OpTX r´1sq “ Sym‚pΩ1
Rr1sq “ Ω´‚R .

Example 3.8 (Quasicoherent sheaves under tensor product). Let X be a perfect stack in the
sense of [BFN10]. Then, QCpXq has a monoidal structure via tensor product of sheaves. We
have that HHpQCpXqq “ OpLXq is an algebra object via the shuffle product, and the universal
trace QCpXq Ñ TrpQCpXqq “ QCpLXq given by pullback along evaluation at the identity.
Furthermore, the monoidal unit is OX P QCpXq with trace rOX s “ OLX P QCpLXq. Finally,
we have

OpLXq -mod » xOLXy Ă QCpLXq
where the fully faithful inclusion is an equivalence if X is affine.

21For any other two choices of base point s1, s2, it is possible to consistently identify the maps evs1 » evs2

by choice of path in the circle.
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We now establish a certain Calabi-Yau property of derived fixed points of smooth stacks (or
more generally, smooth maps). In our arguments it will be useful to factor the loop space of a
map Lf : LX Ñ LY through the following intermediate derived stack, which we define in three
equivalent ways.

Definition 3.9. Let f : X Ñ Y be a map of derived stacks with compatible self-maps φX , φY ,
and define Z :“ X ˆY X. We define LφYX via the pullback diagrams:

LφYX X LφYX X LφYX LφY

Z X ˆX X Y ˆX X Y.

Γφ fˆφX ev

fˆidX f

Roughly, this is the derived moduli stack of paths in X mapping to loops in Y .

The following lemma is a straightforward verification of the depicted diagrams, which we
leave to the reader.

Lemma 3.10. The above three presentations are canonically equivalent, and we have a canonical
factorization

LφX LφYX LφYδ π

where the maps are realized via the base change

LφX LφYX X LφYX LφY Y

X Z X ˆX X Y Y ˆ Y.

δ

evX ΓφX

π

evX{Y ΓφY

∆f“∆X{Y f ∆Y

i.e. δ is a base change of the relative diagonal for f , and π is a base change of f itself.

Example 3.11. When φ is the identity and Y “ pt, the factorization above is just LX Ñ X Ñ

pt.

When X is a smooth stack, there is an equivalence of categories PerfpXq “ CohpXq. Thus,
by the above we expect that OpLXq » ωpLXq. It turns out that this equivalence on global
sections comes from a map on the underlying sheaves themselves. We now establish the following
Calabi-Yau property of derived fixed points of smooth stacks, which we will use repeatedly in
our arguments. We refer the reader to Section 8 of [AG14] for discussion of quasi-smoothness
for derived Artin stacks.

Lemma 3.12. Let X,Y be derived Artin stacks equipped with proper self-maps φX , φY , and
let f : X Ñ Y be a compatible smooth relative Artin 1-stack.22 Then, there is a canonical
equivalence of functors

Lφf ! » Lφf˚ : QC!
pLφY q ÝÑ QC!

pLφXq.
In particular, if X is a smooth Artin 1-stack with a proper self-map φ, then ωLφX » OLφX .

Proof. Following the notation and factorization in Lemma 3.10, we have canonical identifica-
tions:

ωLφX{LφYX » ev˚XωX{Z , ωLφYX{LφY » ev˚X{Y ωX{Y .

Furthermore, after choosing23 one of the projections Z “ XˆY X Ñ X, the usual exact triangle
for cotangent complexes for the composition X Ñ Z Ñ X gives a canonical equivalence

ωX{Z » ∆˚X{Y ω
´1
Z{X » ω´1

X{Y .

22By this we mean such that the relative cotangent complex is perfect of Tor amplitude r0, 1s, i.e. the fibers

are are allowed to be stacky, and in particular, this map does not need to be representable by schemes.
23The definition of Hochschild homology implicitly requires us to choose an orientation on the circle S1. We

make one such choice, once and for all, which forces a particular choice here (i.e. a choice of sign).
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Thus, we have a canonical equivalence

ωLφX{LφY » ev˚Xω
´1
X{Y b δ

˚ev˚X{Y ωX{Y » OLφX .

By assumption the contangent complex Lf is perfect in degrees r0, 1s, so the relative cotangent
complex L∆X{Y

is perfect in degrees r´1, 0s; in particular, ∆X{Y is representable by schemes

and quasi-smooth and thus we have a canonical equivalence (see Proposition 7.3.8 of [Ga13])
Lφf ! » Lφf˚ b ωLφX{LφY » Lφf˚ as desired. �

Furthermore, by functoriality of Hochschild homology, for a map of stacks f : X Ñ Y we
expect that the pullback and pushforward functors define maps of global functions or volume
forms HHpf˚q : OpLY q Ñ OpLXq and (if f is proper) HHpf˚q : ωpLXq Ñ ωpLY q. We identify
this map with the global sections of a natural map on the underlying sheaves in two cases of
concern (see Appendix A.1 for the proof).

Definition 3.13. Let f : X Ñ Y be a map of QCA stacks, and φX , φY compatible proper
self-maps.

‚ If f is proper, then we have a pushforward map ωpLφf˚q : ωpLφXq Ñ ωpLφY q of global
volume forms. That is, by Remark 4.6 in [BN19], since f is proper, Lφf : LφX Ñ LφY
is proper; ωpLφf˚q is the global sections of the counit of the adjunction pLφf˚,Lφf !q

applied to ωLφY .
‚ If f is smooth, then we have a “Gysin” pullback ωpLφf˚q : ωpLφY q Ñ ωpLφXq of

global volume forms. That is, by Proposition 3.12, if f is smooth then Lφf is Calabi-
Yau; passing through this equivalence, ωpLφf˚q is the global sections of the unit of the
adjunction pLφf˚,Lφf˚q applied to ωLφY .

Proposition 3.14. Let f : X Ñ Y be map of QCA stacks with compatible proper self-maps
φX , φY . We consider the following functors, which preserve compact objects.

‚ There are canonical identifications

HHpQC!
pXq, φ˚q » ωpLφXq.

‚ Suppose f is proper, and consider f˚ : QC!
pXq Ñ QC!

pY q. Then, the map HHpf˚, φ˚q
is canonically identified with the map on global volume forms ωpLφf˚q.

‚ Suppose that f is smooth, and consider f˚ : QC!
pY q Ñ QC!

pXq. Then, the map
HHpf˚, φ˚q is canonically identified with the map on volume forms ωpLφf˚q.

3.3. Convolution patterns in Hochschild homology. Convolution patterns in Borel-Moore
homology and algebraic K-theory play a central role in the results of [CG97]. We now describe
a similar pattern which appears in Hochschild homology.

Definition 3.15. We will work with the following general setup (see Section 1.5 of [BNP17b]).

‚ f : X Ñ Y is a proper morphism of smooth, QCA stacks over k, and Z “ X ˆY X.
‚ φX : X Ñ X and φY : Y Ñ Y are (representable) proper self-maps commuting with f ,

inducing a proper self-map φ : Z Ñ Z.

We refer to any Z arising from the set-up above a convolution space, and call the category
QC!

pZq a convolution category.

In this setup the category QC!
pZq carries a monoidal structure under convolution24, and φ˚

is a monoidal endofunctor. The convolution monoidal structure restricts to the compact objects
CohpZq thanks to the smoothness of X (hence finite Tor-dimension of the diagonal of X) and
the properness of f ; furthermore, since φ is proper, φ˚ has a continuous right adjoint, and
preserves CohpZq.

24As explained in Remark 3.0.7 and Lemma 3.0.8 of [BNP17a], on the compact objects CohpZq there are two
monoidal products, given by ˚- or !-convolution, intertwined by Grothendieck duality. We will default to the
!-version, which is amenable to the ind-completed category QC!pZq.



36 DAVID BEN-ZVI, HARRISON CHEN, DAVID HELM, AND DAVID NADLER

By Theorem 1.1.3 of [BNP17a], there is an equivalence of small monoidal categories25

pCohpX ˆY Xq, ˚q » pFunexPerfpY qpCohpXq,CohpXqq, ˝q.

Moreover, we will argue in Theorem 3.25 that pQC!
pZq, ˚q is rigid monoidal. The monoidal unit

is the dualizing sheaf of the relative diagonal ω∆ :“ ι˚ωX , where ι : X Ñ X ˆY X.
Recall (from Section 2.1.1) that the Hochschild homology of CohpZq (or equivalently of its

large variant QC!
pZq by Remark 2.2.11 of [Ch20a]) for a stack Z is given geometrically by

volume forms on the loop space, or in the case of the trace of φ˚ the derived fixed points:

HHpQC!
pZq, φ˚q » ΓpLφZ, ωLφZq.

Thus the vertical trace of the monoidal category CohpZq defines an algebra structure on global
distributions ΓpLφZ, ωLφZq.

We want to relate this convolution structure on sheaves its decategorified version involving
volume forms on the corresponding loop spaces. Thus we consider the loop map Lφf : LφX Ñ

LφY to f , whose self-fiber product is LφZ » LφX »LφY LφX. Note that Lφf is a proper map

of quasismooth derived stacks. In particular, ωLφX is coherent (a compact object in QC!
pLφXq)

and Lφf˚ preserves coherence. We thus define our main object of interest:

Definition 3.16. We define the universal trace sheaf

SX{Y,φ :“ Lφf˚ωLφX » Lφf˚OLφX P CohpLφY q.
The latter isomorphism follows since the loop space of smooth stacks are naturally Calabi-Yau
(see Lemma 3.12).

The endomorphisms of the universal trace sheaf have a close relationship to volume forms on
the loop space of the convolution space. Namely, we have a canonical equivalence

ωpLφZq » EndLφY pSX{Y,φq.
Furthermore, these equivalences are functorial; on the left, this was discussed in Definition 3.13.
On the right, the functoriality arises via the following functoriality of the universal trace sheaf.

Definition 3.17. Let pX,Y, f, φq and pX 1, Y 1, f 1, φ1q as in Definition 3.15 (with convolution
spaces Z,Z 1). Suppose we have maps αX : X Ñ X 1 and αY : Y Ñ Y 1 commuting with f, f 1,
inducing αZ : Z Ñ Z 1. Then, we have the following due to base change.

‚ Suppose that X “ X 1 and that αY is proper. Then, there is a canonical equivalence
LαY ˚SX{Y,φ » SX1{Y 1,φ1 , and the functor αZ˚ : CohpZq Ñ CohpZ 1q is monoidal.

‚ Suppose that αY is smooth and f is base-changed from f 1, i.e. X “ X 1 ˆY 1 Y . Then
there is a canonical equivalence Lα!

Y SX1{Y 1,φ1 » SX{Y,φ, and the functor α!
Z : CohpZ 1q Ñ

CohpZq is monoidal.

The functorialities on the two sides of the equivalence are compatible. We summarize our
above discussion in the following.

Proposition 3.18. We let p : Z Ñ Y denote the structure map. In the set-up of Definition
3.15, we have canonical equivalences

ζ : Lφp˚ωLφZ » EndLφY pLφf˚OLφXq

such that if α : Y Ñ Y 1 is proper and X “ X 1, we have commuting squares

Lφα˚Lφp˚ωLφZ Lφα˚EndLφY pLφf˚OLφXq

Lφp1˚ωLφZ1 EndLφY 1pLφf˚OLφX1q.

»

Lφα˚pζq

Def.3.13 Def.3.17

»

ζ1

25Via the discussion in Section 4.7 of [Lur18], endofunctor categories naturally possess the structure of an

associative monoidal 8-category. Theorem 1.1.3 in [BNP17a] identifies the underlying categories, with convolu-
tion corresponding to composition object-by-object. Thus we can simply define the monoidal structure (with all
its higher coherence compatibilities) on the left by transporting it from the right.
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while if α : Y Ñ Y 1 is smooth and X “ X 1 ˆY 1 Y , we have commuting squares

Lφp1˚ωLφZ1 EndLφY 1pLφf˚OLφX1q

Lφα˚Lφp˚ωLφZ Lφα˚EndLφY pLφf˚OLφXq.

Def.3.13

»

ζ1

Def.3.17

»

Lφα˚pζq

Proof. Application of Proposition A.1, noting that if f is smooth then Lφf is Calabi-Yau by
Proposition 3.12. �

Remark 3.19 (Convolution of volume forms and endomorphisms of SX{Y ). Applying the above
proposition to Lφf : LφX Ñ LφY , i.e. if we sheafify over LφY , we can identify this algebra struc-
ture more concretely as convolution of volume forms on LφZ. That is, LφZ “ LφX ˆLφY LφX
has the structure of proper monoid in stacks over LφY , from which one deduces the structure of

algebra object in pQC!
pLφY q,b!q on the pushforward of ωLφZ . One can also use proper descent

for Lφf : LφX Ñ LφY to identify this sheaf of algebras with the internal endomorphism sheaf
of SX{Y – an analog, in the setting of derived categories of coherent sheaves on derived stacks,
of the standard proof (see e.g. [CG97]) that self-Ext of the Springer sheaf is identified with
Borel-Moore homology of Z. It would be interesting to see how these arguments globalize over
LφY to give the isomorphism ΓpLφZ, ωLφZq » EndQC!pLφY qpSX{Y q of Theorem 3.25.

3.3.1. Horizontal trace of convolution categories. Recall that Theorem 3.4 identifies the vertical
trace HHpQC!

pZqq, ˚q as the endomorphism algebra of the distinguished object in the horizontal

trace TrpQC!
pZq, ˚q, under the assumption that this distinguished object is compact (and a

rigidity condition to be addressed in Proposition 3.25). In this section we discuss this horizontal
trace in the context of convolution spaces following [BNP17b], slightly generalizing the main
theorem of op. cit.

For this we require a discussion of singular supports; we summarize the main points and refer
the reader to [AG14, BNP17b] for details. Note that singular supports do not appear in our
main application Theorem 4.12, since the singular support condition there is actually a classical
support condition (see Remark 4.14).

Definition 3.20. Let f : X Ñ Y be a representable map of quasi-smooth stacks.

‚ We define the scheme of singularities or (classical) odd cotangent bundle to be

T˚r-1sX :“ SpecX Sym‚X H
1pTXq “ SpecX Sym‚X H

0pTX r1sq

where TX denotes the tangent complex of X, i.e. the OX -linear dual of the cotangent
complex.

‚ Any ind-coherent sheaf F P QC!
pXq has a closed conical singular support SSpFq Ă

T˚r-1sX . To any subset Λ Ă T˚r-1sX we can associate the full category QC!
ΛpXq Ă QC!

pXq
consisting of sheaves with the specified singular support.

‚ Let ΛX Ă T˚r-1sX and ΛY Ă T˚r-1sY . One can push forward f˚ΛX and pull back f !ΛY
singular support conditions in a compatible way with the pullback and pushforward
functors:

f˚ : QC!
ΛX pXq Ñ QC!

f˚ΛX pY q, f ! : QC!
ΛY pY q Ñ QC!

f !ΛY
pXq.

Example 3.21. If X is smooth, then T˚r-1sX “ X, i.e. there are no possible singular codirections

to consider. In particular, the nontrivial fibers of the map T˚r-1sX Ñ X live over the singular
locus of X.

When Λ “ T˚r-1sX , we have QC!
ΛpXq “ QC!

pXq. At the opposite extreme, when Λ “ t0uX
is the zero section, we have QC!

ΛpXq “ QCpXq. If Z Ă X is a closed subscheme and Λ “

Z ˆX T˚r-1sX , then QC!
ΛpXq “ QC!

ZpXq, i.e. the full subcategory of ind-coherent sheaves with

classical support at Z Ă X. If instead we take Λ “ Z ˆ t0uX , then QC!
ΛpXq “ QCZpXq.
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The following singular support condition appears when taking traces of convolution categories.

Definition 3.22. Recall the notation from Definition 3.5 and Definition 3.9. We have the
following trace correspondence:

Z “ X ˆY X LφYX “ Z ˆ
XˆX

X » X ˆ
YˆX

X LφY.δ π

We define a singular support condition ΛX{Y,φ :“ π˚δ
!T˚r-1sZ .

We now give a description of the horizontal trace. The following statement is more general
than the statement of Theorem 3.3.1 in [BNP17b], but follows from the same argument in the
proof with the definitions given above; the proof is in Appendix A.2.

Theorem 3.23. There is a canonical identification of the horizontal trace (i.e. the monoidal
Hochschild homology)

TrppQC!
pZq, ˚q, φ˚q » QC!

ΛX{Y,φ
pLφY q,

with the universal trace given by26

r´s “ π˚δ
! : QC!

pX ˆY Xq Ñ QC!
ΛX{Y,φ

pLφY q.

Next we identify the universal trace sheaf (i.e. coherent Springer sheaf) as the trace of the
monoidal unit (which is a compact object of the trace category) or regular representation:

Lemma 3.24. There is a natural equivalence SX{Y,φ » rω∆s “ π˚δ!ω∆ in CohpLφY q.

Proof. The calculation of δ!ω∆ “ δ!∆˚ωX arises via base change along the diagram

LφX LφYX “ Z ˆXˆX X

X Z “ X ˆY X∆

and the statement follows. �

3.3.2. Trace delooping in convolution categories. We now deduce the main structural relation
between universal trace sheaves (see Definition 3.16) and iterated categorical traces of convolu-
tion categories.

Theorem 3.25. Let f : X Ñ Y be as in Definition 3.15. Then, the convolution category
QC!

pX ˆY Xq is rigid. In particular, the statements of Theorem 3.4 apply: the vertical trace of

the convolution category pQC!
pZq, ˚q is identified as an algebra with the endomorphisms of the

universal trace sheaf

HHpQC!
pX ˆY Xq, φ˚q » EndQC!pLφY qpLφf˚ωLφXq

compatibly with the natural S1-actions (from the cyclic trace and loop rotation, respectively).

Proof. We need to verify that QC!
pZq is rigid monoidal. Standard arguments show that integral

transforms arising via coherent sheaves preserve compact objects; this statement is also con-
tained within Theorem 1.1.3 in [BNP17a]; one further immediately observes that the monoidal
unit ∆˚ωX is a compact object, i.e. coherent, since the diagonal is a closed embedding. It re-
mains to verify that the right and left duals of coherent sheaves K P QC!

pZq are again coherent.
Using loc. cit., it suffices to show that the right and left adjoints of the corresponding integral
transform FK : QCpXq Ñ QCpXq preserve compact objects. We note that since the projection
maps p : Z Ñ X are quasi-smooth, the functors p! and p˚ differ by a shifted line bundle. By
Lemma 3.0.8 in op. cit. we can consider equivalently either the ˚ or !-transforms up to twisting
by Grothendieck duality. For convenience we will consider the ˚-transform.

26Note that our trace functor is given by δ! rather than the δ˚ in [BNP17b], since we employ the !-transform
rather than the ˚-transform.



COHERENT SPRINGER THEORY AND CATEGORICAL DELIGNE-LANGLANDS 39

To see the claim, note that we can write the ˚-integral transform FK as a composition:

QCpXq QCpZq QC!
pZq QC!

pXq.
p˚ ´bK p˚

We claim that the right adjoint preserves compact objects. The claim for the left adjoint follows
similarly by replacing p˚ with a twist of p! by a shifted line bundle. The right adjoints define a
sequence of functors

QCpXq QCpZq QC!
pZq QC!

pXq.
p˚ Hom

QC!pZq
pK,´q p!

“p˚bL

The functor HomQC!pZqpK,´q : QC!
pZq Ñ QCpZq is defined as follows. Given G P QC!

pZq, we

may write G “ colimi Gi with Gi P CohpZq. Since K is compact, we may define:

HomQC!pZqpK,Gq :“ lim
i

HomZpK,Giq P QCpZq

where the internal Hom on the right is taken inside CohpZq Ă QCpZq as usual. Let us justify
the claim that this functor is a right adjoint to tensoring with K. Let F P QCpZq, and write
F “ colimj Fj with Fj P PerfpZq. Then, by the usual adjunction in QCpZq, and using the facts

that the Fj are compact in QCpZq and that Fj bK P CohpZq are compact in QC!
pZq since Fj

are perfect, we have:

HomQCpZqpF ,HomQCpZqpK,Gqq » HomQCpZqpcolim
j

Fj , lim
i

HomZpK,Giqq

» lim
i,j

HomQCpZqpFj ,HomZpK,Giqq » lim
i,j

HomQC!pZqpFj bK,Giq » HomQC!pZqpF bK,Gq.

Finally, we verify that HomQC!pZqpK,´q sends PerfpZq to CohpZq, which implies that the

sequence of right adjoints above preserves compact objects. The Grothendieck dual DpKq “
HomZpK, ωZq is coherent, and since Z is quasi-smooth, ωZ is a line bundle, so we have for
E P PerfpZq:

HomQC!pZqpK, Eq “ HomQC!pZqpK, ωZq bOZ ω
´1
Z bOZ E » DpKq bOZ ω

´1
Z bOZ E

which is coherent. �

3.4. Trace of the standard categorical representation. In Lemma 3.24, we have computed
the trace of the regular representation QC!

pZq of QC!
pZq to be the universal trace sheaf, i.e.

rQC!
pZq, φ˚s » SX{Y,φ :“ Lφf˚OLφX . Our convolution set-up comes equipped with another

natural module category: the the standard representation, i.e. the module category QC!
pXq. In

this section we compute the trace of this categorical representation, and relate it to the trace of
the regular representation in a special case. We first note a degenerate example.

Example 3.26. Consider the case when X “ Y “ Z is smooth. In this case, QC!
pY q “ QCpY q,

and the trace correspondence of Definition 3.22 is simply given by pullback along the evaluation
ev : LφY Ñ Y :

Y LφY LφY.ev

In this case, the standard representation is the regular representation, and by Theorem 3.3.1 of
[BNP17b] (and Proposition 3.12), the trace of the regular representation is

rQC!
pY q, φ˚s “ rωY s “ ωLφY » OLφY

and the corresponding singular support condition ΛY {Y,φ “ t0uLφY is the zero section, i.e. we

have TrpQC!
pY q, φ˚q “ QCpLφY q (see Corollary 5.2 of [BFN10]).

We recall a few notions from Section 2.3 of [BNP17b]. The following functors allow us to
pass between categories with different singular supports.
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Definition 3.27. For a pair pX,ΛXq, there is an adjoint pair of functors (see Definition 2.3.2
of [BNP17b]):

ιΛ : QC!
ΛpXq QC!

pXq : ΓΛ

where ιΛ is the the natural inclusion, and ΓΛ is the corresponding colocalization.27

We need an identification of the relative tensor product of convolution categories, with spec-
ified support. We work in the set-up of Definition 3.15: let Xi be smooth QCA stacks over k,
proper over Y , and let Zij “ Xi ˆY Xj .

Definition 3.28. Let Λ12 Ă T˚r-1sZ12
and Λ23 Ă T˚r-1sZ23

. Consider the diagram

Z12 ˆ Z23 X1 ˆY X2 ˆY X3 Z13.
δ π

We define the convolution of singular supports

Λ12 ˚ Λ23 “ π˚δ
!pΛ12 b Λ23q.

We say that Λij is Zii-stable if T˚r-1sZii
˚ Λij Ă Λij .

Remark 3.29. The trace singular support condition ΛX{Y of Definition 3.22 can be viewed as

the convolution of T˚r-1sZ with itself “in a circle.”

We immediately observe that the convolution action restricts to an action of QC!
ΛiipZiiq on

QC!
Λij pZijq if and only if Λij is Λii-stable. In particular, we have the following identification,

which we prove in Appendix A.2; a proof will also appear in [CD21].

Proposition 3.30. In the set-up above, let Λ12 Ă T˚r-1sZ12
and Λ23 Ă T˚r-1sZ23

be Z22-stable. Define
Λ13 :“ Λ12 ˚ Λ23. Then convolution defines an equivalence of categories:

QC!
Λ12
pZ12q bQC!pZ22q

QC!
Λ23
pZ23q QC!

Λ13
pZ13q.

»

Furthermore, we have the following functoriality of supports: let Λi,i`1 Ă Λ1i,i`1 be another

singular support condition on Zi,i`1 (for i “ 1, 2) with Λ113 :“ Λ112 ˚Λ123. Then, Λ13 Ă Λ113, and
the following squares commute:

QC!
Λ12
pZ12q b

QC!pZ22q

QC!
Λ23
pZ23q QC!

Λ13
pZ13q

QC!
Λ112
pZ12q b

QC!pZ22q

QC!
Λ123
pZ 123q QC!

Λ113
pZ13q.

»

ιΛ12
bιΛ23

ιΛ13

»

ΓΛ13bΓΛ23

ΓΛ13

We now compute the the trace of the categorical representation, which arises via functoriality
of horizontal traces (see Section 3.5 of [BN19] for details). Namely, consider the “renormalized
(ind-coherent) Morita invariance” functor

T p´q :“ QC!
pXq bQCpY q ´ : QCpY q-mod “ QC!

pY q-mod ÝÑ QC!
pZq-mod.

Note that the QCpY q action on QCpXq “ QC!
pXq via pullback commutes with the QC!

pZq-
action by convolution. This functor defines a functor on horizontal traces (note that, as discussed

in Example 3.21, QC!
t0uLφY

pLφY q “ QCpLφY q):

TrpT, φ˚q : TrpQCpY q, φ˚q “ QC!
t0uLφY

pLφY q ÝÑ TrpQC!
pZq, φ˚q “ QC!

ΛX{Y,φ
pLφY q.

27I.e. a “projection” functor to the subcategory QC!
ΛpXq, which we view as a singular support analogue of

local cohomology. Note the abusive notation, i.e. the local cohomology functor usually refers to the functor
ιΛ ˝ ΓΛ.
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There is a canonical endofunctor φ˚ : QC!
pXq Ñ QC!

pXq for which the actions above are
canonically φ˚-semilinear. By definition,

rQC!
pXq, φ˚s “ TrpT, φ˚qprQCpY q, φ˚sq “ TrpT, φ˚qpOLφY q.

A variant of this functor for quasi-coherent sheaves, and in the setting where f : X Ñ Y is
surjective, was studied in [BFN12]. Note that unlike in their setting, this functor T is not an
equivalence since we are considering ind-coherent sheaves. Furthermore, the failure of f to be
surjective in our setting requires the application of local cohomology in the calculation of its
trace. We now identify the trace of the standard representation.

Proposition 3.31. Define the singular support condition t0ufpXq :“ t0uLφY X ΛX{Y,φ. There
is a canonical identifications of functors

TrpT, φ˚q » ιt0ufpXq ˝ Γt0ufpXq : QC!
t0uLφY

pLφY q Ñ QC!
ΛX{Y,φ

pLφY q.

Furthermore, letting ev´1fpXq Ă LφY corresponding to t0ufpXq, we have

rQC!
pXq, φ˚s » Γev´1fpXqpωLφY q.

Proof. For simplicity, we will prove the statement where φ is the identity; the general case
follows similarly. We claim that the right dual to T is

TRp´q :“ QC!
pXq bQC!pZq ´ : QC!

pZq-mod Ñ QC!
pY q-mod

where QC!
pXq here is considered as right QC!

pZq-module, so that we have

TR ˝ T p´q “ pQC!
pXq bQC!pZq QC!

pXqq bQC!pY q ´ » QC!
fpXqpY q bQCpY q ´,

T ˝ TRp´q “ pQC!
pXq bQC!pY q QC!

pXqq bQC!pZq ´ » QC!
t0uZ

pZq bQC!pZq ´.

Note that the convolution QCpY q-action can be re-interpreted as the usual pullback and tensor

product, while the QC!
pZq-action is by convolution. The first isomorphism is due to Proposition

3.30, whereby

QC!
pXq bQC!pZq QC!

pXq » QC!
fpXqpY q

i.e. the full subcategory of QC!
pY q “ QCpY q with classical support on the closed subset fpXq

(since Y is smooth there are no possible singular codirections). The second isomorphism is due

to Theorem 4.7 of [BFN10], i.e. we have QC!
pXq bQC!pY q QC!

pXq “ QCpZq “ QC!
t0uZ

pZq.
To establish duality, we need to write down unit and counit maps

η : QC!
pY q ÝÑ QC!

pXq bQC!pZq QC!
pXq » QC!

fpXqpY q,

ε : QC!
t0uZ

pZq » QC!
pXq bQC!pY q QC!

pXq Ñ QC!
pZq

satisfying the usual “Zorro’s identities”. We define η :“ ΓfpXq to be the local cohomology
functor, and ε “ ιt0uZ to be the fully faithful inclusion. The verification of Zorro’s identities is
immediate from the observation that tensoring η or ε with idQC!pXq (on either side) gives rise
to the identity functor, i.e. that the following diagrams commute:

QC!
pXq b

QC!pY q
QC!

pY q QC!
pXq QC!

t0uZ
pZq b

QC!pZq
QC!

pXq QC!
pXq

QC!
pXq b

QC!pY q
QC!

fpXqpY q QC!
pXq QC!

pZq bQC!pZq QC!
pXq QC!

pXq

»

id
QC!pXq

bη
id

QC!pXq εbid
QC!pXq

»

id
QC!pXq

» »

This follows by Proposition 3.30 and the singular support calculations (note that X is smooth

and thus T˚r-1sX has no singular codirections):

t0uX ˚ fpXq “ t0uX , t0uZ ˚ t0uX “ t0uX .

This establishes the duality of pT, TRq.
Now, we compute the map on traces, using the functoriality described in Section 3.5 of

[BN19]. There is a canonical commuting structure ψ : T ˝ φY ˚ Ñ φZ˚ ˝ T , which for us is
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an equivalence (thus induces an equivalence on traces). We let fpXq Ă T˚r-1sY “ Y denote the
(necessarily, since Y is smooth) classical support condition, and define Λ :“ ev!pfpXqq, i.e. the
loops with base points classically supported over fpXq Ă Y and no singular codirections. We
have t0uLY Ą Λ Ă ΛX{Y .

TrpQC!
pY q, φY ˚q QC!

t0uLφY
pLφY q

TrpQC!
pY q, TR ˝ T ˝ φY ˚q QC!

ev!fpXqpLφY q

TrpQC!
pY q, TR ˝ φZ˚ ˝ T q QC!

ev!fpXqpLφY q

TrpQC!
pZq, φZ˚ ˝ T ˝ T

Rq QC!
δ˚π!t0uZ

pLφY q

TrpQC!
pZq, φZ˚q QC!

ΛX{Y
pLφY q

TrpQC!
pY q,η˝idφ˚ q

»

ΓΛ˝ιt0u“ΓΛ

TrpQC!
pY q,idTR˝ψq »

»

»

»

TrpQC!
pZq,idφ˚˝εq

»

ΓΛX{Y
˝ιΛ“ιΛ

»

The top and bottom isomorphisms are given by Theorem 3.3.1 in [BNP17b]. We argue the
middle isomorphisms. A combination of the arguments of Propositions 3.23 and 3.30 gives rise
to identifications

TrpQC!
pZq, T ˝ TR ˝ φY ˚q “ QC!

pY q bQC!pYˆY q QC!
fpXqpY q » QC!

ev!pfpXqqpLφY q,

TrpQCpY q, φZ˚ ˝ T
R ˝ T q “ QC!

pZq bQC!pZˆZq QC!
t0uZ

pZq » QC!
δ˚π!t0uZ

pLφY q,

where δ˚π
!t0uZ is the pull-push of t0uZ along the correspondence in Theorem 3.23. We note

that δ˚π
!t0uZ “ δ˚t0uLφYX “ ev!fpXq “ t0ufpXq (where t0ufpXq is as defined in the theorem

statement). The identification of the vertical functors follows via the functoriality of supports in
Proposition 3.30 applied to the setting of Proposition 3.23, and the observation that t0uLφY Ą
Λ Ă ΛX{Y,φ. This establishes the first statement of the theorem.

For the second statement, note that ωLφY is perfect (since LY is quasi-smooth), i.e. has

no singular codirections. Note that in general, for singular support conditions Λ1,Λ2 Ă T˚r-1sX ,
we have ΓΛ2

˝ ιΛ1
˝ ΓΛ1

“ ΓΛ1XΛ2
. Now, take Λ1 “ t0uLY (i.e. no singular codirections with

unrestricted classical support) and Λ2 “ ev´1fpXq ˆLφY T˚r-1sLφY (i.e. all singular codirections

with restricted classical support). The second statement follows, since ΓΛ1pωLφY q “ ωLφY and

ΓΛ2 is the classical local cohomology functor with support ev´1fpXq. �

Corollary 3.32. The functor

HompSX{Y,φ,´q : TrpQC!
pZq, φ˚q » QC!

ev´1fpXqpLφY q ÝÑ EndpSX{Y,φq -mod

takes Γev´1fpXqpOLφY q to the HHpQC!
pZq, φ˚q-module HHpQC!

pXq, φ˚q.

Proof. By Theorem 3.4, it suffices to identify the trace of the QC!
pZq-module category QC!

pXq.

By the above theorem, rQC!
pXq, φ˚s » Γev´1fpXqpωLφY q » Γev´1fpXqpOLφY q (the latter isomor-

phism by Proposition 3.12). �

3.4.1. Splitting the universal trace sheaf. There is a canonical map

rQC!
pZq, φ˚s “ SX{Y,φ “ Lφf˚ωLφX ÝÑ Γev´1fpXqpωLφY q “ rQC!

pXq, φ˚s

arising via the pushforward of volume forms. In this section we investigate when this map
splits, realizing the trace of the standard representation as a summand of the trace of the
regular representation. Our goal is to prove the following.
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Proposition 3.33. Let f : X Ñ Y be a proper morphism of smooth QCA stacks, with compatible
self-maps φX , φY . Assume that:

‚ φY ˚ is a monoidal endofunctor of QCpY q and φX˚ is a φY ˚-semilinear endofunctor of
QCpXq (e.g. φX , φY are automorphisms),

‚ f˚OX » OY0
for Y0 Ă Y a (possibly singular) closed substack, i.e. f is a resolution of

rational singularities,
‚ the closed substack Y0 has finite Tor dimension, and
‚ LφY0 “ LφY as derived stacks.

Then, rQC!
pZq, φ˚s “ SX{Y » Lφf˚ωLφX contains rQC!

pXq, φ˚s » Γev´1fpXqpωLφY q as a sum-
mand, i.e. the map defined above splits. In particular, we have the following converse to Corol-
lary 3.32: the fully faithful map of Theorem 3.4

HHpQC!
pZq, φ˚q -mod ãÑ QC!

ΛX{Y,φ
pLφY q

takes HHpQC!
pXq, φ˚q ÞÝÑ ωLφY » OLφY .

To prove the above result, we require a discussion of enhanced vertical traces, i.e. the re-
alization of vertical traces of module categories for a monoidal category as characters in the
horizontal trace of the monoidal category.

Definition 3.34. Let us fix a monoidal dg category A, and a monoidal endofunctor F . For
any A-module category C equipped with a commuting structure FM for F (see Definitions 2.6
and 3.2), we define the enhanced Hochschild homology to be

HHpC, FMq :“ rC, FMs P TrpA, F q.

By Theorem 3.4, the usual Hochschild homology can be recovered by applying the functor
HomTrpA,F qprA, F s,´q.

Remark 3.35. We have seen examples of this enhanced Hochschild homology in Section 3.2,
namely that in geometric settings Hochschild homology and maps induced by functoriality often
sheafify, i.e. arise as global objects via local ones by taking global sections. The category QCpY q
is monoidal, and for any module category C the Hochschild homology HHpCq :“ rCs P Vectk
has an enhancement HHpCq P TrpQCpY qq “ QCpLY q. Though we do not need or prove it, the
enhanced Block-Getzler complex in Definition 2.11 is also an example of this phenomenon, where
we view the Hochschild homology of a ReppGq-module category as an object of TrpReppGqq “
QCpG{Gq.

We now compute the enhanced trace in an example of interest; see Appendix A.2 for a proof.

Proposition 3.36. Let f : X Ñ Y be a map of QCA (or more generally, perfect) stacks, and
φX , φY compatible self-maps such that φY ˚ : QCpY q Ñ QCpY q is monoidal and φX˚ : QCpXq Ñ
QCpXq is φY ˚-semilinear. Consider QCpXq as a QCpY q-module category. Then, we have

HHpQCpXq, φX˚q “ rQCpXq, φX˚s » Lφf˚OLφX P TrpQCpY q, φY ˚q “ QCpLφY q.

We now prove the result via the following mild generalization.

Proposition 3.37. Let f : X Ñ Y be a morphism of QCA stacks, with compatible self-maps
φX , φY such that φY ˚ : QCpY q Ñ QCpY q is monoidal and φX˚ : QCpXq Ñ QCpXq is φY ˚-
semilinear. Further assume that f˚OX » OY , and that f˚ sends PerfpXq to PerfpY q. Then,
Lφf˚OLφX contains OLφY as a summand.

Proof. To prove the claim, we need to produce a splitting. First note that HHpQCpY q, φ˚q “
OpLφY q has the structure of an algebra object given by multiplication of functions. The struc-
ture sheaf OY is the monoidal unit and thus has a canonical φ˚-equivariant structure, and thus
its trace rOX s is the monoidal unit in HHpQCpY q, φ˚q. Thus, rOY s “ 1LφY (and similarly for
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X). Now, consider the diagram

HHpQCpY q, φ˚q OLφY 1LφY rOY s

HHpQCpXq, φ˚q Lφf˚OLφX 1LφX rf˚OY s “ rOX s

HHpQCpY q, φ˚q OLφY 1LφY rf˚OX s “ rOY s

HHpf˚,φ˚q

Q

HHpf˚,φ˚q

Q

Q

Note that f˚ always preserves compact objects, and f˚ preserves compact (i.e. perfect) objects
by assumption, giving us the functoriality on the left following Proposition 3.36. To see that
the composition is the identity, note that a map OLφY Ñ OLφY is determined by where the
constant function maps; in particular, since it maps to itself, the map is the identity. �

Proof of Proposition 3.33. Since X and Y are smooth, ωLφX » OLφX and OLφY » ωLφY . Since
f surjects onto LφY0, which is equal to LφY , we have that Γev´1fpXqpωLφY q “ ωLφY » OLφY »

OLφY0 , and the result follows by applying Proposition 3.37 to the map X Ñ Y0 (note that since
f is proper and X is smooth, f˚ sends PerfpXq “ CohpXq to CohpY0q, and since we require Y0

to have finite Tor dimension we have PerfpY0q “ CohpY0q). �

4. The affine Hecke algebra and the coherent Springer sheaf

We now specialize the discussion of Section 3 to our Springer theory setting. We are interested
in the following special cases.

Definition 4.1 (Coherent Springer sheaves). Recall that rG “ G ˆ Gm, and the set-up in
Definition 3.15 and the universal trace sheaf of Definition 3.16.

‚ We take

f “ µ : X “ rN { rG ÝÑ pN { rG ãÑ Y “ g{ rG

to be the scaling-equivariant Springer resolution (with codomain in the Lie algebra rather

than the nilpotent cone). We call the resulting sheaf S on Lp pN { rGq (or equivalently, on

Lpg{ rGq supported over N ) the coherent Springer sheaf.
‚ We take

f “ µ : X “ rN {G ÝÑ pN {G ãÑ Y “ g{G

to be the above Springer resolution without Gm-equivariance, and φ :“ q to be multi-
plication by q P Gmpkq. Then we have the derived q-fixed points:

Lqp pN {Gq » Lp pN { rGq ˆLpBGmq tqu.

This is the stack Luq,G from the introduction. We call the sheaf Sq on Lqp pN {Gq the
coherent q-Springer sheaf.

We note the following convenient presentation of the stacks Lp rN { rGq and Lp pN { rGq.

Remark 4.2. We realize Lp pN { rGq as the formal completion of Lpg{ rGq Ñ g{ rG over the nilpotent

cone. By Proposition 2.1.8 of [Ch20a], we can write Lpg{ rGq as the pullback

Lpg{ rGq g{ rG t0u{ rG

pgˆ rGq{ rG pgˆ gq{ rG g{ rG

∆

aˆp ´

where the bottom right map is given by subtraction in g, a is the action map, p the projection,

and ∆ the diagonal. Explicitly, the map gˆ rGÑ g is given by px, g, qq ÞÑ q´1Adgpxq ´ x. We
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also have a version for fixed q:

Lqpg{Gq g{G t0u{ rG

pgˆGq{G pgˆ gq{ rG g{ rG.

∆

aqˆp ´

where aq is the q-twisted action map. There is a similar description for Lp rN { rGq “ Lpn{ rBq:

Lp rN { rGq rN { rG pG{Bq{ rG

p rN ˆ rGq{ rG p rN ˆ rN q{ rG rN { rG.

∆

aˆp ´

We record the following mild generalization and direct consequence of Proposition 4.2 in [H20]
and Proposition 2.1 in [He20] (also proven for q a prime power in Proposition 3.1.5 of [Zh20]).

Proposition 4.3. If q is not a root of unity, then Lqp pN {Gq is a classical stack, i.e. has trivial
derived structure and is supported at the nilpotent cone.

Proof. We first argue that Lqpg{Gq is supported over the nilpotent cone, thus Lqpg{Gq “
Lqp pN {Gq. The formation of (twisted) loop spaces commutes with products; note the Carte-
sian square

N {G g{G

t0u h{{W.

The morphisms are Gm-equivariant, where Gm acts on h by weight 1, and thus on h{{W by
weights ě 2. Thus if q is not a root of unity, then the (derived and classical) q-fixed points of
h{{W is precisely t0u. Thus the map on the bottom is an equivalence, and the claim follows.
The vanishing of derived structure follows by Proposition 4.2 in [He20] and in view of Remark
2.2(b) of op. cit. �

Remark 4.4. It is necessary to exclude roots of unity; when G “ SL2, the weight of h{{W is
2, so the argument fails for q “ ˘1. When G “ SL2, the weights of h{{W are 2 and 3, so the
argument fails for q “ ˘1 and any cubic root of unity.

We now give an alternative characterization of the coherent Springer sheaf (and likewise for
the q-version) via coherent parabolic induction.

Definition 4.5. Consider the parabolic induction correspondence

pN { rG pn{ rB xt0u{ rH.
µ ν

We define the coherent Springer sheaf by applying the loop space of the above correpsondence

to the reduced structure sheaf of Lpt0u{ rHq:

S :“ Lµ˚O
ĂN { rG “ Lµ˚Lν˚OLpt0u{ĂHq P CohpLp pN { rGqq.

We define the coherent q-Springer sheaf analogously, or equivalently we can take Sq :“ ι˚qS,
where ιq : LqpN {Gq Ñ LpN {Gq is the closed immersion.

Remark 4.6. Note that a priori, one could define Sq via either the ˚ or !-pullback. However, the
map ιq is base-changed from the map iq : tqu Ñ Gm{Gm. Since tqu Ă Gm has trivial normal
bundle and iq has relative dimension zero, we have a canonical equivalence ι!q » ι˚q , i.e. it did
not matter which definition we took. Likewise, since derived loop spaces of smooth stacks (or
smooth morphisms) are Calabi Yau by Proposition 3.12, we have an equivalence Lν˚ » Lν! and
can use either.
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For number theory applications, we will be interested in specializing at q a prime power. There
are the algebraic specializations of the affine Hecke algebra, which have no derived structure
since H is flat over krz, z´1s.

Definition 4.7. We define the Iwahori-Hecke algebra by

Hq :“ Hbkrz,z´1s krz, z
´1s{xz ´ qy.

A potentially different algebra arises when specializing geometrically, i.e. taking endomor-
phisms of a q-specialized Springer sheaf. We introduce the following unmixed version of the
affine Hecke algebra, which is obtained by taking G-equivariant endomorphisms of the Springer

sheaf without taking Gm-invariants, i.e. by passing to the base changed stack Lp pN { rGqˆBGm pt.

Definition 4.8. We define the unmixed affine Hecke algebra and its specialization by

Hun :“ EndLpxN { rGqˆBGmpt
pSq, Hun

q :“ Hun bLkrz,z´1s krz, z
´1s{xz ´ qy.

The algebra Hun has the additional structure of a Gm-representation, i.e. a weight grading.

The unmixed affine Hecke algebra arises naturally when considering the trace by pullback by
various q P Gm acting on the affine Hecke category H “ CohpZ{Gq (as opposed to the mixed

affine Hecke category Hm “ CohpZ{ rGq).

Proposition 4.9. There is a natural equivalence of algebras

Hun
q » HHpH, q˚q » EndLqpxN {GqpSqq.

That is,

Hun
q »

#

kWa bk Symkph
˚r´1s ‘ h˚r´2sq when q “ 1,

Hq when q ‰ 1.

Proof. We adopt the shorthand notation Lunp pN { rGq :“ Lp pN { rGq ˆBGm pt, and Sun for the

corresponding coherent Springer sheaf. Let ιq : Lqp pN {Gq ãÑ Lunp pN { rGq be the base change
along the closed immersion tqu ãÑ Gm. Consider the forgetful functor for the natural map of
algebras

Hun “ EndLunpxN { rGqpS
unq Ñ HomLqpxN {Gqpι

˚
qSun, ι˚qSunq “ HHpH, q˚q.

obtained via functoriality (Proposition 2.12). Using the pι˚q , ιq,˚q adjunction, we have ιq,˚ι
˚
qF “

conepq : F Ñ Fq, and an equivalence of complexes

HomLpxN { rGqpS, ιq,˚ι
˚
qSq HomLunpxN { rGqpS

un,Sunq “ Hun

HomLunpxN { rGqpS
un,Sunq “ Hun.

»

q

The equivalence is an equivalence of dg algebras, so HHpH, q˚q » Hun
q , proving the claim. �

Remark 4.10. The algebra Hun can be recovered as the Gm-enhanced Hochschild homology
of Hm discussed in [GKRV20] and Section 3.4.1. In particular, take coordinates OpGmq “
krz, z´1s, let h˚r´ns denote the shifted dual Cartan algebra in cohomological-weight bidegree
pn, 1q, and define the graded krz, z´1s algebra

Ar´ns :“ OpLphrns{Gmq “ Sym‚OpGmqph
˚r´ns bk OpGmqq{xxpz ´ 1q | x P h˚r´nsy.

One can compute (in a similar manner as Theorem 2.30 and Corollary 2.32) that

Hun “ HHGmpHmq “ HbOpGmq A
r´2s

recovering the above proposition on specialization at various z “ q. One can do the same for
the variants in Remark 2.34, i.e.

HHGmpCohpZ 1{ rGqq “ H, HHGmpCohpZ^{ rGqq “ HbOpGmq A
r´1s.

Note that Theorem 4.4.4 in op. cit. establishes a relationship similar to this one.
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Remark 4.11. One can similarly argue that Hq can be realized as the endomorphisms of the
restriction of S along the base change of the inclusion tqu{Gm ãÑ LpBGmq, i.e. where we retain
Gm-equivariance.

Our main result is the following theorem.

Theorem 4.12. Assume that q ‰ 1. The dg algebra of endomorphisms of the coherent Springer
sheaf is concentrated in degree zero and is identified with the affine Hecke algebra,

EndLpxN { rGqpSq » H, EndLqpxN {GqpSqq » Hq.

In particular, S generates full embeddings, the Deligne-Langlands functors:

DL : H-mod ãÑ QC!
pLp pN { rGqq, DLq : Hq-mod ãÑ QC!

pLqp pN {Gqq.

On the anti-spherical modules Masp :“ IndH
Hf psgnq and Masp

q :“ Ind
Hq

Hf
q
psgnq, these functors

take values

DLpMaspq » prSpωLpxN { rGqq, DLqpM
asp
q q » prSq pωLqpxN {Gqq,

where prS “ DL˝DLR (resp. prSq “ DLq ˝DLRq ), i.e. the composition of the Deligne-Langlands
functor with its right adjoint. When q is not a root of unity,

DLqpM
asp
q q » prSq pωLqpxN {Gqq “ ωLqpxN {Gq » OLqpxN {Gq.

Furthermore, these embeddings are compatible with parabolic induction, i.e. for a parabolic
P Ą B with quotient Levi M , we have commuting diagrams

HM -mod QC!
pLp pNM{ĂMqq Hun

q,M -mod QC!
pLqp pNM{Mqq

HG -mod QC!
pLp pNG{ rGqq Hq,G -mod QC!

pLqp pNG{Gqq.

HGbHM´ Lµ˚˝Lν˚ Hq,GbH
q,M

´ Lqµ˚˝Lqν˚

That is, the parabolic induction functor is the pull-push along the correspondence obtained by
applying L or Lq to the usual correspondence

pNM{ĂM pNP { rP pNG{ rG.
µ ν

Proof. The first claim of the theorem is a combination of Theorems 2.29 and Theorem 3.25,
Corollaries 2.32 and 2.30, and Proposition 4.9, for both general q and specific q. It remains to
prove the claims regarding the anti-spherical module and compatibility with parabolic induction.

We first address the claim regarding anti-spherical modules. By Corollary 3.32, we have an

equivalence as EndpSq » HHpCohpZ{ rGqq-modules

HompS, ωLpxN { rGqq » HHpCohp rN { rGqq.

Thus, it follows that prSpωLpxN { rGqq » HHpCohp rN { rGq as HHpCohpZ{ rGqq-modules (and simi-

larly for special q). Thus, we need to compute the module HHpCohp rN { rGqq (and likewise for
special q), and we need to identify the projection for q not a root of unity.

We first produce an isomorphism HHpCohp rN { rGqq » Masp as HHpCohpZ{ rGqq-modules,

and isomorphisms HHpCohp rN {Gq, q˚q » Masp
q as HHpCohpZ{Gq, q˚q-modules. The first iso-

morphism follows via the identification of K0pCohp rN { rGqq as the anti-spherical module for

K0pCohpZ{ rGqq in Section 7.6 of [CG97]28 once we establish an equivalence K0pCohp rN { rGqq »
HHpCohp rN { rGqq as K0pCohp rN { rGqq » HHpCohp rN { rGqq-modules, and the second would follow

from an equivalence HHpCohp rN {G, q˚q » HHpCohp rN { rGqqbkrGms kq (similar to the identifica-
tion in Proposition 4.9).

28In our convention, K0pCohpĂN { rGqq is identified with the anti-spherical module, while K0pCohB{ rGp
ĂN { rGqq is

identified with the spherical module.
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To see this, note that Cohp rN { rGq has a semiorthogonal decomposition indexed by λ P X‚pHq

characters of the quotient torus H “ B{rB,Bs, where each subcategory Cohp rN { rGqqλ is gener-
ated over ReppGmq by the line bundle O

ĂN { rGpλq. Computing via the Block-Getzler complex of

Definition 2.11 (see also Corollary 2.24), and noting that End
ĂN { rGpOĂN { rGpλqq “ k we have that

the specialization at q map is:

HHpCohp rN { rGqqλq HHGmpCohp rN { rGqqλq HHpCohp rN {Gqqλ, q˚q

OpGmq OpGmq kq.

» » »

The equivalence on the left induces an equivalence K0pCohp rN { rGqqλq » HHpCohp rN { rGqqλq.
Summing over each subcategory in the semiorthogonal deomposition, this establishes both
claims.

It remains to compute the projection prSq pωLqpxN { rGqq for q not a root of unity. We wish to

apply Proposition 3.33 to show that ωLqpxN { rGq is a summand of Sq, but to do so we need to

replace the formal completion pN Ă g with the reduced nilpotent cone N “ gˆh{{W t0u. Since
derived fixed points commutes with fiber products, the diagram

LqpN {Gq Lqpg{Gq

Lqpt0uq Lqph{{W q

is Cartesian. When q is not a root of unity, by Proposition 4.3 we have Lqpt0uq “ Lqph{{W q.
Thus, LqpN {Gq “ Lqpg{Gq, and ωLqpxN {Gq » ωLqpN {Gq, so it suffices to show that ωLqpN {Gq »

OLqpN {Gq is a summand of Sq. Since f˚O
ĂN » ON , we may apply Proposition 3.33 to establish

the splitting.

We now address compatibility with parabolic induction. First, note that by Proposition 3.12
we have Lν˚ “ Lν˚, since ν is smooth. Let H “ B{U , fix a parabolic P Ą B with quotient
Levi M , and let BM Ă B denote the Borel subgroup defined to be the image of B Ă P under
the quotient. Consider the correspondence

ZG{ rG :“ n{ rB ˆg{ rG n{ rB ZP { rP :“ n{ rB ˆp{ rP n{ rB ZM{ĂM :“ nM{ĄBM ˆm{M nM{ĄBM .
i p

Note that the correspondence satisfies the conditions of Proposition 3.17, i.e. since n{B “

b{B ˆh{H t0u{H (and similarly for BM ), and the formation of loop spaces commutes with fiber
products, we have via base change that SG “ Lµ˚OLpn{Bq » Lµ˚Lν˚OLpt0u{Hq, and similar
formulas hold for SM . That is, the coherent Springer sheaf is the parabolic induction of the
structure sheaf of Lpt0u{Hq. Thus, we have a Cartesian diagram

Lpb{Bq

LpbM{BM q Lpp{P q

Lph{Hq Lpm{Mq Lpg{Gq

ν µ

thus Lµ˚Lν˚SM » SG by base change. By the commuting diagram

HHpCohpZM{ĂMqq ωpLpZM{ĂMqq EndpSM q

HHpCohpZG{ rGqq ωpLpZG{ rGqq EndpSGq,

»

Prop. 3.14

HHpi˚p
˚
q

»

Prop. 3.18

Def. 3.13 Def. 3.17

»

Prop. 3.14

»

Prop. 3.18
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it remains to check that the map HHpCohpZM{ĂMqq Ñ HHpCohpZG{ rGqq induces the parabolic
induction map on affine Hecke algebras. By Corollary 2.26 we can argue for K0 instead, i.e. we
show that the map

HM » K0pCohpZM{ĂMqq ÝÑ K0pCohpZG{ rGqq » HG

agrees with the natural parabolic induction map of affine Hecke algebras HM Ñ HG which takes
TM,w ÞÑ TG,w where w PWa,M (in the notation of Section 7.1 of [CG97]). We will assume G has
simply connected derived subgroup, but the general case follows by passing to invariants of finite
central subgroups (i.e. as in Section 2.4.2). It suffices to show that they agree for finite simple
reflections and on the lattice. Via the proof of Theorem 7.2.5 in [CG97], it is clear that the map
is as claimed on the lattice; we argue that parabolic induction on K0 sends rQM,ss ÞÑ rQG,ss

where s is a finite simple reflection of M .
Let us recall the definition of QM,s. The underlying closed, reduced scheme of ZM is a disjoint

union of conormal bundles to closures of M -orbits YM,s Ă M{BM ˆM{BM ; we denote these

subschemes and the projection by πM,s : ZM,s Ñ YM,s and the inclusion ιM,s : ZM,s ãÑ ZM .
We define QM,s :“ ιM,s,˚π

˚
M,sΩ

1
YM,s{pM{BM q2

.

We have a similar description of ZP,s Ă ZP . The map p : ZP Ñ ZM is a u{U -fibration, base
changed from the quotient the quotient map p{P Ñ m{M . In particular, ZP,s and ZM,sˆZM ZP
are closed reduced underived subschemes of ZP with the same points, and thus agree. On the
other hand, we have Y P,s “ pBzP {Bq ˆYM,s pBMzM{BM q, so that denoting the projection

p : Y P,s Ñ YM,s we have Ω1
Y P,s{pP {Bq2

» p˚Ω1
YM,s{pM{BM q2

and thus p˚QM,s » QP,s by base

change. We have QG,s “ i˚QP,s by definition, and the claim follows. Finally, the statements
for specialized q follow by Proposition 4.10, completing the proof. �

Remark 4.13. A few remarks on the theorem.

‚ Analogous statements hold when q “ 1, where Hochschild homology of the Steinberg
stack does not agree with the Grothendieck group, i.e. we have EndLpN {GqpS1q » Hun

1 »

kW abSymph˚r´1s‘h˚r´2sq. However, the anti-spherical module arising via Hochschild
homology agrees with that arising via K0, i.e. HHpCohpN {Gqq » kW abkW f ksgn, where
h˚r´1s ‘ h˚r´2s Ă Hun

1 acts by zero.
‚ The Deligne-Langlands functor is not expected to be an equivalence before applying the

Tate construction, even for GLn. Taking G “ GL1, the category H -mod has a compact

generator, whereas CohpLp pN { rGqq contains a factor of CohpBGL1q and therefore does

not. Put another way, CohpLp pN { rGqqS1

is not a constant u-deformation but the subcat-
egory generated by the Springer sheaf is. A very computable toy example where this

occurs is CohpLpBT qqS1

(see Example 4.1.4 in [Ch20a]).
‚ We expect prSq pωLqpxN {Gqq “ ωLqpxN {Gq when q is a root of unity, and also prSpωLpxN { rGqq “

ωLpxN { rGq. However, we do not prove this.

‚ Compatibility with parabolic induction implies that the action of the lattice on the

coherent Springer sheaf. That is, OpLp rN { rGqq is an OpLpt0u{Hqq “ OpHq-module.

‚ If G “ T is a torus, then LpNT {T q » xteu ˆ T ˆ BT and S “ OteuˆTˆBT , and we see
immediately that EndpSq » krT s “ kX‚pT q.

Remark 4.14. We explain the absence of a singular support condition. There are two Koszul dual
versions of the Steinberg variety leading to two versions of the unipotent affine Hecke algebra:

our version Z “ rN ˆg
rN and a “global” version Zg :“ rgˆgrg. Theorem 4.4.1 of [BNP17b] shows

the trace sheaves in TrpCohpZg{ rGqq satisfy a nilpotent singular support condition.

We now argue that the singular support condition for TrpCohpZ{ rGqq is vacuous, i.e. that the

singular support locus Λ
ĂN {g is the entire scheme of singularities SingpLp pN { rGqq. The singular

locus of Lp pN { rGq at a k-point η “ pn, z “ pg, qqq where gng´1 “ qn is the set (after identifying
g » g˚ via a non-degenerate form x´,´y):

SingpLp pN { rGqqη “ tv P g | gvg´1 “ q´1v, rn, vs “ 0, xn, vy “ 0u.
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A calculation29 shows that the singular support locus is given by:

pΛ
ĂN {gqη “ tv P SingpLp pN { rGqqη | D Borel B Ă G such that n, v P b “ LiepBqu.

Note that n, v generate a two-dimensional solvable Lie algebra, thus are contained in a Borel,

so SingpLp pN { rGqqη “ Λ
ĂN {g. In particular, the singular codirection v need not be nilpotent.

The analogous claim at specific q P Gm follows by a similar argument and a calculation of
the singular support locus at a point η “ pn, gq (for gng´1 “ qn) as

SingpLqp pN { rGqqη “ tv P g | gvg´1 “ q´1v, rn, vs “ 0u.

In the case of q not a root of unity, the argument in Proposition 4.3 shows that the singular
codirection v must be nilpotent.

It is natural to conjecture that the coherent Springer sheaf is in fact a sheaf – i.e., lives in the

heart of the dg category CohpLpg{ rGqq. We prove this in the case G “ GL2,SL2 in Proposition
4.19.

Conjecture 4.15. The Springer sheaf S lives in the abelian category CohpLpN { rGqq♥.

Remark 4.16. One consequence of the conjecture would be an explicit description of the endo-
morphisms of the cohrent Springer sheaf. Namely, it is easy to see that the underived parabolic
induction from Lpt0u{Hq is generated as a module by the lattice X‚pHq, and via the identifica-
tion with K-theory and Theorem 7.2.16 of [CG97] we would obtain a description of the action
of finite simple reflections in terms of Demazure operators.

Remark 4.17. A variant of Conjecture 4.15 was answered in the affirmative in Corollary 4.4.6
of [Gi12]. Namely, in loc. cit. it is proven that the Lie algebra version of our coherent Springer
sheaf at q “ 1 has vanishing higher cohomology.

Remark 4.18. When rG acts on rN by finitely many orbits, then Lp rN { rGq has trivial derived struc-
ture, and the conjecture is implied by the vanishing of higher cohomology of a classical scheme

HipLp rN { rGq ˆB rG pt, π0pOLpĂN { rGqˆ
BĂG

pt
qq for i ą 0. The G-orbits in the Springer resolution are

known to be finite exactly in types A1, A2, A3, A4, B2 by [Kas90].

We discuss the relation of the Deligne-Langlands correspondence and t-structures in more
detail in Section 5.3.

4.1. Conjectures and examples for G “ SL2,GL2,PGL2. In this case, rG acts on both N
and rN by finitely many orbits, the derived loop spaces LpN { rGq and Lp rN { rGq are classical stacks.
Recall that N is a formal completion; if the reader would rather do so, they may replace N with
g, which is also acted on by finitely many orbits. We prove Conjecture 4.15 in these cases.

Proposition 4.19. Conjecture 4.15 holds for G “ SL2,GL2,PGL2.

Proof. We give a proof for G “ SL2; the case of G “ GL2 is the same. In view of Remark
4.18, it suffices to forget equivariance and show vanishing of higher cohomology. Since X :“

Lp rN { rGq ˆB rG pt is a closed subscheme of g ˆ G{B ˆ G, and dimpG{Bq “ 1, we know that

RΓipX,´q “ 0 for i ą 1. To verify vanishing for i “ 1, let i : X ãÑ rN ˆ rG be the closed
immersion. We have a short exact sequence of sheaves:

0 Ñ I Ñ O
ĂNˆ rG

Ñ i˚OX Ñ 0

leading to a long exact sequence with vanishing H2 terms (for the above reason). Thus, it suffices

to show that H1p rN ˆ rG,O
ĂNˆ rG

q. By the projection formula, we have H1p rN ˆ rG,O
ĂNˆ rG

q »

H1p rN ,O
ĂN q bk Op rGq, but it is well-known that Hip rN ,O

ĂN q “ 0 for i ą 0. �

29In contrast to the singular support calculation for CohpZg{ rGq, it is the Lie algebra of the Borel b that

appears in the above condition rather than its nilradical n since

SingpĂN ˆg
ĂN qpn,B,B1q “ bX b1, SingprgˆG rgqpx,B,B1q “ nX n1.
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Example 4.20 (Geometry of the loop space of the Springer resolution). We describe the geom-

etry of the looped Springer resolution Lp rN { rGq Ñ Lp pN { rGq for G “ SL2. Though this example
is well-known, we reproduce it for the reader’s convenience. Let Aps, nq denote the component
group of the double stabilizer group, i.e. the component group of tg P G | gng´1 “ n, gs “ sgu.
Let A1

node “ Spec krx, ys{xy denote the affine nodal curve, and p´qν the normalization.

q n s “

ˆ

λ 0
0 λ´1

˙

N ps,qq Ñ rN ps,qq Aps, nq Gs

q “ 1
n “ 0

λ “ ˘1 rN Ñ N 1
G

n ‰ 0 Z{2
q “ 1 n “ 0 λ ‰ ˘1 ptY pt Ñ pt 1 T

q “ ´1
n “ 0

λ “ i A1,ν
node Ñ A1

node

1
Tn ‰ 0, upper triangular Z{2

n ‰ 0, lower triangular Z{2
q “ ´1 n “ 0 λ “ ˘1 P1 Ñ pt 1 G
q “ ´1 n “ 0 λ ‰ ˘1 ptY pt Ñ pt 1 T

q ‰ ˘1
n “ 0

λ “ ˘
?
q A1 Y pt Ñ A1 1

T
n ‰ 0 Z{2

q ‰ ˘1 n “ 0 λ “ ˘1 P1 Ñ pt 1 G
q ‰ ˘1 n “ 0 λ ‰ ˘1,˘

?
q ptY pt Ñ pt 1 T

Example 4.21 (Generators and relations). For G “ SL2, with some work, one can write down

generators and relations for the (underived) scheme Lpg{ rGq and the coherent Springer sheaf S.
Let us fix coordinates

g “

ˆ

a b
c d

˙

P SL2, N “

ˆ

x y
z ´x

˙

P Nsl2 , q P Gm.

We implicitly impose the equations ad ´ bc “ 1 and x2 ` yz “ 0, and by convention we take
the commuting relation gxg´1 “ qx; note that this is the relation that arises when Gm acts on
fibers by weight -1 (i.e. inversely). Then, we have that S is the module with generators λn for
n P Z:

OpSL2ˆNsl2 ˆGmqrλ, λ´1s

a` d “ λ` λ´1, px, y, zqpq ´ λ2q “ 0, zpλ´ dq “ ax, ypa´ λq “ bx, xpd´ λq “ cy, xpλ´ aq “ bz
.

In particular, multiplication by λn defines the action of the lattice, and one can verify that the
Demazure operator for the anti-spherical module (see Theorem 7.2.16 of [CG97]) defines the
endomorphism

T pλnq “
λn ´ λ´n`2

λ2 ´ 1
´ q

λn ´ λ´n

λ2 ´ 1

corresponding to the finite reflection. In particular, it preserves the relations in the module, and
the endomorphism satisfies pT ´qqpT `1q “ 0. For fixed q, and letting ksgn denote the character
of Hf with T ÞÑ ´1, one can verify that S bHf ksgn » OLqpxN {Gq, i.e. amounts to imposing the

relation λ2 “ q, thus identifying the structure sheaf with the anti-spherical module.

5. The coherent Springer sheaf at parameters

Completing or specializing the coherent Springer sheaf at semisimple parameters recovers
classical Springer sheaves in the constructible or D-module context. This process happens in
two steps: first we apply an equivariant localization pattern described in [Ch20a] to pass between

the stack of unipotent Langlands parameters LpN { rGq to a completed or specialized version at a
semisimple parameter z “ ps, qq, and second we apply a Koszul duality equivalence of categories
between S1-equivariant sheaves at this parameter and a certain category of filtered D-modules.
All results in this section take place over an algebraically closed field k of characteristic 0.
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5.1. Equivariant localization of derived loop spaces. We now describe equivariant local-
ization patterns in derived loop spaces. See Section 3 of [Ch20a] for an extended discussion, as
well as Section 2 of op. cit. and Section 4 of [BN12] for a discussion of derived loop spaces. We
fix a reductive group G (over an algebraically closed field k of characteristic zero). Let

LpBGq “ G{G ÝÑ G{{G

denote the “characteristic polynomial” map from the quotient stack of G by conjugation to the
affine quotient, i.e., to the variety parametrizing semisimple conjugacy classes. For a G-variety
X we have the maps

LpX{Gq ÝÑ Lppt {Gq “ G{G ÝÑ G{{G.

The loop map LpX{Gq Ñ G{G parametrizes fixed points of elements of G – i.e., for g P G the
fiber of LpX{Gq over g : pt Ñ G{G is the derived fixed point scheme Xg, i.e. we have two
descriptions of Xg by Cartesian squares30

Xg LpX{Gq Xg X

tgu G{G X X ˆX.

Γg

∆

This allows us to define variants of the fixed points according to the Jordan decomposition in
G. In particular we are interested in fibers of the map LpX{Gq Ñ G{{G, i.e. loops whose
semisimple part31 is conjugate to a fixed semsimple element g P G.

Let z P G denote a fixed semisimple element, with centralizer Gz. We denote by Oz » BGz Ă
G{G its equivariant conjugacy class and rzs P G{{G its class in the affine quotient. The stack
OZ comes equipped with a natural atlas Specpkq “ tzu Ñ OZ .

Definition 5.1. The z-unipotent loop space of X, denoted Luz pX{Gq, is the completion of

LpX{Gq along the inverse image of the saturation rzs P G{{G. The z-formal loop space pLzpX{Gq
is the completion of LpX{Gq along the orbit Oz and the z-specialized loop space32 L1zpX{Gq is
the (derived) fiber of LpX{Gq over Oz.

Remark 5.2. We have containments L1zpX{Gq Ă pLzpX{Gq Ă Luz pX{Gq Ă LpX{Gq, and a map
LzpXq Ñ LzpX{Gq (see Defintion 3.5).

We will state the equivariant localization theorem of [Ch20a], which is a form of Jordan
decomposition for loops, describing loops in the quotient stack X{G with given semisimple
part z in terms of unipotent loops on the quotient stack Xz

˝ {G
z (using a natural map Xz

˝ {G
z ãÑ

X{Gz Ñ X{G), whereXz
˝ is a slight modification of the z-fixed points of the classical (underived)

fixed points by the centralizer of z. We now describe this modification Xz
˝ in the setting of

complete intersections.

Definition 5.3. Let z P G be a semisimple closed point. Recall that the classical z-fixed points
of a G-variety can be expressed as the underlying classical scheme π0pX

zq of the derived fixed
points.

(1) A G-variety X is said to be a G-complete intersection if X is given as a fiber product
X » Y ˆZ W in the category of G-varieties, with Y,Z and W smooth.

(2) The modified z-fixed points Xz
˝ for a G-complete intersection is the (derived) fiber prod-

uct of the classical fixed points

Xz
˝ :“ π0pY

zq ˆπ0pZzq π0pW
zq.

In particular we have (derived) Gz-equivariant containments

π0pX
zq Ă Xz

˝ Ă Xz.

30Note that LgX “ Xg , in the notation of Definition 3.5. We use the latter notation in this section to

emphasize the relationship between various fixed points.
31Note that the preimage of rgs P G{{G in G{G is the closed substack of group elements whose semisimple

part in the Jordan decomposition is conjugate to g.
32Note that in this notation, L1zpX{Gq “ LzpXq{G.
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We consider Xz
˝ with its induced structure as a Gz variety with a trivialized33 action of

z.

Remark 5.4. Note that for X a smooth G-scheme, we have that Xz
˝ “ π0pX

zq is smooth. For
X quasismooth, we have that Xz

˝ is quasismooth, and in particular may have nontrivial derived
structure.

Remark 5.5. As a consequence of the next theorem and the fact that formal loop spaces commute
with fiber products, one can recover the derived fixed points as the derived loop space of the
modified fixed points Xz » LpXz

˝ q.

Theorem 5.6 (Equivariant localization for derived loop spaces). For X a G-complete intersec-
tion, the unipotent z-localization map

`uz : Luz pXz
˝ {G

zq Ñ Luz pX{Gq
is an S1-equivariant equivalence.

Proof. This is Theorem A in [Ch20a], along with the observation that derived loop spaces
commute with fiber products. For a precise definition of the unipotent z-localization map, see
Definition 3.1.6 of [Ch20a]. �

Remark 5.7. Note that it follows that the corresponding localization maps on formal and spe-
cialized loops

ˆ̀
z : pLzpXz

˝ {G
zq Ñ pLzpX{Gq, `1z : L1zpXz

˝ {G
zq Ñ L1zpX{Gq

are also equivalences in this setting.

5.1.1. Central shifting. Let Z “ ZpHq be the center of a group prestack H. For any H-space Y
the action of Z on Y commutes with the action of H, hence defines an action on the quotient
Y {H, which we denote by shifting

Z Q z ÞÑ shz P AutpY {Hq.

Passing to loop spaces, the shifting action identifies34 the fiber of LpY {Hq over 1 and over z.
For example in the setting of Theorem 5.6, taking Y “ Xz

˝ and H “ Gz with its central
element z P ZpGzq, we get equivalences of stacks

LupXz
˝ {G

zq Luz pXz
˝ {G

zq Luz pX{Gq
Lpshzq
»

`uz
»

by shifting by z. The left identification is however not S1-equivariant for the loop rotation; we
need to twist the loop rotation on one side.

Definition 5.8. We have a group structure on the classifying stack BZ of the center and a
group homomorphism BZ Ñ AutpBHq induced by the trivialization of the conjugation action
of Z on H. In particular fixing z P Z we obtain a twisting by z action of S1 “ BZ on BH, which
we denote σpzq. This structure generalizes to H-spaces Y that are equipped with a trivialization
of the action of z (extending the case Y “ pt above). Namely, the trivialization of the z-action
produces a lift of the twisting S1-action on Y {H Ñ BH which we also denote by σpzq.

Remark 5.9. Letting H 1 “ H{Zz, the twisting S1-action on Y {H can also be described using
the identification Y {H » Y {H 1 ˆBH1 BH and noting that the fiber product diagram is S1-
equivariant, where we let S1 act trivially on Y {H 1 and BH 1, and via the z-twisting S1-action
on BH.

We can combine the twisting and shifting S1-actions as follows. Note that the loops to the z-
twisting action Lpσpzqq naturally commutes with the loop rotation S1-action on LpBHq » H{H,
which we denote ρ.

33A z-trivialization of a G-scheme Y is a G1 :“ G{Zz-action on Y along with an identification Y {G »

Y {G1 ˆBG1 BG. These choices are canonical if Y is a classical scheme; since the Xz
˝ we consider are built func-

torially from classical ones, there will always be a canonical choice which we suppress throughout the exposition.
34I.e. the shifting on LpBHq “ H{H is given by Lpshzqphq “ zh “ hz.
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Definition 5.10. We define ρpzq to be the diagonal to the S1 ˆ S1-action ρˆ Lpσpzqq.
Thus we have the following Jordan decomposition result: shifting by z intertwines ρ with the

twisted version ρpzq “ ρ ˝ Lpσpzqq.
Corollary 5.11. For X a G-complete intersection, the shifted localization map defines an equiv-
alence

s`uz : LupXz
˝ {G

zq Luz pX{Gq
»

which is S1-equivariant with respect to ρpzq on the source and ρ on the target, and likewise for
the shifts of the completed and specialized localization maps s`^z and s`1z.

5.1.2. Neutral blocks. In order to apply Koszul duality (as in Section 5 of [BN12]), we are
interested in identifying a subcategory of various categories of sheaves on derived loop spaces
over semisimple parameter z on which the z-twisting is trivial, so that the twisted rotation is
equal to the untwisted rotation. This is useful since the ρ circle action on unipotent loop spaces
factors through an action of BGa, but the twisted ρpzq action does not (since it has nontrivial
semisimple part). This problem is an obstacle to applying the Koszul duality described in

[BN12] to obtain an identification of Cohp pLzpX{GqqS
1

with some kind of category of D-modules.
We avoid this obstacle by focusing only on the z-trivial block. For this we give a categorical
interpretation of the geometric z-twisting S1-action σpzq discussed above.

Definition 5.12. Let H be an affine algebraic group, z P H central and C a category over
ReppHq. A z-trivialization of C is an identification of the action of z on C with the identity
functor.35 The category CH of equivariant objects then acquires an automorphism of the identity
functor (i.e., S1-action) as the ratio of the z-trivialization and the equivariance structure for z.
We define the subcategory CH

z Ă CH of z-trivial objects to be the full subcategory on which
this automorphism is trivial, i.e., on which the equivariance agrees with the z-trivialization.

We can apply this categorical notion to the categories of sheaves Perf,Coh,QC, and QC!

on a scheme Y with trivialization of the z-action. In particular the z-twisting action on the
z-trivial subcategory of equivariant sheaves in each case is trivial. Further, all sheaves on the
z-specialized loop space are z-trivial, so z-triviality is only relevant for Koszul duality for stacks.

Proposition 5.13. Let z P G be central and let : “ ^, u,1. There is a canonical equiva-
lence ρ » ρpzq on the z-trivial block of PerfpL:pX{Gqq, CohpL:pX{Gqq, QCpL:pX{Gqq and

QC!
pL:pX{Gqq. When : “1, the z-trivial block is the entire category.

Proof. It is more or less immediate to see that the z-twisting action σpzq acts trivially on the
z-trivial block of any ReppGq-category C. Furthermore, we observe that there is a canonical
identification LpσX{Gpzqq “ σLpX{Gqpzq, and the claim follows. To see that z-triviality is an
empty condition on the specialized loop space, note that the twisting σpzq acts trivially on the
identity e P LpBGq, and therefore trivially on the base change teu ˆLpBGq LpX{Gq. �

We can see via examples that z-triviality is not an empty condition for formal loop spaces.

Example 5.14. Consider Example 4.1.6 from [Ch20a], i.e. take the z-twisted loop rotation
action on LpBT q “ T ˆBT . Let Λ be the character lattice of T , so that OpT q is spanned by tλ

for λ P Λ. We have PerfpLpBT qqq “
à

λPΛ

PerfpT q b ReppT q and therefore

Perfp pLpBT qqρpzq “
à

λPΛ

PreMFp pT , 1´ tλpzqtλq b ReppT q

where PreMF is defined in [Pr11]. The z-trivial subcategory corresponds to the subcategory of
ReppT q of representations on which z P T acts trivially, i.e. if T 1 “ T {Zz, then

Perfp pLpBT qqρpzqz “
à

λPΛ

PreMFp pT , 1´ tλpzqtλq b ReppT 1q.

35This can also be described as equivariance for an action of the quotient G1 “ G{Zz on C defined by the
z-trivialization. Namely, given a G1-linear category C1, an identification C » C1 bReppG1q ReppGq gives an

identification of the action of z on the left with the identity functor.
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Example 5.15. We specialize the above example at T “ Gm and z “ 1. In this case, we have

Perfp pLpBGmqqBGa¸Gm “
à

nPZ
PreMFpyGm, 1´ tnq » Cohppt0u ˆt t0uqqZ ‘

à

n‰0

Cohp˚qZ

where Z indicates the grading coming from Gm-scaling on odd tangent bundles (rather than
from T “ Gm-equivariance). This example will be computed in parallel in Example 5.26.

Definition 5.16. In the set-up above, for : “ ^, u,1, note that by passing through the equiva-
lence s`:z and restricting to the z-trivial block, we have

CohpL:zpX{Gqq
S1
ρ
z » CohpL:pXz

˝ {G
zqq

S1
ρpzq
z » CohpL:pXz

˝ {G
zqρq

S1

z » CohpL:pXz
˝ {G

zqqBGa
z

where the first isomorphism is s`:z, the second arising from the Proposition 5.13, and the third
by Corollary 6.10 in [BN12]. Therefore, moving the Gm-scaling action on the right through this
equivalence, we define36 the category

CohpL:zpX{GqqBGa¸Gm
z :“ CohpL:pX{GqqBGa¸Gm

z

as well as a forgetful functor

CohpL:zpX{GqqBGa¸Gm
z Ñ CohpL:pX{GqqS

1

z “ CohpL:zpX{GqqS
1

z .

Furthermore, these categories are covariantly functorial under pushforward by proper maps
f : X{GÑ Y {G (compatible with z-trivialization).

5.2. Koszul duality. A Koszul duality between modules for the de Rham algebra and the
algebra of differential forms has been long established in the literature, e.g. in [Ka91] [BeDr91].
This Koszul duality was reinterpreted in [BN12] as an equivalence of categories between graded
S1-equivariant quasicoherent sheaves on the formal loop space and filtered D-modules on smooth
quotient stacks X{G. We require a renormalized version of this equivalence from the forthcoming
work [Ch21]. In this section, we state the main results and definitions of this work. We use the
notion of singular support defined in [AG14] for completeness, though it does not appear in our
results.

It will be convenient for us to replace the formal loop space with the equivalent odd tangent
bundle, defined in Defintion 4.3 of [BN12].

Definition 5.17. Let X be a derived stack with cotangent complex Ω1
X . The odd tangent

bundle is defined
TX r´1s :“ SpecX Sym‚X Ω1

X r1s.

We sometimes use the notation Tr´1s
X to save space. We define the formal odd tangent bundle

pTX r´1s to be the completion at the zero section. By Theorem 6.9 in [BN12], when X is a QCA

stack the exponential map is an S1-equivariant equivalence exp : pTX r´1s pLpXq.»

Before we proceed, we emphasize the main subtleties. The first sutblety is that the operation
of taking S1-invariants in the setting of presentable (large) categories often gives poorly behaved
results (in particular, such categories that are always killed by the Tate construction; see the
introduction to [Pr15]). This phenomenon is exhibited in the results of Section 5 in [BN12], where

QCp pLXqS1

is identified with complete modules for a certain completed Rees construction. One
tends to rectify this by renormalization of large categories or by working with small categories
throughout, i.e. applying S1-invariants to a small category first, and then ind-completing.

In our setting, the category of compact objects of QCp pLXq or QC!
p pLXq “ QC!

ppTX r´1sq is
still not the correct candidate. Roughly speaking, Koszul duality swaps free modules with simple
modules. Let us specialize to the case X “ BG where G is reductive. On the D-modules side,
we are interested in objects such as OX ; this object is “simple” but not “free” (in the equivariant
setting, “free” D-modules correspond to the notion of safe D-modules [DG13]). However, the

36The notation is abusive: there is not a BGa ¸ Gm-action on Lu
z pX{Gq, but the discussion above allows us

to pretend there is one on the z-trivial block.
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corresponding expected “free” object ω
pTBGr´1s P QC!

ppTBGr´1sq is not compact (i.e. is not a

finitely generated torsion sheaf) since pTX r´1s is an inf-stack. Thus, we define a different small

subcategory of QC!
ppTX r´1sq, which we call KPerfppTX r´1sq (for Koszul-perfect). To define this

notion, we first focus on an easier, degenerate form of Koszul duality.

Definition 5.18. There is a Koszul resolution of OX P QC!
ppTX r´1sq by Sym‚OTX r´1s

Ω1r2s with

internal differential given by the identity map. Thus, HomTX pOX ,OXq “ Sym‚X T r´2s, which
is coconnective and generated over OX in strictly positive degrees. We denote by QCpT˚X r2sq
the dg derived category of sheaves of OX -quasicoherent Sym‚X T r´2s-modules on X. We denote
by PerfpT˚X r2sq the full subcategory of sheaves locally (in X) quasi-isomorphic to a finite rank
semi-free complex of Sym‚X TX r´2s-modules.37

The following result is a standard Koszul duality result (e.g. see [MR10]).

Proposition 5.19 (Koszul duality for formal vector bundles). The functor

z! “ HomTX r´1spOX ,´q : CohppTX r´1sqGm Ñ PerfpT˚X r2sqGm

is an equivalence of categories. The same is true non-equivariantly.

Definition 5.20. We define the category CohpT˚X r2sq to be the full dg subcategory of QCpT˚r2sq
consisting of sheaves M of OT˚X r2s

-modules such that H‚pMq is (smooth) locally finitely gen-

erated as an H‚pOT˚X r2s
q “ H‚pSym‚X T r´2sq-module. We define the category of Koszul-perfect

complexes to be the full subcategory KPerfppTX r´1sq Ă QC!
ppTX r´1sq` of sheaves F such that

z!F P CohpT˚X r2sq.

We highlight four favorable properties of the category KPerfppTX r´1sq from [Ch21].

(1) If X is a smooth scheme, then KPerfppTX r´1sq “ CohppTX r´1sq.

(2) If X is a smooth Artin stack with atlas p : U Ñ X, the subcategory KPerfppTX r´1sq Ă

QC!
ppTX r´1sq can be characterized as objects that pull back to KPerfppTU r´1sq.

(3) Given f : X Ñ Y a smooth (resp. proper) map of smooth Artin stacks, the functors

Tr´1s!f : QC!
ppTY r´1sq Ñ QC!

ppTX r´1sq (resp. Tr´1sf,˚) restrict to KPerf.

(4) Let G be a reductive group. For a smooth quotient stack X{G, and semisimple z P G,

the !-pullback ι!z : CohpLpX{Gqq Ñ QC!
p pLzpX{Gqq “ QC!

ppTXz˝ {Gz q takes values in

KPerfppTXz˝ {Gz q.

Before stating the Koszul duality theorem, we need a corresponding notion of z-triviality, as
in Definition 5.12, in the setting of D-modules.

Definition 5.21. Let G be an affine algebraic group acting on a smooth scheme X and assume
that z P G acts on X trivially; then z induces an automorphism of the identity functor of
QCGpXq. We say a complex of G-equivariant sheaves (in particular, a weakly or strongly
equivariant D-module) is z-trivial if this automorphism is the identity on cohomology.

Example 5.22. It is well-known that if G acts on X by finitely many orbits, then the simples
in DGpXq♥ are given by pairs pO, V q where O is a G-orbit and V is a representation of the
component group Apxq of the stabilizer of x P O. The z-trivial simples are subject to the
additional requirement that rzs P Apxq acts on V by the identity.

The following is the main result from the forthcoming work [Ch21]. We let F D̆ω
ΛpX{Gqz

denote the derived category of filtered coherent D-modules on X{G with singular support Λ.

Theorem 5.23 (Koszul duality for loop spaces of quotient stacks). Let X{G be a smooth
quasiprojective quotient stack, and Λ be a conical closed subset specifying singular support. Let

37Note that we never consider T˚X r2s as an honest object in the category of derived stacks.
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z P G be a central element38. We have compatible adjoint equivalences:

KPerfΛppTX{Gr´1sqBGa¸Gm
z F D̆ω

ΛpX{Gqz

KPerfΛppTX{Gr´1sqGmz CohΛpT˚X{Gq
Gm
z

gr

functorial with respect to smooth pullback and proper pushforward.

Remark 5.24. There is a category of weakly G-equivariant D-modules that sits between strongly
G-equivariant D-modules and non-equivariant D-modules:

F D̆ωpX{Gq Ñ F D̆ωpX Gq Ñ FDωpXq.

Under Koszul duality, it corresponds to sheaves on specialized loops L1pX{Gq.

Remark 5.25. We observe that in the case of the coherent Springer sheaf, the equivalence of
Theorem 2.29 is an equivalence before taking S1-equivariant objects. Thus, in our setting we
may actually use the easier graded Koszul duality which corresponds on the D-modules side to
passing to the associated graded of a filtered D-module. However, we discuss the full theory for
completeness.

The following example of a category of filtered D-modules is parallel to Example 5.15.

Example 5.26. Take G “ Gm and X “ pt and fix an isomorphism C‚pGm; kq » krεs; then

the category F D̆ωpXq splits as a direct sum by isotypic component of the underlying Gm-
representation:

F D̆ωpXq “
à

nPZ
F D̆ωpXqn.

We have that
F D̆ωpXqn “ krt, εts -coh

with |t| “ 0 and |εt| “ ´1 (in particular, pεtq2 “ 0) and internal differential dpεtq “ nt. When
n “ 0, this dg algebra is a graded version of the usual shifted dual numbers krεts, and when
n ‰ 0, it is quasi-isomorphic to k, i.e.

F D̆ωpXq “ krt, εts -coh‘
à

n‰0

k -coh .

Note that if we forget the filtration, only the trivial isotypic summand survives.

5.3. The coherent Springer sheaf at parameters. We can now construct a variety of lo-

calization functors between the category of unipotent Langlands parameters QC!
pLp pN { rGqq and

categories of D-modules. We begin in a general setting, considering subcategories of the cate-

gory CohΛpLpX{GqqS
1

generated by a sheaf xSy satisfying a z-triviality condition. Since Koszul
duality requires us to consider an additional Gm-equivariant structure, we will need to choose a
graded lift of the z-localization of S. In general there may be many choices, and choices cannot
always be made globally.

Before we proceed, let us review our notation conventions. The sheaf S P CohpLpX{GqqS1

is an S1-equivariant sheaf on the global derived loop space. For semisimple parameters z, we

define its z-completion by Sppzq and its z-specialization by Spzq. We denote graded lifts by rSppzq
and rSpzq. The corresponding filtered complex of D-modules under Koszul duality are denoted
rSppzq and rSpzq. Forgetting the filtration, we obtain D-modules Sppzq and Spzq

In the following, for : “ ^,1, we let f :z : L:pXz
˝ {G

zq Ñ L:zpX{Gq Ñ LpX{Gq be the composi-
tion of the “shift by z” map with the equivariant localization map; f :z is S1-equivariant where S1

acts via ρpzq on the source and ρ on the target. We let the undecorated fz : Xz
˝ {G

z Ñ LpX{Gq
be the pre-composition with the inclusion of constant loops. Let ĆBGa “ BGa ¸ Gm, let ĆTate

38This is used to phrase z-triviality; if the reader would prefer to ignore this technicality, they may take z “ e
to be the identity.
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be the Gm-equivariant Tate construction39, and recall the notation from Definition 5.16. Let C
be a category over ReppGmq and oblv : C Ñ C1 the forgetful functor; a graded lift of an object

X P C1 is an object rX P C along with an equivalence oblvp rXq » X.

Proposition 5.27. Let X{G be a smooth quasiprojective quotient stack by a reductive group,
and Λ Ă SingpLpX{Gqq a singular support condition, with restriction Λz “ f !

zΛ. Let S P

CohΛpLpX{GqqS
1

be such that Sppzq :“ pf !
zS is in the z-trivial block and choose a graded lift

rSppzq. Then, there is a commuting diagram

xSy xSppzqy x rSppzqy xSppzqy

CohΛpLpX{GqqS
1

KPerfΛz p
pLzpX{GqqS

1

KPerfΛz p
pTr´1s
Xz˝ {G

z q
ĆBGa
z KPerfΛz p

pTr´1s
Xz˝ {G

z q
ĆTate
z

F D̆ω
Λz
pXz
˝ {G

zqz D̆ω
Λz
pXz
˝ {G

zqz.

» »

Remark 5.28. Note that aside from applying renormalized Koszul duality, the category KPerf
is required for the following reason. In a general setting, if F : C Ñ D is a continuous functor
which preserves compact objects (i.e. a left adjoint with a continuous right adjoint) between
compactly generated categories, then for X P C compact we have a commuting diagram:

EndpXqop -mod C

EndpF pXqqop -mod D.

´bEndpXqEndpF pXqq F

Commutativity follows by checking the tautological commutativity of right adjoints, while com-
pactness of X guarantees that the left adjoint to HompX,´q is fully faithful40 (and similarly for

F pXq). Unfortunately, the functor pf ! : QC!
pLpX{Gqq Ñ QC!

p pLpX{Gqq is a right adjoint and

does not preserve compact objects. On the other hand, the renormalization pf ! : QC!
pLpX{Gqq Ñ

IndpKPerfp pLpX{Gqqq preserves compact objects by construction. In particular, we have a com-
muting square:

EndpSq -mod » xSy QC!
ΛpLpX{Gqq

EndpSppzqq -mod » xSppzqy IndpKPerfΛz p
pLzpX{Gqqq.

´bEndpSqEndpSppzqq pf !
z

We state the weakly-equivariant variant as well; it has the additional feature that there is
a functor from the category of D-modules to the category of coherent sheaves on the derived
loop space, which we use to formulate a conjecture regarding irreducible objects. Recall that
for smooth schemes X, KPerfpTX r´1sq “ CohpTX r´1sq. Note that this result does not depend
on Theorem 5.23 and follows from Corollary 5.2 of [BN12].

Proposition 5.29. Let X{G be a smooth quasiprojective quotient stack by a reductive group,
and Λ Ă SingpLpX{Gqq a singular support condition, with restriction Λz “ f !

zΛ. Let S P

CohΛpLpX{GqqS
1

be such that Sppzq :“ pf !
zS is in the z-trivial block and choose a graded lift

39I.e. for a k-linear category C with a ĆBGa “ BGa ¸ Gm-action, the equivariant category C
ČBGa is linear

over krus -modGm , and C
ČTate is obtained by passing to the generic point.

40I.e. the unit of the adjunction M Ñ HompX,X bEndpXqMq is an equivalence when HompX,´q commutes

with colimits.
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rSpzq. Then, there is a commuting diagram

xSy xSpzqy x rSpzqy xSpzqy

CohΛpLpX{GqqS
1

CohΛz pL1zpX{GqqS
1

CohΛz pTXz˝ {G
zq

ĆBGa
z CohΛz pTXz˝ {G

zq
ĆTate
z

FDω
Λz
pXz
˝ G

zqz Dω
Λz
pXz
˝ G

zqz.

» »

We now consider a more specific context where the sheaf S is of geometric origin: let µ :
rX Ñ X be a G-equivariant proper map of smooth G-schemes, and define

S :“ Lµ˚OLpĂX{Gq “ Lµ˚ωLpĂX{Gq.

We first verify the z-triviality condition required in the above results.

Lemma 5.30. Let z P G be semisimple. The sheaf Sppzq is z-trivial for every semisimple z P rG
(and likewise for Spzq).

Proof. Follows by equivariant locaization and base change, i.e. Sppzq is the pushforward of

ω
pLpĂXz{Gzq, which is z-trivial since z acts trivially on rXz and z is central in Gz. �

In adddition to z-triviality being automatic in this setting, there is a canonical choice for
graded lifts when S “ Lµ˚OLpX̃{Gq.

Definition 5.31. Let S “ Lµ˚OLpX̃{Gq. For any z P G semisimple, there is a geometric (or

Hodge) graded lift of Sppzq and Spzq. Namely, by base change along the diagram

pT
ĂXz{Gz

r´1s » pLzp rX{Gq Lp rX{Gq

pTXz{Gz r´1s » pLzpX{Gq LpX{Gq

Tµz

we have that Sppzq » Tµz˚ωpTXz{Gz r´1s. We give Sppzq the graded lift arising from the Gm-

equivariant structure on ω
pTXz{Gz r´1s arising via the natural Gm-action on the odd tangent

bundle. A similar natural lift can be made for the specialized Springer sheaf Spzq.

Remark 5.32. The geometric graded lift has favorable functoriality properties with respect to
Koszul duality. Namely, the dualizing sheaf ω

pT
ĂXz{Gz

corresponds under Koszul duality to the

canonical sheaf D-module ω
ĂXz{Gz

. By functoriality, Sppzq is Koszul dual to the pushforward

µz˚ωĂXz{Gz
. By a deep theorem of Saito [Sa88], this pushforward is a strict filtered complex of

D-modules (see also [Gi12]).

5.3.1. Application to coherent Springer theory. We now let µ : rN Ñ g denote the Springer
resolution, discuss applications to conjectures from Section 4.1. In Theorem 4.1.1 of [Gi12] it is
shown that for trivial semisimple parameter (i.e. for the Springer resolution over the nilpotent
cone), the D-module µ˚O

ĂN has vanishing higher cohomology. As an approach to Conjecture
4.15, we conjecture that the same is true over all semisimple parameters.

Conjecture 5.33. The D-module µz˚ωĂN z{ rGz
has vanishing higher cohomology.

The equivalence H -mod » CohpLp pN { rGqq of Theorem 2.29 is not t-exact, and naturally leads
to the following question.

Question 5.34. The equivalence H -mod » xSy Ă CohpLp pN { rGqq is not t-exact. Describe the
corresponding “exotic” t-structures on each side of the equivalence, their correponding abelian
categories and classify the simple objects.
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The question can be probed by completing or specializing at semisimple parameters. The
results in [CG97, KL87] give a bijection between irreducible H-representations with central
character ps, qq with a certain set of parameters consisting of a Gs-equivariant intersection
cohomology sheaf on N ps,qq “ tn P N | gng´1 “ qnu subject to the additional condition that it
“appears in the Springer sheaf.” Thus Proposition 5.29 defines for us a functor:

Ps,q : xµ
ps,qq
˚ O

ĂN ps,qqy ÝÑ CohpLp pN { rGqq.

In this way, we obtain a class of simple “skyscraper” objects in CohpLp pN { rGqq. Explicitly, for
a filtered D-module pM, F q the object Ps,qpM, F q is obtained by taking the associated graded
and applying a sheared graded Koszul duality (see Proposition 5.19), and then pushing the

resulting object forward to Lp pN { rGq.
These objects do not necessarily lie in the heart of CohpLp pN { rGqq (equipped with the usual

t-structure). We pose the following conjecture.

Conjecture 5.35. There is an “exotic” t-structure on CohpLp pN { rGqq which, after restricting to
xSy, is identified with the standard t-structure on H -mod. The simple objects in the heart of
this t-structure on xSy are given by the application of Ps,q to simple objects in the Koszul dual
non-standard t-structure in [BGS96, Ri13].

6. Moduli of Langlands parameters for GLn

We now turn to arithmetic applications of our results, in particular the study of moduli spaces
of Langlands parameters for G “ GLn. Let F be a p-adic field, with residue field Fq, and let G_

denote a connected, split, reductive group over F (i.e. on the automorphic side of Langlands).

The derived category DpG_q of smooth complex representations of G_pF q admits a decom-
position into blocks. The so-called principal block of DpG_q (that is, the block containing the
trivial representation) is naturally equivalent to the category of Hq-modules, where Hq now
denotes the affine Hecke algebra associated to G_, with parameter q. Theorem 4.12 then gives

a fully faithful embedding from this principal block into QC!
pLqp pN {Gqq.

The space Lqp pN {Gq has a natural interpretation in terms of Langlands (or Weil-Deligne)
parameters for G_pF q. Recall that a Langlands parameter for G_ is a pair pρ,Nq, where
ρ : WF Ñ GpCq is a homomorphism with open kernel, and N is a nilpotent element of LieG
such that, for all σ in the inertia group IF of WF , one has AdpρpFrn σqqpNq “ qnN, where Fr
denotes a Frobenius element of WF .

On the other hand, the underlying stack of Lqp pN {Gq can be regarded as the moduli stack of
pairs ps,Nq, where s P GpCq, N P LieG, and AdpsqpNq “ qN , up to G-conjugacy (i.e. the map
ρ above vanishes on inertia). To such a pair we can attach the Langlands parameter pρ,Nq,
where ρ is the unramified representation of WF taking Fr to s. Such a Langlands parameter is

called unipotent, and this construction identifies Lqp pN {Gq with the moduli stack of unipotent
Langlands parameters, modulo G-conjugacy.41 We thus obtain a fully faithful embedding from
the principal block of DpG_q into the category of ind-coherent sheaves on the moduli stack of
unipotent Langlands parameters.

It is natural to ask if this extends to an embedding of all of DpG_q into a category of sheaves
on the moduli stack of all Langlands parameters. We will show that, at least when G “ GLn
over F , this is indeed the case. For the remainder of the section, we will take G “ G_ “ GLn.

6.1. Blocks, semisimple types, and affine Hecke algebras. Our argument proceeds by re-
ducing to the principal block. On the representation theory side, this reduction is a consequence
of the Bushnell-Kutzko theory of types and covers [BK97, BK99], which we now recall. For this
subsection only, we will reverse our conventions to avoid cumbersome notation; that is, we let
G be a connected reductive split group over F on the automorphic side of Langlands duality.

41Strictly speaking, a Langlands parameter is a pair pρ,Nq as above in which ρ is semisimple. When building

a moduli space of Langlands parameters we must drop this condition, however, as the space of semisimple
parameters is not a well-behaved geometric object. In particular the locus in Lq consisting of pairs ps,Nq in

which s is semisimple is neither closed nor open in Lq .
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6.1.1. Supercuspidal support. Let P Ă G be a parabolic subgroup with Levi M and unipotent
radical U , and let π be a smooth complex representation of M . Recall that the parabolic
induction iGP pπq is obtained by inflating π to a representation of P , twisting by the square root
of the modulus character of P , and inducing to G. The parabolic induction functor iGP has a
natural left adjoint, the parabolic restriction rPG (restriction to P , untwist, and U -coinvariants).

Definition 6.1. A complex representation π of G is supercuspidal if, for all proper parabolic
subgroups P of G, the parabolic restriction rPGpπq vanishes. Let π be an irreducible supercuspidal
representation of M ; an irreducible complex representation Π has supercuspidal support pM,πq
if Π is isomorphic to a subquotient of iGP pπq (this is well-defined up to conjugacy).

A character χ of M is unramified if it is trivial on every compact open subgroup of M , and the
Levi-supercuspidal pairs pM,πq and pL, π1q are inertially equivalent if there exists an unramified
character χ of L such that pM,πq and pL, π1 b χq are G-conjugate.

For such a pair pM,πq up to inertial equivalence, following Bernstein-Deligne [BeDe84], we
define DpGqrM,πs Ă DpGq to be the full subcategory of objects such that every subquotient of
Π has supercuspidal support inertially equivalent to pM,πq. Then Bernstein-Deligne show:

Theorem 6.2. The full subcategory DpGqrM,πs is a block of DpGq, i.e. summing over super-
cuspidals up to inertial equivalence,

DpGq “
à

DpGqrM,πs.

6.1.2. Types and Hecke algebras. We recall the notion of a type.

Definition 6.3. A type for G is a pair pK, τq, where K Ă G is a compact open subgroup and τ is
an irreducible complex representation of K, such that42 the full subcategory RepsmpG,K, τq Ă
RepsmpGq consisting of representations V which are generated by the image of the evaluation
map HomKpτ, V q b τ Ñ V . Attached to a type we have its Hecke algebra

HpG,K, τq :“ EndGpcIndGKpτqq

and an equivalence of abelian categories RepsmpG,K, τq♥ » HpG,K, τq -mod♥.

The main result of [BK99] describes an arbitrary block of DpGq as a category of modules for
a certain tensor product of Hecke algebras, via the theory of G-covers, providing a connection
between parabolic induction methods (which involve subgroups which are not compact open)
and Hecke algebra methods (which only make sense for compact open subgroups).

We first consider the block DpLqrL,πs (i.e. where L “ G). Let L be a Levi subgroup of G and
π a supercuspidal representation of L. We denote by L0 Ă L the smallest subgroup containing
every compact open; then L{L0 is free abelian of rank equal to dimpZpLqq. Furthermore, the
unramified characters of L are in bijection with the characters of L{L0. There is a bijection

X‚pL{L0q{H ÐÑ IrrpDpLq♥
rL,πsq, χ ÞÑ π b χ

where we denote X‚pL{L0q “ HompL{L0,Cˆq and H Ă X‚pL{L0q is the subgroup of unramified
characters χ such that π b χ » π. Moreover, there is an equivalence of categories:

DpLqrL,πs » CrX‚pL{L0qs
H -mod, π b χ ÞÑ Cχ.

We may rephrase this equivalence in terms of types and Hecke algebras as follows: first, we
may (by Section 1.2 in [BK99]) choose a maximal simple cuspidal type pKL , τLq occurring in
π. One then has a natural support-preserving isomorphism of HpL,KL , τLq » CrX‚pL{L0qs

H ,
and thus an (inverse) equivalence

CrX‚pL{L0qs
H -mod » DpGqrL,πs, V ÞÑ V bHpL,KL,τLq cIndLKL τL.

We are interested in understanding the induction of pL, πq to G. This is achieved by the
following composite of results of [BK99]; we refer the reader to op. cit. for the definitions of
simple type and G-cover.

42See pp. 594 of [BK97] for why this is necessary.
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Theorem 6.4 ([BK99]). Let rL, πs and the cuspidal type pKL , τLq be as above, and let P Ă G
be a parabolic subgroup with Levi factor L. There exists an intermediate43 Levi subgroup L Ă
L: Ă G, and types pK:, τ :q of L: and pK, τq of G with the following properties:

(1) The type pK:, τ :q is a simple type of L:.
(2) pK, τq is a G-cover of pK:, τ :q, and pK:, τ :q is an L:-cover of pKL , τLq. In particular

we have natural injections:

TPXL: : HpL,KL , τLq HpL:,K:, τ :q

TL:P : HpL:,K:, τ :q HpG,K, τq»

with TpL:qP an isomorphism.
(3) The functors

HomKpτ,´q : DpGqrL,πs HpG,K, τq -mod»

HomK:pτ
:,´q : DpL:qrL,πs HpL:,K:, τ :q -mod»

HomKL pτL ,´q : DpLqrL,πs HpL,KL , τLq -mod»

are equivalences of categories. Moreover, for any representation V in DpLq, one has an
isomorphism of HpG,K, τq-modules:

HomKpτ, i
G
P 1V q – HomKL pτL , V q bHpL,KL ,τL q HpG,K, τq,

where P 1 denotes the opposite parabolic to P , and where HpG,K, τq is regarded as an
HpL,KL , τLq-module via the map TP :“ TL:P ˝ TPXL: .

(4) Suppose L: »
ś

i L
:

i , with each L:i » GLni for some ni. Let Li be the projection of L

to L:i , and let πi be the projection of π to Li. Let Hi denote the group of unramified

characters χ of L:i such that πbχ » π, and let ri denote the order of Hi. Then ni “ rimi

for some positive integer mi, and there is a natural isomorphism (depending on π):

HpL:,K:, τ :q –
â

i

Hqri pmiq,

where Hqri pmiq denotes the affine Hecke algebra associated to GLmi with parameter qri .

These constructions are naturally compatible with parabolic induction, in the following sense:
let M be a Levi with L Ă M Ă G, and with parabolic Q “ MP . Then Theorem 6.4 gives us
an M -cover pKM , τM q of pKL , τLq and a G-cover pK, τq of pKL , τLq, as well as maps:

TPXM : HpL,KL , τLq Ñ HpM,KM , τM q, TP : HpL,KL , τLq Ñ HpG,K, τq.
We then have:

Theorem 6.5 ([BK99]). There exists a unique map:

TQ : HpM,KM , τM q Ñ HpG,K, τq
such that TP “ TQ ˝ TPXM . Moreover, for any V P DpM q, we have an isomorphism of
HpG,K, τq-modules:

HomKpτ, i
G
Q1V q – HomKM pτM , V q bHpM,KM ,τM q HpG,K, τq.

Example 6.6. The fundamental (and motivating) example for this is when L “ T is the
standard maximal torus with parabolic P “ B the standard Borel, and τ “ 1 is the trivial
character of T . In this setting KL is the maximal compact subgroup T0 “ T pOq Ă T , and τL is
the trivial character. Moreover L: “ G, the subgroup K “ I Ă G is the Iwahori subgroup, and
τ is the trivial representation of I. We then have natural identifications of the Hecke algebra:

HpL,KL , 1q » CrT {T0s » CX‚pT q.

43Defined to be the smallest Levi containing the G-normalizer of the type pKL, τLq.
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and a commutative diagram:

CrX‚s HpT, T pOq, 1q

Hq HpG, I, 1q.

»

TP

»

More generally, if M Ă G is a Levi subgroup and Q is its standard parabolic, then KM is the
Iwahori subgroup I XM of M , and the map

TQ : HpM, I XM, 1q Ñ HpG, I, 1q
is uniquely determined by the following properties:

‚ TQ ˝ TBXM “ TB ,
‚ If w PW pMq is an element of the Iwahori-Weyl group of M , then TQpIMwIM q “ IwI.

This picture is compatible with the general situation in the following sense. Suppose for
simplicity that L: “ G. Then L is a product of m copies of GL n

m
for some divisor m of n, and

(after an unramified twist) we may assume that π has the form πbm0 . There is an extension
E{F of degree n

m and ramification index r, and an embedding GLmpEq Ă G “ GLnpF q, such
that the intersection LXGLmpEq is the standard maximal torus of GLmpEq.

We denote the subgroup GLmpEq by GE , its standard maximal torus by TE and its standard
Iwahori by IE . Let M be a Levi such that L Ă M Ă G, define ME “ M X GE and take
pKM , τM q to be a cover of pKL, τLq via Theorem 6.4. The choice of π then gives rise to an
isomorphism CX‚pT q » HpL,KL , τLq, such that for each coharacter λ P X‚pT q the image of λ
is supported on the double coset KLλp$EqKL , and such that the induced action of X‚pT q on
the Hecke module attached to π is trivial. We then have:

Theorem 6.7 (Theorem 6.4 [BK93]). Assume that L: “ G. There is an isomorphism Hqr pmq »
HpG,K, τq fitting into a commutative diagram:

HpTE , pTEq0, 1q – CX‚pT q – HpL,KL , τLq
Ó Ó Ó

HpME , IE XME , 1q –
Â

mi
Hqr pmiq – HpM,KM , τM q

Ó Ó Ó

HpGE , IE , 1q – Hqr pmq – HpG,K, τq.

Thus when rL, πs is “simple” (that is, when L: “ G), we have a natural reduction of DpGqrL,πs
to the principal block of DpGEq, in a manner compatible with parabolic induction. In general
we obtain a reduction of DpGqrL,πs to a tensor product of such principal blocks.

6.2. The moduli spaces Xν
F,G. We now turn to our study of moduli stacks of Langlands

parameters for G “ GLn. Henceforth we revert to our default notation, where G denotes a
group on the spectral side of Langlands duality.

Moduli stacks of Langlands parameters for GLn have been studied extensively in mixed
characteristic, for instance in [H20] in the case of GLn, or more recently in [BG19, BP19], and
[DHKM20] for more general groups. Since in our present context we work over C, the results
we need are in general simpler than the results of the above papers, and have not appeared
explicitly in the literature in the form we need.

We first consider these moduli spaces as underived stacks; it will follow by Proposition 4.3 that
they have trivial derived structure. As in the previous section, we take G “ GLn, considered
as the Langlands dual of G_ “ GLnpF q. We use XF,G to denote the moduli scheme whose
quotient stack is the moduli stack LF,G in the introduction.

Definition 6.8. Let I be an open normal subgroup of the inertia subgroup IF Ă WF . Then
there is a scheme XI

F,G parameterizing pairs pρ,Nq, where ρ : WF {I Ñ GLn is a homomorphism,

and N is a nilpotent n by n matrix such that for all σ P IF , Ad ρpFrn σqpNq “ qnN . For any
ν : IF {I Ñ GLnpCq, we may consider the subscheme Xν

F,G Ă XI
F,G corresponding to pairs pρ,Nq
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such that the restriction of ρ to IF is conjugate to ν; it is easy to see that Xν
F,G is both open

and closed in XI
F,G. We will say that a Langlands parameter is of “type ν” if it lies in Xν

F,G.

Example 6.9. When ν “ 1 is the trivial representation, the quotient stack X1
F,G{G is isomor-

phic to the underlying underived stack of Lqp pN {Gq, as we remarked in the previous section.

We will show that in fact, for ν arbitrary, the stack Xν
F,G{G is isomorphic to a product of

stacks of the form Lqri p pNi{Giq, in a manner that exactly parallels the type-theoretic reductions
of the previous section. This will allow us to transfer the structures we have built up on

Lqri p pNi{Giq to stacks of the form Xν
F,G{G for arbitrary ν. Our approach very closely parallels

the construction of Sections 7 and 8 of [H20] with the exception that we are able to work with
the full inertia group IF , whereas the integral `-adic setting of [H20] requires one to work with
the prime-to-` inertia instead.

Our strategy will be to rigidify the moduli space Xν
F.G. For any C-algebra R, let us fix a

representative ρ : WF {I Ñ GLnpRq of type ν, i.e. of the conjugacy class.
For any irreducible complex representation η of IF , let Wη be the finite index subgroup of WF

consisting of all w PWF such that ηw is isomorphic to η. Then η extends to a representation of
Wη, although not uniquely; let η̃ be a choice of such an extension. This choice defines a natural
Wη{IF -action on the space HomIF pη, ρq, and an injection of Wη-representations

η̃ bHomIF pη, ρq ãÑ ρ.

Frobenius reciprocity then gives an injection:

IndWF

Wη
pη̃ bHomIF pη, ρqq ãÑ ρ.

The image of this injection is the sum of the IF -subrepresentations of ρ isomorphic to a WF -
conjugate of η. We thus have a direct sum decomposition of WF -representations:

ρ –
à

η

IndWF

Wη
pη̃ bHomIF pη, ρqq ,

where η runs over a set of representatives for the WF -orbits of irreducible representations of
IF {I. Moreover, the map44 N is IF -equivariant, and thus induces, for each η, a nilpotent
endomorphism Nη of HomIF pη, ρq. If Frη is a Frobenius element of Wη, we have Frη Nη Fr´1

η “

qrηNη.

Let nηpρq be the dimension of the space HomIF pη, ρq; since nηpρq only depends on the type
ν of ρ, we may also write this as nηpνq. A choice of R-basis for HomIF pη, ρq then gives a
homomorphism:

ρη : WF {IF Ñ GLnipRq

and realizes Nη as a nilpotent element of MnipRq such that pρη, Nηq is an R-point of X1
Eη,GLnηpρq

.

We thus define:

Definition 6.10. A pseudo-framing of a Langlands parameter pρ,Nq over R is a choice, for all

η such that nηpρq is nonzero, of an R-basis for HomIF pη, ρq. Let rXν
F,G be the moduli scheme

parameterizing parameters pρ,Nq of type ν together with a pseudo-framing, and define

Gν :“
ź

tη|nηpνq‰0u

GLnη .

The scheme rXν
F,G is equipped with a GˆGν-action.

We denote by Eη the fixed field of Wη, by rη the degree of Eη over F , and by dη the

dimension of η. We see that Gν acts on rXν
F,G via “change of pseudo-framing”, and this action

makes rXν
F,G into a Gν-torsor over Xν

F,G. On the other hand, given an R-point pρ,Nq of rXν
F,G,

44I.e. viewed as a map N : IF � IF {PF »
ś

`1 Q`1 � Q` » CÑ GLnpRq.
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the pseudo-framing gives, for each η, an R-point pρη, Nηq of X1
Eη,GLnηpνq

. We thus obtain a

natural map:
rXν
F,G Ñ

ź

η

X1
Eη,GLnηpνq

which is a torsor for the conjugation action of G on rXν
F,G. We thus obtain natural isomorphisms

of quotient stacks:

Xν
F,G{G –

rXν
F,G{pGˆG

νq –

˜

ź

η

X1
Eη,GLnηpνq

¸

{Gν »
ź

η

Lqrη p pNnηpνq{GLnηpνqq.

Note that the composite isomorphism depends on the choice, for each η, of an extension η̃ of η
to WF .

6.3. The ν-Springer sheaves. We define a Springer sheaf by transporting across the above
isomorphism.

Definition 6.11. We define the ν-Springer sheaf Sν P CohpXν
F,G{Gq to be the product, over

η, of the sheaves Sqrη on the moduli stack X1
Eη,GLnηpνq

{GLnηpνq.

By Theorem 4.12, the endomorphisms of the ν-Springer sheaf are a tensor product of affine
Hecke algebras, and we introduce the notation

Hν :“
â

η

Hqrη pnηpνqq.

We thus obtain a fully faithful embedding Hν -mod ãÑ QC!
pXν

F,G{Gq. However, since our
identifications depend, ultimately, on our choices of η̃, this embedding will also depend on these
choices. (By contrast, the sheaf Sν itself is, at least up to isomorphism, independent of the
choices of η̃.) We can remove this dependence by rephrasing this embedding in terms of smooth
representations of G_, via the type theory of the previous section.

Proposition 6.12. There is a G-type pKν , τνq such that HpG_,Kν , τνq » Hν (depending on
choices), and an identification of dg algebras

End‚pSνq » HpG_,Kν , τνq

which is is independent of the choices of η̃.

Proof. Let L_ν be the standard Levi of G_ corresponding to block diagonal matrices whose
blocks consist, for each η, of nηpνq blocks of size rηdη. Let π0

η be the cuspidal representation of

GLrηdη corresponding to IndWF

Wη
η̃ under the local Langlands correspondence, and let πν be the

cuspidal representation:

πν :“
â

η

pπ0
ηq
bnηpνq

of L_ν . Then representations in the block DpG_qrL_ν ,πν s correspond, via local Langlands, to
Langlands parameters for G of type ν.

For each η, we can find a cuspidal type pKη, τηq in GLrηdη for π0
η. From this we can form

the type pKLν , τLν q in L_ν , by setting KLν “
ś

ηK
nηpνq
η and τLν “

Â

η τ
bnηpνq
η . This type is

associated to the block rL_ν , πνs in DpL_ν q. Let P_ be the standard parabolic of G_ with Levi
L_, and let pP 1q_ denote the opposite parabolic. The theory of section 6.1 then gives us a Levi
subgroup pL:q_ of G_ containing L_ν , an pL:q_-cover pK:ν , τ

:
ν q of pKLν , τLν q, and a G_-cover

pKν , τνq of pK:ν , τ
:
ν q. These covers depend on a choice of parabolic with Levi L_; we choose our

covers to be the ones associated to the opposite parabolic pP 1q_. In particular we obtain a map

TpP 1q_ : HpL_ν ,KL_ν
, τL_ν q Ñ HpG_,Kν , τνq

that is compatible with the parabolic induction functor iG
_

P_ on DpL_ν q in the sense of Theo-
rem 6.4.
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One verifies, by compatibility of local Langlands with unramified twists, that for each η the
group of unramified characters χ of GLrηdη such that π0

η b χ is isomorphic to π0
η is rη. Thus

there is an isomorphism of Hecke algebras HpG_,Kν , τνq » Hν . Moreover, the composition:

HpG_,Kν , τνq – Hν – EndpSνq

is independent of the choices of η̃. This essentially boils down to the compatibility of the local
Langlands correspondence with unramified twists and parabolic induction. �

Since DpG_qrL_ν ,πν s is canonically equivalent to the category of HpG_,Kν , τνq-modules, and

this equivalence associates the representations cIndG
_

Kν τν to the free HpG_,Kν , τνq-module of
rank one, we have shown:

Theorem 6.13. For each ν there is a natural fully faithful functor:

LLG,ν : DpG_qrL_ν ,πν s ãÑ QC!
pXν

F,Gq

that takes the generator cIndG
_

Kν τν to Sν .

Remark 6.14. We will say that an inertial type ν is cuspidal if the representations of WF

corresponding to points of Xν
F,G are irreducible. For G “ GLn this happens precisely when

nη “ 1 for a single η and is zero for all other η. In such cases Xν
F,G is simply a copy of Gm, the

sheaf Sν is the structure sheaf, and the corresponding affine Hecke algebra is simply CrT, T´1s,
which our choices above identify with the global functions on Xν

F,G – Gm. In particular for

such ν the functor LLG,ν is an abelian equivalence, that takes an irreducible CrT, T´1s-module
to a skyscraper sheaf on the corresponding point of Xν

F,G.
By taking products of the above picture we see that a similar statement holds for Levi

subgroups M of G (with a suitable torus in place of Gm.)

6.3.1. A direct construction of Sν . In this section we give a more intrinsic construction of Sν .
Fix a particular ν, and let Lν denote the Langlands dual of L_ν ; we identify Lν with the
standard block diagonal Levi of G containing nηpνq blocks of size rηdη. Let ν1 : IF Ñ Lν be
the representation of IF on L whose projection to each block of Lν of type η is the sum of the
WF -conjugates of η. We then have a moduli space Xν1

F,Lν
parameterizing Langlands parameters

for Lν that are of type ν1.
Let P be the standard (block upper triangular) parabolic of G containing Lν . We then also

have a moduli space Xν1

F,P parameterizing Langlands parameters for G that factor through P ,

and whose projection to Lν is of type ν1. The inclusion of P ãÑ G, and the projection of P � L
induce parabolic induction maps

Xν1

F,Lν
Xν1

F,P Xν1

F,G
πP ιP

We then have:

Theorem 6.15. There are natural isomorphisms:

Sν – pιP q˚Oν1

F,P – pιP q˚π
˚
POν1

F,Lν ,

where Oν1

F,P and Oν1

F,Lν
denote the structure sheaves on Xν1

F,P {P and Xν1

F,Lν
{Lν , respectively.

Proof. Let L: be the standard Levi of G that is block diagonal of block sizes nηpνqrηdη. Let Q be
the standard block upper triangular parabolic of G with Levi L:, and let ν2 be the composition
of ν1 with the inclusion of Lν in L:. We then have spaces Xν2

F,L:
and Xν2

F,Q, where the former

parameterizes pairs pρ,Nq for L: that are of type ν2, and the latter parameterizes pairs pρ,Nq
for G that factor through Q and whose projection to L: is of type ν2. We may also consider the
space Xν1

F,PXL:
, which parameterizes pairs pρ,Nq for L: that factor through P X L: and whose

projection to L is of type ν1. We then have a natural Cartesian diagram:
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Xν1

F,P {P Xν1

F,PXL:
{P X L:

Xν2

F,Q{Q Xν2

F,L:
{L:

ι
PXL:

ιQ

from which we conclude that pιP q˚π
˚
POν1

F,Lν
is isomorphic to pπQq˚ι

˚
QpιPXL:q˚π

˚
PXL:

Oν1

F,Lν
,

where πQ : Xν2

F,Q{QÑ Xν
F,G{G, and πPXL: : Xν1

F,PXL:
{pP X L:q Ñ Xν1

F,Lν
{Lν .

On the other hand, let Bη and Tη denote the standard Borel subgroup and maximal torus
of GLnηpνq, for each η. We then have a commutative diagram (note that we transport derived
structures across the isomorphisms by definition):

ś

η Lqrη p pNTη{T q – Xν1

F,L{Lν
Ò Ò

ś

η Lqrη p pNBη{Bq – Xν1

F,PXL:
{pP X L:q

Ó Ó
ś

η Lqrη p pNnηpνq{Gnηpνqq – Xν2

F,L:
{L:

Ò Ò
ś

η Lqrη p pNnηpνq{Gnηpνqq – Xν2

F,Q{Q

Ó Ó
ś

η Lqrη p pNnηpνq{Gnηpνqq – Xν
F,G{G

where the bottom two vertical maps on the left are the identity. It follows that the iterated
pull-push pιQq˚π

˚
QpιPXL:q˚π

˚
PXL:

Oν1

F,Lν
corresponds, under the bottom isomorphism, to Sν ,

as the latter is simply the pushforward to
ś

η Lqrη p pNnηpνq{Gnηpνqq of the structure sheaf on
ś

η Lqrη p pNBη{Bq. �

6.3.2. Compatibility with parabolic induction. As in the previous subsection, we fix a particular
ν and let L_ν , Lν and P be as above. Let Q be a standard Levi subgroup of G whose standard
Levi subgroup M contains Lν , and let M_ and Q_ be the corresponding dual subgroups of G_.
Let ν1 be the inertial type IF Ñ Lν constructed in the previous subsection, and let ν2 be the
composition of ν1 with the inclusion of Lν in M . We have a diagram with the square Cartesian:

Xν1

F,Lν
{Lν Xν1

F,PXM{P XM Xν1

F,P {P

Xν2

F,M{M Xν2

F,Q{Q

Xν
F,G{G.

πPXM

ιPXM ιP,Q

πP,PXM

πQ

ιQ

Theorem 6.15 shows that Sν is isomorphic to the pushforward toXν
F,G{G of the structure sheaf

on Xν1

F,P {P , and the corresponding sheaf Sν,M on Xν2

F,M is the pushforward to Xν2

F,M{M of the

structure sheaf on Xν1

F,PXM{pP XMq. The above diagram then gives us a natural isomorphism:

Sν – pιQq˚π˚QSν,M .

Via functoriality and this isomorphism one obtains an embedding of EndpSν,M q in EndpSνq.
Recall that we have identified these endomorphism rings with certain Hecke algebras via type

theory. In particular, we have the type pKLν , τLν q of L_ν , an M_-cover pKM_ , τM_q coming
from the parabolic pP 1q_ XM_ opposite P_ XM_, and a G_-cover pK, τq coming from the
parabolic pP 1q_ opposite P_. Theorem 6.5 then gives us a map:

TpQ1q_ : HpM_,KM_ , τM_q Ñ HpG_,K, τq.
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Lemma 6.16. We have a commutative diagram:

HpM_,KM_ , τM_q EndpSν,M q

HpG_,K, τq EndpSνq

»

TpQ1q_

»

where the right hand map is induced by the isomorphism of Sν » pιQq˚π˚QSν,M .

Proof. The machinery of the previous subsection, together with the compatibility of the general
case with the Iwahori case in section 6.1 allow us to reduce to the case where ν “ 1. In this
case the claim reduces to the compatibility of the Ginsburg-Kazhdan-Lusztig interpretation of
the affine Hecke algebra as K0 of the Steinberg variety with parabolic induction, checked in the
proof of Theorem 4.12. �

As a consequence, we deduce:

Theorem 6.17. We have a commutative diagram of functors:

DpM_qrLν ,τν s QC!
pXν

F,M q

DpG_qrLν ,τν s QC!
pXν

F,Gq.

LLM,ν

iG
_

Q_
pιQq˚π

˚
Q

LLG,ν

Proof. We have isomorphisms:

LLG,νpi
G_

Q_V q – HompcIndG
_

K τ, iG
_

Q_V q bHpG_,K,τq Sν
– HomM_pcIndM

_

KM_
τM_ , V q bHpM_,KM_ ,τM_ q pιQq˚π

˚
QSM_,ν

– pιQq˚π
˚
QpLLM,ν V q

from which the result follows. �

Appendix A. Proofs

This appendix contains proofs of technical results used in the body of the paper.

A.1. Functoriality of Hochschild homology in geometric settings.

Proof of Proposition 3.14. The first and second statements are Theorem 2.21 (or Proposition
5.5) in [BN19]. We give a direct argument for the third statement (which can also be adapted
toward the second). We let Z :“ X ˆY X, and denote the diagonals by ∆X : X ãÑ X ˆ X
(and likewise for Y ), the relative diagonal by ∆ : X ãÑ Z “ X ˆY X, and its inclusion by
i : Z “ X ˆY X ãÑ X ˆX.

Note that we use !-integral transforms in our convention; thus to describe the integral trans-
forms it is convenient to pass between ˚-pullbacks and !-pullbacks. For any quasi-smooth map
g : E Ñ B we denote by β˚g : f˚p´q » f !p´q bOX ω

´1
E{B and β!

g : f !p´q » f˚p´q bOX ωE{B the

canonical equivalences.
The integral transform corresponding to f˚f

˚ : CohpY q Ñ CohpY q is given by the kernel

Kf˚f˚ :“ ∆Y ˚f˚pωX b
OX

ω´1
X{Y q.

Letting ηf denote the unit for the adjunction pf˚, f˚q, the unit η P HomYˆY p∆Y ˚ωY ,Kf˚f˚q
is defined:

η :“ ∆Y ˚pβ
˚
f ˝ ηf q : ∆Y ˚ωY ÝÑ ∆Y ˚pf˚f

˚ωY q » ∆Y ˚pf˚pf
!ωY b

OX
ω´1
X{Y qq.

The integral transform corresponding to f˚f˚ : CohpXq Ñ CohpXq is given by the kernel:

Kf˚f˚ :“ i˚pωZ b
OZ

ω´1
Z{Xq.
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Letting η∆ denote the unit for the adjunction p∆˚,∆˚q, the counit ε P HomXˆXpKf˚f˚ ,∆X˚ωXq
is defined:

ε :“ i˚pβ
!´1
∆ ˝ η∆q : i˚pωZ b

OZ
ω´1
Z{Xq Ñ i˚∆˚p∆

˚ωZ b
OZ

ωX{Zq » i˚∆˚ωX

where we implicitly use the canonical identification ∆˚ω´1
Z{X » ωX{Z (i.e. since ωX{X is canon-

ically trivial). We leave verification of the adjunction identites to the reader.
The functoriality ωpLφY q Ñ ωpLφXq is given by composing the unit and counit after applying

Γ˝Γ!
φY

and Γ˝Γ!
φX

(where, somewhat confusingly, Γ denotes the global sections functor, and Γφ
denotes the graph). Recall the factorization and notation of Lemma 3.10, let pX : LφYX Ñ X
and pY : LφYX Ñ Y denote the natural maps, and evX : LφX Ñ X the evaluation (and likewise
for Y ). For the unit map η, we have

Γ!
φY η : Γ!

φY ∆Y ˚ωY ÝÑ Γ!
φY ∆Y ˚f˚pωX bOX ω

´1
X{Y q.

We perform a base change along the diagram:

LφYX LφY Y

X Y Y ˆ Y.

π

pX

evY

evY ΓφY

f ∆Y

to find

Γ!
φY ∆Y ˚f˚pωX bOX ω

´1
X{Y q » pY ˚p

!
XpωX bOX ω

´1
X{Y q » pY ˚pωLφYX bOLφYX

p˚Xω
´1
X{Y q

» pY ˚pωLφYX bOLφYX
ω´1
LφYX{LφY q » evY ˚π˚π

˚ωLφY

and an identification of η with the unit ηπ for the adjunction pπ˚, π˚q:

η » evY ˚pηπpωLφY qq : evY ˚ωLφY ÝÑ evY ˚π˚π
˚ωLφY .

For the counit map ε, we have

Γ!
φX ε : Γ!

φX i˚pωZ bOZ ω
´1
Z{Xq ÝÑ Γ!

φX∆X˚ωX .

We perform a base change along the diagram:

LφX LφYX X

X Z X ˆX.

evX

δ

s

pX

ΓφX

∆ i

to find that

Γ!
φX i˚pωZ bOZ ω

´1
Z{Xq » pX˚s

!pωZ bOZ ω
´1
Z{Xq » pX˚pωLφYX bOLφYX

s˚ω´1
Z{Xq

» pX˚pωLφYX bOLφYX
ω´1
LφYX{LφY q » pX˚δ

˚ωLφY .

Since the Calabi-Yau equivalence of Proposition 3.12 provides a canonical equivalence ωLφX{LφY »

OLφX , we have a canonical equivalence ωLφX{LφYX » δ˚ω´1
LφYX{LφY . Passing through this equiv-

alence, we have

Γ!
φX i˚∆˚ωX » pX˚s

!∆˚ωX » pX˚δ˚δ
!ωLφYX » pX˚δ˚pδ

˚ωLφYX bOLφX
ωLφX{LφYX q

» pX˚δ˚δ
˚pωLφYX bOLφYX

ω´1
LφYX{LφY q.

Thus, ε is identified with the unit ηδ for the adjunction pδ˚, δ˚q:

ε » pX˚pηδpωLφX{LφYX bOLφYX
ω´1
LφYX{LφY qq : pX˚π

˚ωLφY Ñ evX˚ωLφX .

Taking global sections and composing, we see that the map

ωpLφY q Ñ ΓpLφYX , ωLφYX b ω
´1
LφYX{LφY q » ΓpLφYX , ωLφYX b δ˚ωLφX{LφYX q Ñ ωpLφXq

is induced by the unit of the adjunction pLφf˚,Lφf˚q, twisted by the Calabi-Yau equivalence.
�
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The following is a generalization of Proposition 3.18. While Proposition 3.18 is stated in the
setting of derived loop spaces, the arguments hold in the following more general setting.

Proposition A.1. Let f : X Ñ Y be a proper map of derived stacks, and let Z “ XˆY X with
projections p1, p2 : Z Ñ X and p : Z Ñ Y . There is a canonical equivalence:

ζf : p˚HomZpOZ , ωZq » HomY pf˚OX , f˚ωXq.

In particular, if X is Calabi-Yau, then we have a natural equivalence ωpZq » EndY pf˚ωXq.
This equivalence is functorial in the following sense. Let f 1 : X 1 Ñ Y 1 (and p1 : Z 1 Ñ Y 1) be as
above.

‚ Suppose that αY : Y Ñ Y 1 is proper, and that X “ X 1. We let f : X Ñ Y be as above,
f 1 “ αY ˝ f : X Ñ Y Ñ Y 1. We have commuting squares

αY ˚p˚HomZpOZ , ωZq αY ˚HomY pf˚OX , f˚ωXq

p1˚HomZ1pOZ1 , ωZ1q HomY 1pf˚OX1 , f˚ωX1q.

»

αY˚pζf q

Def.3.13 Def.3.17

»

ζf 1

‚ Suppose that αY : Y Ñ Y 1 is Calabi-Yau, and that X “ X 1 ˆY 1 Y (so αX is also
Calabi-Yau). Then we have commuting squares

p1˚HomZ1pOZ1 , ωZ1q HomY 1pf˚OX1 , f˚ωX1q

αY ˚p˚HomZpOZ , ωZq αY ˚HomY pf˚OX , f˚ωXq.

Def.3.13

»

ζf 1

Def.3.17

»

αY˚pζf q

Proof. The first statement is a formal consequence of adjunctions and base change:

p˚HomZpOZ , ωZq » f˚HomXpOX , p1˚ωZq » f˚HomXpOX , f
!f˚ωXq » HomY pf˚OX , f˚ωXq.

Functoriality for proper morphisms follows by a diagram chase on:

αY ˚p˚HomZpOZ , ωZq p1˚HomZ1pOZ1 , ωZ1q

f 1˚HomXpOX , p1˚ωZq f 1˚HomXpOX , p
1
1˚ωZ1q

f 1˚HomXpOX , f
!f˚ωXq f 1˚HomXpOX , f

1!f 1˚ωXq

αY ˚HomY pf˚OX , f˚ωXq αY ˚HomY 1pf
1
˚OX , f

1
˚ωXq

» »

» »

» »

where we use the identification in the middle left terms αY ˚f˚ » f 1˚αX˚ » f 1˚ (i.e. since X “ X 1

and αX “ idX), and the middle horizontal maps are given by functoriality of pushforwards of
dualizing sheaves. In the Calabi-Yau case, we pass to left adjoints, apply the base change
α˚f 1˚ » f˚α

˚ and chase the diagram:

p˚α
˚
ZHomZ1pOZ1 , ωZ1q p˚HomZpOZ , ωZq

f˚α
˚
XHomX1pOX1 , p

1
1˚ωZ1q f˚HomXpOX , p1˚ωZq

f˚α
˚
XHomX1pOX1 , f

1!f 1˚ωX1q f˚HomX1pOX , f
!f˚ωXq

α˚YHomY 1pf
1
˚OX1 , f

1
˚ωX1q HomY pf˚OX , f˚ωXq

» »

» »

» »
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where the middle arrows arise by functoriality of Calabi-Yau pullback (as in Definition 3.13)
after passing to left adjoints. �

A.2. Horizontal trace of convolution categories.

Proof of Theorem 3.23. We will employ the notation in Theorem 3.3.1 of [BNP17b] to point out
how its argument can be modified to acommodate this more general setting. First, note that
the surjectivity condition is not needed nor used in the proof of the theorem; it is subsumed by
the singular support condition, so we omit it from the statement. The quasi-smoothness of qn
follows by quasi-smoothness of the graph Γφ. We replace, in the definition of C‚, the diagonal
module PerfpXq with the module defined by the graph Γφ. In the definition of Z‚, this amounts
to replacing LY with Y φ (informally, introducing a twist by φ as we “come around the circle,”
i.e. in Lemma 3.3.2 the automorphism ` lives in MapY pkqpy, φpyqq). In the definition of W‚,
this amounts to replacing the last factor of X ˆY X “ X ˆf,Y,f X representing the “segment
containing the twist by φ” with X ˆf,Y,φX˝f X (i.e. in Lemma 3.3.3, the final point xn should
lie in the fiber f´1pφpyqq rather than f´1pyq). The rest of the proof goes through without
modification as the formulas still hold with the φ-twist. �

Proof of Proposition 3.30. The argument in Theorem 3.3.1 of [BNP17b] may be adapted in the

following way. Let M “ QC!
pZ12q and N “ QC!

pZ23q, and following the notation of loc. cit. we

let A “ QC!
pZ22q and B “ QC!

pX2q. Then, writing MbA N “ MbA AbA N, and (following
the argument of loc. cit.) resolving A as a A bB Arv-module via the relative bar complex for
A over B, we find that MbA N can be realized as the geometric realization of the cosimplicial
object:

MbA N “ colimpQC!
ΛnpZnqq

where we define

qn : Zn :“ X1 ˆ
Y

n`1
hkkkkkkkikkkkkkkj

X2 ˆ
Y
¨ ¨ ¨ ˆ

Y
X2ˆ

Y
X3 ÝÑWn :“ Z12 ˆ Z

n
22 ˆ Z23,

Λn “ q!
npΛ12 b

n
hkkkkkkkkkkkikkkkkkkkkkkj

T˚r-1sZ22
b ¨ ¨ ¨b T˚r-1sZ22

b Λ23q.

Explicitly, for η “ px1, x
p0q
2 , . . . , x

pnq
2 , x3q P Znpkq with each coordinate living in the fiber over

y P Y pkq, we have

T˚r-1sZn
“ tpω12, ω

p01q
22 , . . . , ω

pn´1,nq
22 , ω23q P T˚Y,y | df˚1 ω12 “ 0, df˚3 ω23 “ 0, df˚2 ω

pi´1,iq
22 “ df˚2 ω

pi,i`1q
22 u,

Λn “ tpω12, ω
p01q
22 , . . . , ω

pn´1,nq
22 , ω23q P T˚Y,y | ω12 P Λ12,η, ω23 P Λ23,η, df

˚
2 ω

pi,i`1q
22 “ 0u.

Here, we note that the fiber of the singular support condition Λij at the point pxi, xjq P Zijpkq
in the fiber over y is naturally a subset Λij,pxi,xjq Ă T˚Y,y. The singular support stability

condition implies that the face maps pZm,Λmq Ñ pZn,Λnq are maps of pairs. Pullback along
the augmentation is conservative by definition of Λ13. Analogous formulas in Lemma 3.3.9 of
op. cit. hold in this situation (without the need to “loop around”), and the strictness condition
follows by an argument analogous to Proposition 3.3.8 of op. cit. Thus, we have an equivalence

QC!
Λ13
pZ13q » TotpQC!

ΛnpZnqq.

For functoriality, we note that the resulting maps pZn,Λnq Ñ pZn,Λ
1
nq are maps of pairs by

our description above for n ě 0, and the case n “ ´1 is a straightforward verification. The claim
then follows by functoriality of the descent with support discussed in Section 2.4 of [BNP17b].
We adopt the notation of loc. cit.: let pX‚,Λ‚q Ñ pX´1,Λ´1q and pY‚,Θ‚q Ñ pY´1,Θ´1q be
augmented simplicial diagrams of maps of pairs satisfying the descent conditions of Theorem
2.4.1 and Corollary 2.4.2 of [BNP17b], and let g‚ : pX‚,Λ‚q Ñ pY‚,Θ‚q be a level-wise proper
map of augmented simplicial diagrams of pairs. We claim that we have a limit Totpg!

‚q » g!
´1 and

a colimit Realpg‚˚q » g´1˚, which proves the functoriality claims (i.e. since the maps g‚ are the
identity, the functors g‚˚ are the inclusion functors and g!

‚ are the local cohomology functors).
The first statement follows by commutativity of !-pullbacks with supports (see Remark 2.3.3 of
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[BNP17b]) and by universal property of the limit. The second statement follows by passing to
left adjoints (as in Corollary 2.4.2 of op. cit.). �

Proof of Proposition 3.36. Consider the functors

T p´q :“ ´bQCpkq QCpXq : dgCatk Ñ QCpY q-mod,

TRp´q :“ ´bQCpY q QCpXq : QCpY q-mod Ñ dgCatk.

We claim that pT, TRq are adjoint. Let ∆X : X Ñ X ˆ X denote the diagonal, p : X Ñ pt
denote the structure map, and ∆X{Y : X Ñ X ˆY X the relative diagonal. We define the unit

η : iddgCatk Ñ TR ˝ T via the functor ∆X{Y ˚p
˚ : QCpptq Ñ QCpX ˆY Xq and the counit

ε : T ˝ TR Ñ idQCpY q-mod by the functor f˚∆˚X : QCpX ˆ Xq Ñ QCpY q. Verification of the
adjunction axioms is a straightforward application of base change and Theorem 4.7 of [BFN10].
To compute the trace, we apply base change and find that rQCpXq, φX˚s is the pull-push of
k P QCpptq along the diagram (where ∆Y : Y Ñ Y ˆ Y is the diagonal):

X ˆZ LφYX » LφX

X LφYX » X ˆ
pf,f˝φXq,YˆY,∆Y

Y

pt Z “ X ˆY X “ pX ˆXq ˆ
pf,fq,YˆY,∆Y

Y LφY,

p ∆X{Y
ΓφˆidY fˆidY

i.e. rQCpXq, φX˚s » Lφf˚OLφX . �
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action, arXiv:1712.01963v1 (2017).

[BG19] Rebecca Bellovin and Toby Gee. G-valued local deformation rings and global lifts, Algebra and Number

Theory 13, no. 2 (2019), 333–378.

https://math.uchicago.edu/~drinfeld/langlands/hitchin/BD-hitchin.pdf
https://math.uchicago.edu/~drinfeld/langlands/hitchin/BD-hitchin.pdf
http://arxiv.org/abs/2004.10487
http://arxiv.org/abs/0805.0157
http://arxiv.org/abs/1209.0193
http://arxiv.org/abs/1712.01963


COHERENT SPRINGER THEORY AND CATEGORICAL DELIGNE-LANGLANDS 73

[BGS96] Alexander Beilinson, Victor Ginzburg and Wolfgang Soergel. Koszul duality patterns in representation
theory. J. Amer. Math. Soc. 9 (1996), no. 2, 473–527.
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1035–1074.

[Ke06] Bernhard Keller. On differential graded categories, International Congress of Mathematicians. Vol. II,

151–190, Eur. Math. Soc., Z urich, 2006.
[KL87] David Kazhdan and George Lusztig. Proof of the Deligne-Langlands conjecture for Hecke algebras.

Invent. Math. 87 (1987), no. 1, 153–215.

[La18a] Vincent Lafforgue. Chtoucas pour les groupes réductifs et paramétrisation de Langlands globale. J.
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