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COHERENT SPRINGER THEORY AND THE CATEGORICAL
DELIGNE-LANGLANDS CORRESPONDENCE

DAVID BEN-ZVI, HARRISON CHEN, DAVID HELM, AND DAVID NADLER

ABSTRACT. Kazhdan and Lusztig identified the affine Hecke algebra H with an equivariant K-
group of the Steinberg variety, and applied this to prove the Deligne-Langlands conjecture,
i.e., the local Langlands parametrization of irreducible representations of reductive groups
over nonarchimedean local fields F' with an Iwahori-fixed vector. We apply techniques from
derived algebraic geometry to pass from K-theory to Hochschild homology and thereby iden-
tify ‘H with the endomorphisms of a coherent sheaf on the stack of unipotent Langlands
parameters, the coherent Springer sheaf. As a result the derived category of H-modules is
realized as a full subcategory of coherent sheaves on this stack, confirming expectations from
strong forms of the local Langlands correspondence (including recent conjectures of Fargues-
Scholze, Hellmann and Zhu). We explain how this refines the more familiar description of
representations, one central character at a time, in terms of categories of perverse sheaves (as
previously observed in local Langlands over R).

In the case of the general linear group our result allows us to lift the local Langlands
classification of irreducible representations to a categorical statement: we construct a full
embedding of the derived category of smooth representations of GLy, (F') into coherent sheaves
on the stack of Langlands parameters.
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1. INTRODUCTION

Our goals in this paper are to provide a spectral description of the category of representations
of the affine Hecke algebra and deduce applications to the local Langlands correspondence. We
begin with a quick review of Springer theory and then discuss our main results starting in
Section

We will work in the setting of derived algebraic geometry over a field k of characteristic zero,
as presented in [GR17]. In particular all operations, sheaves, categories etc will be derived unless
otherwise noted.

1.1. Springer theory and Hecke algebras. We first review some key points of Springer
theory, largely following the perspective of [CG97, [GB98]. Let G denote a complex reductive
group with Lie algebra g and Borel B ¢ G. We denote by B ~ G/B the flag variety, N the
nilpotent cone, p : N = T*B — N the Springer resolution, and Z = N XNJ\Nf the Steinberg
variety.

The Springer correspondence provides a geometric realization of representations of the Weyl
group W of G. The Weyl group is in bijection with the Bruhat double cosets B\G/B =
G\(B x B), and hence with the conormals to the Schubert varieties, which form the irreducible
components of the Steinberg variety Z. In fact the group algebra of the Weyl group can be
identified with the top Borel-Moore homology of Z under the convolution product

Cw ~ H7M(Z;0),

where d = dim(N) = dim(N) = dim(Z). This realization of W can be converted into a
sheaf-theoretic statement. The Springer sheaf

S = 1+ Celd] € Perv(N/G)
is the equivariant perverse sheaf on the nilpotent cone given by the pushforward of the (shifted)
constant sheaf on the Springer resolution. Thanks to the definition of Z as the self-fiber-product
Z =N xn N, a simple base-change calculation provides an isomorphism

H7M(Z;C) ~ Endya(S)

between the endomorphisms of S and the top homology of Z, i.e., the group algebra CW.
Since the abelian category Perv(N/G) is semisimple, all objects are projective and we may
interpret this isomorphism as a full embedding of the abelian category of representations of W
into equivariant perverse sheaves on the nilpotent cone,
Rep(W) = CW-mod ~ (S) < Perv(N/G).

One important role for this embedding is provided by the representation theory of Chevalley

groups. The universal unipotent principal series representatiorﬂ
CG(Fy) OC[B(Fy)]

has as endomorphism algebra the finite Hecke algebra

H! = C[B(F)\G(F,)/B(Fq)] = End(r,) (C[G(Fy)/B(F,)]),

INote that the finite Hecke algebra and hence the unipotent principal series is insensitive to Langlands duality.
From our perspective it is in fact more natural to consider here representations of the Langlands dual Chevalley
group GV (Fq).
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which (after choosing a square root of ¢) may be identified with CW. Thus Springer theory
provides a full embedding

{unipotent principal series of G(F,)} ~ H/-mod — (S) < Perv(N/G)

where we say a representation of G(F,) is in the unipotent principal series if it is generated by
its B(Fy)-invariants.

1.2. Affine Hecke algebras. We now let G be a reductive group, Langlands dual to a split
group GV (F') over a nonarchimedean local field F' with ring of integers O and residue field Fy.

We write G = G x G,,, as shorthand.

Definition 1.1. Let G be a reductive group with maximal torus 7. The (extended) affine
Weyl group of the dual group GV is the semidirect product W, = W x X,(TV) =W x X*(T)
of the finite Weyl group with the cocharacter lattice of TV. The affine Hecke algebra H is a
certain g-deformation of the group ring CW,, such that specializing ¢ at a prime power gives the
Iwahori-Hecke algebra:

Hq = CC[I\GV(F)/IJ = EndRep(GV(F))((CC[GV(F)/I])

where I ¢ GV (F) is an Iwahori subgroup. Explicit presentations of the affine Hecke algebra can
be found, for example, in Section 7.1 of [CGI7]. Unlike the finite Hecke algebra, H, # CW,.

Our starting point is the celebrated theorem of Kazhdan-Lusztig [KL87] (as later extended
and modified by Ginzburg (see [CG97] and Lusztig [Lu98|), providing a geometric realization of
the affine Hecke algebra in terms of the Steinberg variety.

Theorem 1.2. [KL87, [CG97| [Lu98] Suppose that G has simply connected derived subgroup.
There is an isomorphism of algebras H ~ Ko(Z/G), compatible with the Bernstein isomorphism
Z(H) ~ C[G]¢ ~ K§ (pt) ®z C between the center of H and the ring of equivariant parameters.

Kazhdan and Lusztig famously applied Theorem to prove the Deligne-Langlands conjec-
ture, as refined by Lusztig. The category of representations of H, is identified with the “Iwahori
block”, the (smooth) representations of G¥ (F') that are generated by their I-invariants (i.e.,
“appear in the decomposition of C.[G" (F')/I]”). Equivalently this is the unramified principal
series, the representations of G (F') appearing in the parabolic induction of unramified char-
acters of a split torus (i.e., “appear in the decomposition of C[GY (F)/NY (F)T(0)]”). The
Deligne-Langlands conjecture provides a classification of irreducible representations in the Iwa-
hori block (i.e. with an Iwahori fixed vector), or equivalently irreducible 7, modules, in terms
of Langlands parameters:

Theorem 1.3. [KL87, Re02] The irreducible representations of Hq are in bijection with G-
conjugacy classes of q-commuting pairs of semisimple and nilpotent elements in G

{se G*,neN :gng~' =qn}/G,

together with a G-equivariant local system on the orbit of (s,n) which appears in the decompo-
sition of a corresponding Springer sheaf.

For fixed (s, q) the variety N9 of (s, q)-fixed points on the nilpotent cone can be interpreted
as a variety of Langlands parameters, representations of the Weil-Deligne group of F' into G
with fixed image of Frobenius. Representations with a fixed Langlands parameter (s,n) form
an L-packet, and are described in terms of irreducible representations of the component group
of the stabilizer. These representations can then be interpreted as equivariant local systems
on the orbit of the Langlands parameter. Indeed general conjectures going back to work of
Lusztig [Lu83], Zelevinsky [Ze81] and Vogan [Vo93] describe the representation theory of GV (F')
at a fixed central character with the geometry of equivariant perverse sheaves on suitable spaces
of Langlands parameters, generalizing the appearance of N'(5:9) above.

However, unlike the classical Springer theory story for ’H{; ~ CW, the realization of H
by equivariant K-theory in Theorem does not immediately lead to a realization of H as
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endomorphisms of a sheaf, and therefore to a sheaf-theoretic description of the entire category
of H-modules. Rather, in applications equivariant K-theory is used as an intermediate step
on the way to equivariant Borel-Moore homology, which leads back to variants of the Springer
correspondence. Namely, by fixing a central character for H, i.e. a Weyl group orbit of (s,q) €
T x G, the central completions of equivariant K-theory are identified by Lusztig [Lu88| [Lug9]
with graded Hecke algebras, which have a geometric description where we replace the nilpotent
cone N, Springer resolution N and Steinberg variety Z by their (s, ¢)-fixed points. For example,
the Chern character identifies the completion of H at the trivial central character with the
G = G x Gn-equivariant homology of the Steinberg variety Z. This algebra is identified via
Theorem 8.11 of [Lu95a] with the full Ext-algebra of the Springer sheaf in the equivariant derived
category

HI" ~ HEM(Z2/)G;C) = RF(Z/CN%wZ/@) ~ Ext}, 5(S).

Moreover, by a theorem of Rider [Ril3] this Ext algebra is formal, hence we obtain a full
embedding

(1.1) H9"-mod ~ (S) c Sh(N/G)

of representations of HY" into the equivariant derived category of the nilpotent cone. More
generally, for (s,q) € T x G, we have an identification
HL gy = HIM(ZOD /G0, C) > Bxt,p e (87

of the corresponding graded Hecke algebra in terms of an (s, g)-variant of the Springer sheaf.
This provides a geometric approach to constructing and studying modulesﬂ of H, see [CGIT].

These developments give satisfying descriptions of the representation theory of H at a fixed
central character. However there are numerous motivations to seek a description of families of
representations of varying central character, including classical harmonic analysis (for example in
the setting of spherical varieties [SV17]), K-theory and the Baum-Connes conjecture [ABPS17],
and modular and integral representation theory [EH14, [H20, [HM18].

1.3. Coherent Springer Theory. In this paper we apply ideas from derived algebraic geome-
try to deduce from Theorem a different, and in some sense simpler, geometric realization of
the affine Hecke algebra, in which we first replace K-theory by Hochschild or cyclic homology,
and then derive a description of its entire category of representations as a category of coherent
sheaves (without the need for specifying central characters). For technical reasons, we will need
to replace the nilpotent cone N with its formal completion N < g, and likewise the Steinberg
variety Z = N x QK/ will be defined via a derived fiber product. For precise definitions of objects
in this context, see Section [1.7.3

Theorem 1.4 (Theorem Corollary [2.38)). Let k be an algebraically closed field of charac-
teristic 0, and G a reductive algebraic group over k.

(1) The trace map from connective K-theory to Hochschild homology on Coh(Z/va') factors
through an isomorphism of Ko and HH, (which is concentrated in cohomological degree
zero):

K(Coh(Z/G)) ®z k —— HH.(Coh(Z/G))

| .

Ko(Coh(Z/G)) @z k —= HHy(Coh(Z/G)).

2Further if one had an (s, q)-version of Rider’s formality theorem, one could deduce a full embedding of
the corresponding module categories into equivariant derived categories of constructible sheaves on A (5:9). See
Theorem 3.1 of [Katl5| for an accounting.
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(2) The Steinberg stack satisfies Hochschild-to-cyclic degeneration: fixing an isomorphism
H*(BSY) ~ k[[u]], there is an isomorphism

H[[u]] ~ HN(Coh(Z/G))
between the affine Hecke algebra and the negative cyclic homology of the Steinberg stack.

Remark 1.5. Our results also allow for an identification of monodromic variants of the affine
Hecke category. See Remark [2:34] for details.

The Hochschild homology of categories of coherent sheaves admits a description in the derived
algebraic geometry of loop spaces. In particular, we deduce an isomorphism of the affine Hecke
algebra with volume forms on the derived loop space to the Steinberg stack,

H~ RF(E(Z/G),wL(Z/é)).
More significantly, the geometry of derived loop spaces provides a natural home for the entire

category of H-modules, without fixing central characters.

Definition 1.6. Let N' < g be the formal completion of the nilpotent cone, N the usual
(reduced) Springer resolution and p: N'— N < N the composition of the Springer resolution
with the inclusion. The coherent Springer sheaf Sg € Coh(L(N/G)) (or simply S) is the
pushforward of the structure sheaf under the loop map Lu : L(N/G) — LIN/G):

SG = Eu*Oﬁ(m@) € COh(E(N/G))

Equivalently, S¢ is given by applying the parabolic induction correspondence

L£({0}/T) ~—— L(F/B) = £LN/G) —= LW/G)
to the (reduced) structure sheaf of L({0}/T).

A priori the coherent Springer sheaf is only a complex of sheaves. However we show, using the
theory of traces for monoidal categories in higher algebra, that its Ext algebra is concentrated in
degree zero, and is identified with the affine Hecke algebra. This provides the following “coherent
Springer correspondence”, realizing the representations of the affine Hecke algebra as coherent
sheaves.

Theorem 1.7 (Theorem [4.12)). Let G be a reductive algebraic group over an algebraically closed
field of characteristic 0.

(1) There is an isomorphism of algebras Heg ~ EndL(N/@) (S¢) and all other Ext groups of

Sa vanish.
(2) There is a full, compact-object preserving embedding

D(Hg) ~ (Sc) = QCHLIN/G)).

(8) The embedding takes the anti-spherical module to the projection of the dualizing sheaf
to the Springer subcategory

D(H¢) Inde (sgn) — prg, (wﬁ(ﬁ/é)) € QC'(E(J\A/'/C:’))

(4) The embedding is compatible with parabolic induction of affine Hecke algebras, i.e. if P
s a parabolic subgroup of G with Levi quotient M, then there is a commuting diagram

D(Hy) —— QCHL(N/M))
He®w y, *i lﬁH*OEU*
D(He) — QC'(L(NG/G)),

where Ly o LU* is the pull-push along the correspondence obtained by applying L to the
usual parabolic induction correspondence

LN /M) 2 £(Np/P) —£2 £(Ng/G).
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In particular, Ly Lv*Sy ~ Sg.
(5) Fizing an isomorphism H*(BS') ~ k[[u]], there is a full embedding of the derived
category of perfect modules for the trivial u-deformation H[[u]] into the u-deformation

Coh(L(N/G))S".

One consequence of the theorem is an interpretation of the coherent Springer sheaf as a
universal family of H-modules.

We also conjecture (Conjecture — and check for SLs — that S is actually a coherent
sheaf (i.e., lives in the heart of the standard t-structure on coherent sheaves). The vanishing of
all nonzero Ext groups of S suggests the existence of a natural “exotic” t-structure for which S
is a compact projective object in the heart. For such a t-structure we would then automatically
obtain a full embedding of the abelian category H-mod into “exotic” coherent sheaves, where
one could expect a geometric description of simple objects. See Section for a discussion.

We will explain in Section how equivariant localization and Koszul duality patterns in
derived algebraic geometry (as developed in [BN13| [Ch20al, [Ch21]) provides the precise com-
patibility between this coherent Springer theory and the usual perverse Springer theory, one
parameter at a time.

1.4. Applications to the local Langlands correspondence. We will consider a derived
stack Ly & of unipotent Langlands parameters, which parametrizes the unipotent Weil-Deligne
representations for a local field F' with residue field F,, and whose set of k-points is a variant
of the set of Deligne-Langlands parameters in Theorem (with semisimplicity of s dropped).
Note that the following notions make sense for any g € C, with applications to local Langlands
when ¢ is a prime power, and that, in line with expectations, the stack of unipotent Langlands
parameters depends only on order of the residue field of F.

Definition 1.8. Let ¢ = p” be a prime power.
(1) The stack of unipotent Langlands parameters Lg o = (N/G)? (or simply Ly) is the

derived fixed point stack of multiplication by ¢ € G,,, on N /G. Equivalently, it is the
fiber of the loop (or derived inertia) stack of the nilpotent cone over g € G,,,

Lic LWN/G)

| |

{q} — ﬁ(pt /Gm) = Gm/Gm-

Thus informally
we~{geGneN:gng =qn}/G.

By Proposition this a priori derived stack has no derived nor infinitesimal structure,
ie. (N/G)1 = (g/G)? and we may equivalently define LY o using the classical fiber
product of the reduced nilpotent cone N

(2) The g-coherent Springer sheaf Sy ¢ € Coh(Ly) (or simply S;) is the *-specialization of
S to the fiber Ly over ¢. Equivalently, S, ¢ is given by applying the parabolic induction
correspondence

Lgr Los Ly
to the structure sheaf of Ly . ~ T' x BT
Specializing Theorem [I.7]to ¢ € G,,, we obtain the following. Note that we implicitly identify,

in this case where ¢ € R, the category of perfect complexes for H, with the category of
complexes with coherent cohomology via Theorem 2.2 of [OS09].

Theorem 1.9 (Theorem |4.12). Suppose that ¢ = p" is a prime power, and let G be a reductive
algebraic group an algebraically closed field of characteristic 0.
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(1) There an isomorphism of algebras Hy ¢ ~ Endy, ,(Sq,c) and a full embedding
Dy g (Hye) ~{(Sq,c) < Coh( 2‘,G)~
In particular, this gives a full embedding of the principal block of G (F') into coherent
sheaves on the stack of unipotent Langlands parameters.
(2) The embedding takes the anti-spherical module to the structure sheaf Opy , € Coh(ILj ).
(8) The embedding is compatible with parabolic induction, i.e. if P¥ < GV is a parabolic
with quotient Levi MY, then we have a commutative diagram

{unramified principal series of M (F)} ~ Dy g (Hq,m) — Coh(Ly 5/)

i}%‘il l(u‘w*o(u‘w*

{unramified principal series of G¥(F)} ~ Dy 4 (Hq,c) — Coh(Lg ),

where iG., Rep}’y (MY (F)) — Rep}’, (GY(F)) is the parabolic induction functor from
smooth ﬁnitely—genemteﬂ reprentations of MY (F) to GY (F') restricted to the unrami-
fied principal series, and the map (u9)4 o (v?)* is the pull-push along the correspondence
obtained by applying taking derived g-invariants of the usual parabolic induction corre-
spondence

u? v

u u u
Lq,M I[‘q,P quG‘
In particular, (p?)s(v9)*Sq.m = Sq.6-

Note that due to Proposition in the g-specialized setting of the above theorem the stack
of parameters has no infinitesimal structure, i.c. (g/G)? = (N/G)4. This has two consequences:
first, due to Proposition which does not apply in the context of Theorem we may
identify the anti-shperical sheaf at specialized ¢ with the structure sheaf, which is equivalent to
the dualizing sheaf. Second, the anti-spherical sheaf at specialized ¢ is a compact object in the
category, i.e. a coherent sheaf, whereas the sheaf appearing in Theorem is not.

The existence of such an equivalence was conjectured independently by Hellmann in [He20],
whose work we learned of at a late stage in the preparation of his paper. Indeed, the above result
resolves Conjecture 3.2 of [He2(]. Hellmann’s work also gives an alternative characterization
of the (g-specialized) coherent Springer sheaf as the Iwahori invariants of a certain family of
admissible representations on Ly , constructed by Emerton and the third author in [EH14].

A much more general categorical form of the local Langlands correspondence is formulated
by Fargues-Scholze [FS21] and Zhu [Zh20], as well as compatibility with a categorical global
Langlands correspondence. In loc. cit. a forthcoming proof by Hemo and Zhu [HZ] of a result
closely parallel to ours is also announced.

Remark 1.10. The local Langlands correspondence depends on a choice of Whittaker normal-
ization; that is, a choice of a pair (U, ), where U is the unipotent radical of a Borel subgroup
of G¥ and 1 is a generic character of U(F), up to GV (F')-conjugacy, and indeed, the conjecture
in [He20] and the announced result in [HZ] depend on such a choice. In the formulation of
Theorem [T.9 no such choice appears explicitly, but instead comes from the integral structure on
GV, which in particular gives us a distinguished hyperspecial subgroup GV (O) of G (F).
Indeed, for any unramified group GV over F' there is a natural bijection between G (F')-
conjugacy classes of Whittaker data (U, ) for G¥ and GY(F)-conjugacy classes of triples
(K, Uy, %), where K, is a hyperspecial subgroup of G¥ (F), U, is the unipotent radical of
a Borel subgroup of the reductive quotient G of K,, and ¢, is a generic character of U,,. This
bijection has the property that if (U, ) corresponds to (K, U,, %, ), then the summand of the
compact induction cIndg(v ;)“ 1 corresponding to the unipotent principal series block is isomor-
phic to cIndIG(: () St,, where St, denotes the inflation to K, of the Steinberg representation of

the reductive quotient G;/. In particular the “unipotent principal series part” of cIndg(v ng) P

3Le. the corresponding modules for Hecke algebras are finitely generated.
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depends only on the conjugacy class of hyperspecial subgroup associated to (U, 1), and not the
whole tuple (K, Uy, %, ). This means that the restriction of the local Langlands correspondence
to the unramified principal series depends only on a choice of hyperspecial subgroup (which we
have fixed).

Note in particular that for any choice of Whittaker datum (U, ) compatible with our hy-

perspecial subgroup G (O), the H, ¢-module associated to the compact induction cIndS(v }gf) 0

is precisely the antispherical module, so property (2) of Theorem is consistent with (and
indeed, equivalent to) the Whittaker normalization appearing in [He20].

In the case of the general linear group and its Levi subgroups, one can go much further.
Namely, in Section [6] we combine the local Langlands classification of irreducible representations
due to Harris-Taylor and Henniart with the Bushnell-Kutzko theory of types and the ensuing
inductive reduction of all representations to the principal block. The result is a spectral descrip-
tion of the entire category of smooth GL,,(F') representations. To do so it is imperative to first
have a suitable stack of Langlands parameters. These have been studied extensively in mixed
characteristic, for instance in [H20] in the case of GL,,, or more recently in [BG19, [BP19], and
[DHKM20] for more general groups. Since in our present context we work over C, the results
we need are in general simpler than the results of the above papers, and have not appeared
explicitly in the literature in the form we need.

Theorem 1.11 ([H20]). Let F' be a local field with residue field F,. There is a classical Artin
stack locally of finite type Lp g1, , with the following properties:

(1) The k-points of Lp gL, are identified with the groupoid of continuous n-dimensional
representations of the Weil-Deligne group of F'.

(2) The formal deformation spaces of Weil-Deligne representations are identified with the
formal completions of Lrcr,, -

(8) The stack Ly g1, of unipotent Langlands parameters is a connected component of Lp gy, -

We then deduce a categorical local Langlands correspondence for GL,, and its Levi subgroups
as follows:

Theorem 1.12 (Theorems [6.13} [6.15] and [6.17)). For each Levi subgroup M of GL,(F), there
is a full embedding

D(M) — QC! (L)
of the derived category of smooth M -representations into ind-coherent sheaves on the stack of
Langlands parameters, uniquely characterized by the following properties.

(1) If ™ is an irreducible cuspidal representation of M, then the image of m under this
embedding is the skyscraper sheaf supported at the Langlands parameter associated to 7.

(2) Let M’ be a Levi subgroup of G, and let P be a parabolic subgroup of M' with Levi
subgroup M. There is a commutative diagram of functors:

D(M) —— QC'(LLyr.)
D(M') —— QC'(Lpa)

in which i%/ is the parabolic induction functor and the right-hand map is obtained by
applying the correspondence

H—‘F,M <L LF,P s LF,M“

Note that the local Langlands correspondence for cuspidal representations of GL,, and its
Levis, is an input to the above result. We do not expect the functor to be an equivalence, see

Remark [4.13
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As with Theorem our results here were independently conjectured by Hellmann (see in
particular Conjecture 3.2 of [He2(]) for more general groups G; these results also fit the general

categorical form of the local Langlands correspondence formulated by Fargues-Scholze [FS21]
and Zhu [Zh20].

1.4.1. Discussion: Categorical Langlands Correspondence. Theorems and match the
expectation in the Langlands program that has emerged in the last couple of years for a strong
form of the local Langlands correspondence, in which categories of representations of groups over
local fields are identified with categories of coherent sheaves on stacks of Langlands parameters.
Such a coherent formulation of the real local Langlands correspondence was discovered in [BN13],
while the current paper finds a closely analogous picture in the Deligne-Langlands setting. As
this paper was being completed Xinwen Zhu shared the excellent overview [Zh20] on this topic
and Laurent Fargues and Peter Scholze completed the manuscript [FS21], to which we refer the
reader for more details. We only briefly mention three deep recent developments in this general
spirit.

The first derives from the work of V. Lafforgue on the global Langlands correspondence over
function fields [Lal8al [Lal8b]. Lafforgues’ construction in Drinfeld’s interpretation (cf. [LaZ19]
Section 6], [Lal8b, Remark 8.5] and [Gal6]) predicts the existence of a universal quasicoherent
sheaf 2Ax on the stack of representations of 71 (X) into G corresponding to the cohomology of
moduli spaces of shtukas. The theorem of Genestier-Lafforgue [GL18] implies that the category
of smooth GV (F') representations sheafifies over a stack of local Langlands parameters, and
the local version 2 of the Drinfeld-Lafforgue sheaf is expected [Zh20] to be a universal G (F')-
module over the stack of local Langlands parameters. In other words, the fibers 2, are built
out of the G (F)-representations in the L-packet labelled by o. The expectation is that the
coherent Springer sheaf, which by our results is naturally enriched in H,-modules, is identified
with the Iwahori invariants of the local Lafforgue sheaf S; ~ /.

The second is the theory of categorical traces of Frobenius as developed in [Gal6l [Zh18]
GKRV20]. When applied to a suitably formulated local geometric Langlands correspondence, we
obtain an expected equivalence between an automorphic and spectral category. The automorphic
category is Sh(GY (F)/¥ GV (F)), the category of Frobenius-twisted adjoint equivariant sheaves
on GV (F), with orbits given by the Kottwitz set B(G") of isomorphism classes of G -isocrystals.
The spectral category is expected to be a variant of a category QC! (Lp ) of ind-coherent sheaves
over the stack L ¢ of Langlands parameters into G. The former category contains the categories
of representations of G¥ (F') and its inner forms as full subcategories, hence we expect a spectral
realization in the spirit of Theorems [1.9] and

The last of these developments is the program of Fargues-Scholze [Fal6], [ES21] in the context
of p-adic groups, which interprets the local Langlands correspondence as a geometric Langlands
correspondence. On the automorphic side one considers sheaves on the stack Bungv of bundles
on the Fargues-Fontaine curve, whose isomorphism classes |Bungv | = B(GY) are given as
before by the Kottwitz set of G -isocrystals. This category of sheaves admits a semiorthogonal
decomposition indexed by B(G"), in which the factor corresponding to b € B(G") is naturally
equivalent to the category of smooth representations of the inner form Gy (F) arising from b.
On the spectral side of the picture is the same category of ind-coherent sheaves on the moduli
stack of Langlands parameter that we study. Fargues-Scholze construct a spectral action of the
category of perfect complexes on this moduli stack on the category of ¢-adic sheaves on Bungv
and conjecture that there is an equivalence of this category with the category of ind-coherent
sheaves on the moduli stack of Langlands parameters compatible with this spectral action. Such
an equivalence necessarily has the properties given in Theorem [I.12] although we do not attempt
to verify that our construction is compatible with that of Fargues-Scholze.

1.5. Compatibility of coherent and perverse Springer theory. In this section we explain
how equivariant localization and Koszul duality patterns in derived algebraic geometry (as
developed in [BN13| [Ch20al [Ch21]) provide the precise compatibility between this coherent
version of the local Langlands correspondence and the more familiar model [Ze81], [Lu83, [Vo93]
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for local Langlands categories with fixed central character via categories of perverse sheaves.
This pattern was developed in the context of the real local Langlands correspondence: the
work of Adams, Barbasch and Vogan [ABV92l V093] and Soergel’s conjecture [So01] describe
representations of real groups with fixed infinitesimal character by equivariant perverse sheaves
on spaces of Langlands parameters, while [BN13|] gives a conjectural description of the full
categories of representations in terms of coherent sheaves. Likewise, the solution to the Deligne-
Langlands conjecture in [KL87] realizes the irreducible representations of affine Hecke algebras,
one central parameter (s,q) at a time, in terms of simple equivariant perverse sheaves (or
equivalently D-modules) on a collection of spaces N (59, On the other hand, Theorem [1.7]
provides a uniform description of all representations of H in terms of coherent sheaves on single
parameter space.

The underlying mechanism in passing between the coherent sheaves on our algebro-geometric
parameter space LY and perverse sheaves or D-modules on variants of the nilpotent cone N, és’q)
is the interpretation of D-modules in the derived algebraic geometry of loop spaces [BN12|
BN13, [TV11l [TV15, Pri5l [Ch20a], a unification of Connes’ description of de Rham cohomology
as periodic cyclic homology and of the Koszul duality between D-modules and modules for the
de Rham complex [BeDr91l [Ka91]. Recall that the loop space, or derived inertia, of a stack X
is defined by the mapping space from the circle, or equivalently the (derived) self-intersection
of the diagonal

LX =Map(S', X) = X xxxx X = AnA.

For X = Spec(R) affine, the loop space is the spectrum of the (derived) algebra of Hochschild
chains HH,(R) = R ®ggr R. More generally for any scheme X, we have the (Hochschild-
Kostant-Rosenberg) identification

LX ~ Tx[—1] = Specy Sym}(Qk [1])

of the loop space with the relative spectrum of (derived) differential forms. Under this identifi-
cation the loop rotation action of S' on £X (Connes’ B-differential on the level of Hochschild
homology) becomes encoded by the de Rham differential.

Theorem 1.13 (Koszul duality [BN12, [TVIIl [Pr15]). For X an algebraic space almost of finite
type over k a field of characteristic zero, there is a natural equivalence of k((u))-linear categories

Coh(£X)5" @[] moa k() -mod ~ Dy -perf ® moa k((u)) -mod
where u € H*(BS'; k) is the degree 2 Chern class.

When X is a stack, we only have an equivalence between D-modules and S'-equivariant
sheaves on the formal loop space LX , i.e. the formal completion of the loop space £X at
constant loops. The loop space of a smooth global quotient stack £(X/G) lies over a parameter
space L(BG) = G/G, and the equivariant localization patterns in [Ch20a] realize the formal
completion (resp. specialization) of £(X/G) over a semisimple parameter z € G/G as the formal
loop space of the G#-equivariant classical z-fixed points E(X ?/G*) (resp. the non-equivariant
loop space £(X*?)). In particular, in the setting of Deligne-Langlands, specializing at a parameter
z recovers the loop space of the fixed point schemes L'(./\A/ 1), and we can pass to D-modules on
the correpsonding analytic space via Koszul duality.

In order to formulate the equivalence at completed parameters, we need to renormalize the
category of coherent sheaves to include objects such as the structure sheaf or sheaf of distribu-
tions on formal completions. This form of Koszul duality is developed by one of the authors
in [Ch21] (see Sectionfor the details). We call objects in this category Koszul-perfect sheaves
KPerf ('ﬁ‘ x[—1]) on the formal odd tangent bundle, and they have the following favorable proper-
ties: (1) they are preserved by smooth pullback and proper pushforward in X, (2) for a smooth
Artin stack X, Koszul-perfect objects are those which pull back to Koszul-perfect objects along
a smooth atlas and (3) for smooth schemes X they are just the coherent complexes. These
properties mirror the properties enjoyed by the subcategory of coherent D-modules on QCA
stacks (which do not coincide with compact objects in general, see [DG13]).
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Theorem 1.14 (Theorem [5.23) [Ch21]). Let X/G be a global quotient stack and let FD(X/G)
denote the category of filtered renormalized (i.e. ind-coherent) D-modules on the global quotient
stack X /G. There is an equivalence of categories

KPerf(Z(X/G))PC*Cm ~ FD(X/G).

Applying this theorem requires choosing, at each parameter, a graded lift of the z-completed
(or specialized) coherent Springer sheaf. There is a natural geometric or Hodge graded lift, and
using this lift, we establish in Corollary that the coherent Springer sheaf is Koszul dual at
each parameter to the corresponding perverse Springer sheaves:

Corollary 1.15. Fiz a semisimple parameter (s,q) € G, and let d(s,q) = dim(N(*9). Then
the (s, q)-specialization of the coherent Springer sheaf S is Koszul dual to the (s, q)-Springer
sheaf piCrri.qld(s,q)], i.e. the pushforward of the (shifted) constant sheaf along (s, q)-fized
points of the Springer resolution.

More precisely, the (s, g)-specialization S(s, q) of S has a Hodge graded lift, which is Koszul
dual to the (s, ¢)-Springer sheaf S(s, ¢) equipped with its Hodge filtration. Likewise, the Hodge
graded lift of the (s, ¢)-completion S(5,q) is naturally isomorphic to the é(s’q)—equivariant (s,q)-
Springer sheaf S(s,¢) equipped with the Hodge filtration.

1.6. Methods. We now discuss the techniques underlying the proofs of Theorems and
— namely, Bezrukavnikov’s Langlands duality for the affine Hecke category and the theory of
traces of monoidal dg categories.

1.6.1. Bezrukavnikov’s theorem. The Kazhdan-Lusztig theorem (Theorem has been fa-
mously categorified in the work of Bezrukavnikov [Bez06, [Bez16], with numerous applications
in representation theory and the local geometric Langlands correspondence.

Theorem 1.16. [Bezl6] Let F = F,((t)). Let I = G(F) be an Iwahori subgroup, and define
the Steinberg stack Z/G over Q,. There is an equivalence of monoidal dg categories

D(\G" (F)/I;Q,) ~ Coh(Z/G)

intertwining the automorphisms pullback by geometric Frobenius and pullback by multiplication
by q.

Remark 1.17. In view of Theorem we define the affine Hecke category to be H :=
Coh(Z/@G). It is natural to expect a mixed version, identifying the mized affine Hecke cate-
gory H™ := Coh(Z/ (Nl) with the mixed Iwahori-equivariant sheaves on the affine flag variety
(as studied in [BY13]). Indeed such a version is needed to directly imply the Kazhdan-Lusztig
Theorem by passing to Grothendieck groups, rather than its specialization at ¢ = 1.

Theorem [1.16] establishes the “principal block” part of the local geometric Langlands corre-
spondence. Namely, it implies a spectral description of module categories for the affine Hecke
category (the geometric counterpart of unramified principal series representations) as suitable
sheaves of categories on stacks of Langlands parameters.

We apply Theorem [I.16] in Section [2] to construct a semiorthogonal decomposition of the
affine Hecke category. This allows us to calculate its Hochschild and cyclic homology and to
establish the comparison with algebraic K-theory.
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1.6.2. Trace Decategorifications. To prove Theorem we use the relation between the “hori-
zontal” and “vertical” trace decategorifications of a monoidal category, and the calculation of
the subtler horizontal trace of the affine Hecke category in [BNP17h].

Let (C, *) denote a monoidal dg category. Then we can take the trace (or Hochschild homol-
ogy) tr(C) = HH(C) of the underlying (i.e. ignoring the monoidal structure) dg category C,
which forms an associative (or Ag-)algebra (tr(C), ) thanks to the functoriality (specifically the
symmetric monoidal structure) of Hochschild homology, as developed in [TV15] [HSST7, [CP19]
GKRV2(]. This is the naive or “vertical” trace of C. On the other hand, a monoidal dg category
has another trace or Hochschild homology Tr(C, %) using the monoidal structure which is itself
a dg category — the categorical or “horizontal” trace of (C, ). This is the dg category which is
the universal receptacle of a trace functor out of the monoidal category C. In particular, the
trace of the monoidal unit of C defines an object [1c] € Tr(C, *) — i.e., Tr(C, %) is a pointed
(or EO—)categoryﬁ Moreover, as developed in [CP19, [GKRV20] the categorical trace provides a
“delooping” of the naive trace: we have an isomorphism of associative algebras

(tr(C), *) ~ EndTr(C’*)([lc]).
In particular taking Hom from [1¢] defines a functor
Hom([1c],—) : Tr(C,*) — (HH(C), *)-mod.

Under suitable compactness assumptions the left adjoint to this functor embeds the “naive”
decategorification (the right hand side) as a full subcategory of the “smart” decategorification
(the left hand side).

More generally, given a monoidal endofunctor F of (C, ), we can replace Hochschild homology
(trace of the identity) by trace of the functor F', obtaining two decategorifications (vertical and
horizontal) with a similar relation

(1.2) Hom([1c],—) : Tr((C, %), F) — (tr(C, F'), *)-mod.

Remark 1.18 (Trace of Frobenius). When C is a category of f-adic sheaves on a stack over F, and
Fr is the Frobenius morphism, Gaitsgory has explained [Gal6] that one expects a formalism of
categorical traces to hold realizing the function-sheaf correspondence —i.e. tr(Sh(X), Fr*) should
be the space of functions on X (F,). Likewise the monoidal version of trace decategorification
would then allow us to pass from Hecke categories to categories of representations directly.
Zhu [Zh18] explains some of the rich consequences of this formalism that can already be proved
directly.

Example 1.19 (Finite Hecke Categories and unipotent representations). For the finite Hecke
category C = Sh(B\G/B), the main theorem of [BN15] identifies Tr(C, ) with the full category
of Lusztig unipotent character sheaves on G. The object [1¢] is the Springer sheaf itself, and
modules for the naive decategorification (tr((C), %), idc) gives the Springer block, or unipotent
principal series character sheaves, as modules for the graded Hecke algebra. Likewise the trace
of Frobenius on (C, *) is studied in [Zh18] Section 3.2] (see also [Gal6, Section 3.2]) — here the
categorical trace is the category of all unipotent representations of G(IF,), not only those in the
principal series.

1.6.3. Trace of the affine Hecke category. We now consider the two kinds of trace decategori-
fication for the affine Hecke category H. First our description of the Hochschild homology of
the Steinberg stack provides a precise sense in which the affine Hecke category categorifies the
affine Hecke algebra. The following Corollary is a result of Theorems and

Corollary 1.20. The (vertical/naive) trace of Frobenius on the affine Hecke category is identi-
fied with the affine Hecke algebra H ~ tr(H,Fr*). Hence the naive decategorification of H-mod
is the category of unramified principal series representations of GV (F).

4The horizontal trace is also the natural receptacle for characters of C-module categories, and [C] appears
as the character of the regular left C-module, see Definition
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Remark 1.21. Note that this corollary would follow directly from Theorem if we had avail-
able the hoped-for function-sheaf dictionary for traces of Frobenius on categories of £-adic sheaves
(Remark . After this paper was complete Xinwen Zhu informed us that Hemo and he have
a direct argument for this corollary, see the forthcoming [HZ]. Combined with Bezrukavnikov’s
theorem and Theorem [T.22] this gives an alternative argument for the identification of H, with
the Ext algebra of the coherent Springer sheaf.

The results of [BNP17b] (based on the technical results of [BNP17a]) provide an affine analog
of the results of [BN15| BFO12| for finite Hecke categories and (thanks to Theorem a
spectral description of the full decategorification of H. Statement (1) is directly taken from
Theorem 4.4.1 in [BNP17b], statements (2)-(3) follow immediately from the same techniques
and Theorem 3.8.5 of [GKRV2(] (see Theorems and and Lemma, and the absence
of a singular support condition is discussed in Remark

Theorem 1.22 ([BNP17h]). Let G be a reductive group over a field of characteristic 0.

(1) The (horizontal/categorical) trace of the monoidal category (Coh(Z/G), *) is identified
as

Tr(Coh(Z/G), *) = Coh(L(N/G)).
The same assertion holds with G replaced by G =G x G,y,.
(2) The trace of multiplication by q € G,, acting on the monoidal category (Coh(Z/QG), *) is
identified as
Tr((Coh(2/G), #).q*) = Coh(LY).
(3) The distinguished object [1c] in each of these trace decategorifications is given by the
coherent Springer sheaf S (or its g-specialized version S;). Hence the endomorphisms
of the coherent Springer sheaf recover the affine Hecke algebra (the vertical trace, as in

Theorem , and the natural functor in Theorem 18 identified with
Hom(S,, —) : Coh(Ly) — H,-mod.

In other words, we identify the entire category of coherent sheaves on the stack of unipotent
Langlands parameters as the categorical trace of the affine Hecke category. Inside we find the
unramified principal series as modules for the naive trace (the Springer block). Just as the
decategorification of the finite Hecke category (Example knows all unipotent representa-
tions of Chevalley groups, the horizontal trace Coh(}L};) of the affine Hecke category contains in
particular all unipotent representations of GY (F') — i.e., the complete L-packets of unramified
principal series representations — thanks to Lusztig’s remarkable Langlands duality for unipotent
representations:

Theorem 1.23 ([Lu95bl). The irreducible unipotent representations of G¥ (F') are in bijection
with G-conjugacy classes of triples (s,mn,x) with s,n qg-commuting as in Theorem and x an
arbitrary G-equivariant local system on the orbit of (s,n).

It would be extremely interesting to understand Theorem [1.23] using trace decategorifica-
tion of Bezrukavnikov’s Theorem In particular we expect the full category of unipotent
1
representations to be embedded in QCI(]L};) as well as its cyclic deformation QCI(LZ)S .

1.7. Assumptions and notation. We work throughout over a field k of characteristic zero.
We will sometimes work in the specific case of k = Q, (e.g. in Section, and our main results
require in addition that the field is algebraically closed. This requirement that k is algebraically
closed is also used in Section [5] in order to apply equivariant localization. All functors and
categories are dg derived unless noted otherwise. All (co)chain complexes are cohomologically
indexed, even if referred to as a chain complex. We abusively use H H to denote the Hochschild
chain complex rather than its homology groups, and use H*(HH) to denote the latter (and
similarly for its cyclic variants HC, HP).
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1.7.1. Categories. Let A be a Noetherian dg algebra. We let A-mod denote the dg derived
category of A-modules, A-perf denote the full subcategory of perfect complexes, and A-coh
denote the subcategory of coherent objects, i.e. cohomologically bounded complexes with co-
herent cohomology over my(A) = H(A). Let C denote a symmetric monoidal dg category, and
A € Alg(C) an algebra object. We denote by A-modc the category of A-module objects in C.
We denote the compact objects in a stable co-category C by C¢, i.e. the objects X € C for
which Homg (X, —) commutes with all infinite direct sums (i.e. at least the countable cardinal
w).

Let C be a stable k-linear oo-category (or a k-linear triangulated category or a pretriangulated
dg category). These come in two primary flavors, “big” and “small”: dgCat, is the co-category
of presentable stable k-linear oo-categories (with colimit-preserving functors), and dgcat,, is
the co-category of small idempotent-complete stable k-linear co-categories (with exact functors).
Both dgCat,, and dgcat; are symmetric monoidal co-categories under the Lurie tensor product,
with units Vecty = k-mod and Perf; = k-perf = k-coh the dg categories of chain complexes
of k-vector spaces and perfect chain complexes, respectively. We have a symmetric monoidal
ind-completion functor:

Ind : dgcat; — dgCat,.
It defines an equivalence between dgcat,, and the subcategory of dgCat,, defined by compactly
generated categories and compact functors (functors preserving compact objects, or equivalently,
possessing colimit preserving right adjoints).

Assume that C is either small or that it is compactly generated, and let X € C be an object,
which we require to be compact in the latter case. We denote by (X the subcategory (classicaly
or weakly) generated by X.

1.7.2. Algebraic geometry. We work in the setting of derived algebraic geometry over a field k
of characteristic zero, in the setting presented in [GR17]. Namely, this is a version of algebraic
geometry in which functors of (discrete) categories from rings to sets are replaced by prestacks,
functors of (co-)categories from connective commutative dg k-algebras to simplicial sets. Ex-
amples of prestacks are given by both classical schemes and stacks and topological spaces (or
rather the corresponding simplicial sets of singuar chains) such as S!, considered as constant
functors.

We will only be concerned with QCA (derived) stacks as in [DG13], i.e., quasi-compact
stacks of finite presentation with aﬂin(ﬂ finitely-presented diagonal (in fact only with quotients
of schemes by affine group-schemes), and use the term stack to refer to such an object. A stack X
carries a symmetric monoidal oo-category (i.e., a commutative algebra object in dgCat,,) QC(X)
of quasicoherent sheaves, defined by right Kan extension from the case of representable functors
X = Spec(R) which are assigned QC(Spec R) = R-mod. For all stacks we will encounter (and
more generally for perfect stacks in the sense of [BEN1(]), we have QC(X) ~ Ind(Perf(X)), i.e.,
quasicoherent sheaves are compactly generated and the compact objects are perfect complexes
(Perf(X) € dgCat,, forms a small symmetric monoidal dg category).

We can also consider the category QC'(X) = Ind(Coh(X)) € dgCat,, of ind-coherent sheaves,
whose theory is developed in detail in the book [GRI7] (see also the earlier [Gal3]). The category
QC'(X) (under our assumption that X is QCA) is compactly generated by Coh(X), the objects
which are coherent after smooth pullback to a scheme (see Theorem 3.3.5 of [DG13]). For
smooth X, the notions of coherent and perfect, hence ind-coherent and quasicoherent, sheaves
are equivalent.

A crucial formalism developed in detail in [GR17] is the functoriality of QC'. Namely for a
map p: X — Y of stacks, we have colimit-preserving functors of pushforward p, : QC!(X ) —
QC!(Y) and exceptional pullback p' : QC!(Y) — QC!(X), which form an adjoint pair (ps,p')
for p proper. These functors satisfy a strong form of base change, which makes QC! a functor

5The notion of a QCA stack in [DG13] is slightly more general; only automorphism groups at geometric points
are required to be affine, and they are not required to be of finite presentation.
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—in fact a symmetric monoidal functmﬂ — out of the category of correspondences of stacks (the
strongest form of this result is [GR17, Theorem I11.3.5.4.3, I11.3.6.3]).

See Definition 2.3.1 of [Ch20a] for a definition of the derived loop space L£(—). For a stack
X with a self-map f, we define X7 to be the derived fixed points of f, i.e. the derived fiber
product

XX

| |aan

X 25 X xX.

When f = idx, we have X/ = £X. Given a group action G on a scheme X, and f: X — X
commuting with the G-action, we have via Proposition 2.1.8 of [Ch20al:

(X/G) —— (X x G)/G

| [(semias)

X/G —2— (X x X)/G

where « is the action map.

When f is multiplication by g € G, we sometimes write X9 = L(X) ~ L(X/G) x (e {9}
as in Definition Depending on whether we view the group G as an input to the construction
or not, we adopt slightly different notation, e.g. the specialized loop space in Definition [5.1] is
denoted L (X /G), and we have L,(X) = Ly (X/G).

1.7.3. Representation theory. In Sections 1-4 of the paper, unless otherwise noted, G denotes
a reductive group over a field k£ of characteristic 0 with Borel B and torus 7" < B with uni-
versal Cartan H and (finite) universal Weyl group Wy. The extended affine Weyl group is
denoted W, := X*(T') x W;. We denote by Rep(G) = QC(BG) the derived category of rational
representations of G.

Morally, we view G as a group on the spectral side of Langlands duality. On the automorphic
side, one is interested in representations of G (F'), where we let F' denote a non-archimedian
local field with ring of integers O. We will sometimes denote G (F) by G, with corresponding
Iwahori I (and pro-unipotent radical 1Y), defined by the fixed Borel subgroup BY = G and
maximal hyperspecial G¥ (0) € GV (F). In Section we will reverse this convention for ease
of reading, and G will denote a split reductive group over a the non-archimedian local field F'.

We will often be interested in equivariance with respect to the trivial extension of G, which
we denot G = G x G,,. Likewise, g = Lie(G), b = Lie(B), et cetera.

Let B = G/B denote the flag variety, N denote the nilpotent cone, and ./\7@ its formal
neighborhood inside g formal neighborhood of the nilpotent cone of g. We let ./\N/'G denote the
(reduced) Springer resolution, and denote by u : Ng = T*(G/B) — Ng — N the composition
of the Springer resolution with the inclusion, and § the Grothendieck-Springer resolution, which
is é—equivariant. Sometimes, we take the codomain of u to be all of g. Let Z5 = Neg Xg Ng

denote the derived Steinberg scheme, Z[, = J\7G X g g denote the non-reduced Steinberg scheme,
and S& = (g x4 §)" denote the formal Steinberg scheme via completing along the nilpotent

6In general QC' is only right-lax symmetric monoidal but thanks to [DGI3] it is strict on QCA stacks. Also
the full correspondence formalism in [GR17| only includes pushforward for [inf,ind-]schematic maps.

"We explain this choice of notation. In the usual convention (opposite to ours), G denotes a group on the
“automorphic” side of Langlands and LG is used to denote its Langlands dual on the “spectral” side. It was
proposed in [BG14] [Ber20] to replace G with a (possibly nontrivial) central extension of G by G, denoted G,
whose Langlands dual would be denoted ©G. When G is adjoint (therefore “G simply connected), the center is
trivial and therefore G = G x G, is a trivial extension, and CG = LG x Gyy. Note that in our work is mostly on
the spectral side so we depart from this convention in using G to denote a group on the spectral side rather than
L@ for convenience. We note there is an inherent asymmetry since taking Langlands duals flips the ordering in
the short exact sequence 1 — G, > G — G 1.
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elements. We denote by mo(Z¢) the classical Steinberg variety, which coincides with (Z[,)"¢? =
(24 )red. We will drop the subscript if there is no ambiguity regarding the group G in discussion.

We denote the affine Hecke algebra by He; we use a Coxeter presentation, i.e. a definition
on the spectral side, which can be found e.g. in Definition 7.1.9 of [CG97]. It is a k[g,q ']-
algebra whose specializations at prime powers ¢ = p” are isomorphic to the Iwahori-Hecke alge-
bras Hya ~ H(GY (F),I) := Fun (I\G" (F')/I) of compactly supported Iwahori-biequivariant
functions on a loop group (or p-adic group). More generally, for a locally compact totally dis-
connected group G, a compact open subgroup K < G and a representation 7 of K, we denote
its Hecke algebra by H(G, K, 7) := Endg(cIndg 7).

The mized affine Hecke category is defined by HE := Coh(Z/é), while the affine Hecke
category is defined to be Hg := Coh(Z/G). Note that we define these categories directly on the
spectral side of Langlands duality, while they are usually defined on the automorphic side. That
is, we implicitly pass through (proven and conjectural versions of) Bezrukavnikov’s theorem

(Theorem [1.16)).

We define the coherent Springer sheaf and the coherent q-Springer sheaf by:
Sa 1= L0y p)c) = Litsw, 7 € Coh(LN/G)),

Sq,6 = (.Uq)*o(ﬁ/g)q = (,Uq)*w(ﬁ/g)q € COh((AA/'/G)q)-

The coherent g-Springer sheaf is a coherent sheaf on the stack of unipotent Langlands parameters:
Lic = WNg/G)! = Lq(Na/G).

Note that this definition is functorial and makes sense for any affine algebraic group G (still
completing along nilpotents), and thus the coherent ¢-Springer sheaf may be realize by applying
parabolic induction

U v u H U
L‘LH IL‘q,B’ ILq,G

to the structure sheaf of L 7, i.e. Sq.¢ = psr*OLu .

By Proposition if G is reductive then Ly o is a classical stack (i.e. no derived and no
infinitesimal structure) when ¢ is not a root of unity. Note that other authors [BGI19, [BP19]
H20, DHKM?20, [Zh20] have defined a moduli stack of Langlands parameters Xp ¢ for a given
local field F' and a reductive group GV with coeflicients in F'. Our stack embeds as a connected
component of tame Langlands parameters.

We fix once and for all a coordinate z € G,,,. For any geometric vector space or bundle V' (e.g.
the Springer resolution), by convention the coordinate will act on geometric fibers by weight -1,
ie. 2.2 =271z for z € V, and therefore on functions by weight 1 (i.e. z- f(—) = zf(—) for
f € V*). This negative sign convention is forced by the requirement that the z = ¢ fixed points
of N /(N? correspond to unipotent Langlands parameters (s, N) for a local field with residue F,,
ie. (s,N,q)- N =sNs g7l = N. We note that, given an identification H ~ tr(H™, idgm) as
in Theorem this implies an identification H, ~ tr(H, ¢«) = tr(H, q*) ~ tr(H, Fr*), where
q denotes the action of ¢ € G,,, while q denotes the multiplication by ¢ map corresponding to
the geometric Frobenius Fr under Bezrukavnikov’s equivalence in [Bez16]. This convention is
compatible with [KL87, [CGI7, [AB09, Bez16].

1.8. Acknowledgments. We would like to thank Xinwen Zhu for very enlightening conver-
sations on the topic of categorical traces, the Drinfeld-Lafforgue sheaf and its relation to the
coherent Springer sheaf and for sharing with us an early draft of his paper [Zh20], Pramod Achar
for discussions of purity and Tate-ness properties in Springer theory, and Sam Raskin for sug-
gestions related to renormalized categories of sheaves on formal odd tangent bundles. We would
also like to thank Matthew Emerton for comments regarding Whittaker normalizations, Xuhua
He for pointing out the reference [Re02], and Gurbir Dhillon for numerous helpful discussions.
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2. HOCHSCHILD HOMOLOGY OF THE AFFINE HECKE CATEGORY

In this section we calculate the Hochschild and cyclic homology of the affine Hecke category.
In particular in Corollary [2:26] we prove that the Chern character from K-theory factors through
an isomorphism between Ky and Hochschild homology. For this we use Bezrukavnikov’s Lang-
lands duality for the affine Hecke category to construct a semiorthogonal decomposition on the
equivariant derived category of the Steinberg stack with simple components, from which the
calculation of localizing invariants is immediate.

The results of Subsection 2.1.1] apply for any field k of characteristic zero. The results of
Subsections and specifically apply to the case k = Q,. In Corollary we will pass
to Hochschild homology, where statements will hold for any field of characteristic zero. Finally,
in Subsection 2.4 we will use a theorem of Ginzburg-Kazhdan-Lusztig which further requires k&
to be algebraically closed.

2.1. Background. We first review some standard notions regarding Hochschild homology and
equivariant f-adic sheaves that we need for our arguments.

2.1.1. Trace decategorifications and Hochschild homology. An extended discussion of the notions
of this subsection can be found in [GKRV20], [BN19] and [Ch20a]. We recall the notion of a
dualizable object X of a symmetric monoidal co-category Cg with monoidal unit 1g.

Definition 2.1. The object X is dualizable if there exists an object X ¥ and coevaluation and
evaluation morphisms

nxi1®—>X®XV, leXV®X—>1®

satisfying a standard identity. Dualizability is a property rather than an additional structure
on X (see Remark [2.7). The trace of an endomorphism f € Endc(X) of a dualizable object is
defined by

tr(X, f) =ex o (f®1) onx € Endcy (1g)-

We are interested in the case when X is an algebra object in the symmetric monoidal oo-
category Cg, and the resulting algebra structure on traces. To formulate this, we note that
traces are canonically symmetric monoidal with respect to the monoidal structure in Cg and
composition in Endc®(1®). In addition, we require a natural functoriality enjoyed by the
abstract construction of traces in the higher-categorical setting, see [TV15] [HSS17, [IGKRV20]
(see also [BN19] for an informal discussion). Namely the trace of an object is covariantly
functorial under right-dualizable morphisms.

Definition 2.2. A morphism of pairs (F,¢) : (X, f) — (Y, g) is a right-dualizable morphism
F:X — Y (ie. has a right adjoint G) along with a commuting structureﬁ Y:Fof—>gokF.
Given a morphism of pairs (F, ), it defines a map tr(F, ) on traces via the composition

tr(X,nridy) tr(X,idgvy) tr(Y,idger)
_— _— e

tr(X, f)

where np and ep are the unit and counit of the adjunction (F,G), and the equivalence in the
middle is via cyclic symmetry of traces (see also Definition 3.24 of [BN19]).

tr(X,GFf) tr(X,GgF) —— tr(Y,gFQG) tr(Y, g)

Thus, the trace construction enhances to a symmetric monoidal functor from the co-category
of endomorphisms of dualizable objects in Cg to endomorphisms of the unit Endcg(lg),
see [HSS17, 2], [TVI5, 2.5] and [GKRV20, 3] for details. In particular, if X is an algebra
object in Cg and f is an algebra endofunctor, then tr(X, f) is an algebra object in Endcy (1g).

In this paper, we consider the case Cg = dgCat,, the co-category of cocomplete k-linear
dg categories, with morphisms given by left adjoint (i.e. cocomplete) functors, with monoidal
product the Lurie tensor product. We now specialize to this case.

8Note we do not require this to be an equivalence, though it always will be in this paper.
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Example 2.3. Any compactly generated dg category C = Ind(C¥) € dgCat,, is dualiz-
able, with dual given by taking the ind-completion of the opposite of compact objects CV =
Ind(C«°P). Thus we may speak of traces of its endofunctors, which are endomorphisms of the
unit, i.e. chain complezes

EnddgCatk (Vectk) >~ Vectk.

Furthermore, note that a morphism of pairs of compactly generated dg categories is a functor
that has a continuous right adjoint, or equivalently for compactly generated categories, a functor
which preserves compact objects.

Definition 2.4. The Hochschild homology of a dualizable (for instance, compactly generated)
k-linear dg category C e dgCat,, is the trace of the identity functor

HH(C/k) := tr(C,idc) € Vecty.

We often omit k from the notation above. More generally, the Hochschild homology of C with
coefficients in a continuous endofunctor F' is HH(C, F') = tr(C, F') € Vecty.

Remark 2.5 (Large vs. small categories). The above definition is formulated in terms of large
categories, but can be defined for small categories by taking ind-completions. Since every com-
pactly generated category is dualizable but not conversely, the notion of Hochschild homology
for large categories is general. We will often not distinguish between the two.

We have a notion of characters of compact objects in categories, defined via functoriality of
traces.

Definition 2.6. Let C € dgCat, be dualizable, and F' : C — C an endofunctor. Any object
¢ € Ob(C) defines a functor a. : Vecty, — C by action on the object ¢, and a map ¢ : ¢ —> F(c)
defines a commuting structure. If C is compactly generated and c is a compact object, then a
is right dualizable. Thus, by functoriality of traces, we have a map

tr(ae,v) : HH(Vecty) =k — HH(C, F)
and we define the chamcterﬂ [c] = tr(ae, ) (1) of ¢ to be the image of 1 € k under this map.

Remark 2.7. We highlight a few properties of Hochschild homology which we use in our argu-
ments:

(1) Hochschild homology is computed via a choice of dualizing structure, and the space of
such choices is contractible by Proposition 4.6.1.10 in [Lurlg|]. In particular, for any
two choices there is a canonical quasi-isomorphism of Hochschild chain complexes. Our
arguments will play off two dualizing structures on the category Coh(Z) where Z is a
reasonable stack. One is categorical or algebraic (and makes sense for any dg category),
while the other uses the geometry of Z.

(2) Hochschild homology is additive and exact in the Morita model structure (in the lan-
guage of [BGT13], it is a localizing invariant) by Theorem 5.2 of [Ke06], and in particular
in the explicit algebraic model of Definition one can replace Ob(C) with any set of
generating objects.

(3) Hochschild homology takes (possibly bi-infinite) F-stable semiorthogonal decomposi-
tions (see Section [2.3) of C to direct sums. This is a consequence of (2) since semiorthog-
onal decompositions give rise to split exact sequences of categories.

(4) Let A be a dg algebra, M an dg A-bimodule, and define Fj;(—) = M ®4 —. Then,
HH(A-perf, F) = A®ﬁ®kAop M. This derived tensor product can be computed via a
bar resolution or otherwise.

(5) The Hochschild homology receives an S'-equivariant Chern character map from the
connective K-theory spectrum (see Definition [2.14)).

Example 2.8. We give a toy example to illustrate a canonical identification of two calcula-
tions of Hochschild homology. Let C = Coh(P!). It is well-known that O(—1) @ O generates

9This may also sometimes be referred to as a trace, but we call it a character to avoid overloading the term.
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the category, with endomorphism algebra represented by the Kronecker quiver. Since the Kro-
necker quiver has no cycles, we have an identification HH(Coh(P')) ~ k2. The character
map is the (twisted) algebraic Euler characteristic: [£] = (x(P!, £(1)), x(P!, £)). On the other
hand, Hochschild-Kostant-Rosenberg produces an identification H H(Coh(P')) ~ H°(P!, Op:)®
H'(P',Qf,) ~ k?. The character map is the Chern character, i.e. [O(n)] = (1,n); compatibility
of traces forces a particular identification H%°(P!) @ H'1(P!) ~ End(O(—1)) ® End(O).

2.1.2. De-equivariantization and the Block-Getzler complex. Hochschild homology has an alge-
braic realization via the cyclic bar complex. For dg categories with a Rep(G)-action, there is an
explicit algebraic model for the Hochschild homology due to Block and Getzler [BG94] obtained
by passing to the de-equivariantization. We fix the following set-up for the rest of the subsection.

Definition 2.9. Let G be a reductive group over a field k£ of characteristic zero, and C
a compactly generated cocomplete dg category with a Rep(G)-action. We define the de-
equivariantization to be Cdd := C®rep(q) Vecty, where Rep(G) acts on Vecty, trivially. There

is a canonical functor C — C9°9 and we denote its image by Cgeq; this category is naturally
enriched in Rep(G), which we establish below.

Lemma 2.10. The de-equivariantization functor C — C°4 preserves compact objects, and Ce4
is compactly generated, and generated under colimits by Cgeq. Furthermore, Cgeq is naturally
enriched in Rep(G), and we have

Homc (X, Y) = Homaea (X, Y)©.

In particular, if E € C is a compact generator for C4, then E is a compact Rep(G)-generator
of C, i.e. C is equivalent to modules in Rep(G) for the internal endomorphism algebra

A = End(E)*" € Alg(Rep(G)).

Proof. The lemma is an application of the rigidity of Rep(G) and the Barr-Beck-Lurie monadic-
ity theorem. Explicitly, recall (e.g. in Chapter 1, Definition 9.1.2 of [GRI7]) that by Corollary
9.3.3 of op. cit., rigidity implies that the deequivariantization functor F : C — C9°? has a con-
tinuous right adjoint G : C°4 — C given by tensoring with the regular representation O(G),
and hence preserves compact objects. Furthermore, since CI¢4 = C ®Rrep(q) Vecty, it is the
colimit of the usual cyclic bar complex, thus it is generated under colimits by the image of F'.
This implies compact generation as well, since F' preserves compact objects.

The internal Hom may be defined in the following way. For any X € C, the functor actx :
Rep(G) — C given by action on X has a Rep(G)-linear continuous right adjoint Ux(—) =
Homp, ) (X, —). We define Homgueq (F/(X), F(Y)) = ¥x (V). More explicitly, we have

Homgueq (F(X), F(Y)) = Home(X,Y @ O(G)) = P Homc(X,Y QV)Q@V*,
Velrr(G)

Note that the trivial isotypic component is given by the summand Homg(X,Y).

For the second claim, note that Wy takes F to the internal endomorphism algebra, which
represents the corresponding monad ¥ o acty on Rep(G). Since F(F) is a compact generator
for Cd°4, the functor

U9(—) = Homgaea (F(E), —) : ¥4 — A-mod

is an equivalence, giving us the commuting square of left adjoint functors:

C L A -modRep(G)

JF |+
pdea

Ccdea —~E 4 Amod

where F’ is the forgetful functor. Applying Barr-Beck to the functors F, F’ and their right
adjoints, the comonads in C%°4 and A-mod are identified under the equivalence \IJdECq and

therefore ¥z : C — A-modgep(@) is an equivalence. O
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Block and Getzler defined a chain complex in [BG94] associated to any dg category C’
enriched in Rep(G) (morally, C' = Cgeq’w is the image of the compact objects of a Rep(G)-
category C in its de-equivariantization). We review this notion here.

Definition 2.11. Let G be a reductive group, and let C’ be a small dg category enriched in
Rep(G) equipped with an dg-endofunctor F. For any V' € Rep(G), we abusively denote by
v : V — V ® k[G] the coaction map. The Block-Getzler complex (over k) BG*(C', F;QG) is
defined™| to be the sum totalization of the simplicial object in chain complexes with

G
BG(CLFiG) = @ (Hom'(Xo,X1) @+ ® How" (X,., F(X0)) @ k[G])
X0,...,Xn€0b(C’)

where the face maps d; : BG™" — BG~("~1) (for i = 0,...,n) compose morphisms, i.e.
di(fo® @ fn®9)=fo®@  fifi1® - ®fn®y, 1=0,...,n—1

dn(fo® @ fn®g) =v(fn)F(fo) ®F(f1) ® -+ @ F(fn-1) ®g.
We define the enhanced Block-Getzler complex to BG*(C', F'; G) to be the complex above, but
without taking G—invariantsH Finally, for a specified g € G(k) we define

BG;(C', F;G) = BG*(C', F; G) ®c) kg
where k, is the skyscraper module at g € G. Note that there is a canonial map
BG*(C',F;G) — BG*(C',F;G) — BG;(C', F;G).
When it is understood, we often omit G from the notation.

We are interested in comparing the Hochschild homology of C with the Hochschild homology
of C4¢d twisted by the action of a particular g € G. If C has a Rep(G)-action, then any fixed
g € G determines an endofunctor gy : Cgeq — Cgeq and an equivalence 1) : gy ~ idcgeq Let F
be a Rep(G)-linear endofunctor; this provides a canonical identification F, := F o g4 ~ g, o F.
We have a natural map of pairs (C,F) — (C%4 F,), with commuting structure given by
above, and we have the following compatibility.

Proposition 2.12. Let G be a reductive group (over k) and let C be a dg category with a
Rep(G)-action. Then, the map BG'(Cgeq’“’,chq) — BG;(Cgeq’w,Fgcq) computes the map in
Hochschild homology HH(C, F) — HH(C4, F),

Proof. The first claim is similar to Proposition 2.3.6 of [Ch20al. Let S be a set of compact objects
of C that generate under Rep(G). By Lemma their images under the de-equivariantization
functor §9°9 generate C°4. We can use the cyclic bar complex on the generators S to compute
Hochschild homology, whose nth term is

@ P Homc(Xo® Vo, X1 ®V1)Qy - Qp Home (X, ® Vi, F(Xo) @ Vo)
X;€8 V;elrr(G)

~ @ P Homgu(Xo® Vo, X1 ®V1)C ® -+ @k Homgaea (X ® Vi, F(Xo) @ Vo)
X;€8 V;elrr(G)

~ P P (V§f®@Homeae(Xo, X1) ® V1) @4 -+ @k (V¥ @ Homgaea (X, F(X0)) @ Vo).
X;€S V;elrr(G)

By Proposition 2.3.2 of op. cit. we have

~ P P (V§f®Homeuea (Xo, X1) ®p -+ @k Homaea (Xn, F(Xo)) ® Vo).
X;eSdea Vyelrr(G)

10Note that we use cohomological gradings; thus the index has a negative sign.

HNote that if F is the identity functor, then the the Block-Getzler simplicial chain complex is a cyclic object,
and thus the associated chain complex has the natural structure of a mixed complex. However, the enhanced
Block-Getzler complex is not cyclic, since the “rotation” twists by the coaction « which can be nontrivial on
nontrivial G-isotypic components. One can view this object as an S'-equivariant object in QC(G/G).

12This arises via de-equivariantization: the category C4¢d is a, Vectzeq = QC(G)-module category, and the
functor is given by action by the skyscraper sheaf at g € G.
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By Peter-Weyl, we have

P (Homguea (X0, X1) @ -+ - Ok Homaea (Xn, F(Xo)) ® k[G])C.
XjESdeq

We leave to the reader the verification that these identifications are compatible with the face
maps. The second claim follows from the observation that BG;(Cdeq7 Fgeq) is just the cyclic
bar complex, passing through the identification g, Xy ~ X. Verification that the equivalence
in loc. cit. is functorial for the above map is left to the reader. O

Example 2.13. Recall the standard examples:
Rep(G)4°4 ~ Vecty, Vect(d ~ Rep(Q).

The Block-Getzler complex for Rep(G)deq ~ Vect (where Homs are equipped with the trivial
G-action) is simply BG*(Vecty) = k[G]“, which by Peter-Weyl is equivalent to the cyclic bar
complex for Rep(G), i.e. ®Velrr(G) k. On the other hand, one can check (e.g. via the argument
in loc. cit.) that the Block-Getzler complex for Vectieq ~ Rep(Q) is quasi-equivalent to k.

2.1.3. Chern character from K -theory to Hochschild homology. Finally, we will use the universal
Sl-equivariant trace map from connective K-theory to Hochschild homology constructed in
[IBGT13].

Definition 2.14. For any small k-linear dg-category C, the connective K -theory spectrum K(C)
is the connective K-theory of the corresponding Waldhausen category defined in Section 5.2 of
[Ke06]. The universal cyclic Chern chamcteﬁ is the map

ch: K(C) »> HH(C).
This assignment is functorial in C.

Remark 2.15. We note two important properties of the Chern character that we use. Note that
unlike in the definition of Hochschild homology, in this discussion we restrict ourselves to small
categories C (i.e. the compact objects of a compactly generated cocompelte category).

e Via functoriality of the Chern character, for any object X € Ob(C), the Chern character
sends [X] € Ko(C) — [X] € HHy(C), i.e. equivalence classes in the Grothendieck group
to their characters in Hochschild homology in the sense of Definition [2.6}

e Using the lax monoidal structure of K-theory, we see that for a monoidal category C
the Chern character defines a map of algebras (see also Theorem 1.10 of [BGTT4]).

Often in applications to geometric representation theory, we are only interested in (or able
to) compute the Grothendieck group K. In order to compare K with Hochschild homology, we
require certain vanishing conditions to hold. We say that C has a 0-truncated Chern character
if we have a factorization

K(C) ch HH(C)

Koy(C)

13We use this terminology to avoid overloading the word “trace.”
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2.1.4. Equivariant (-adic sheaves, weights, and Tate type. In this subsection we review some
standard notions concerning weights and the ¢-adic cohomology of BG. In this section and the
following one, we fix a prime power ¢ = p" and a prime ¢ # p, and will work with ¢-adic sheaves
F on F,-schemes X. All schemes and sheaves on them that arise are defined over F,, i.e., X
will come with a geometric Frobenius automorphism Fr and F with a Fr-equivariant (Weil)
structure, which will be left implicit.

Fix a square root of ¢ in Q,, thereby defining a notion of half Tate twist (this choice can
be avoided by judicious use of extended groups as in [BGI4l [Zh17, Ber20]). For F € Sh(X)
where X is over F,, we will denote the Tate twist by F(n/2) for n € Z. For a scheme X over
F, with a group action G, we denote by Sh(X/G) = Sh¢ (X)) the bounded derived category of
finite G-equivariant Q,-sheaves on X (see Section 1.3 of [BY13] and [BL94]). In this context,
the cohomology of a sheaf H*(X,—) will be understood to mean étale cohomology.

Following the Appendix of [Ga00], this notion can be extended to G-equivariant ind-schemes,
where G is a pro-affine algebraic ind-group acting in a sufficiently finite way. We say a G-
action on X is nice if the following two properties hold: (1) every closed subscheme Z < X is
contained in a closed G-stable subscheme Z’ — X such that the action of G on Z’ factors through
an quotient of G which is affine algebraic, and (2) G contains a pro-unipotent subgroup of finite

codimension, i.e. if G = lim G, then there is an n such that ker(G — G,,) is a projective limit
n—o0

of unipotent affine algebraic groups. If G is a pro-affine group scheme acting nicely on X, and
X = colim X; with affine quotient G; acting on X;, then we deﬁn Sh®(X) = colim Sh¥ (X;).
1—00

1—00
Finally, we need a notion of Frobenius weights acting on a Q,-vector space V, which for us
will be étale cohomology groups. We will generally only be concerned with the weak notion of
weights and will omit the adjective “weak” for brevity.

Definition 2.16. Let V be a finite-dimensional Q,-vector space equipped with an endomor-
phism F'| and fix a prime power ¢ = p". We say V is strongly pure of weight n if every eigenvalue
of F is equal to ¢"2. We say V is weakly pure of weight n if every eigenvalue of F is equal
to Cq™? for varying roots of unity ¢ € Q,. If V is a (cohomologically) graded vector space
with finite-dimensional homogeneous parts V¥, then we say V is strongly (resp. weakly) pure of
weight n if V¥ is strongly (resp. weakly) pure of weight n + k.

Finally we recall the ¢-adic cohomology ring of BG, whose description we repeat for conve-
nience following [ViI5] (in the Hodge-theory context).

Proposition 2.17. Let G' be a pro-affine group scheme with split reductive quotient over k.
Then, H‘LBG7 Qy) is polynomial, generated in even degrees, and pure of weight 0. In particular,
H?*(BG,Q,) has weight 2k.

Proof. First, since G is pro-affine, there is a reductive (finite type) algebraic group Gy such that
the kernel ker(G — Gy) is pro-unipotent. By Theorem 3.4.1(ii) in [BL94] we may assume that
G is reductive (and finite type).

It is a standard calculation that H*(G,,,Q,) = H%(G,,,Q,) ® H'(G,,,Q,) with H® of weight
0 and H' of weight 2. By Corollary 10.4 of [LO0S8|, H*(BG,,,Q,) ~ Q,[u] where u has
cohomological degree |u| = 2 and weight 2. In particular, by the Kunneth formula (Theorem
11.4in op. cit.) we have that for a split torus 7', H*(BT; Q,) is pure of weight 0 and polynomial
in even degrees. Thus, the claim is true when G = T is a torus. Now, assume T is a split torus
inside a reductive group G, and B is a Borel subgroup with T' < B < G. Applying Theorem
3.4.1(ii) of [BL94] again, we have H*(BB;Q,) ~ H*(BT;Q,). By Theorem 1.1 of [Vil6],
H*(BG;Qy) is a polynomial subring of H*(BB;Q,) ~ H*(BT;Q,), completing the claim. [

14This definition is independent of the choice of presentation, since by [BL94] Theorem 3.4.1(ii) if G; — G;
is a surjection with unipotent kernel, then Shi Y) — ShGi (Y) is an equivalence for any Y on which G; acts.
See also Section A.4 of [Ga00].
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2.2. Automorphic and spectral realizations of the affine Hecke category. We follow
the set-up of Bezrukavnikov in [Bez16], except that we view the group on the automorphic side
as dual to a chosen group on the spectral side for ease of notation. Let G be a fixed reductive
algebraic group over Q, on the spectral side of Langlands duality, and let GV be its dual group.

Choose a form of GV split over F,. Let F' = F,((¢)) and O = F,[[t]]. We denote G := GV (F)
to be its dual group with coefficients in F', which we consider as an ind-group scheme over F,,
and its subgroup Gg := GV (0), a pro-affine group scheme over ]FTI The Twahori subgroup of G
is I:= Go X,y B (F,), which inherits its structure as a closed subgroup and is therefore
also a pro-affine group. We let I := G x4, d U" (F,) denote its pro-unipotent radical.

On the automorphic side, we are interested in equivariant Q,-sheaves on the affine flag variety
$l = G/I, an ind-proper ind-scheme constructed in the Appendix of [Ga00]. It carries a left
action of I whose orbits are of finite type and naturally indexed the affine Weyl group W, for
the group GV. For w € W, we denote by §l* the corresponding orbit. Denote by j,, : §1* — Fl
the inclusion of the corresponding I-orbit. Let ¢ : W, — Z>° denote the length function on the
affine Weyl group.

On the spectral side, the stacks that appear are defined over Q,. Recall the derived Steinberg
variety Z = N Xg N and the classical non-reduced Steinberg variety 2’ =g x4 N (see Section
1.7.3). The following is Theorem 1 of [Bezl6], while the Frobenius property of ® appears as
Proposition 53.

Theorem 2.18 (Bezrukavnikov). There are equivalences of categories ® and ® and a commu-
tative diagram

Sh™ (§1) —%— Coh(2'/G)

,ﬂ Tz*

Sh!(§1) —2— Coh(Z/G)

where 7 : IO\Fl — I\F1 is the quotient map and i : Z/G — Z'/G is the inclusion. Moreover the
functors admits the following natural structures:

o O is naturally an equivalence of monoidal categories, and

o & and ' intertwine the action of Frobenius on Sh™(§l) (resp. Sh*’ (§1)) with the action
of q € Gy, on Coh(Z/G) (resp. Coh(Z'/@G)).

We point out certain distinguished sheaves in Sh'(§l) and Sh*’ (§1) (computed explicitly for
G = SLy, PGLy in Examples 2.2.3-5 in [NY19]).

(a) Let Ae X, (TV) = X*(T) c W, be a character of the maximal torus of G, considered
as an element of the affine Weyl group of the dual group. The Wakimoto sheaves Jy
are defined as follows. When A is dominant, we take Jy = j)\,*@mk[@p, A>]. When A
is antidominant, we take J, = j*v’@m*[@p’ —M)]. In general, writing A = A\; — A2, we
define Jy = Jy, * J_»,, which is independent of choices due to Corollary 1 in Section
3.2 of [ABQY).

(b) For any w € W,, we define the corresponding costandard (resp. standard) object by
Vo = jw,*@glw [((w)] (vesp. Ay := jw’!@glw [¢(w)]). They are monoidal inverses by
Lemma 8 in Section 3.2 of [AB09]. By Lemma 4 of [Bezl6], we have V,, * Vo = Vi
(and likewise for standard objects) when £(w)+£4(w') = f(ww'). If A e X, (TV) = X*(T)
is dominant, then the Wakimoto is costandard Jy = Vj; if A is antidominant, the
Wakimoto is standard Jy = A.

(c) Let wg € Wy < W, be the longest element of the finite Weyl group. The antispherical
projector or big tilting sheaf = € Sh” (§1) is defined to be the tilting extension of the
constant sheaf @glwo off F™° to §l, as in Proposition 11 and Section 5 of [Bez16]. Note

that this object does not descend to Sh'(§l).



24 DAVID BEN-ZVI, HARRISON CHEN, DAVID HELM, AND DAVID NADLER

We abusively use the same notation to denote sheaves in Sp’ (§1); note that 7*A,, ~ A,, and
7V =~ V, by base change. All sheaves above are perverse sheaves, since the inclusion of
strata are affine.

For our applications, we need to work not with Z/G but with Z/G (recall that G = G x G,y,).
The following proposition is the key technical argument we need to construct the semiorthogonal
decomposition of Coh(Z/G) and hence deduce results on its homological invariants — a graded
lift of standards and costandards under Bezrukavnikov’s theorem. It is conjectured in [Bezl6]
that the equivalences in Theorem should have mixed versions, relating a mixed form of the
Iwahori-equivariant category of Fl with a G,,-equivariant version of Coh(Z/G), i.e. Coh(Z/G),
which would immediately give us the desired result. In particular, see Example 57 in [Bez16] for
an expectation of what the sheaves ®(A,,) are explicitly and note that they have G,,-equivariant
lifts.

Proposition 2.19. The objects ®(V,,), ®(A,) € Coh(Z/G) have lifts to objects in Coh(Z/G)
for all w € Wy, compatible with the action of Frobenius under the equivalence in Theorem[2.18

Proof. We will prove the statements for the standard objects; the statements for costandards
follows similarly. Wakimoto sheaves are sent to twists of the diagonal ®(Jy) ~ Oa(A) by
Section 4.1.1 of [Bezl6], which evidently have G,,-equivariant lifts. Convolution is evidently
Gyn-equivariant, so the convolution of two sheaves with G,,-lifts also has a G,-lift. Assuming
that the standard objects corresponding to finite reflections have G,,-lifts, by Lemma 4 of
[Bez16] we can write the standard for the affine reflection as a convolution of Wakimoto sheaves
and standard objects for finite reflections. Thus, we have reduced to showing that all standard
objects ®(A,,) have G,,-lifts for w a simple finite reflection.

By Corollary 42 of [Bez16] ®' has the favorable property that Z’ is a classical (non-reduced)
scheme, and that it restricts to a map on abelian categories on PervV (G¥/BY) Perv"’ (&)
taking values in Coh(2’/G)" (though it is not surjective). In particular, by Proposition 26 and
Lemma 28 in [Bez16] it takes the tilting sheaf Z to Oz, which manifestly has a G,,-lift.

We claim that G,,-lifts for the ®'(A,) € Coh(Z'/G) for w € Wy induce G,,-lifts for the
®(A,,) € Coh(Z/G). Since Z is a derived scheme, the functor iy : Coh(Z/G) — Coh(Z'/G) is
not fully faithful (i.e. objects on the left may have additional structure). But since ®'(A,,) ~
ix+®(A,) are in the heart and iy is t-exact (for the standard ¢-structures) and conservative,
we have that ®(A,,) € Coh(Z/G)". In particular, the restriction of iy to Coh(Z/G)Y is fully
faithful, proving the claim. Thus, we have reduced to showing that the finite simple standard
objects ®'(A,) € Coh(Z'/G)Y have G,,-lifts; in particular these are objects in the abelian
category of coherent sheaves.

By Lemma 4.4.11 in [BY13], Z is a successive extension of standard objects A,,(¢(w)/2) for
w € Wy. Thus, there is a standard object A, (¢(w)/2) and a Frobenius-equivariant surjection
= — A,(l(w)/2). This implies that the kernel K = ker(Z — A, (f(w)/2)) is a Frobenius-
equivariant subobject of K. On the spectral side, using Proposition 53 in op. cit., this means
that ®'(K) c ®'(E) ~ O,z is a g-equivariant subobject with quotient ®'(A,(¢(w)/2)). We
wish to show that the quotient has a G,,-equivariant lift, which amounts to showing that ®'(K)
is a G,,-equivariant subobject.

Since ®(K) is already endowed with a G,,-equivariant structure, g-equivariance for a subob-
ject of a G,,-equivariant object is property, not an additional structure. We claim that for ¢
not a root of unity, any g-closed subsheaf of a G,,-equivariant sheaf on a quotient stack must be
Gyn-closed as well (i.e. the isomorphism defining the G,,-equivariant structure restricts to the
subsheaf). Assuming this claim, and iterating the above argument replacing = with the kernel
K, we find that ®'(A,) has a G,,-equivariant lift for every w € Wy (since the big tilting object
contains every A,, as a subquotient), completing the proof.

We now justify the claim. First, if F is a sheaf on a quotient stack X /G with a G,,-action,
we can forget the G-equivariance (i.e. base change to the standard atlas X — X/G). Now, by
reducing to an open affine G,,-closed cover of X, we can assume X is affine. On an affine scheme
X = Spec(A), the G,,-action gives the structure of a Z-grading on A, and a submodule of a
graded A-module M’ < M is g-equivariant if it is a sum of g-eigenspaces, and G,,-equivariant
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if it is a sum of homogeneous submodules. The claim follows from the observation that any
m € M’ can only have eigenvalues ¢" for n € Z, which are distinct, so the g-eigenspaces entirely
determine the G,,-weights. O

2.3. A semiorthogonal decomposition. In this section, we describe an “Iwahori-Matsumoto”
semiorthogonal decomposition of the category Coh(Z/ é), arising from the stratification of the
affine flag variety §l on the automorphic side of Bezrukavnikov’s equivalence Theorem [2.18 and
the lifting result in Proposition [2.19] This will, in turn, induce a direct sum decomposition on
Hochschild homology. First, let us establish terminology.

Definition 2.20. Let {S,}.en denote a collection of full subcategories of a small dg category
C. We say that {S,,} defines a semiorthogonal decomposition of C if there is an exhaustive left
admissible filtration F,C of C such that S,, is the left orthogonal of F, _1C inside F,C. In
particular, in this case Homg (X, X;,,) ~ 0 for X; € S; and n > m.

The following result is standard.

Proposition 2.21. Let G be a pro-affine group scheme acting nicely on an ind-scheme X.
Assume that the stabilizer of each orbit is connected. Let I be an indexing set for the G-orbits
X; under the (partial) closure relation, i.e. X,, X, implies m = n, and let j, : X, — X
denote the inclusion. Then, <jn!@gxn> defines a semiorthogonal decomposition ofShG(X), where
the ordering is given by any choice of extension of the partial order to a total order.

Proof. 1t is standard that stratifications of stacks give rise to semi-orthogonal decompositions
on categories of ¢-adic sheaves. We note that each orbit is equivariantly equivalent BH where
H is the stabilizer (connected by assumption), and Sh(BH) is generated by the constant sheaf
Q, when H is connected. g

Corollary 2.22. Fiz a Bruhat ordering of the affine Weyl group W,. The standard objects
(Vu = jnQyx, ) give a semiorthogonal decomposition of ShG(Sl).

Remark 2.23. The costandard objects A, = jn*@exn define a semiorthogonal decomposition
in the reverse order.

We would like to lift the above semiorthogonal decomposition of Coh(Z/G) to Coh(Z/G). We
do so by applying Lemma to the G,,-equivariant lifts of the objects ®(A,,) from Proposition
Adopting the notation in Section (but replacing the group with H), we take:

C =H" = Coh(Z/G), €% =H=Coh(Z/G), H =G, =Speck[z,z"'].

Corollary 2.24. Let k be a field of characteristic zero, H a group-scheme over k, and C a
compactly generated cocomplete Rep(H)-module dg category, and let (—)41 : C — Cded =
C ®gep(n) Vecty, denote the de-equivariantization functor. Let {E, € C | n e N} be a linearly
ordered set of objects such that (E3°Y) defines a semiorthogonal decomposition of C°4. Denote
by A, = Endgaeq (E39)°P the Rep(H)-algebras from Lemma , Then, we have

HH(C) ~ @ HH(A, -modgep())-

Proof. Let C!, := (Ed9) be the category generated by Fd°d and let C,, be the preimage un-
der (—)9°4. We have a semiorthogonal decomposition of C by the categories C,,. Hochschild
homology is a localizing invariant in the sense of [BGT13], and in particular takes semiorthog-
onal decompositions to direct sums (this can also easily be seen directly via the dg model for
Hochschild homology). Thus we have an equivalence HH(C) = P HH(C,,). Applying the

neL
Lemma [2.10, we find HH(C) = (P HH (A, -modgep(c,,))- O

nez

We now compute the endomorphism algebras A,, as algebras in Rep(G,,), using the graded
lifts from Proposition and the semiorthogonal decomposition in Corollary
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Proposition 2.25. Let E,, denote the G,,-lifts of ®(A,) constructed in Pmpositz’on and
Ay = Mcoh(z/é)(Egeq). We have a quasi-isomorphism Ay, ~ Symg b*[—2] where *[-2] is
the universal dual Cartan shifted into cohomological degree 2 with G,,-weight 1. In particular,
A, is formal.

Proof. Recall that the pullback along multiplication by g corresponds under ® to the Frobenius
automorphism, i.e. Frobenius acts on the nth homogeneous graded piece of T, by multiplication
by ¢"™. Since ¢ is not a root of unity, we can determine G,,-weights by (necessarily integral)
Frobenius weights as in the proof of Proposition [2.19

Further, since ® is an equivalence of categories we can compute A,, on the automorphic side.
The unit map F — j'ji.F is an equivalence for j a locally closed immersion, so that

Since Fl*“ is an I-orbit, letting I¥ denote its stabilizer for a choice of base point in FlY, we
find that A, ~ C*(BI*;Qy) is the equivariant cohomology chain complex for BI* with Q,-
coefficients under the cup product. The reductive quotient (i.e. by the pro-unipotent radical)
of I¥ is T, so A, ~ C*(BT;Q,). By Proposition the Frobenius weight is equal to the
cohomological degree, and the Frobenius weight is equal to twicﬂ the G,,-weight, proving the
claim regarding G,,,-weights.

Finally, we need to show formality of A, as an algebra. By purity, any cohomological degree
2n class in C*(BT;Q,) has G,,-weight n (or Frobenius weight 2n). By a standard weight-degree
shearing argument, this implies formality. O

We now apply Corollary to the set-up in the above proposition. We will see that since
Hochschild homology is insensitive to field extensions and all our stacks of interest are defined
over Q, the following results hold for any field k of characteristic 0 (i.e. not just k = Q,).

Corollary 2.26. Let k be any field of characteristic 0. The isomorphism from above induces
an isomorphism of k[z, z~1]-modules

HHH™/k) = kW, ® k[z,27'].

In particular, we have that

(1) the Hochschild homology HH (H™/k) is cohomologically concentrated in degree zero,
(2) the Chern character K(H™) — HH(H™/k) factors through Ko(H™),

(3) the map Ko(H™) ®z k — HH(H™/k) is an equivalence,

(4) H™ satisfies Hochschild-to-cyclic degeneration, i.e. HN(H™/k) ~ HH(H™/k)[[u]].

Proof. Fix a Bruhat order on W, extended to a total order. Let us first prove the case k = Q.
Applying Corollary in the case C = H™ = Coh(Z/G), C = H = Coh(Z/G), and H = G,,,,
we have a canonical equivalence

HHH"/Q,) ~ Q,W, ®g, HH(A-perfreyc,,) /Qy)

where A = Sym@ h*[—2] ~ A, is the algebra from Proposition (which does not depend
on w e W,).

Let us briefly consider the case of general k of characteristic 0, and let A = Symj, h*[—2].
The Hochschild homology of of A—perfRep(Gm) is computed by the Block-Getzler complex of
Deﬁnition which we can compute explicitly. Its terms are (A®" "1 ®@k[z, 271])®, and since
2 has G,,-weight 0, there is an isomorphism (A®"*! ® k[z,271])Cm ~ (A®FH0m @ k[z, 271
and we observe that (A®"*+1)Cm — L since each A is generated over k by positive weights. Thus,
the natural map BGe(k) — BG.(A) is a quasi-isomorphism, so the first claim claim follows.
Factorization through K follows since the Hochschild homology is coconnective.

15Often, e.g. in Remark 1 of [ABQ9], the G,,-scaling action is defined to have geometric weight —2; under
this differing convention, the Frobenius weight is equal to the G,,-weight.
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To show that the map Ko(A-modgep(,,)) ®z Q, — HH(A -modRep(G,,) /Qy) is an equiva-
lence, first note that since HH(A-modgep(g,,) /Qy) is concentrated in degree zero, the Chern
character factors through Ky, i.e. we have a commuting diagram for each summand

K(Rep(Gn)) ®z k ———— Ko(Rep(Gn)) @z k ————— HH(Rep(Gr)/Q)

! l I

K(A—perfRep(Gm)) Qzk —— Ko(A —perfRep(Gm)) ®z k —— HH(A-modgepG,,) /Qy).

By Remark the map Ko(Rep(G,,)) — Ko(A-perfre,g,,)) is an equivalence, since both
sides are freely generated by Ko(Rep(G,,)) = HH (Rep(G,,)) by the character of a single object
[A], i.e. the free object. Using the semiorthogonal decomposition, these equivalences induce
an equivalence Ko(H™) ®z Q, ~ HH(H™/Q,), which is an equivalence of algebras by Remark

Next, to prove the equivalence for general fields k, note that all stacks and algebras in question
are well-defined over Q. Consider the field extension Q < @Q,. To conclude the result for k = Q,
we need to show that the Q-subspaces

HH(Coh(2,/Gy)/Q) € HH(Coh(Zg,/Gg /Ty, WWa®oQlz 2] = Qo ®g, Tuls. 2]

coincide under the equivalence; this follows from the calculation of HH(A-perfg.,g,.)) via
the Block-Getzler complex, i.e. on each summand coming from the semiorthogonal decompo-
sition, the map Ko(A-perfge,c,.)) = Z[z,27 "] = HH(A-perfre,c, ) /Qr) = Q2,27 '] is an
injection, with [A] = 1 on both sides.

Now, let Q < k be a field extension. By the change of rings formula in Hochschild homology,
we have a canonical equivalence

HH(Coh(Z,/Gr)/k) ~ HH(Coh(Zo/Gg)/Q) ®g K ~ kW, Qy k[z,271].
Thus the result holds for k. Since every field of characteristic 0 is an extension of @Q, the result

holds for any field k of characteristic 0. g

We also have the following result for the non-G,,-equivariant version.

Corollary 2.27. The map of algebras K(Coh(Z/G)) — HH(Coh(Z/G)) factors through Ko
and we have an isomorphism as dg k-modules

HH(Coh(Z/G)) ~ kW, ® Symg (b*[—1], 5*[-2]).

Furthermore, the Connes B-differential is given by the extending identity map h*[—2] — h*[—1],
so that applying the Tate construction we have an isomorphism of modules

kW, @1 k((u)) ~ Ko(Coh(Z/G)) @4 k((u)) — HP(Coh(Z/Q)).

Proof. Essentially the same as the previous corollary, along with a direct calculation of the
Hochschild homology of the formal dg ring

HH (Sh™ (pt)) = HH (k[H[—2]]-mod).

2.4. Hochschild and cyclic homology of the affine Hecke category. Recall the notation
G = G x G, and that H® = Coh(Z/G) denotes the mixed affine Hecke category, while
H = Coh(Z/G) denotes the affine Hecke category. In this section, we will show that their trace
decategorifications are the affine Hecke algebra H and a derived variant of the group algebra of
the extended affine Weyl group kW,. We assume that G has simply connected derived subgroup
until Section 2:4:2] where we remove the assumption.

We begin by quoting the following celebrated theorem by Ginzburg, Kazhdan and Lusztig.
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Theorem 2.28 (Ginzburg-Kazhdan-Lusztig). Let k be an algebraically closed field of character-
istic 0, and assume that G has simply connected derived subgroup. Then there is an equivalence
of associative algebras H — Ko(H™) ®z k, compatibly with an identification of the center with

Ky(Rep(G)) ®z k. Likewise, there is an equivalence of associative algebras kW, ~ Ko(H) ®z k
with center Ko(Rep(G)).

Proof. The only difference between our statement and that in [KL87] [CG97] is their Steinberg
stack is the classical stack m(Z)/G, which has no derived structure. On the other hand, we
are interested in Z /é which has better formal properties. The statement follows from the fact
that the Grothendieck group is insensitive to derived structure, i.e. the ideal sheaf for the
embedding 7o (Z)/ G2 / G acts nilpotently on any coherent complex. Finally, note that while
the statement of Theorem 3.5 of [KL87] and Theorem 7.2.5 in [CGI7] are made for & = C,
the proofs do not employ topological methods and apply to any algebraically closed field of
characteristic zero. O

We combine the above theorem with Corollary to arrive at the following main theorem.
We will remove the simply connectedness assumption in Section [2.4.2

Theorem 2.29. Assume that G has simply connected derived subgroup over an algebraically
closed field k of characteristic 0. There is an equivalence of algebras, and an identification of
the center:

~

H = HH(H™)

J J

k[G]¢ @k k[q,q7'] —— HH(Rep(G x G,,)).

Proof. That the map is an isomorphism is a combination of Theorem[I.2]and Corollary O

The following may also be of interest, and is the analogue to Corollary Note that in
this case, the map to Hochschild homology is not an equivalence, though it does induce an
equivalence on H Hy and on periodic cyclic homology H P.

Corollary 2.30. With the assumptions above, there is a commuting diagram of algebras:
EWa @ Symy (h*[-1] @ b*[-2]) —— HH(H)

J J

k[G]¢ HH(Rep(Q)).

1

Taking the Tate construction, there is an equivalence of k((u))-algebras, and an identification of
the center:

kW, ((u)) ——— HP(H)

J J

k[G]((u)) —— HP(Rep(G)).

Proof. By Corollary the Hochschild homology HH(Coh(Z/G)) is coconnective, so the
Chern character from K (Coh(Z/G)) factors through Ko(Coh(Z/G)) ®z k = kW,. Thus we
have a map of algebras kW, — HH(Coh(Z/G)) which induces an equivalence on H®. Next,
note that the subcategory Sh'(Fl) generated by the monoidal unit (i.e. the skyscraper sheaf
de), which is closed under the monoidal structure, is in the center of Coh(Z/G), so that the
subalgebra HH ({6.)) ~ Sym;(h[—1] ® h[—2]) ¢ HH(Coh(Z/G)) is central. This defines a
map of algebras HH ({d.))-mod — HH(Coh(Z/G)), which defines a map of algebras out of the
tensor product HH ({6.)) ® kW, — HH(Coh(Z/G)) which is an equivalence when restricted
to each tensor factor; thus we can calculate that it is an equivalence. O
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2.4.1. g-specializations of the affine Hecke algebra. Let q : Z/G — Z/G be the action by ¢ € G,
under our conventions, i.e. multiplying by ¢—!. In this section we compute the trace of the
functoﬂ g« on the category H = Coh(Z/G). First, we make the general observation that if F'
is an automorphism of a category C and £ € C, then an F-equivariant structure on £ induces
an automorphism of the dg algebra A = Endg(€), and thus an automorphism of the category

A-mod, which we will abusively also denote F'.

Proposition 2.31. Let g # 1 and let A,, denote the algebras from Proposition [2.25. Then,
HH(Ay,qx) = k.

Proof. First, observe that the functor ¢4 induces the automorphism on the algebra A, ~
Symy, h*[—2] arising via the g-scaling map on h (in particular, h* has weight —1). The claim is
a direct calculation using the complex Cy(Ay, Gy,) from Definition via Koszul resolutions:
Cy(Ay,Gyy,) is the derived tensor product A, ®f‘w® 4, Aw where Ay, is the diagonal bimodule
for one factor and is twisted by g, on the other factor.

Rather than a direct calculation, we give a geometric argument. First, note that g, preserves
the G,,-weights of A,, ~ Symy, h*[—2] (i.e. since g € G,, is central). We apply a Tate shearing
(i.e. sending bidegree (a,b) to (a — 2b,b)) to the algebra Sym, h*[—2] to obtain the algebra
O(h) = Sym;j, h*. Note that HH (Perf(h), gx) = O(h?), i.e. functions on the derived fixed points
of action by ¢. When ¢ # 1 we have h? = {0}, so HH (Perf(h),g+) = k. Undoing the shearing,
we find that the natural map HH (A, q«) — HH(k,qy) is an equivalence. O

Corollary 2.32. Let H, denote the specialization of the affine Hecke algebra at q¢ € G,,. If
q # 1, we have an equivalence of algebras

HHMH, qy) ~ H,.

Proof. The calculation in Proposition [2.31] shows that specialization at ¢ € G,, induces an
equivalence on Block-Getzler complexes (viewing A, as an algebra in Rep(G,,)):

BG*(Ay) ®p[z,-—1] kq = BG*(Ay) ®p[z,.-11 kg — BG(Ay)

inducing an equivalence HH(Coh(Z/G)) ®klz,2-1] kg =~ HH(Coh(Z/G), g4), since the trace of
an endofunctor F' on a category C takes semiorthogonal decompositions preserved by F' to direct
sums. Consequently, under the identification of algebras HH (Coh(Z/G)) ~ H, specialization
at ¢ defines an equivalence HH (Coh(Z/G), ¢x) ~ Hq. O

Remark 2.33. The above corollary is evidently untrue for ¢ = 1, since H is flat over k[z,27!]
but HH(H) has derived structure by Corollary

Remark 2.34. Our methods also allow for an identification of the following monodromic variants
of the affine Hecke category introduced in [Bezl6] (where Z’ = g x4 N and Z” is the formal
completion of § x4 g along Z):
HH(Coh(Z'/G)) ~ HH(Coh(2"/G)) ~ H,
HH(Coh(Z'/G), qx) ~ H,,
kW, ®j Symy,(h* @ h*[—1 =1
Hq q#1,
Note that the category Coh(Z’/G) is not monoidal, so it does not make sense to ask that it
is identified with H as an algebra. However, it is equivalent to H as a (right) module for
HH(Coh(Z/G)) ~ H.
On the other hand, the category Coh(Z” /G) does not have a monoidal unit, and the monoidal
product is poorly behaved (for example, when G = T is a torus, the product is zero on
Hochschild homology). However, one expects that there is a renormalization of Coh(Z"/G)

whose Hochschild homology satisfies the same good properties as (and in fact, is Koszul dual
to) H™.

16Note that our gy corresponds to q* in [ABO09].
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The only difference in these cases is that the generating objects E,, = @glw for the semiorthog-
onal decomposition live in different categories on the automorphic side, so the resulting en-
dormorphism algebra A,, may differ (i.e. as in Proposition . Recall that for Z, we had
Ay = Symf@ h*[—2]. For Z’, the derived category of sheaves on each orbit is equivalent to D(pt),
so Ay, = Q. For Z*, the category is equivalent to D“(H/H) ~ Q,[h]-mody_,i, the category
of weakly H-equivariant sheaves on H with unipotent monodromy, and A,, = Sym@z h*[—1].

2.4.2. Groups of non-simply connected type. In this section we will remove the simply connect-
edness assumptions from earlier theorems. We work in the following set-up. Let G be a reductive
algebraic group with simply connected derived subgroup, and ¢ : G — G’ a central isogeny with
kernel Z (i.e. a quotient by a finite subgroup Z of the center). Following Section 1.5 of [Re(2],
this induces a Z-action on H¢ via the formula

2 (T ®eM) = A\2)(Tw ® ), weWp e X*(T),z€ Z
and an injection of affine Hecke algebras
Her ~ HE — He.
We define an analogous action on Hochschild homology in the following general set-up.

Definition 2.35. Let Z < G be central, and G' = G/Z, and let C be a Rep(G)-module
category equipped with a Z-trivialization, i.e. a Rep(G’)-linear category C’ and an equivalence
C =~ C' ®gep(ar) Rep(G) (see also Definition . In this setting, we have a natural action of
Z on the Hom-spaces of Rep(G) (using that Z is central), compatible with the Rep(G’)-action.
This induces a Z-action on the Hom-spaces of C’ ®gep(ary Rep(G), and thus a Z-action on
HH(C,F).

Proposition 2.36. There is a functorial equivalence for Rep(G)-categories C equipped with a
Z-trivialization

HH(C')~ HH(C)%.
Proof. The Z-trivialization defines an equivalence between the Rep(G) de-equivariantization of
C with the Rep(G’) de-equivariantization of C':

Ccded .— C ®Rep(@) Vecty ~ c’ ®Rep(G)’ Rep(G) ®Rep(a) Vecty, ~ C’ ®Rep(q) Vecty.
Thus we have explicit models
HH(C,F) = BG*(C*, F;G), HH(C',F)= BG*(C%* F;G").

Tracing through the identifications in Proposition one can identify the Z-action on the
Block-Getzler complex BG*(C4°4, F; G) as follows: level-wise, it only acts non-trivially on the
tensor factor k[G] by

(z- N)lg) = f(z9) = f(g2), zeZ,feklGlgeq.

The result is now immediate from the observation that k[G]? = k[G'] for the above action. [J
It remains to show that these Z-actions agree, which we do so in the following.
Proposition 2.37. The identification H ~ HH(H™) intertwines the Z-actions above.

Proof. The action of Z on M defined in [Re02] decomposes into eigenspaces indexed by Wy
double cosets WAW; < W, for X € X*(T), spanned by Iwahori-Matsumoto basis elements
T, for w € W AW;, with eigenvalue A|z. This claim can be directly verified, e.g. using the
Bernstein relations in Section 7.1 of [CG97]. Thus, it suffices to show that Z acts by the same
eigenvalues on Hochschild homology, with basis given by {[idga,)] | w € Wa}, ie. identity
maps for the spectral-side standard objects ®(A,,) described in Section

By functoriality, for any functor F': C — D of categories in our set-up, if [idx] € HHy(C) is
a A\-eigenvector for Z, then [idp(x)] € HHo(D) is as well; the converse is true if F' is faithful on
the homotopy category (i.e. HY(Hom®(X, X)) — H°(Hom®(F(X), F(X)) is injective). We will
use this fact repeatedly. In particular, since the forgetful functor Coh(Z/G) — Coh(Z/G) is
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faithful, we can forget G,,-equivariance, and since the Z-action is compatible with convolution,
it suffices to check our statement for finite reflections and the lattice. N

For the lattice, we have ®(Ay) ~ Ay Ox () = Axp*Vy € Coh(Z/G), where p : N/G — BB
is the projection. The eigenvalue for the identity map of V) € Coh(BB) is evidently A|;. For
finite simple reflections, since i, is fully faithful on the homotopy category we may instead
consider the equivalence ®'. Here, the spectral-side object corresponding to the automorphic
big tilting object is Oz /¢. By applying functoriality to the pullback from a point we see that
the identity on any structure sheaf has trivial Z-eigenvalue, and therefore any subquotient does,
thus ®'(A,,) and ®(A,,) do. O

Corollary 2.38. The statements of Theorem [2.29, Corollary and Corollary hold
without the assumption that G has simply connected derived subgroup.

Proof. By Theorem we have an identification HH(Hg) ~ Hq. Since Z acts on Z and 2’
trivially, the categories Coh(Z/G) and Coh(Z’/G) come equipped with natural Z-trivializations,
and thus their Hochschild homologies have Z-actions as defined above. By Proposition the
two Z-actions coincide under our equivalence, proving the claim. O

3. TRACES OF REPRESENTATIONS OF CONVOLUTION CATEGORIES

We have seen in Theorem [2:29]that the affine Hecke algebra H is identified with the Hochschild
homology of the (mixed) affine Hecke category H™ = Coh(Z/G). In this section we describe a
general theory of categorical traces in derived algebraic geometry to explain why this is a useful
realization. Namely, as an application we will see in Section 4| that the geometric realization of
Hochschild homology via derived loop spaces implies a realization of the affine Hecke algebra as
endomorphisms of a coherent sheaf on the loop space of the stacky nilpotent cone, the coherent
Springer sheaf, and hence a localization description of its category of modules as a category of
coherent sheaves.

3.1. Traces of monoidal categories. In this section we present the two different trace de-
categorifications for a monoidal category and their relation. See [BFNT0L [HSS17, [CP19, BNT9|
GKRV2()] for detailed exposition.

Definition 3.1. Let (A, #) denote an Ej-monoidal compactly generated cocomplete k-linear
dg category and F' a monoidal endofunctor. There are two notions of its Hochschild homology
or trace. See definitions in Section 2. 1.1l

e The naive or vertical trace (or Hochschild homology) is a chain complex tr(A, F) =
HH(A, F). Via functoriality of traces, and under the assumptions that the multiplica-
tion functor = : A ® A — A preserves compact objects and that the monoidal unit is
compact, it has the additional structure of an associative (or Ej-)algebra (HH(A), ).

e The 2-categorical or horizontal trace (or monoidal/categorical Hochschild homology) is
a dg categorym Tr((A,*),F) = A ®agars Ap where Ap is the monoidal category
whose left action is twisted by FE Via functoriality of traces, the horizontal trace is
the tautological receptacle for characters in A:

[-]: A - Tr((A, =), F).

The monoidal unit 14 itself defines an object [1a] € Tr((A, %), F), i.e. Tr((A, =), F) is
a pointed (or Ey-)category.
We sometimes omit the monoidal product * from the notation, and when F = ide we also
sometimes omit it from the notation. Both traces admit S' actions.

We define the notion of characters in horizontal traces more precisely and generally below.

1TThe category A"V is obtained by reversing the monoidal product, not taking opposite morphisms.
18\ ore generally, the horizontal trace may take as an input an A-bimodule category Q.



32 DAVID BEN-ZVI, HARRISON CHEN, DAVID HELM, AND DAVID NADLER

Definition 3.2. One can view the horizontal trace as a trace decategorification in the sense
of Definition in the following way, following Section 3.6 of [GKRV2(]. We consider the
symmetric monoidal “Morita” category Mory, whose objects are A-mod, i.e. 2-categories of
module categories for a monoidal category A, and whose 1-morphisms are given by bimodule
categories. Then, for a monoidal endofunctor F': A — A, we have tr(A-mod, F') = Tr(A, Ap).

We can apply Definition to obtain the following more general notion of character map for
the horizontal trace (see Section 3.8.2 in [GKRV20]). That is, the horizontal trace Tr(A, F') can
be viewed as the tautological receptacle for characters [(M, Fyp)] of left A-module categories M
equipped with an F-semilinear endofunctor Fjp, i.e. a map of A-module categories Fpp : M —
MF = AF ®A ME

The trace [A] of objects A € A in Definition above is a special case in the following
way: consider M := A as the usual (left) regular A-module category; for A € Ob(A), we define
Fa(=) := F(—)=*A. In this case, we have [A] = [A, F4]. In particular, the trace of the monoidal
unidﬁis [1a] = [A, F], i.e. the trace of the regular representation.

Moreover, the categorical trace provides a “delooping” of the naive trace. To make the
relationship between the two traces precise, we first recall the notion of a rigid monoidal category
(see Definition 9.1.2 and Lemma 9.1.5 in [GR1T7]).

Definition 3.3. Let A be a compactly generated stable monoidal co-category, with multiplica-
tion p: A® A — A. We say A is rigid if the monoidal unit is compact, p preserves compact
objects, and if every compact object of A admits a left and right (monoidal) dual.

We have the following relationship between vertical and horizontal traces of [GKRV20], which
may be interpreted via Theorem 1.1 of [CP19] as a compatibility of iterated traces. Let A be a
monoidal category, and F' a monoidal endofunctor. We denote by (A, F)-mod the 1-category
(i.e. forget the 2-morphisms) of A-module categories with F-semilinear endofunctors as in
Definition 3.2

Theorem 3.4 (Theorem 3.8.5 [GKRV20], Theorem 1.1 [CP19]). Assume that A is compactly
generated and rigid monoidal, and F a monoidal endofunctor. Then, there is an equivalence of
algebras

HH(A, F) ~ ]‘__‘}IfldTr(A,F)(|:147 F‘])OP7
More generally, there is an equivalence of functors:

HH(—) ~ Hom“(A,F)([A,F], [-]) : (A, F)-mod — HH(A, F)-mod.

In particular, assuming that [A, F] is a compact object, then the left adjoint to the functor
Homy(a,r)([A, F, —) defines a fully faithful embedding which preserves compact objects, whose
essential image 1is the category generated by [A, F]:

[A.F]®Ena(a,F])—
HH(A, F)-mod Tr(A, F)

\I‘{om([A,F],—)/

(A, F]).

3.2. Traces in geometric settings. The geometric avatar for Hochschild homology is the
derived loop space (or more generally, the derived fixed points of a self-map), see [BN19, [BN12]
for extended discussions.

Definition 3.5. Let X be a derived stack.

19Roughly7 this is the data of Fy € End(M) with natural compatibility isomorphisms Fyp(A % M) ~
F(A) % Fyp(M) for Ae A;M € M, i.e. for a functor to be A-linear is a structure, not merely a property.

20There is a natural F-equivariant structure on 1a encoded by the structure of F' being a monoidal endo-
functor, corresponding to the F-semilinear endofunctor being F' itself.
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e We define the derived loop space LX (or derived inertia stack) to be

LX = Ma SLX)~X x X

PDsSt, ( ) XX
i.e. the derived mapping stack from a circle, or more concretely the derived self-
intersection of the diagonal.

e More generally, if ¢ : X — X is a self-map, we define the derived fized points or ¢-twisted
loop space L4 X to be the fiber product

LoX —— X

lcv Jr‘(p

X 2 5 X xX.

i.e. the derived intersection of the diagonal with the graph I'y = idx x ¢ of ¢. Note
that the derived fixed points of the identity is the derived loop space, i.e. Lig, X = LX.
e We fix a base point on the circle, e.g. the identity, and denote by ev : L,X — X the
evaluation at this base pointﬂ
e The formation of derived loop spaces and derived fixed points are functorial, i.e. if
f X — Y is map of derived stacks, and ¢x, ¢y are compatible self-maps, then we have
a map of derived stacks Lsf : Lo X — LY.

Example 3.6. For X a scheme we have that the derived loop space £LX ~ Tx[—1] is the total
space of the shifted tangent complex to X, while for X = pt /G we have LX = G/G ~ Locg(S?),
i.e. the classical inertia stack. For a general stack the loop space is a combination of the shifted
tangent complex with the inertia stack.

Example 3.7. For us, the proper self-maps above will arise via a proper action of a group G
on X, i.e. for g € G(k) we obtain a proper map g : X — X. Then, we have the relationship

LyX = L(X/G) xcBac) {9}

Note the parallel between the loop space, which is the self-intersection of the diagonal (the
identity self-correspondence from X) and Hochschild homology (the trace of the identity on a
category). As a result the push-pull functoriality of categories of sheaves under correspondences
implies an immediate relation between their Hochschild homology and loop spaces. Since QC
is functorial under =-pullbacks and QC! under !-pullbacks, this produces the following answers,
both of which hold in particular for QCA stacks (see Corollary 4.2.2 of [DG13|, [BN19], and
Example 2.2.10 in [Ch20a]):

HH(QC(X), ¢s) ~ T(LyX,Or, x), HH(QCY(X), ¢s) =~ T(Ly X, we, x)-

In other words, taking ¢ = idx, the Hochschild homology of QC(X) (respectively QC'(X)) is
given by functions (respectively volume forms) on the derived loop space. For X = Spec(R) a
smooth affine scheme this recovers the Hochschild-Kostant-Rosenberg identification of Hochschild
homology of R-mod with differentials on R,

HH(R-mod) = O(LX) = O(Tx[-1]) = Sym*(Q}[1]) = Q3"

Example 3.8 (Quasicoherent sheaves under tensor product). Let X be a perfect stack in the
sense of [BEN10]. Then, QC(X) has a monoidal structure via tensor product of sheaves. We
have that HH (QC(X)) = O(LX) is an algebra object via the shuffle product, and the universal
trace QC(X) — Tr(QC(X)) = QC(LX) given by pullback along evaluation at the identity.
Furthermore, the monoidal unit is Ox € QC(X) with trace [Ox] = Orx € QC(LX). Finally,
we have

O(LX)-mod ~{(Orx) c QC(LX)

where the fully faithful inclusion is an equivalence if X is affine.

2lpor any other two choices of base point s1, s2, it is possible to consistently identify the maps evs; =~ evs,
by choice of path in the circle.
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We now establish a certain Calabi-Yau property of derived fixed points of smooth stacks (or
more generally, smooth maps). In our arguments it will be useful to factor the loop space of a
map Lf : LX — LY through the following intermediate derived stack, which we define in three
equivalent ways.

Definition 3.9. Let f: X — Y be a map of derived stacks with compatible self-maps ¢ x, ¢y,
and define Z := X xy X. We define L4Yx via the pullback diagrams:

£¢YX — X £¢YX — X £¢YX Emd £¢Y
l Jnﬁ l lfxd)x l lev

Roughly, this is the derived moduli stack of paths in X mapping to loops in Y.

The following lemma is a straightforward verification of the depicted diagrams, which we
leave to the reader.

Lemma 3.10. The above three presentations are canonically equivalent, and we have a canonical
factorization

£¢X % £¢YX - £¢Y

where the maps are realized via the base change

£¢X % £¢YX — X £¢YX — £¢Y —'Y
evxl l lnbx eVX/Yl l f‘w
X x=xy 2 X x X X ——Y 5 YxY

i.e. 0 is a base change of the relative diagonal for f, and 7 is a base change of f itself.

Example 3.11. When ¢ is the identity and Y = pt, the factorization above is just LX — X —
pt.

When X is a smooth stack, there is an equivalence of categories Perf(X) = Coh(X). Thus,
by the above we expect that O(LX) ~ w(LX). It turns out that this equivalence on global
sections comes from a map on the underlying sheaves themselves. We now establish the following
Calabi-Yau property of derived fixed points of smooth stacks, which we will use repeatedly in
our arguments. We refer the reader to Section 8 of [AGI4] for discussion of quasi-smoothness
for derived Artin stacks.

Lemma 3.12. Let X,Y be derived Artin stacks equipped with proper self-maps ¢x,dy, and
let f: X — Y be a compatible smooth relative Artin 1—5tackl?| Then, there is a canonical
equivalence of functors

Lof' >~ Lof*: QCHLLY) — QC'(LyX).
In particular, if X is a smooth Artin 1-stack with a proper self-map ¢, then we,x ~ Or, x-

Proof. Following the notation and factorization in Lemma [3.10] we have canonical identifica-
tions:

WL X/LpYx = eV}k(wX/Za WLyYx/LoY = eV}kg/wa/%
Furthermore, after choosingﬂ one of the projections Z = X xy X — X, the usual exact triangle
for cotangent complexes for the composition X — Z — X gives a canonical equivalence

o~ A% -1, -1
Wx/z = AX/sz/x = Wxye

22By this we mean such that the relative cotangent complex is perfect of Tor amplitude [0, 1], i.e. the fibers
are are allowed to be stacky, and in particular, this map does not need to be representable by schemes.

23The definition of Hochschild homology implicitly requires us to choose an orientation on the circle S*. We
make one such choice, once and for all, which forces a particular choice here (i.e. a choice of sign).
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Thus, we have a canonical equivalence
~ ook, ,—1 * Lk ~
w£¢X/£¢Y*eVwa/y®6 eVX/YwX/yfogd)X.

By assumption the contangent complex Ly is perfect in degrees [0, 1], so the relative cotangent
complex La, ,, is perfect in degrees [—1,0]; in particular, Ay /)y is representable by schemes
and quasi-smooth and thus we have a canonical equivalence (see Proposition 7.3.8 of [Gal3])
Lyf! ~ Lof* @ur,x/c,y =~ Lof* as desired. O

Furthermore, by functoriality of Hochschild homology, for a map of stacks f : X — Y we
expect that the pullback and pushforward functors define maps of global functions or volume
forms HH(f*) : O(LY) —» O(LX) and (if f is proper) HH(fy) : w(LX) — w(LY). We identify
this map with the global sections of a natural map on the underlying sheaves in two cases of
concern (see Appendix for the proof).

Definition 3.13. Let f : X — Y be a map of QCA stacks, and ¢x, ¢y compatible proper
self-maps.

o If f is proper, then we have a pushforward map w(Ly fx) : w(LpX) = w(LeY) of global
volume forms. That is, by Remark 4.6 in [BN19], since f is proper, Lof : Lo X — LY
is proper; w(Lsfx) is the global sections of the counit of the adjunction (L4 fs, Lof')
applied to we,y-

e If f is smooth, then we have a “Gysin” pullback w(Lyf*) : w(LyY) — w(LyX) of
global volume forms. That is, by Proposition if f is smooth then L4 f is Calabi-
Yau; passing through this equivalence, w(L4f*) is the global sections of the unit of the
adjunction (Lgf*, Lgfs) applied to we,y.

Proposition 3.14. Let f : X — Y be map of QCA stacks with compatible proper self-maps
ox,dy. We consider the following functors, which preserve compact objects.

e There are canonical identifications
HH(QC'(X), ¢s) ~ w(LsX).

o Suppose f is proper, and consider f : QC!(X) — QC!(Y), Then, the map HH (fy, dx)
is canonically identified with the map on global volume forms w(Lyf+).

e Suppose that [ is smooth, and consider f* : QC!(Y) — QC!(X). Then, the map
HH(f*, ¢x) is canonically identified with the map on volume forms w(Lyf*).

3.3. Convolution patterns in Hochschild homology. Convolution patterns in Borel-Moore
homology and algebraic K-theory play a central role in the results of [CG97]. We now describe
a similar pattern which appears in Hochschild homology.

Definition 3.15. We will work with the following general setup (see Section 1.5 of [BNP17h]).

e f: X — Y is a proper morphism of smooth, QCA stacks over k, and Z = X xy X.
o ox : X —» X and ¢y : Y — Y are (representable) proper self-maps commuting with f,
inducing a proper self-map ¢ : Z — Z.
We refer to any Z arising from the set-up above a convolution space, and call the category
QCY(Z) a convolution category.

In this setup the category QC!(Z) carries a monoidal structure under convolutio and ¢
is a monoidal endofunctor. The convolution monoidal structure restricts to the compact objects
Coh(Z) thanks to the smoothness of X (hence finite Tor-dimension of the diagonal of X) and
the properness of f; furthermore, since ¢ is proper, ¢, has a continuous right adjoint, and
preserves Coh(Z).

24As explained in Remark 3.0.7 and Lemma 3.0.8 of [BNP17a), on the compact objects Coh(Z) there are two
monoidal products, given by #- or !-convolution, intertwined by Grothendieck duality. We will default to the
l-version, which is amenable to the ind-completed category QC!(Z).
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By Theorem 1.1.3 of [BNPI17al, there is an equivalence of small monoidal categorie
(Coh(X xy X), ) ~ (Funpg,¢(yy(Coh(X), Coh(X)), o).

Moreover, we will argue in Theorem that (QC'(Z), %) is rigid monoidal. The monoidal unit
is the dualizing sheaf of the relative diagonal wa := 14wy, where ¢ : X — X xy X.

Recall (from Section that the Hochschild homology of Coh(Z) (or equivalently of its
large variant QC'(Z) by Remark 2.2.11 of [Ch20a]) for a stack Z is given geometrically by
volume forms on the loop space, or in the case of the trace of ¢, the derived fixed points:

HH(QCY(Z), ¢s) ~T(LyZ,we, 7).
Thus the vertical trace of the monoidal category Coh(Z) defines an algebra structure on global
distributions I'(Ly Z, we, 7).

We want to relate this convolution structure on sheaves its decategorified version involving
volume forms on the corresponding loop spaces. Thus we consider the loop map Ly f : Lo X —
LY to f, whose self-fiber product is L2 ~ Ly X ~r v L4, X. Note that L, f is a proper map
of quasismooth derived stacks. In particular, wz,x is coherent (a compact object in QCH (LX)
and Ly fy preserves coherence. We thus define our main object of interest:

Definition 3.16. We define the universal trace sheaf
Sx/y,q; = £¢f*w£¢x ~ ,Cdyf*O[;(pX € COh(£¢Y).

The latter isomorphism follows since the loop space of smooth stacks are naturally Calabi-Yau

(see Lemma [3.12)).

The endomorphisms of the universal trace sheaf have a close relationship to volume forms on
the loop space of the convolution space. Namely, we have a canonical equivalence

OJ(Ed)Z) o End£¢y(8X/y7¢).

Furthermore, these equivalences are functorial; on the left, this was discussed in Definition [3.13
On the right, the functoriality arises via the following functoriality of the universal trace sheaf.

Definition 3.17. Let (X,Y, f,¢) and (X', Y, f’,¢') as in Definition (with convolution
spaces Z,Z'). Suppose we have maps ax : X —» X’ and ay : Y — Y’ commuting with f, f/,
inducing oz : Z — Z'. Then, we have the following due to base change.
e Suppose that X = X’ and that ay is proper. Then, there is a canonical equivalence
Loy +Sxy,¢ ~ Sx/)y,¢, and the functor azy : Coh(Z) — Coh(Z’) is monoidal.
e Suppose that ay is smooth and f is base-changed from f’) i.e. X = X’ xy/ Y. Then
there is a canonical equivalence Lo}, S/ /v,¢ = Sx/y,e, and the functor aly : Coh(Z') —
Coh(Z) is monoidal.

The functorialities on the two sides of the equivalence are compatible. We summarize our
above discussion in the following.

Proposition 3.18. We let p : Z — Y denote the structure map. In the set-up of Definition
we have canonical equivalences

C: Lypswr,z ~Ende,y(LyfxOr,x)
such that if o : Y — Y’ is proper and X = X', we have commuting squares

Lyas(C)
£¢a*£¢p*WL¢Z ¢—*> £¢a*5nd£¢y(£¢f*05¢x)

~

Defml J{Def B17

’

Lopiwr,zn ————=— Endr,y (Lo f+Or,x7).

~

25Via the discussion in Section 4.7 of |[Lurls], endofunctor categories naturally possess the structure of an
associative monoidal co-category. Theorem 1.1.3 in [BNP17a)] identifies the underlying categories, with convolu-
tion corresponding to composition object-by-object. Thus we can simply define the monoidal structure (with all
its higher coherence compatibilities) on the left by transporting it from the right.
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while if a1 Y — Y’ is smooth and X = X' xyv+ Y, we have commuting squares

Lypiwe,z % Ende,y (LyfsOr,x)
Defml J{Defm

Loz (C)
£¢a*ﬁ¢p*w£¢z #) £¢a*5nd5¢y(£¢f*(9£¢x).

Proof. Application of Proposition @ noting that if f is smooth then Ly4f is Calabi-Yau by
Proposition [3:12 O

Remark 3.19 (Convolution of volume forms and endomorphisms of Sx/y ). Applying the above
proposition to Ly f : Lo X — LY, i.e. if we sheafify over L4Y, we can identify this algebra struc-
ture more concretely as convolution of volume forms on L4Z. That is, LyZ = L X xr,v Lo X
has the structure of proper monoid in stacks over £,Y, from which one deduces the structure of
algebra object in (QC!(£¢Y), ®') on the pushforward of wr,z- One can also use proper descent
for Lyf : L4 X — L4Y to identify this sheaf of algebras with the internal endomorphism sheaf
of Sx/y — an analog, in the setting of derived categories of coherent sheaves on derived stacks,
of the standard proof (see e.g. [CG97]) that self-Ext of the Springer sheaf is identified with
Borel-Moore homology of Z. It would be interesting to see how these arguments globalize over
L4Y to give the isomorphism I'(LyZ, we,z) ~ Endger (2, v)(Sx/y) of Theorem

3.3.1. Horizontal trace of convolution categories. Recall that Theorem [3.4) identifies the vertical
trace HH(QC'(Z)), #) as the endomorphism algebra of the distinguished object in the horizontal
trace ’I‘I‘(QC!(Z), ), under the assumption that this distinguished object is compact (and a
rigidity condition to be addressed in Proposition . In this section we discuss this horizontal
trace in the context of convolution spaces following [BNP17b|, slightly generalizing the main
theorem of op. cit.

For this we require a discussion of singular supports; we summarize the main points and refer
the reader to [AGI4, BNP17b| for details. Note that singular supports do not appear in our
main application Theorem [£.12] since the singular support condition there is actually a classical
support condition (see Remark [4.14)).

Definition 3.20. Let f: X — Y be a representable map of quasi-smooth stacks.
o We define the scheme of singularities or (classical) odd cotangent bundle to be

= Specy Sym¥ H'(Tx) = Specy Sym§ H(Tx[1])
where Tx denotes the tangent complex of X, i.e. the Ox-linear dual of the cotangent
complex.

e Any ind-coherent sheaf F € QC!(X) has a closed conical singular support SS(F)
’]I‘ﬁ(['l]. To any subset A ¢ ’]I‘;k(['l] we can associate the full category QC}, (X) < QC'(X)
consisting of sheaves with the specified singular support.

e Let Ax T;}H] and Ay < ']I‘;k,[_l]. One can push forward fyAx and pull back f'Ay

singular support conditions in a compatible way with the pullback and pushforward

TY

functors:
fo:QCY(X) = QCHA (V). f:QCY, (Y) = QCly, (X).
Example 3.21. If X is smooth, then T;['l] = X, i.e. there are no possible singular codirections

to consider. In particular, the nontrivial fibers of the map ']I‘j([_l] — X live over the singular

locus of X.

When A = T;‘}['l], we have QC!A(X) = QC!(X). At the opposite extreme, when A = {0}x
is the zero section, we have QC, (X) = QC(X). If Z c X is a closed subscheme and A =
7 Xx ’H‘i([_l], then QC'\ (X) = QCY(X), i.e. the full subcategory of ind-coherent sheaves with
classical support at Z ¢ X. If instead we take A = Z x {0}x, then QC} (X) = QC4(X).
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The following singular support condition appears when taking traces of convolution categories.

Definition 3.22. Recall the notation from Definition B.5 and Definition 3.1 We have the
following trace correspondence:

Z=XxyX 2 L¥x=2Z x X~X x X " L,V
XxX Y xX

We define a singular support condition Ax )y 4 := w*é!'ﬂ‘;['l].

We now give a description of the horizontal trace. The following statement is more general
than the statement of Theorem 3.3.1 in [BNP17b|, but follows from the same argument in the
proof with the definitions given above; the proof is in Appendix [A72]

Theorem 3.23. There is a canonical identification of the horizontal trace (i.e. the monoidal
Hochschild homology)

Tr((QC'(2),%),6x) ~ QCl ., (LsY),
with the universal trace given by’
[—] = med' 1 QC'(X xy X) > QCl ., (LoY).

Next we identify the universal trace sheaf (i.e. coherent Springer sheaf) as the trace of the
monoidal unit (which is a compact object of the trace category) or regular representation:

Lemma 3.24. There is a natural equivalence Sx )y, ~ [wa] = 7¥8'wa in Coh(LyY).

Proof. The calculation of §'wa = 6'Aywx arises via base change along the diagram

[,(z,X — »Cd)YX:ZXXxXX

| |

and the statement follows. O

3.3.2. Trace delooping in convolution categories. We now deduce the main structural relation
between universal trace sheaves (see Definition [3.16)) and iterated categorical traces of convolu-
tion categories.

Theorem 3.25. Let f : X — Y be as in Definition |3.15. Then, the convolution category
QC!(X xy X) is rigid. In particular, the statements of Theorem apply: the vertical trace of
the convolution category (QC!(Z), *) is identified as an algebra with the endomorphisms of the
universal trace sheaf

HH(QCH(X xy X),¢s) ~ Endqer e, v) (Lo fswe,x)
compatibly with the natural S*-actions (from the cyclic trace and loop rotation, respectively).

Proof. We need to verify that QC'(Z) is rigid monoidal. Standard arguments show that integral
transforms arising via coherent sheaves preserve compact objects; this statement is also con-
tained within Theorem 1.1.3 in [BNP17a]; one further immediately observes that the monoidal
unit Aywyx is a compact object, i.e. coherent, since the diagonal is a closed embedding. It re-
mains to verify that the right and left duals of coherent sheaves K € QC' (Z) are again coherent.
Using loc. cit., it suffices to show that the right and left adjoints of the corresponding integral
transform Fi : QC(X) — QC(X) preserve compact objects. We note that since the projection
maps p : Z — X are quasi-smooth, the functors p' and p* differ by a shifted line bundle. By
Lemma 3.0.8 in op. cit. we can consider equivalently either the * or !-transforms up to twisting
by Grothendieck duality. For convenience we will consider the #-transform.

26Note that our trace functor is given by &' rather than the 6* in [BNP17D), since we employ the !-transform
rather than the %-transform.
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To see the claim, note that we can write the *-integral transform Fy as a composition:

QC(x) —2 5 Qe(z) —2  QCl(z) — 2 QCl(X).

We claim that the right adjoint preserves compact objects. The claim for the left adjoint follows
similarly by replacing p* with a twist of p' by a shifted line bundle. The right adjoints define a
sequence of functors

QO(X) «— 2 qe(z) e @t T z) KIIOE ok x).

The functor Homqe:(z) (K, —) : QC'(Z) — QC(Z) is defined as follows. Given G € QC'(Z), we
may write G = colim; G; with G; € Coh(Z). Since K is compact, we may define:

Homqer () (K, G) == lizm’HomZ(lC, G:) e QC(2)

where the internal Hom on the right is taken inside Coh(Z) < QC(Z) as usual. Let us justify
the claim that this functor is a right adjoint to tensoring with K. Let F € QC(Z), and write
F = colim; F; with F; € Perf(Z). Then, by the usual adjunction in QC(Z), and using the facts
that the F; are compact in QC(Z) and that F; ® K € Coh(Z) are compact in QC'(Z) since F;
are perfect, we have:

HOIHQC(Z) (.7:, ’Hoch(Z) (K, g)) ~ HOHIQC(Z) (cogjm ]:j, h?l Homz (K:, Ql))

~ l;ujnHoch(Z) (Fj, Homz(K,G;)) ~ lirjn Homgci(z)(F; ® K, Gi) ~ Homger (4 (F @K, G).

Finally, we verify that Homgqe:(z)(K, —) sends Perf(Z) to Coh(Z), which implies that the
sequence of right adjoints above preserves compact objects. The Grothendieck dual D(K) =

Homz(K,wz) is coherent, and since Z is quasi-smooth, wyz is a line bundle, so we have for
€ € Perf(2):

Homqer (2)(K, E) = Homge (2)(K,wz) ®o, wgl ®o, € ~D(K) ®o, wgl Ro, €

which is coherent. O

3.4. Trace of the standard categorical representation. In Lemma[3.24] we have computed
the trace of the regular representation QC'(Z) of QC'(Z) to be the universal trace sheaf, i.e.
[QC!(Z),gb*] ~ Sx/v, = Lof+Or,x. Our convolution set-up comes equipped with another

natural module category: the the standard representation, i.e. the module category QC!(X ). In
this section we compute the trace of this categorical representation, and relate it to the trace of
the regular representation in a special case. We first note a degenerate example.

Example 3.26. Consider the case when X =Y = Z is smooth. In this case, QC!(Y) = QC(Y),
and the trace correspondence of Definition [3.22]is simply given by pullback along the evaluation
ev:LyY =Y

Y & LY —— LY.

In this case, the standard representation is the regular representation, and by Theorem 3.3.1 of
[BNP17D] (and Proposition , the trace of the regular representation is

[QC’(Y)7¢*] = [wY] =WL,y = O£¢y
and the corresponding singular support condition Ay y,4 = {0}c,y is the zero section, i.e. we

have Tr(QC'(Y), ¢x) = QC(L4Y) (see Corollary 5.2 of [BENI0]).

We recall a few notions from Section 2.3 of [BNP17b]. The following functors allow us to
pass between categories with different singular supports.
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Definition 3.27. For a pair (X, Ax), there is an adjoint pair of functors (see Definition 2.3.2
of [BNP17h]):

i QCY(X) — QCY(X) :Ty
where ¢ is the the natural inclusion, and I'y is the corresponding colocalizationm
We need an identification of the relative tensor product of convolution categories, with spec-

ified support. We work in the set-up of Definition let X; be smooth QCA stacks over k,
proper over Y, and let Z;; = X; xy Xj.

Definition 3.28. Let Aj5 C ']I‘;[l';] and As3 C ']I‘;[Z_Sl]. Consider the diagram

Zig x Zag +2— X1 xy Xo xy X3 —— Zy3.
We define the convolution of singular supports
Ayg % Aoy = my6' (Mg (X Ass).
We say that A;; is Z;-stable if ’]I‘;E;l] # Ny < Ayj.

Remark 3.29. The trace singular support condition Ay of Definition can be viewed as
the convolution of TZH] with itself “in a circle.”

We immediately observe that the convolution action restricts to an action of QC'A(ZZ) on
QC’AU (Z;;) if and only if A;; is Aj-stable. In particular, we have the following identification,
which we prove in Appendix a proof will also appear in [CD21].

Proposition 3.30. In the set-up above, let A1o C ']I‘E[_l] and Ayz TZ['I] be Zyo-stable. Define

12 23
A3 := A1 % Ao3. Then convolution defines an equivalence of categories:

QCh,, (Z12) ®QCt(250) QCh,, (Z23) —— QCly, (Z13).

Furthermore, we have the following functoriality of supports: let A;;+1 C A;,i+1 be another
singular support condition on Z; ;41 (for i = 1,2) with Al := Aly % Abs. Then, A1z < Al3, and
the following squares commute:

QCh,,(Z12) ® QCj,,(Z23) —— QC},(Z13)
QC'(Z22)

L r
LA12®LA23\LTFA13®FA23 AIS\H\ s

QCy, (Z12) ® QCy, (Zh3) —— QCY, (Z1a).
QC'(Z22)

We now compute the the trace of the categorical representation, which arises via functoriality
of horizontal traces (see Section 3.5 of [BN19] for details). Namely, consider the “renormalized
(ind-coherent) Morita invariance” functor

T(-) := QC'(X) ®qc(vy — : QC(Y)-mod = QC'(Y)-mod — QC'(Z)-mod.

Note that the QC(Y) action on QC(X) = QC'(X) via pullback commutes with the QC'(Z)-
action by convolution. This functor defines a functor on horizontal traces (note that, as discussed

. !
in Example QC{O}£¢y(£¢Y) = QC(LyY)):
Tr(T, ¢) : Tr(QC(Y), ¢x) = QCloy,,, (LY) — Tr(QC(Z),é4) = QCh , , (LoY).
27e. a “projection” functor to the subcategory QC!A(X)7 which we view as a singular support analogue of

local cohomology. Note the abusive notation, i.e. the local cohomology functor usually refers to the functor
tp ol
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There is a canonical endofunctor ¢, : QC'(X) — QC'(X) for which the actions above are
canonically ¢4-semilinear. By definition,

[QC'(X)a ¢*] = ’I‘I‘(Tv ¢*)([QC(Y)’ ¢*]) = 'I‘I‘(Ta ¢*)(O£¢Y)'

A variant of this functor for quasi-coherent sheaves, and in the setting where f : X — Y is
surjective, was studied in [BFN12]. Note that unlike in their setting, this functor T is not an
equivalence since we are considering ind-coherent sheaves. Furthermore, the failure of f to be
surjective in our setting requires the application of local cohomology in the calculation of its
trace. We now identify the trace of the standard representation.

Proposition 3.31. Define the singular support condition {0} ¢(x) := {0}z,v N Ax,y,4. There
s a canonical identifications of functors

! !
Te (T, fs) ~ L0} rx) O L0y ) QC{O}£¢Y(L¢Y) - QCAX/y,¢(£¢Y>-
Furthermore, letting ev=1 f(X) < L,Y corresponding to {0} ¢(x), we have
[QC|(X)7 d)*] = Fev_lf(X) (w[ld)Y)'

Proof. For simplicity, we will prove the statement where ¢ is the identity; the general case
follows similarly. We claim that the right dual to T is

TH(-) := QCY(X) ®qc(z) — : QC'(Z)-mod — QC'(Y)-mod
where QC'(X) here is considered as right QC'(Z)-module, so that we have
TRoT(-) = (QC(X) ®qc!(z) QC'(X)) ®qci(y) — = QC!f(X)(Y) ®qc(y) =
T o TR (=) = (QC'(X) ®qci(v) QC'(X)) ®qci(z) — = QC!{O}Z(Z) ®qc!(z) —

Note that the convolution QC(Y')-action can be re-interpreted as the usual pullback and tensor
product, while the QC! (Z)-action is by convolution. The first isomorphism is due to Proposition
whereby
! ! !
QC(X) ®qei(z) QC(X) =~ QCHx(Y)
i.e. the full subcategory of QC'(Y) = QC(Y) with classical support on the closed subset f(X)
(since Y is smooth there are no possible singular codirections). The second isomorphism is due
to Theorem 4.7 of [BFNI0), i.e. we have QC'(X) ®qc!(v) QCH(X) =QC(2) = QC!{O}Z(Z).
To establish duality, we need to write down unit and counit maps

n:QCH(Y) — QC'(X) ®qci(z) QCHX) ~ QClyx) (Y),

¢ : QCly,(Z) ~ QC'(X) ®qc(v) QC'(X) — QC'(2)
satisfying the usual “Zorro’s identities”. We define n := T'y(x) to be the local cohomology
functor, and € = ¢(p}, to be the fully faithful inclusion. The verification of Zorro’s identities is
immediate from the observation that tensoring 7 or € with idge(x) (on either side) gives rise
to the identity functor, i.e. that the following diagrams commute:

QCH(X) ® QC'(Y) —— QC'(X) QClp,(2) ® QC'(X) —— QC'(X)
QCH(Y) QC'(2)
idch(x>®nl Jidqc!(m e@idQc!()Ql JidQC!(X)
QC'X) @ QCon(Y) —= QC'(X) QC'(2) ®qci(z) QC'(X) —— QC'(X)

This follows by Proposition and the singular support calculations (note that X is smooth
and thus T;[_l] has no singular codirections):

{0}x = f(X) = {0}x, {0}z * {O}x = {O}x.
This establishes the duality of (T, T%).

Now, we compute the map on traces, using the functoriality described in Section 3.5 of
[BN19]. There is a canonical commuting structure ¢ : T o ¢y, — ¢z4 o T, which for us is
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an equivalence (thus induces an equivalence on traces). We let f(X) < ’]I‘f,['l] =Y denote the
(necessarily, since Y is smooth) classical support condition, and define A := ev'(f(X)), i.e. the
loops with base points classically supported over f(X) < Y and no singular codirections. We
have {0} 2y DA < Ayy.

Tr(QCH(Y), dys) ———— QClgy,,, (£sY)
Tr(QC'(Y),noidg,, ) lpAoLm}:rA
Tr(QC'(Y), TR o T 0 dys) —— QClysj(x)(LsY)
Tr(QCH(Y),idprow) |~ H
Tr(QC'(Y), TH 0 ¢zs 0 T) —— QCluf(x)(LsY)
Tr(QC(Z), ¢z% 0 T o TR) —— QCj_ 110y, (LsY)

Tr(QC'(Z),id g, o¢) lFAX/YOLA:LA

Tr(QCH(2), ¢z4) ——— QCh,, (LsY)

The top and bottom isomorphisms are given by Theorem 3.3.1 in [BNP17b]. We argue the
middle isomorphisms. A combination of the arguments of Propositions and gives rise
to identifications

Tr(QC'(2),T o T 0 gys) = QCH(Y) ®qer (v xv) QCY(x) (Y) = QCLut (x) (Lo,

Tr(QC(Y), ¢z« 0 T o T) = QCY(Z) ®qcr(zx2) Qo). (£) = QT zi(0y, (LY,
where 8,7 {0}z is the pull-push of {0}z along the correspondence in Theorem We note
that 6,7 {0}z = 8:{0}z,vy = ev'f(X) = {0};(x) (where {0} ;(x) is as defined in the theorem
statement). The identification of the vertical functors follows via the functoriality of supports in
Proposition applied to the setting of Proposition and the observation that {0}.,y >
A © Ax/y,4. This establishes the first statement of the theorem.

For the second statement, note that wg,y is perfect (since LY is quasi-smooth), i.e. has
no singular codirections. Note that in general, for singular support conditions A1, As ’H‘i['l],
we have I'p, 0 tp, 0T'p; = I'a,~n,. Now, take Ay = {0}y (i.e. no singular codirections with
unrestricted classical support) and Ay = ev ' f(X) xz,y ’H‘z[;,] (i.e. all singular codirections
with restricted classical support). The second statement follows, since I'y, (wz,y) = we,y and

'y, is the classical local cohomology functor with support ev=!f(X). O
Corollary 3.32. The functor

Hom(SX/Y,gﬁa —): ﬁ(QCI(Z)7 bs) ~ Qc!evflf(x)(ﬁtby) - End(SX/Y.,¢) -mod
takes U'ey—15(x)(Or,y) to the HH(QC!(Z), @4 )-module HH(QC!(X),¢*).

Proof. By Theorem it suffices to identify the trace of the QC!(Z )-module category QC!(X ).
By the above theorem, [QC'(X), ¢ ] ~ LCev-15(x)(We,y) = Dov-15(x)(Or,y) (the latter isomor-
phism by Proposition [3.12)). O

3.4.1. Splitting the universal trace sheaf. There is a canonical map

[QC'(2), ¢x] = Sx/v.6 = Lofswr,x — Toy-17(x)(we,y) = [QCHX), ds]

arising via the pushforward of volume forms. In this section we investigate when this map
splits, realizing the trace of the standard representation as a summand of the trace of the
regular representation. Our goal is to prove the following.
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Proposition 3.33. Let f : X — Y be a proper morphism of smooth QCA stacks, with compatible
self-maps ¢x, Py . Assume that:

o oy, is a monoidal endofunctor of QC(Y) and ¢ x4 is a ¢y «-semilinear endofunctor of
QC(X) (e.g. ¢x,dy are automorphisms),

o f.O0x ~ Oy, for Yo €Y a (possibly singular) closed substack, i.e. f is a resolution of
rational singularities,

o the closed substack Yy has finite Tor dimension, and

o LoYy = LyY as derived stacks.

Then, [QC'(Z), ¢+] = Sx)y ~ Ly fewe,x contains [QCH(X), ¢s] ~ Lev-15(x)(We,y) as a sum-
mand, i.e. the map defined above splits. In particular, we have the following converse to Corol-

lary[3-32: the fully faithful map of Theorem[3.]]
HH(QC!(2), ¢x)-mod — QCj . (LY

takes HH(QC(X), dx) —> we,y ~ Or,y-.

To prove the above result, we require a discussion of enhanced vertical traces, i.e. the re-
alization of vertical traces of module categories for a monoidal category as characters in the
horizontal trace of the monoidal category.

Definition 3.34. Let us fix a monoidal dg category A, and a monoidal endofunctor F. For
any A-module category C equipped with a commuting structure Fig for ' (see Definitions
and , we define the enhanced Hochschild homology to be

M(C7FM) = [C,FM] € 'I‘I‘(A,F)

By Theorem the usual Hochschild homology can be recovered by applying the functor
Hommy(a, r)([A, F], —).

Remark 3.35. We have seen examples of this enhanced Hochschild homology in Section [3.2]
namely that in geometric settings Hochschild homology and maps induced by functoriality often
sheafify, i.e. arise as global objects via local ones by taking global sections. The category QC(Y)
is monoidal, and for any module category C the Hochschild homology H H(C) := [C] € Vecty
has an enhancement HH(C) € Tr(QC(Y)) = QC(LY"). Though we do not need or prove it, the
enhanced Block-Getzler complex in Definition[2.11]is also an example of this phenomenon, where
we view the Hochschild homology of a Rep(G)-module category as an object of Tr(Rep(G)) =
QC(G/G).

We now compute the enhanced trace in an example of interest; see Appendix [A.2] for a proof.

Proposition 3.36. Let f : X — Y be a map of QCA (or more generally, perfect) stacks, and
dx, Py compatible self-maps such that ¢y, : QC(Y) — QC(Y) is monoidal and px4 : QC(X) —
QC(X) is ¢yy-semilinear. Consider QC(X) as a QC(Y)-module category. Then, we have

HH(QC(X), dxs) = [QC(X), ¢x4] =~ L4 f+Or,x € Tr(QC(Y), dy+) = QC(LyY).
We now prove the result via the following mild generalization.

Proposition 3.37. Let f : X — Y be a morphism of QCA stacks, with compatible self-maps
ox, Py such that ¢y, : QC(Y) — QC(Y) is monoidal and ¢x4 : QC(X) — QC(X) is Pyx-
semilinear. Further assume that f,Ox ~ Oy, and that f, sends Perf(X) to Perf(Y). Then,
Lyf«Or,x contains Or,y as a summand.

Proof. To prove the claim, we need to produce a splitting. First note that HH(QC(Y), ¢4) =
O(L4Y) has the structure of an algebra object given by multiplication of functions. The struc-
ture sheaf Oy is the monoidal unit and thus has a canonical ¢,-equivariant structure, and thus
its trace [Ox] is the monoidal unit in HH(QC(Y), ¢4). Thus, [Oy] = 1.,y (and similarly for
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X). Now, consider the diagram
HH(QC(Y),¢x) == Or,y 2 1,y =——— [Oy]

parmon) ] I

HH(QC(X),¢x) = Ly f+O0r,x 3 1g,x = [f*Oy] = [Ox]

M(f*ﬁ*)l l I I

HH(QC(Y),¢4) == Or,y > g,y = [f:+Ox] = [0Oy]

Note that f* always preserves compact objects, and f, preserves compact (i.e. perfect) objects
by assumption, giving us the functoriality on the left following Proposition [3.36] To see that
the composition is the identity, note that a map Og,y — O,y is determined by where the
constant function maps; in particular, since it maps to itself, the map is the identity. O

Proof of Proposition[3.33 Since X and Y are smooth, wg,x ~ O, x and Og,y ~ we,y. Since
[f surjects onto L4Yp, which is equal to LY, we have that ['ey—15(x)(we,y) = we,y =~ O,y =~
Or,Y,, and the result follows by applying Proposition to the map X — Yy (note that since
f is proper and X is smooth, f, sends Perf(X) = Coh(X) to Coh(Yy), and since we require Yy
to have finite Tor dimension we have Perf(Yy) = Coh(Yp)). O

4. THE AFFINE HECKE ALGEBRA AND THE COHERENT SPRINGER SHEAF

We now specialize the discussion of Section [3]to our Springer theory setting. We are interested
in the following special cases.

Definition 4.1 (Coherent Springer sheaves). Recall that G = G x G, and the set-up in
Definition [3.15] and the universal trace sheaf of Definition [3.16]

o We take
f=u:X=N/G—N/G—Y =g/G
to be the scaling-equivariant Springer resolution (with codomain in the Lie algebra rather

than the nilpotent cone). We call the resulting sheaf S on £(N'/G) (or equivalently, on

C(g/é) supported over N) the coherent Springer sheaf.
o We take

f=p:X=N/G—N/G—Y =g/G

to be the above Springer resolution without G,,-equivariance, and ¢ := g to be multi-
plication by ¢ € G,,,(k). Then we have the derived g¢-fixed points:

LyN/G) ~ LIN/G) % (g, {a}-

This is the stack Ly o from the introduction. We call the sheaf S; on Eq(J\A/ /G) the
coherent q-Springer sheaf.

We note the following convenient presentation of the stacks £(N/G) and L(N/G).

Remark 4.2. We realize L(N'/G) as the formal completion of £(g/G) — g/G over the nilpotent
cone. By Proposition 2.1.8 of [Ch20al, we can write £(g/G) as the pullback

L(g/G) g/G {0}/G
(g x G)/G 225 (g x g)/G —— g/G

where the bottom right map is given by subtraction in g, a is the action map, p the projection,
and A the diagonal. Explicitly, the map g x G — g is given by (z,9,q) — ¢ 'Ad,(z) — 2. We
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also have a version for fixed ¢:
Lq(9/G) 9/G {0}/

! J2 I

(6 x G)/G 5 (g x g)/G —— g/G.

where a, is the ¢-twisted action map. There is a similar description for L(N/G) = L(n/B):
LWN/G) N/@ (G/B)/G

| |2 [

N x G)/G 22 (N x N)/G ——— N/G.

We record the following mild generalization and direct consequence of Proposition 4.2 in [H20]
and Proposition 2.1 in [He20] (also proven for g a prime power in Proposition 3.1.5 of [Zh20]).

Proposition 4.3. If q is not a root of unity, then L, (/\A/'/G) 1s a classical stack, i.e. has trivial
derived structure and is supported at the nilpotent cone.

Proof. We first argue that £,(g/G) is supported over the nilpotent cone, thus £,(g/G) =
L4(N/G). The formation of (twisted) loop spaces commutes with products; note the Carte-
sian square

N/G —— g/G

| |

{0} —— b//W.

The morphisms are G,,-equivariant, where G,, acts on h by weight 1, and thus on h//W by
weights > 2. Thus if ¢ is not a root of unity, then the (derived and classical) ¢-fixed points of
bh//W is precisely {0}. Thus the map on the bottom is an equivalence, and the claim follows.
The vanishing of derived structure follows by Proposition 4.2 in [He20] and in view of Remark
2.2(b) of op. cit. O

Remark 4.4. Tt is necessary to exclude roots of unity; when G = SLa, the weight of h//W is
2, so the argument fails for ¢ = +1. When G = SLs, the weights of h//W are 2 and 3, so the
argument fails for ¢ = +1 and any cubic root of unity.

We now give an alternative characterization of the coherent Springer sheaf (and likewise for
the g-version) via coherent parabolic induction.

Definition 4.5. Consider the parabolic induction correspondence

N/G 2 7/B — {0}/H.
We define the coherent Springer sheaf by applying the loop space of the above correpsondence
to the reduced structure sheaf of £({0}/H):

S = LsOfp e = LpsLv* O oy ) € Coh(LN/G)).

We define the coherent q-Springer sheaf analogously, or equivalently we can take S, := ¢S,
where ¢4 : L,(N/G) — L(N/G) is the closed immersion.

Remark 4.6. Note that a priori, one could define S, via either the * or !-pullback. However, the
map ¢, is base-changed from the map i : {¢} — G,,/G,,. Since {¢} = G,, has trivial normal
bundle and i, has relative dimension zero, we have a canonical equivalence LEI ~ L;“, i.e. it did
not matter which definition we took. Likewise, since derived loop spaces of smooth stacks (or
smooth morphisms) are Calabi Yau by Proposition we have an equivalence Lv* ~ Lv' and

can use either.
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For number theory applications, we will be interested in specializing at ¢ a prime power. There
are the algebraic specializations of the affine Hecke algebra, which have no derived structure
since H is flat over k[z,z71].

Definition 4.7. We define the Iwahori-Hecke algebra by
Hy = HOplz,21) k[27z_1]/<z — Q).

A potentially different algebra arises when specializing geometrically, i.e. taking endomor-
phisms of a g-specialized Springer sheaf. We introduce the following unmixed version of the
affine Hecke algebra, which is obtained by taking G-equivariant endomorphisms of the Springer
sheaf without taking G,,-invariants, i.e. by passing to the base changed stack E(J\Af / é) X BG,, Dt

Definition 4.8. We define the unmized affine Hecke algebra and its specialization by
H = Endﬂ(ﬁ/é)xmmpt(s)7 Hy" = H" ®£[z,z*1] k[z, 2~ /{z — ).
The algebra H“™ has the additional structure of a G,,-representation, i.e. a weight grading.

The unmixed affine Hecke algebra arises naturally when considering the trace by pullback by
various q € G,, acting on the affine Hecke category H = Coh(Z/G) (as opposed to the mixed
affine Hecke category H™ = Coh(Z/G)).

Proposition 4.9. There is a natural equivalence of algebras
Hy" ~ HH(H,qs) ~ Endﬁq(ﬁ/G)(Sq).
That is,
s [FWo @ Sym (0¥ (-1 @0*[-2])  when g = 1
- Hq when q # 1.

Proof. We adopt the shorthand notation £*"(N/G) := L(N/G) x pg,, pt, and S*" for the

corresponding coherent Springer sheaf. Let ¢, : ﬁq(./\A/ /G) — L""(N'/G) be the base change
along the closed immersion {q} < G,,. Consider the forgetful functor for the natural map of
algebras

H™ = Endcw(ﬁ/é)(S“") — Horn[:q(ﬁ/c)(L:';S’m7 1aS"") = HH(H, g4).

obtained via functoriality (Proposition [2.12)). Using the (s, t4,+) adjunction, we have ¢ 4% F =
cone(q : F — F), and an equivalence of complexes

Homﬁ(ﬁ/é)(S,Lq,*L’q“S) «— Homﬁ,m(ﬁ/@)(S“",S“”) = Hun

!
Homﬁw(ﬁ/é)(S“”,S“") = H"".
The equivalence is an equivalence of dg algebras, so HH (H, ¢ ) ~ Hy", proving the claim. [

Remark 4.10. The algebra H"“"™ can be recovered as the G,,-enhanced Hochschild homology
of H™ discussed in [GKRV20] and Section In particular, take coordinates O(G,,) =
k[z,271], let h*[—n] denote the shifted dual Cartan algebra in cohomological-weight bidegree
(n,1), and define the graded k[z, 271] algebra

A o= O(L(B[]/Grn) = Symiye, ) (0¥ [—n] @k O(Gyn)) /(= — 1) | = € b*[~n]).
One can compute (in a similar manner as Theorem and Corollary that
HY" = HH®™ (Hm) =H ®O(Gm) A2

recovering the above proposition on specialization at various z = ¢. One can do the same for
the variants in Remark i.e.

HH®"(Coh(2'/G)) =#H,  HH®"(Coh(2"/G)) = H @0, A

Note that Theorem 4.4.4 in op. cit. establishes a relationship similar to this one.
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Remark 4.11. One can similarly argue that H, can be realized as the endomorphisms of the
restriction of S along the base change of the inclusion {¢}/G,, — L(BG,,), i.e. where we retain
G,n,-equivariance.

Our main result is the following theorem.

Theorem 4.12. Assume that ¢ # 1. The dg algebra of endomorphisms of the coherent Springer
sheaf is concentrated in degree zero and is identified with the affine Hecke algebra,

Endﬁ(ﬁ/é)(S) ~H, End, %/q) (Sy) ~ Hy.
In particular, S generates full embeddings, the Deligne-Langlands functors:
DL : H-mod — QC'(L(N/G)), DL, : Hy-mod — QC'(L,(N/G)).
On the anti-spherical modules M®P := Ind’; (sgn) and MysP .= IndZ§ (sgn), these functors
take values ’
DL(M?*P) ~ prs(wg(ﬁ/é))’ DLq(M;Sp) = Pprg, (wgq(ﬁ/g))a
where prg = DLoDL? (resp. prs, = DLg oDLf}, i.e. the composition of the Deligne-Langlands
Sfunctor with its right adjoint. When q is not a root of unity,
DLg(M™) = prs, (@r, w/e) = e @6 = Or,w/e)

Furthermore, these embeddings are compatible with parabolic induction, i.e. for a parabolic
P o B with quotient Levi M, we have commuting diagrams

Har-mod —— QC'(L(Nay/M)) uny-mod —— QC!(Ly(Nar/M))
He®r,, l lﬁu*oﬂv* HQ’G®HQ’M_\L lﬁqu*oﬁqy*
He -mod — QCHL(Ng/G)) H, ¢ -mod —— QC'(Ly(Ne/Q)).

That is, the parabolic induction functor is the pull-push along the correspondence obtained by
applying L or L4 to the usual correspondence

Proof. The first claim of the theorem is a combination of Theorems [2:29] and Theorem [3:25]
Corollaries and [2.30} and Proposition for both general ¢ and specific ¢q. It remains to
prove the claims regarding the anti-spherical module and compatibility with parabolic induction.

We first address the claim regarding anti-spherical modules. By Corollary we have an
equivalence as End(S) ~ HH (Coh(Z/G))-modules

Hom (8, w 57,¢y) = HH(Coh(N/G)).

Thus, it follows that prS(wL(ﬁ/é)) ~ HH(COh(/\N//CN}’) as HH(Coh(Z/C:’))—modules (and simi-
larly for special ¢). Thus, we need to compute the module HH(Coh(N/G)) (and likewise for
special ¢), and we need to identify the projection for ¢ not a root of unity.

We first produce an isomorphism HH(Coh(N/G)) ~ M#P as HH(Coh(Z/G))-modules,
and isomorphisms HH (Coh(N/G), q4) ~ Mg*P as HH(Coh(Z/G), g+ )-modules. The first iso-
morphism follows via the identification of K,(Coh(N/G)) as the anti-spherical module for
Ko(Coh(Z/G)) in Section 7.6 of [CG97J once we establish an equivalence Ko(Coh(N/G)) ~
HH(Coh(N/G)) as Ko(Coh(N/G)) ~ HH(Coh(N/G))-modules, and the second would follow
from an equivalence HH (Coh(N'/G, ¢) ~ HH(Coh(N/G)) ®k[G,,] K (similar to the identifica-
tion in Proposition .

28In our convention, Ko(Coh(ﬁ/C:')) is identified with the anti-spherical module, while Ko(CohB/é (ﬁ/é)) is
identified with the spherical module.
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To see this, note that Coh(A/G) has a semiorthogonal decomposition indexed by A € X*(H)
characters of the quotient torus H = B/[B, B], where each subcategory Coh(N/G)), is gener-
ated over Rep(G,,) by the line bundle Ox ~( ). Computing via the Block-Getzler complex of

Definition m (see also Corollary |2 , and noting that EndN/G(Oﬁ/é()\)) = k we have that
the specialization at ¢ map is:

H(Coh(N/G))x) —— HH®™(Coh(N'/G))x) —— HH(Coh(N/G))a, qx)

R k !

O(Gy,) O(G,,) kq.

The equivalence on the left induces an equivalence Ko(Coh(N/G))y) ~ HH(Coh(N/G))y).
Summing over each subcategory in the semiorthogonal deomposition, this establishes both
claims.

It remains to compute the projection prs, (wﬁq(ﬁ/@)) for ¢ not a root of unity. We wish to
apply Proposition W to show that W (/G 182 summand of S;, but to do so we need to
replace the formal completion N < g with the reduced nilpotent cone N = g xp,y {0}. Since
derived fixed points commutes with fiber products, the diagram

LyN/G) —— Ly(9/G)

| l

Lq({0}) —— Lq(b//W)

is Cartesian. When ¢ is not a root of unity, by Proposition we have £,({0}) = L,(b//W).
Thus, L,(N/G) = L4(g/G), and W (R/G) = WL, (N/G)» SO it suffices to show that we (nv/q) =
Or,wyc) is a summand of S;. Since fxOz ~ Opr, we may apply Proposition @ to establish
the splitting.

We now address compatibility with parabolic induction. First, note that by Proposition [3.12
we have Lv* = Lv* since v is smooth. Let H = B/U, fix a parabolic P > B with quotient
Levi M, and let By; < B denote the Borel subgroup defined to be the image of B < P under
the quotient. Consider the correspondence

Za/G :=n/B X /G n/B +— Zp/P:=n/B X /B n/B -2 Zy /M =1y /By Xm/M nr/Bar.

Note that the correspondence satisfies the conditions of Proposition ie. since n/B =
b/B xy,p {0}/H (and similarly for Bys), and the formation of loop spaces commutes with fiber
products, we have via base change that S¢ = LuxOrw/p) =~ LusLv*Or((0y/m), and similar
formulas hold for Sp;. That is, the coherent Springer sheaf is the parabolic induction of the
structure sheaf of £({0}/H). Thus, we have a Cartesian diagram

L£(b/B)
/ \
L(br/Bar) L(p/

I Y

thus LuxLv*Spy ~ Sg by base change. By the commuting diagram

H(Coh(Za/M)) 2B (22, 00)) 22 BT B (syy)
lHH(z*p*) lDef‘ J{Def. B17

H(Coh(2¢/C)) 2B oy(£(26/G)) 2B Bna(sy),

L(g/G)
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it remains to check that the map HH(Coh(ZM/M)) — HH(Coh(Z¢/G)) induces the parabolic
induction map on affine Hecke algebras. By Corollary we can argue for K| instead, i.e. we
show that the map

Has ~ Ko(Coh(Zy/M)) — Ko(Coh(Z¢/G)) ~ He

agrees with the natural parabolic induction map of affine Hecke algebras Hj; — H which takes
Tt — T w where w € Wy, s (in the notation of Section 7.1 of [CGI7]). We will assume G has
simply connected derived subgroup, but the general case follows by passing to invariants of finite
central subgroups (i.e. as in Section . It suffices to show that they agree for finite simple
reflections and on the lattice. Via the proof of Theorem 7.2.5 in [CG97], it is clear that the map
is as claimed on the lattice; we argue that parabolic induction on Ky sends [Qars] — [Qa.s)
where s is a finite simple reflection of M.

Let us recall the definition of Qs s. The underlying closed, reduced scheme of Z,, is a disjoint
union of conormal bundles to closures of M-orbits ?M7 s © M /By x M/By; we denote these
subschemes and the projection by ma s 1 Zpr,s — ?M,S and the inclusion tp 5 : Zprs — 2.

o * Ol
We define Qpy s : LM’S’*WM,SQ?M,S/(M/BMV‘

We have a similar description of Zp s < Zp. The map p : Zp — Z); is a u/U-fibration, base
changed from the quotient the quotient map p/P — m/M. In particular, Zp s and Zy s X z,, Zp
are closed reduced underived subschemes of Zp with the same points, and thus agree. On the
other hand, we have Yp, = (B\P/B) Xy, . (BM\M/By), so that denoting the projection

v 5 1 N 1
p:Yps — Y we have Q7p,s/(P/B)2 ~ p*Q7M,S/(M/BM)2

change. We have Q¢ s = 4 Qp s by definition, and the claim follows. Finally, the statements
for specialized ¢ follow by Proposition .10} completing the proof. O

and thus p*Qars ~ Qps by base

Remark 4.13. A few remarks on the theorem.

e Analogous statements hold when ¢ = 1, where Hochschild homology of the Steinberg
stack does not agree with the Grothendieck group, i.e. we have Endz /g (S1) ~ Hi" ~
EWe®Sym(h*[—1]@h*[—2]). However, the anti-spherical module arising via Hochschild
homology agrees with that arising via Ko, i.e. HH(Coh(N/G)) ~ kW ®pw s ksgn, where
h*[—1] ® h*[—2] < HY¥™ acts by zero.

e The Deligne-Langlands functor is not expected to be an equivalence before applying the
Tate construction, even for GL,,. Taking G = GLj, the category H -mod has a compact
generator, whereas Coh(L£(N//G)) contains a factor of Coh(B GL;) and therefore does
not. Put another way, Coh(ﬁ(./\Af / CNJ))S " is not a constant u-deformation but the subcat-
egory generated by the Springer sheaf is. A very computable toy example where this
occurs is Coh(L(BT))S" (see Example 4.1.4 in [Ch20a]).

o We expect prg, (wﬁq(ﬁ/G)) =W, (X6 when ¢ is a root of unity, and also prg (wﬁ(ﬁ/é)) =
We(RG) However, we do not prove this.

e Compatibility with parabolic induction implies that the action of the lattice on the
coherent Springer sheaf. That is, O(L(N/G)) is an O(L({0}/H)) = O(H)-module.

e If G = T is a torus, then LN7/T) =~ {e} x T x BT and S = Oyyxrxpr, and we see
immediately that End(S) ~ k[T] = kX *(T).

Remark 4.14. We explain the absence of a singular support condition. There are two Koszul dual
versions of the Steinberg variety leading to two versions of the unipotent affine Hecke algebra:
our version Z = N xg./\Nf and a “global” version Z; := g x4 g. Theorem 4.4.1 of [BNP17b| shows
the trace sheaves in Tr(Coh(Z,/ () satisfy a nilpotent singular support condition.

We now argue that the singular support condition for Tr(Coh(Z/G)) is vacuous, i.c. that the
singular support locus Az, is the entire scheme of singularities Sing(L(N/G)). The singular
locus of E(/\A//CN?) at a k-point n = (n,2 = (g,q)) where gng=*
g ~ g* via a non-degenerate form (—, —)):

Slng(ﬁ(ﬁ/é))n = {1] €9 | gvgil = qilva [TL,’U] = 0,<n,v> = 0}

= gn is the set (after identifying
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A calculatioﬂ shows that the singular support locus is given by:
(Agr/g)n = {v € Sing(L(N/G)), | 3 Borel B < G such that n,v € b = Lie(B)}.

Note that n,v generate a two-dimensional solvable Lie algebra, thus are contained in a Borel,
so Sing(L(N /é)),, = AR/, In particular, the singular codirection v need not be nilpotent.

The analogous claim at specific ¢ € G,, follows by a similar argument and a calculation of
the singular support locus at a point n = (n, g) (for gng=t = gn) as

Sing(Lq(N/G))y = {veg|gug™ = ¢ v, [n,v] = 0}.

In the case of ¢ not a root of unity, the argument in Proposition 4.3 shows that the singular
codirection v must be nilpotent.

It is natural to conjecture that the coherent Springer sheaf is in fact a sheaf —i.e., lives in the
heart of the dg category Coh(L(g/G)). We prove this in the case G = GLa, SLs in Proposition
E19

Conjecture 4.15. The Springer sheaf S lives in the abelian category Coh(L(N/G))Y.

Remark 4.16. One consequence of the conjecture would be an explicit description of the endo-
morphisms of the cohrent Springer sheaf. Namely, it is easy to see that the underived parabolic
induction from L£({0}/H) is generated as a module by the lattice X*(H), and via the identifica-
tion with K-theory and Theorem 7.2.16 of [CG97] we would obtain a description of the action
of finite simple reflections in terms of Demazure operators.

Remark 4.17. A variant of Conjecture was answered in the affirmative in Corollary 4.4.6
of [Gil2]. Namely, in loc. cit. it is proven that the Lie algebra version of our coherent Springer
sheaf at ¢ = 1 has vanishing higher cohomology.

Remark 4.18. When G acts on A by finitely many orbits, then £(N/G) has trivial derived struc-
ture, and the conjecture is implied by the vanishing of higher cohomology of a classical scheme
H'(LN/G) x g pt, WO(OE(/\Nf/é)XBapt)) for ¢ > 0. The G-orbits in the Springer resolution are
known to be finite exactly in types A, As, A3, Ay, Bo by [Kas9()].

We discuss the relation of the Deligne-Langlands correspondence and t-structures in more
detail in Section 5.3l

4.1. Conjectures and examples for G = SLo, GLo, PGLs. In this case, G acts on both N/
and A by finitely many orbits, the derived loop spaces £(N/G) and L£(N/G) are classical stacks.
Recall that N is a formal completion; if the reader would rather do so, they may replace N with
g, which is also acted on by finitely many orbits. We prove Conjecture [4.15]in these cases.

Proposition 4.19. Conjecture [[.15 holds for G = SLy, GL2, PGLs.

Proof. We give a proof for G = SLy; the case of G = GL; is the same. In view of Remark
4.18] it suffices to forget equivariance and show vanishing of higher cohomology. Since X :=
LN/G) % ga pt is a closed subscheme of g x G/B x G, and dim(G/B) = 1, we know that
RI(X,—) = 0 for i > 1. To verify vanishing for i = 1, let i : X — AN x G be the closed
immersion. We have a short exact sequence of sheaves:
0—>I—>Oﬁxé—>l*(9x —0

leading to a long exact sequence with vanishing H? terms (for the above reason). Thus, it suffices
to shi)w that Hl(/\f x G,Ox &) By the projectiori formula, we have H*(N x G, Oxya) =
H' (N, 0%) ®, O(G), but it is well-known that H* (N, Oz) = 0 for i > 0. O

29In contrast to the singular support calculation for Coh(Zg/é), it is the Lie algebra of the Borel b that
appears in the above condition rather than its nilradical n since

Sing(ﬁ Xg N)(n,B,B’) =bnb, Sing(§ X §)(z,8,8/) =W,
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Example 4.20 (Geometry of the loop space of the Springer resolution). We describe the geom-
etry of the looped Springer resolution £(N'/G) — L(N/G) for G = SLy. Though this example
is well-known, we reproduce it for the reader’s convenience. Let A(s,n) denote the component
group of the double stabilizer group, i.e. the component group of {g € G | gng~—! = n, gs = sg}.

Let Al .. = Speck[z,y]/zy denote the affine nodal curve, and (—)” the normalization.

g 0 s - (3 A‘L) NGO - {60 | A(s,m) | G2
n=20 - 1

g=1 n %0 A=+1 N >N 72 G

g=1 n=>0 A# =+l ptupt — pt 1 T
n =20 1

q=—1|n #0, upper triangular A=1 Ai’o”dc — Arllode 7)2 T
n # 0, lower triangular 72

qg= -1 n =20 A==1 P! - pt 1 G

q=-1 n=0 A#+1 pt upt — pt 1 T

q# =1 n 0 A=1t,/4q Atupt— A 72 T

q# +1 n=20 A =+1 Pl - pt 1 G

qg# *1 n =20 A#x1,+./q pt U pt — pt 1 T

Example 4.21 (Generators and relations). For G = SLg, with some work, one can write down
generators and relations for the (underived) scheme £(g/G) and the coherent Springer sheaf S.

Let us fix coordinates

_fa b [z oy
g_<C d)ESL27 N_<Z )e'/\[ﬁ[Q) qeGm

—x
We implicitly impose the equations ad — bc = 1 and x2 4+ yz = 0, and by convention we take
the commuting relation grg~! = gz; note that this is the relation that arises when G,, acts on

fibers by weight -1 (i.e. inversely). Then, we have that S is the module with generators A™ for
n € 7Z:

O(SLQ ><./\/5[2 X Gm)[)H)‘il]

a+d=X+A"1(2,y,2)(g—=N2) =0,2(A —d) = ax,y(a — \) = bx,z(d — \) = cy,z(A —a) = bz’
In particular, multiplication by A" defines the action of the lattice, and one can verify that the
Demazure operator for the anti-spherical module (see Theorem 7.2.16 of [CG97]) defines the
endomorphism
D N AT — AT

-1 e
corresponding to the finite reflection. In particular, it preserves the relations in the module, and
the endomorphism satisfies (I'—¢)(T'+1) = 0. For fixed ¢, and letting kygn denote the character
of H/ with T+ —1, one can verify that S ®y, ksgn =~ Ocq(ﬁ/c)’ i.e. amounts to imposing the

T(\") =

relation A\? = ¢, thus identifying the structure sheaf with the anti-spherical module.

5. THE COHERENT SPRINGER SHEAF AT PARAMETERS

Completing or specializing the coherent Springer sheaf at semisimple parameters recovers
classical Springer sheaves in the constructible or D-module context. This process happens in
two steps: first we apply an equivariant localization pattern described in [Ch20a] to pass between
the stack of unipotent Langlands parameters £L(N/ C:‘) to a completed or specialized version at a
semisimple parameter z = (s, ¢), and second we apply a Koszul duality equivalence of categories
between S'-equivariant sheaves at this parameter and a certain category of filtered D-modules.
All results in this section take place over an algebraically closed field k of characteristic 0.
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5.1. Equivariant localization of derived loop spaces. We now describe equivariant local-
ization patterns in derived loop spaces. See Section 3 of [Ch20a] for an extended discussion, as
well as Section 2 of op. cit. and Section 4 of [BN12| for a discussion of derived loop spaces. We
fix a reductive group G (over an algebraically closed field k of characteristic zero). Let

L(BG)=G/G— G//G
denote the “characteristic polynomial” map from the quotient stack of G' by conjugation to the
affine quotient, i.e., to the variety parametrizing semisimple conjugacy classes. For a G-variety
X we have the maps
L(X/G)— L(pt/G) = G/G — G//G.
The loop map L(X/G) — G/G parametrizes fixed points of elements of G — i.e., for g € G the

fiber of L(X/G) over g : pt —> G/G is the derived fixed point scheme X9, i.e. we have two
descriptions of X9 by Cartesian square

X9 —— L(X/G) X9 — X
| | | Jr
{9} —— G/G X 25 XxX.

This allows us to define variants of the fixed points according to the Jordan decomposition in
G. In particular we are interested in fibers of the map £(X/G) — G//G, i.e. loops whose
semisimple partlﬂ is conjugate to a fixed semsimple element g € G.

Let z € G denote a fixed semisimple element, with centralizer G*. We denote by O, ~ BG*
G/G its equivariant conjugacy class and [z] € G//G its class in the affine quotient. The stack
Oz comes equipped with a natural atlas Spec(k) = {z} — O.

Definition 5.1. The z-unipotent loop space of X, denoted L¥(X/G), is the completion of
L(X/G) along the inverse image of the saturation [z] € G//G. The z-formal loop space L. (X/G)
is the completion of £L(X/G) along the orbit O, and the z-specialized loop spacﬂ L(X/G) is
the (derived) fiber of L(X/G) over O,.

Remark 5.2. We have containments £, (X/G) < L.(X/G) < LYX/G) c L(X/G), and a map
L.(X) — L.(X/G) (see Defintion [3.5).

We will state the equivariant localization theorem of [Ch20a], which is a form of Jordan
decomposition for loops, describing loops in the quotient stack X/G with given semisimple
part z in terms of unipotent loops on the quotient stack XZ?/G* (using a natural map XZ?/G* —
X/G* - X /@), where XZ is a slight modification of the z-fixed points of the classical (underived)
fixed points by the centralizer of z. We now describe this modification XZ? in the setting of
complete intersections.

Definition 5.3. Let z € G be a semisimple closed point. Recall that the classical z-fixed points
of a G-variety can be expressed as the underlying classical scheme 7(X?) of the derived fixed
points.
(1) A G-variety X is said to be a G-complete intersection if X is given as a fiber product
X ~Y xz W in the category of G-varieties, with Y, Z and W smooth.
(2) The modified z-fixed points XZ for a G-complete intersection is the (derived) fiber prod-
uct of the classical fixed points

XZ :=m(Y?) X o (27) mo(W7#).

o]

In particular we have (derived) G*-equivariant containments
mo(X?) € XZ < X~

30Note that £,X = X9, in the notation of Definition We use the latter notation in this section to
emphasize the relationship between various fixed points.

31Note that the preimage of [g] € G//G in G/G is the closed substack of group elements whose semisimple
part in the Jordan decomposition is conjugate to g.

32Note that in this notation, £, (X/G) = L. (X)/G.
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We consider XZ with its induced structure as a G* variety with a trivializeﬂ action of
z.

Remark 5.4. Note that for X a smooth G-scheme, we have that XZ? = mo(X?) is smooth. For
X quasismooth, we have that XZ is quasismooth, and in particular may have nontrivial derived
structure.

Remark 5.5. As a consequence of the next theorem and the fact that formal loop spaces commute
with fiber products, one can recover the derived fixed points as the derived loop space of the
modified fixed points X* ~ L(XZ).

Theorem 5.6 (Equivariant localization for derived loop spaces). For X a G-complete intersec-
tion, the unipotent z-localization map

07 LY(XZ/G7) = LUX/G)
is an S'-equivariant equivalence.

Proof. This is Theorem A in [Ch20a], along with the observation that derived loop spaces
commute with fiber products. For a precise definition of the unipotent z-localization map, see
Definition 3.1.6 of [Ch20al. O

Remark 5.7. Note that it follows that the corresponding localization maps on formal and spe-
cialized loops

i L(XZ)GF) — LoAX/G), €L LUXZ/G?) — LL(X/G)

are also equivalences in this setting.

5.1.1. Central shifting. Let Z = Z(H) be the center of a group prestack H. For any H-space Y
the action of Z on Y commutes with the action of H, hence defines an action on the quotient
Y /H, which we denote by shifting

Z 3z sh, € Aut(Y/H).

Passing to loop spaces, the shifting action identiﬁeﬂ the fiber of L(Y/H) over 1 and over z.
For example in the setting of Theorem taking Y = XZ and H = G* with its central
element z € Z(G*), we get equivalences of stacks

cu(xz/Ge) S puxziar) —S s £u(x)G)

o~

by shifting by z. The left identification is however not S'-equivariant for the loop rotation; we
need to twist the loop rotation on one side.

Definition 5.8. We have a group structure on the classifying stack BZ of the center and a
group homomorphism BZ — Aut(BH) induced by the trivialization of the conjugation action
of Z on H. In particular fixing z € Z we obtain a twisting by z action of S' = BZ on BH, which
we denote o(z). This structure generalizes to H-spaces Y that are equipped with a trivialization
of the action of z (extending the case Y = pt above). Namely, the trivialization of the z-action
produces a lift of the twisting S'-action on Y/H — BH which we also denote by o(z).

Remark 5.9. Letting H' = H/Zz, the twisting S'-action on Y/H can also be described using
the identification Y/H ~ Y /H' x gy BH and noting that the fiber product diagram is S!-
equivariant, where we let S* act trivially on Y/H’ and BH’, and via the z-twisting S!-action
on BH.

We can combine the twisting and shifting S'-actions as follows. Note that the loops to the z-
twisting action £(o(z)) naturally commutes with the loop rotation S!-action on £L(BH) ~ H/H,
which we denote p.

33A z-trivialization of a G-scheme Y is a G/ := G/Zz-action on Y along with an identification Y /G ~
Y /G' x ggr BG. These choices are canonical if Y is a classical scheme; since the XZ we consider are built func-
torially from classical ones, there will always be a canonical choice which we suppress throughout the exposition.
34 e. the shifting on £L(BH) = H/H is given by L(sh.)(h) = zh = hz.
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Definition 5.10. We define p(z) to be the diagonal to the S x St-action p x L(0(2)).

Thus we have the following Jordan decomposition result: shifting by z intertwines p with the
twisted version p(z) = po L(o(2)).

Corollary 5.11. For X a G-complete intersection, the shifted localization map defines an equiv-
alence
sy LY(XZ)G?) —— LYUX/G)

which is S-equivariant with respect to p(z) on the source and p on the target, and likewise for
the shifts of the completed and specialized localization maps st} and st.,.

5.1.2. Neutral blocks. In order to apply Koszul duality (as in Section 5 of [BN12]), we are
interested in identifying a subcategory of various categories of sheaves on derived loop spaces
over semisimple parameter z on which the z-twisting is trivial, so that the twisted rotation is
equal to the untwisted rotation. This is useful since the p circle action on unipotent loop spaces
factors through an action of BG,, but the twisted p(z) action does not (since it has nontrivial
semisimple part). This problem is an obstacle to applying the Koszul duality described in
[BN12] to obtain an identification of Coh(L.(X/G))S" with some kind of category of D-modules.
We avoid this obstacle by focusing only on the z-trivial block. For this we give a categorical
interpretation of the geometric z-twisting S'-action o(z) discussed above.

Definition 5.12. Let H be an affine algebraic group, z € H central and C a category over
Rep(H). A z-trivialization of C is an identification of the action of z on C with the identity
functorﬁ The category CH of equivariant objects then acquires an automorphism of the identity
functor (i.e., S'-action) as the ratio of the z-trivialization and the equivariance structure for z.
We define the subcategory CX < CH of z-trivial objects to be the full subcategory on which
this automorphism is trivial, i.e., on which the equivariance agrees with the z-trivialization.

We can apply this categorical notion to the categories of sheaves Perf, Coh, QC, and QC'
on a scheme Y with trivialization of the z-action. In particular the z-twisting action on the
z-trivial subcategory of equivariant sheaves in each case is trivial. Further, all sheaves on the
z-specialized loop space are z-trivial, so z-triviality is only relevant for Koszul duality for stacks.

Proposition 5.13. Let z € G be central and let t+ = A,u,’. There is a canonical equiva-
lence p ~ p(z) on the z-trivial block of Perf(LT(X/G)), Coh(L1(X/G)), QC(LT(X/G)) and
QCH (LN (X/@)). When t =', the z-trivial block is the entire category.

Proof. Tt is more or less immediate to see that the z-twisting action o(z) acts trivially on the
z-trivial block of any Rep(G)-category C. Furthermore, we observe that there is a canonical
identification L(0x/G(2)) = oz(x/c)(2), and the claim follows. To see that z-triviality is an
empty condition on the specialized loop space, note that the twisting o(z) acts trivially on the
identity e € £L(BG), and therefore trivially on the base change {e} x . (pa) L(X/G). O

We can see via examples that z-triviality is not an empty condition for formal loop spaces.

Example 5.14. Consider Example 4.1.6 from [Ch20a], i.e. take the z-twisted loop rotation
action on £(BT) = T x BT. Let A be the character lattice of T', so that O(T) is spanned by ¢
for A € A. We have Perf(L(BT))) = @P Perf(T) @ Rep(T) and therefore
AeA
Perf(L(BT))"*) = @ PreMF(T, 1 — t*(2)t*) ® Rep(T)
AeA
where PreMF is defined in [Pr1l]. The z-trivial subcategory corresponds to the subcategory of
Rep(T) of representations on which z € T acts trivially, i.e. if 7" = T'/Zz, then
Perf(L(BT))?*) = @ PreMF(T, 1 — t*(2)t*) ® Rep(T").
AEA
35This can also be described as equivariance for an action of the quotient G’ = G/Zz on C defined by the
z-trivialization. Namely, given a G’-linear category C’, an identification C =~ C’ ®gep(a/) Rep(G) gives an
identification of the action of z on the left with the identity functor.
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Example 5.15. We specialize the above example at T' = G,,, and z = 1. In this case, we have

Perf(£(BG,y,))P¢*Cn — @) PreMF(G,,, 1 — t") ~ Coh(({0} x {0}))z ® @ Coh(x)z
nez n#0
where Z indicates the grading coming from G,,-scaling on odd tangent bundles (rather than
from T' = G,,,-equivariance). This example will be computed in parallel in Example

Definition 5.16. In the set-up above, for f = A,u,’, note that by passing through the equiva-
lence s¢! and restricting to the z-trivial block, we have

Coh(L1(X/G))2 ~ Coh(L!(XZ/G7))2" ~ Coh(LT(X7/G7),)S" ~ Coh(L!(X7/G?))BC

where the first isomorphism is s¢I, the second arising from the Proposition and the third
by Corollary 6.10 in [BNT2]. Therefore, moving the G,,-scaling action on the right through this
equivalence, we deﬁnﬂ the category

Coh(LL(X/G))BEaCm .= Coh(L! (X /G))EG*Cm
as well as a forgetful functor
Coh(LL(X/@))BCCm — Coh(LN(X/G))S" = Coh(Ll(X/G))5".

Furthermore, these categories are covariantly functorial under pushforward by proper maps
f:X/G - Y /G (compatible with z-trivialization).

5.2. Koszul duality. A Koszul duality between modules for the de Rham algebra and the
algebra of differential forms has been long established in the literature, e.g. in [Ka91] [BeDr91].
This Koszul duality was reinterpreted in [BN12|] as an equivalence of categories between graded
Sl-equivariant quasicoherent sheaves on the formal loop space and filtered D-modules on smooth
quotient stacks X /G. We require a renormalized version of this equivalence from the forthcoming
work [Ch21]. In this section, we state the main results and definitions of this work. We use the
notion of singular support defined in [AG14] for completeness, though it does not appear in our
results.

It will be convenient for us to replace the formal loop space with the equivalent odd tangent
bundle, defined in Defintion 4.3 of [BN12].

Definition 5.17. Let X be a derived stack with cotangent complex QY. The odd tangent
bundle is defined
Tx[—1] := Specy Sym% Q%[1].

We sometimes use the notation ngl] to save space. We define the formal odd tangent bundle

Tx[—1] to be the completion at the zero section. By Theorem 6.9 in [BN12], when X is a QCA

stack the exponential map is an Sl-equivariant equivalence exp : T x[-1] — E(X ).

Before we proceed, we emphasize the main subtleties. The first sutblety is that the operation
of taking S'-invariants in the setting of presentable (large) categories often gives poorly behaved
results (in particular, such categories that are always killed by the Tate construction; see the
introduction to [Pr15]). This phenomenon is exhibited in the results of Section 5 in [BN12], where
QC(EX )S " is identified with complete modules for a certain completed Rees construction. One
tends to rectify this by renormalization of large categories or by working with small categories
throughout, i.e. applying S'-invariants to a small category first, and then ind-completing.

In our setting, the category of compact objects of QC(EX) or QC!(EX) = QCI('E‘X[—l]) is
still not the correct candidate. Roughly speaking, Koszul duality swaps free modules with simple
modules. Let us specialize to the case X = BG where G is reductive. On the D-modules side,
we are interested in objects such as O ; this object is “simple” but not “free” (in the equivariant
setting, “free” D-modules correspond to the notion of safe D-modules [DGI13]). However, the

36The notation is abusive: there is not a BG4 % Gp-action on LY(X/G), but the discussion above allows us
to pretend there is one on the z-trivial block.
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corresponding expected “free” object Wi, o) € QC!(ﬁ‘Bg[—l]) is not compact (i.e. is not a

finitely generated torsion sheaf) since T x[—1] is an inf-stack. Thus, we define a different small
subcategory of QC'(Tx[—1]), which we call KPerf(Tx[—1]) (for Koszul-perfect). To define this
notion, we first focus on an easier, degenerate form of Koszul duality.

Definition 5.18. There is a Koszul resolution of Ox € QC'(Tx[—1]) by SymbTX Cu Q2] with
internal differential given by the identity map. Thus, Homrt, (Ox,Ox) = Sym% T[—2], which
is coconnective and generated over Ox in strictly positive degrees. We denote by QC(T%[2])
the dg derived category of sheaves of O x-quasicoherent Sym$ 7[—2]-modules on X. We denote
by Perf(T%[2]) the full subcategory of sheaves locally (in X) quasi-isomorphic to a finite rank
semi-free complex of Sym$ Tx [—2]-modules”"]

The following result is a standard Koszul duality result (e.g. see [MR10]).
Proposition 5.19 (Koszul duality for formal vector bundles). The functor
2= Homr [-11(Ox, —) : Coh('/]fx[—l])([;’m — Perf(T% [2])Gm
18 an equivalence of categories. The same is true non-equivariantly.

Definition 5.20. We define the category Coh(T%[2]) to be the full dg subcategory of QC(T*[2])
consisting of sheaves M of Ops [yj-modules such that H* (M) is (smooth) locally finitely gen-

erated as an H®(Orx ()) = H*(Sym¥ T[—2])-module. We define the category of Koszul-perfect

complezes to be the full subcategory KPerf(TAI‘X[—l]) c QC!(’E’X[—H)*' of sheaves F such that
2! F € Coh(T%[2]).

We highlight four favorable properties of the category KPerf(T x [—1]) from [Ch21].

(1) If X is a smooth scheme, then KPerf(Tx[—1]) = Coh(Tx[—1]).

(2) If X is a smooth Artin stack with atlas p : U — X, the subcategory KPerf('ﬁ‘X[—l]) c
QC'(Tx[~1]) can be characterized as objects that pull back to KPerf(Ty[—1]).

(3) Given f : X — Y a smooth (resp. proper) map of smooth Artin stacks, the functors
T[-1]} : QC'(Ty[-1]) — QC'(Tx[~1]) (resp. T[~1]5,) restrict to KPerf.

(4) Let G be a reductive group. For a smooth quotient stack X /G, and semisimple z € G,
the l-pullback ¢} : Coh(L(X/G)) — QC'(L.(X/G)) = QC'(Tx:/g-) takes values in
KPerf(Tx: /g-)-

Before stating the Koszul duality theorem, we need a corresponding notion of z-triviality, as
in Definition [5.12} in the setting of D-modules.

Definition 5.21. Let G be an affine algebraic group acting on a smooth scheme X and assume
that z € G acts on X trivially; then z induces an automorphism of the identity functor of
QCG(X ). We say a complex of G-equivariant sheaves (in particular, a weakly or strongly
equivariant D-module) is z-trivial if this automorphism is the identity on cohomology.

Example 5.22. It is well-known that if G acts on X by finitely many orbits, then the simples
in DE(X)Y are given by pairs (O, V) where O is a G-orbit and V is a representation of the
component group A(x) of the stabilizer of # € O. The z-trivial simples are subject to the
additional requirement that [z] € A(x) acts on V by the identity.

The following is the main result from the forthcoming work [Ch21]. We let F' ﬁX(X /G
denote the derived category of filtered coherent D-modules on X /G with singular support A.

Theorem 5.23 (Koszul duality for loop spaces of quotient stacks). Let X/G be a smooth
quasiprojective quotient stack, and A be a conical closed subset specifying singular support. Let

37Note that we never consider Tf( [2] as an honest object in the category of derived stacks.
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z € G be a central elemem@. We have compatible adjoint equivalences:

KPerfy (Tx [~1]) B8 "Cm —— FDY(X/G).

! [

KPerfA(']/fX/G[—l])E'"‘ —><— COhA(T;}/G)Sm
Sfunctorial with respect to smooth pullback and proper pushforward.

Remark 5.24. There is a category of weakly G-equivariant D-modules that sits between strongly
G-equivariant D-modules and non-equivariant D-modules:

FD¥(X/G) — FD*(X/G) — FD¥(X).
Under Koszul duality, it corresponds to sheaves on specialized loops L£'(X/G).

Remark 5.25. We observe that in the case of the coherent Springer sheaf, the equivalence of
Theorem is an equivalence before taking S'-equivariant objects. Thus, in our setting we
may actually use the easier graded Koszul duality which corresponds on the D-modules side to
passing to the associated graded of a filtered D-module. However, we discuss the full theory for
completeness.

The following example of a category of filtered D-modules is parallel to Example [5.15]

Example 5.26. Take G = G,, and X = pt and fix an isomorphism C¢(G,,;k) ~ k[e]; then
the category Ff)‘“(X ) splits as a direct sum by isotypic component of the underlying G,,-
representation:

FD¥(X) = @FD“’(X)R.

nez

We have that y

FD¥(X),, = k[t, et] -coh
with [t| = 0 and |et| = —1 (in particular, (e¢t)2 = 0) and internal differential d(et) = nt. When
n = 0, this dg algebra is a graded version of the usual shifted dual numbers k[et], and when
n # 0, it is quasi-isomorphic to k, i.e.

FD¥(X) = k[t, et] -coh® P k-coh.
n#0

Note that if we forget the filtration, only the trivial isotypic summand survives.

5.3. The coherent Springer sheaf at parameters. We can now construct a variety of lo-
calization functors between the category of unipotent Langlands parameters QC!(E(/(\/ / é)) and
categories of D-modules. We begin in a general setting, considering subcategories of the cate-
gory Cohy (L(X/G))* " generated by a sheaf (S) satisfying a z-triviality condition. Since Koszul
duality requires us to consider an additional G,,-equivariant structure, we will need to choose a
graded lift of the z-localization of S. In general there may be many choices, and choices cannot
always be made globally.

Before we proceed, let us review our notation conventions. The sheaf S € Coh(L(X /G))S1
is an S'-equivariant sheaf on the global derived loop space. For semisimple parameters z, we
define its z-completion by S(%) and its z-specialization by S(z). We denote graded lifts by (%)
and S (2). The corresponding filtered complex of D-modules under Koszul duality are denoted
S(2) and S(z). Forgetting the filtration, we obtain D-modules S(%) and S(z)

In the following, for = A,’, we let fI : £L1(XZ/G*) — LI(X/G) — L(X/G) be the composi-
tion of the “shift by z” map with the equivariant localization map; fJ is S'-equivariant where S*
acts via p(z) on the source and p on the target. We let the undecorated f, : XZ/G* — L(X/G)

—

be the pre-composition with the inclusion of constant loops. Let E@Z = BG, x G,,, let Tate

38This is used to phrase z-triviality; if the reader would prefer to ignore this technicality, they may take z = e
to be the identity.
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be the G,,-equivariant Tate constructioﬂfl7 and recall the notation from Definition Let C
be a category over Rep(G,,) and oblv : C — C’ the forgetful functor; a graded lift of an object

~

X € C' is an object X € C along with an equivalence oblv(X) ~ X.

Proposition 5.27. Let X/G be a smooth quasiprojective quotient stack by a reductive group,
and A < Sing(L(X/Q)) a singular support condition, with restriction A, = fiA. Let S €
Coh,\(ﬁ(X/G))Sl be such that S(Z) := ﬂ'S is in the z-trivial block and choose a graded lift
5(2) Then, there is a commuting diagram

(&) ———————— (SE) ———— (SE) ————— (S()
[ [ £
L,

Coha(L(X/G))S" + KPerfy, (£.(X/G))S" « KPerfy (T, )58 » KPerfy (T0 ), Tt

I )

FDR (XZ/G?), ——— DR(XZ/G?)..

Remark 5.28. Note that aside from applying renormalized Koszul duality, the category KPerf
is required for the following reason. In a general setting, if ' : C — D is a continuous functor
which preserves compact objects (i.e. a left adjoint with a continuous right adjoint) between
compactly generated categories, then for X € C compact we have a commuting diagram:

End(X)°?-mod «— C
*®End(X)End(F(X))J/ lF
End(F(X))° -mod —— D.

Commutativity follows by checking the tautological commutativity of right adjoints, while com-
pactness of X guarantees that the left adjoint to Hom (X, —) is fully faithfu]lﬂ (and similarly for
F(X)). Unfortunately, the functor i QCHL(X/G)) — QC!(E(X/G)) is a right adjoint and
does not preserve compact objects. On the other hand, the renormalization f' : QC' (L(X/Q)) —
Ind(KPerf(£(X /G))) preserves compact objects by construction. In particular, we have a com-
muting square:

End(S)-mod ~ (§) —— QCH (L(X/Q))
7®End(s)End(8(2))l lfl
End(S(2))-mod ~ (S(3)) —— Ind(KPerfs_(L.(X/G))).

We state the weakly-equivariant variant as well; it has the additional feature that there is
a functor from the category of D-modules to the category of coherent sheaves on the derived
loop space, which we use to formulate a conjecture regarding irreducible objects. Recall that
for smooth schemes X, KPerf(Tx[—1]) = Coh(Tx[—1]). Note that this result does not depend
on Theorem and follows from Corollary 5.2 of [BN12].

Proposition 5.29. Let X/G be a smooth quasiprojective quotient stack by a reductive group,
and A < Sing(L(X/G)) a singular support condition, with restriction A, = fiA. Let S €
Coh,\(ﬁ(X/G))S1 be such that S(2) := J/”l'S is in the z-trivial block and choose a graded lift

39e. for a k-linear category C with a ETG; = BG4 x Gpp-action, the equivariant category CEE’Z is linear
over klu] -mod®m | and CT?t¢ is obtained by passing to the generic point.

407 ¢ the unit of the adjunction M — Hom(X, X ®gnd(x) M) is an equivalence when Hom(X, —) commutes
with colimits.
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g(z) Then, there is a commuting diagram
(&) T (8(z)) «——— (S(z)) ————— (=)
Coha(L(X/G))S" 2 Coha_(LL(X/G))S" « Cohy_(Tx:/G*)BC - Cohy_ (Tx:/G7)Tate
FDR (XZ/G?). —— DY _(X5/G7)..

We now consider a more specific context where the sheaf S is of geometric origin: let p :
X — X be a G-equivariant proper map of smooth G-schemes, and define

S = L1 O

We first verify the z-triviality condition required in the above results.

£(X/e) = LHae 6y

Lemma 5.30. Let z € G be semisimple. The sheaf S(2) is z-trivial for every semisimple z € G
(and likewise for S(z)).
Proof. Follows by equivariant locaization and base change, i.e. S(Z) is the pushforward of

Wi(R= /G which is z-trivial since z acts trivially on X* and 7 is central in G*. O

In adddition to z-triviality being automatic in this setting, there is a canonical choice for
graded lifts when S = LM*Og(X/@-

Definition 5.31. Let S = ELL*OL(X/G). For any z € G semisimple, there is a geometric (or
Hodge) graded lift of S(Z) and S(z). Namely, by base change along the diagram

~

T 1] ~ £.(X/G) — £(X/G)

55 |

Tx:jo-[1] ~ L.(X/G) — L(X/G)

X=/G*

we have that S(2) ~ Tuiwﬁxz/cz (- We give S(2) the graded lift arising from the G-
equivariant structure on Wi . e [-1] arising via the natural G,,-action on the odd tangent
bundle. A similar natural lift can be made for the specialized Springer sheaf S(z).

Remark 5.32. The geometric graded lift has favorable functoriality properties with respect to
Koszul duality. Namely, the dualizing sheaf wfr)?z/cz corresponds under Koszul duality to the
canonical sheaf D-module wy, G
HiWxs g-- By a deep theorem of Saito [Sa88], this pushforward is a strict filtered complex of
D-modules (see also [Gi12]).

By functoriality, S(2) is Koszul dual to the pushforward

5.3.1. Application to coherent Springer theory. We now let p : N - g denote the Springer
resolution, discuss applications to conjectures from Section In Theorem 4.1.1 of [Gi12] it is
shown that for trivial semisimple parameter (i.e. for the Springer resolution over the nilpotent
cone), the D-module iy Oy has vanishing higher cohomology. As an approach to Conjecture
[415] we conjecture that the same is true over all semisimple parameters.

Conjecture 5.33. The D-module piwyz. et has vanishing higher cohomology.
The equivalence H -mod ~ Coh(L(N/G)) of Theorem is not t-exact, and naturally leads
to the following question.

Question 5.34. The equivalence H-mod ~ (S) « Coh(L(N/G)) is not t-exact. Describe the
corresponding “exotic” t-structures on each side of the equivalence, their correponding abelian
categories and classify the simple objects.
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The question can be probed by completing or specializing at semisimple parameters. The
results in [CGI97, [KL87] give a bijection between irreducible H-representations with central
character (s,q) with a certain set of parameters consisting of a G®-equivariant intersection
cohomology sheaf on N9 = {n e N | gng~! = qn} subject to the additional condition that it
“appears in the Springer sheaf.” Thus Proposition defines for us a functor:

Pyy: (P 00> — Coh(LN/G)).

In this way, we obtain a class of simple “skyscraper” objects in Coh(L(N/G)). Explicitly, for
a filtered D-module (M, F') the object P; ,(M, F') is obtained by taking the associated graded
and applying a sheared graded Koszul duality (see Proposition , and then pushing the
resulting object forward to E(./v/é)

These objects do not necessarily lie in the heart of Coh(£(N/G)) (equipped with the usual
t-structure). We pose the following conjecture.

Conjecture 5.35. There is an “exotic” t-structure on Coh(£(N/G)) which, after restricting to
(8), is identified with the standard t-structure on H-mod. The simple objects in the heart of
this ¢-structure on {S) are given by the application of P, , to simple objects in the Koszul dual
non-standard ¢-structure in [BGS96], [Ril3].

6. MODULI OF LANGLANDS PARAMETERS FOR GL,,

We now turn to arithmetic applications of our results, in particular the study of moduli spaces
of Langlands parameters for G = GL,,. Let F' be a p-adic field, with residue field Fy, and let G
denote a connected, split, reductive group over F' (i.e. on the automorphic side of Langlands).

The derived category D(G"Y) of smooth complex representations of G (F') admits a decom-
position into blocks. The so-called principal block of D(G") (that is, the block containing the
trivial representation) is naturally equivalent to the category of H,-modules, where #H, now
denotes the affine Hecke algebra associated to GV, with parameter q. Theorem then gives
a fully faithful embedding from this principal block into QC!(Eq(./\A//G)).

The space L:q(Jv /G) has a natural interpretation in terms of Langlands (or Weil-Deligne)
parameters for GY(F). Recall that a Langlands parameter for G¥ is a pair (p, N), where
p: Wg — G(C) is a homomorphism with open kernel, and N is a nilpotent element of Lie G
such that, for all o in the inertia group Ir of Wg, one has Ad(p(Fr" 0))(N) = ¢"N, where Fr
denotes a Frobenius element of Wg. R

On the other hand, the underlying stack of £,(N/G) can be regarded as the moduli stack of
pairs (s, N), where s € G(C), N € LieG, and Ad(s)(IN) = ¢N, up to G-conjugacy (i.e. the map
p above vanishes on inertia). To such a pair we can attach the Langlands parameter (p, N),
where p is the unramified representation of Wr taking Fr to s. Such a Langlands parameter is
called unipotent, and this construction identifies £, (./\A/' /G) with the moduli stack of unipotent
Langlands parameters, modulo G—Conjugacy@ We thus obtain a fully faithful embedding from
the principal block of D(G") into the category of ind-coherent sheaves on the moduli stack of
unipotent Langlands parameters.

Tt is natural to ask if this extends to an embedding of all of D(G") into a category of sheaves
on the moduli stack of all Langlands parameters. We will show that, at least when G = GL,,
over F', this is indeed the case. For the remainder of the section, we will take G = G¥ = GL,,.

6.1. Blocks, semisimple types, and affine Hecke algebras. Our argument proceeds by re-
ducing to the principal block. On the representation theory side, this reduction is a consequence
of the Bushnell-Kutzko theory of types and covers [BK97, [BK99], which we now recall. For this
subsection only, we will reverse our conventions to avoid cumbersome notation; that is, we let
G be a connected reductive split group over F' on the automorphic side of Langlands duality.

41Strictly speaking, a Langlands parameter is a pair (p, N) as above in which p is semisimple. When building
a moduli space of Langlands parameters we must drop this condition, however, as the space of semisimple
parameters is not a well-behaved geometric object. In particular the locus in L4 consisting of pairs (s, N) in
which s is semisimple is neither closed nor open in Lq.
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6.1.1. Supercuspidal support. Let P — G be a parabolic subgroup with Levi M and unipotent
radical U, and let m be a smooth complex representation of M. Recall that the parabolic
induction ig(ﬂ'> is obtained by inflating 7 to a representation of P, twisting by the square root
of the modulus character of P, and inducing to G. The parabolic induction functor iIGD has a

natural left adjoint, the parabolic restriction Tg (restriction to P, untwist, and U-coinvariants).

Definition 6.1. A complex representation 7w of G is supercuspidal if, for all proper parabolic
subgroups P of G, the parabolic restriction rZ () vanishes. Let 7 be an irreducible supercuspidal
representation of M; an irreducible complex representation II has supercuspidal support (M, )
if IT is isomorphic to a subquotient of % () (this is well-defined up to conjugacy).

A character y of M is unramified if it is trivial on every compact open subgroup of M, and the
Levi-supercuspidal pairs (M, ) and (L, 7’) are inertially equivalent if there exists an unramified
character y of L such that (M, ) and (L, 7’ ® x) are G-conjugate.

For such a pair (M, ) up to inertial equivalence, following Bernstein-Deligne [BeDe84], we
define D(G)ar,-) © D(G) to be the full subcategory of objects such that every subquotient of
IT has supercuspidal support inertially equivalent to (M, 7). Then Bernstein-Deligne show:

Theorem 6.2. The full subcategory D(G)iar,x is a block of D(G), i.e. summing over super-
cuspidals up to inertial equivalence,

D(G) = @ D(G)a,m)-

6.1.2. Types and Hecke algebras. We recall the notion of a type.

Definition 6.3. A type for G is a pair (K, 7), where K < G is a compact open subgroup and 7 is
an irreducible complex representation of K, such thaﬁ the full subcategory Rep®™ (G, K, T) c
Rep®™(G) counsisting of representations V' which are generated by the image of the evaluation
map Homg (7, V) ® 7 — V. Attached to a type we have its Hecke algebra

H(G, K, 7) := Endg(cInd$ (7))

and an equivalence of abelian categories Rep*™ (G, K, 7)% ~ H(G, K, 7)-mod” .

The main result of [BK99] describes an arbitrary block of D(G) as a category of modules for
a certain tensor product of Hecke algebras, via the theory of G-covers, providing a connection
between parabolic induction methods (which involve subgroups which are not compact open)
and Hecke algebra methods (which only make sense for compact open subgroups).

We first consider the block D(L)[z, ] (i.e. where L = G). Let L be a Levi subgroup of G' and
7 a supercuspidal representation of L. We denote by Ly < L the smallest subgroup containing

every compact open; then L/L is free abelian of rank equal to dim(Z(L)). Furthermore, the
unramified characters of L are in bijection with the characters of L/Lg. There is a bijection

X*(L/Lo)/H «— Lx(D(L)5, ), x> T®X

where we denote X*(L/Ly) = Hom(L/Ly,C*) and H < X*(L/Ly) is the subgroup of unramified
characters x such that 7 ® x ~ w. Moreover, there is an equivalence of categories:

D(L)[p,) ~ C[X*(L/Lo)]" -mod, T®x— C,.

We may rephrase this equivalence in terms of types and Hecke algebras as follows: first, we
may (by Section 1.2 in [BK99]) choose a maximal simple cuspidal type (K, 7.) occurring in
7. One then has a natural support-preserving isomorphism of H(L, K, 71) ~ C[X*(L/Lo)]",
and thus an (inverse) equivalence

C[X*(L/Lo)]" -mod ~ D(G)(1 Vo V ®ur.icy 7y cIndy, 1.

We are interested in understanding the induction of (L,w) to G. This is achieved by the
following composite of results of [BK99|; we refer the reader to op. cit. for the definitions of
simple type and G-cover.

4236e pp. 594 of [BK97] for why this is necessary.
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Theorem 6.4 ([BK99|). Let [L,n] and the cuspidal type (K, 71,) be as above, and let P c G
be a parabolic subgroup with Levi factor L. There exists an intermediatﬂ Levi subgroup L <
LT < G, and types (KT,71) of LT and (K,T) of G with the following properties:
(1) The type (KT, 71) is a simple type of LT.
(2) (K,7) is a G-cover of (KT, 71), and (KT, 71) is an LT-cover of (K, 71). In particular
we have natural injections:

szmLJr : H(LvKLvTL) — H(LTvKT7TT)

Tpip: HLL KT ) == H(G,K,T)
with T(r1yp an isomorphism.

(3) The functors
Hompg (7, —) : D(G)[p,n) —— H(G,K,T)-mod

Homyet (77, =) : D(LN)p - —— H(LT, KT, 77)-mod

HOHIKL (TL, —) : D(L)[LJ‘.] i) H(L, KL, TL) -mod
are equivalences of categories. Moreover, for any representation V in D(L), one has an
isomorphism of H(G, K, T)-modules:
Hom g (7, ig,V) =~ Homg, (70, V) ®un(r Kk, ,7) H(G, K, T),
where P’ denotes the opposite parabolic to P, and where H(G, K, T) is regarded as an
H(L, Ky, 7r)-module via the map Tp := Trip o Tpapt.
(4) Suppose LT ~ [T, L;r, with each LZ ~ GL,,, for some n;. Let L; be the projection of L
to LI, and let m; be the projection of m to L,. Let H; denote the group of unramified

characters x ofL;r such that T®x ~ 7, and let r; denote the order of H;. Thenn; = r;m;
for some positive integer m;, and there is a natural isomorphism (depending on 7 ):

H(LY, KT, 71 = R Hri (),

where Hqri (M) denotes the affine Hecke algebra associated to GLy,, with parameter q™.

These constructions are naturally compatible with parabolic induction, in the following sense:
let M be a Levi with L ¢ M < G, and with parabolic Q = M P. Then Theorem gives us
an M-cover (K, mp) of (K, 71) and a G-cover (K, 7) of (K, 7.), as well as maps:

TPmM : H(L,KL,TL) — H(M,KM,TM), Tp : H(L,KL,TL) i H(G,K,T).
We then have:

Theorem 6.5 (|[BK99]). There exists a unique map:
TQ :H(M7KM37M) - H(GvKaT)
such that Tp = Tg o Tpap. Moreover, for any V€ D(M), we have an isomorphism of
H(G, K, T)-modules:
Homg (r, ZSIV) =~ Homp,, (Tar, V) QH (M, Knr 1) H(G, K, 7).

Example 6.6. The fundamental (and motivating) example for this is when L = T is the
standard maximal torus with parabolic P = B the standard Borel, and 7 = 1 is the trivial
character of T'. In this setting K, is the maximal compact subgroup T, = T(O) < T, and 7, is
the trivial character. Moreover LT = G, the subgroup K = I c G is the Iwahori subgroup, and
T is the trivial representation of I. We then have natural identifications of the Hecke algebra:

H(L, K1, 1) ~ C[T/Ty] ~ CX.(T).

43Defined to be the smallest Levi containing the G-normalizer of the type (K, 7).
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and a commutative diagram:

ClX.] —— H(T.T(0),1)

j |z

H, —=— H(G,T,1).

More generally, if M < G is a Levi subgroup and @ is its standard parabolic, then K, is the
Iwahori subgroup I n M of M, and the map

To:H(M,InM,1)— H(G,I,1)
is uniquely determined by the following properties:

e TooTp~m =1,
o If we W(M) is an element of the Iwahori-Weyl group of M, then To(Iapywiy) = Twl.

This picture is compatible with the general situation in the following sense. Suppose for
simplicity that LT = G. Then L is a product of m copies of GL= for some divisor m of n, and
(after an unramified twist) we may assume that 7 has the form 7&™. There is an extension
E/F of degree > and ramification index r, and an embedding GL,,(E) c G = GL,(F), such
that the intersection L n GL,,(F) is the standard maximal torus of GL,,(E).

We denote the subgroup GL,,(E) by Gg, its standard maximal torus by Tg and its standard
Iwahori by Ig. Let M be a Levi such that L ¢ M < G, define Mgy = M n Gg and take
(Kar,mar) to be a cover of (Kp,7r) via Theorem (6.4 The choice of 7 then gives rise to an
isomorphism CX,(T) ~ H(L, K, 1), such that for each coharacter A € X,(7T') the image of A
is supported on the double coset K A(wg)K 1, and such that the induced action of X,(T") on
the Hecke module attached to 7 is trivial. We then have:

Theorem 6.7 (Theorem 6.4 [BK93|). Assume that L' = G. There is an isomorphism H - (m) ~
H(G, K, ) fitting into a commutative diagram:

H(Tg: (Tg)o,1) = CXJ(T) = H(L Kp,7r)
l l !
/H(ME,IEGME,l) = ®m17{qr(ml) = H(M,KM,TM)
l l l
H(Gp e, 1) =  Hpe(m) = HG K1)

Thus when [L, 7] is “simple” (that is, when LT = G), we have a natural reduction of D(G)(z ]
to the principal block of D(G), in a manner compatible with parabolic induction. In general
we obtain a reduction of D(G)[z ] to a tensor product of such principal blocks.

6.2. The moduli spaces X}, . We now turn to our study of moduli stacks of Langlands
parameters for G = GL,,. Henceforth we revert to our default notation, where G denotes a
group on the spectral side of Langlands duality.

Moduli stacks of Langlands parameters for GL, have been studied extensively in mixed
characteristic, for instance in [H20] in the case of GL,,, or more recently in [BG19, [BP19], and
[DHKM?20] for more general groups. Since in our present context we work over C, the results
we need are in general simpler than the results of the above papers, and have not appeared
explicitly in the literature in the form we need.

We first consider these moduli spaces as underived stacks; it will follow by Proposition[£.3]that
they have trivial derived structure. As in the previous section, we take G = GL,,, considered
as the Langlands dual of G¥Y = GL,(F). We use Xp ¢ to denote the moduli scheme whose
quotient stack is the moduli stack L ¢ in the introduction.

Definition 6.8. Let I be an open normal subgroup of the inertia subgroup Ir € Wg. Then
there is a scheme X I{ﬂ,G parameterizing pairs (p, N), where p : Wg/I — GL,, is a homomorphism,
and N is a nilpotent n by n matrix such that for all 0 € Ip, Adp(Frt" 0)(N) = ¢"N. For any
v:Ip/I - GL,(C), we may consider the subscheme Xig < X{;,G corresponding to pairs (p, V)
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such that the restriction of p to I is conjugate to v; it is easy to see that Xj ; is both open
and closed in X 1{7,0. We will say that a Langlands parameter is of “type v” if it lies in XF .

Example 6.9. When v = 1 is the trivial representation, the quotient stack X},ﬂ,G/G is isomor-

phic to the underlying underived stack of £q(]\7 /G), as we remarked in the previous section.

We will show that in fact, for v arbitrary, the stack X} /G is isomorphic to a product of

stacks of the form L (./\71 /G;), in a manner that exactly parallels the type-theoretic reductions
of the previous section. This will allow us to transfer the structures we have built up on
Lgri (J\A@/Gl) to stacks of the form X;’G/G for arbitrary v. Our approach very closely parallels
the construction of Sections 7 and 8 of [H20] with the exception that we are able to work with
the full inertia group Ir, whereas the integral ¢-adic setting of [H20] requires one to work with
the prime-to-¢ inertia instead.

Our strategy will be to rigidify the moduli space X} . For any C-algebra R, let us fix a
representative p : Wr/I — GL,(R) of type v, i.e. of the conjugacy class.

For any irreducible complex representation 1 of Ir, let W, be the finite index subgroup of Wr
consisting of all w € Wg such that n* is isomorphic to n. Then 7 extends to a representation of
W, although not uniquely; let 77 be a choice of such an extension. This choice defines a natural
W, /Ir-action on the space Homy, (7, p), and an injection of W,-representations

1®Homyp, (1, p) = p.

Frobenius reciprocity then gives an injection:
Indy” (7® Homy,. (1, p)) < p.

The image of this injection is the sum of the Ip-subrepresentations of p isomorphic to a Wg-
conjugate of . We thus have a direct sum decomposition of Wg-representations:

We [~
p = @ Indy” (7® Homp, (1, ),
n
where n runs over a set of representatives for the Wg-orbits of irreducible representations of
Irp/I. Moreover, the maﬂ N is Ip-equivariant, and thus induces, for each 7, a nilpotent
endomorphism N, of Homy, (0, p). If Fr, is a Frobenius element of W,,, we have Fr, N, F‘lr;1 =
q"N,.

Let n,(p) be the dimension of the space Homy, (1, p); since n,(p) only depends on the type
v of p, we may also write this as n,(v). A choice of R-basis for Homy, (7, p) then gives a
homomorphism:
Py - WF/IF - GLm(R)
and realizes IV, as a nilpotent element of M, (R) such that (p,, Ny) is an R-point of X}JW’GL
We thus define:

nn(p)’

Definition 6.10. A pseudo-framing of a Langlands parameter (p, N) over R is a choice, for all

~

n such that n,(p) is nonzero, of an R-basis for Homy,. (7, p). Let X% o be the moduli scheme
parameterizing parameters (p, N) of type v together with a pseudo-framing, and define

G, = H GL,,, .
{nlny (v)#0}
The scheme )Z'I’;G is equipped with a G x G-action.

We denote by E, the fixed field of W,, by 7, the degree of E, over F, and by d, the
dimension of n. We see that G, acts on Xy, ; via “change of pseudo-framing”, and this action

makes )N(;G into a G-torsor over Xj. ;. On the other hand, given an R-point (p, N) of )N(}’?,G,

44 . viewed as a map N : Ip — Ip/Pp ~ [1y Qe - Q; =~ C — GLn(R).
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the pseudo-framing gives, for each n, an R-point (p,, N,) of X}EWGL We thus obtain a

nn(v) :

natural map:
a2 1
Xpa = HXEmGLnn(w
n

which is a torsor for the conjugation action of G' on X’}’;G We thus obtain natural isomorphisms
of quotient stacks:

XIZ‘,G/G = X;‘,G/(G X GV) = (n X}E,],GLM(V)> /GV = H‘qu (ﬁnn(u)/GLnn(u))'
n n

Note that the composite isomorphism depends on the choice, for each 7, of an extension 7 of n
to WF.

6.3. The v-Springer sheaves. We define a Springer sheaf by transporting across the above
isomorphism.

Definition 6.11. We define the v-Springer sheaf S, € Coh(X} 5/G) to be the product, over
/GLy,, (1)
) n

By Theorem [4.12] the endomorphisms of the v-Springer sheaf are a tensor product of affine
Hecke algebras, and we introduce the notation

Hy = X) Hyrn (ny (v)).

7, of the sheaves Sgr» on the moduli stack X}EW’GL

ny (v

We thus obtain a fully faithful embedding H, -mod — QC'(X r.c/G). However, since our
identifications depend, ultimately, on our choices of 7}, this embedding will also depend on these
choices. (By contrast, the sheaf S, itself is, at least up to isomorphism, independent of the
choices of 77.) We can remove this dependence by rephrasing this embedding in terms of smooth
representations of GV, via the type theory of the previous section.

Proposition 6.12. There is a G-type (K,,1,) such that H(GY,K,,1,) ~ H, (depending on
choices), and an identification of dg algebras

End*(S,) ~ H(G",K,,T)
which is is independent of the choices of 7.

Proof. Let L) be the standard Levi of GV corresponding to block diagonal matrices whose
blocks consist, for each n, of n,(v) blocks of size r,d,. Let 7r2 be the cuspidal representation of

GL;, 4, corresponding to Ind%f 7 under the local Langlands correspondence, and let 7, be the

T, = ®(7T707)®n”(1/)
n
of LY. Then representations in the block D(GV)[LVVJV] correspond, via local Langlands, to
Langlands parameters for G of type v.

For each 7, we can find a cuspidal type (K, ;) in GL,, 4, for m.
the type (Kp,,7r,) in Ly, by setting K, =[], K;,l"(u) and 77, = &), TE?”"(V). This type is
associated to the block [LY,m,] in D(L)). Let P be the standard parabolic of G¥ with Levi
LY, and let (P')¥ denote the opposite parabolic. The theory of section then gives us a Levi
subgroup (L)Y of GV containing LY, an (L)V-cover (K}, 7}) of (K1, ,71,), and a GY-cover

(K,,7,) of (K}, 7l). These covers depend on a choice of parabolic with Levi L"; we choose our

v v

covers to be the ones associated to the opposite parabolic (P')Y. In particular we obtain a map

T(P/)v . H(L;/,KL; ,TLJ) — H(GV7KV;TV)

cuspidal representation:
0

From this we can form

that is compatible with the parabolic induction functor i§., on D(LY) in the sense of Theo-
rem
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One verifies, by compatibility of local Langlands with unramified twists, that for each n the
group of unramified characters x of GL; 4, such that 7T,07 ® x is isomorphic to 7r2 is 7. Thus
there is an isomorphism of Hecke algebras H(G"Y, K, 7,) ~ H,. Moreover, the composition:

H(GY,K,, 1) = H, = End(S,)

is independent of the choices of 7). This essentially boils down to the compatibility of the local
Langlands correspondence with unramified twists and parabolic induction. O

Since D(GY)[Ly ] is canonically equivalent to the category of H(G", K, 7, )-modules, and

this equivalence associates the representations CInd?(: 7, to the free H(GY, K,,7,)-module of
rank one, we have shown:

Theorem 6.13. For each v there is a natural fully faithful functor:
LLgy : D(GY) 1y n) = QC(XFc0)
that takes the generator cIndf(: T, to S,.

Remark 6.14. We will say that an inertial type v is cuspidal if the representations of Wg
corresponding to points of XF.; are irreducible. For G = GL,, this happens precisely when
ny =1 for a single 77 and is zero for all other 7. In such cases X7 ; is simply a copy of Gy, the
sheaf S, is the structure sheaf, and the corresponding affine Hecke algebra is simply C[T, T~ 1],
which our choices above identify with the global functions on X% . = G,,. In particular for
such v the functor LLg , is an abelian equivalence, that takes an irreducible C[T, 7 !]-module
to a skyscraper sheaf on the corresponding point of X% ..

By taking products of the above picture we see that a similar statement holds for Levi
subgroups M of G (with a suitable torus in place of G,,.)

6.3.1. A direct construction of S,,. In this section we give a more intrinsic construction of S, .
Fix a particular v, and let L, denote the Langlands dual of L); we identify L, with the
standard block diagonal Levi of G containing n, (v) blocks of size r,d,. Let v/ : Ip — L, be
the representation of Ir on L whose projection to each block of L, of type 1 is the sum of the
Wr-conjugates of 7. We then have a moduli space X Zf 1, barameterizing Langlands parameters
for L, that are of type v/'.

Let P be the standard (block upper triangular) parabolic of G containing L,. We then also
have a moduli space X I”,/ p parameterizing Langlands parameters for G that factor through P,
and whose projection to L, is of type v/. The inclusion of P — G, and the projection of P — L
induce parabolic induction maps

Xpr, <= Xip = Xig
We then have:
Theorem 6.15. There are natural isomorphisms:
Sy = (1p)sO% p = (1p)sTEO% 1
where OtVV:P and (’)Z{LV denote the structure sheaves on Xl’é:P/P and XI?:LV/L,,, respectively.

Proof. Let L' be the standard Levi of G that is block diagonal of block sizes n, (v)r,d,. Let @ be
the standard block upper triangular parabolic of G’ with Levi LT, and let v” be the composition
of v/ with the inclusion of L, in LT. We then have spaces X;:ILT and X IZ:IQ, where the former
parameterizes pairs (p, N) for LT that are of type v, and the latter parameterizes pairs (p, N)
for G that factor through @ and whose projection to LT is of type . We may also consider the
space X ;’ pnrt> Which parameterizes pairs (p, V) for LT that factor through P ~n LT and whose
projection to L is of type v'. We then have a natural Cartesian diagram:
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X;:P/P — Xy, /PAL

| [

XYo/Q —— x¥',, /Lt

from which we conclude that (LP)*T(']*;O}/;’)LV is isomorphic to (TFQ)*Lg(meLT)*ﬂ'I*DmLTO%‘:LV,
where 7@ : X;NQ/Q - XIV:',G/Ga and Tp~pt X}/‘ZPK\LT/<P LM - XIV?:LV/LW

On the other hand, let B,, and T}, denote the standard Borel subgroup and maximal torus
of GL,,, (., for each . We then have a commutative diagram (note that we transport derived
structures across the isomorphisms by definition):

[T, L TWT,,/T) = X%i?/LV
anwl(ﬁsn/m = X;ZPMT{(PmL*)
1, Lqra (ﬁ?n(u)/Gn,,(u)) = X;ZILTT /LT
Hnﬁq*"(ﬁnjxu)/Gnn(u>) = X%:/l@/(ﬂ?
[T, Lo Ny 0)/Gry) = X}.6/G

where the bottom two vertical maps on the left are the identity. It follows that the iterated
pull-push (1Q)«m8(tpart)«mh +OF 1, corresponds, under the bottom isomorphism, to S,

A~

as the latter is simply the pushforward to [], Lorn (N, 1)/Gn, () of the structure sheaf on
[T, L4 (N8, /B). 0

6.3.2. Compatibility with parabolic induction. As in the previous subsection, we fix a particular
v and let L)Y, L, and P be as above. Let () be a standard Levi subgroup of G whose standard
Levi subgroup M contains L,, and let MY and @V be the corresponding dual subgroups of GV.
Let v/ be the inertial type Ir — L, constructed in the previous subsection, and let v” be the
composition of v/ with the inclusion of L, in M. We have a diagram with the square Cartesian:

TP, PAM

Xy, L, <2 XY /P oM X4 p/P

J{LPr\JM J,LP'Q

X¥ /M ——— X% /Q
e
X;)G/G.

Theorem shows that S, is isomorphic to the pushforward to X7, /G of the structure sheaf
on X 1’;' p/P, and the corresponding sheaf S, »s on X ;:'M is the pushforward to X ;:IM /M of the

structure sheaf on X I”;/ pn/ (P nM). The above diagram then gives us a natural isomorphism:
SV = (LQ)*Tl'asnyj.

Via functoriality and this isomorphism one obtains an embedding of End(S,, as) in End(S,).

Recall that we have identified these endomorphism rings with certain Hecke algebras via type
theory. In particular, we have the type (K, ,7r,) of L), an MY-cover (Kpv,Tarv) coming
from the parabolic (P')Y n MY opposite P¥ n MY, and a G-cover (K, 7) coming from the
parabolic (P’)Y opposite PY. Theorem [6.5|then gives us a map:

T(Ql)v :H(MV,KM\/,TI\/[\/) —>H(GV,K,T).
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Lemma 6.16. We have a commutative diagram:

H(MY, Kyrv, Ty ) —— End(Sy )

| |

H(GY,K,7) ———— End(S,)
where the right hand map is induced by the isomorphism of S, ~ (LQ)*WEk?SV,M,

Proof. The machinery of the previous subsection, together with the compatibility of the general
case with the Iwahori case in section 6] allow us to reduce to the case where v = 1. In this
case the claim reduces to the compatibility of the Ginsburg-Kazhdan-Lusztig interpretation of
the affine Hecke algebra as K of the Steinberg variety with parabolic induction, checked in the
proof of Theorem [4.12 O

As a consequence, we deduce:

Theorem 6.17. We have a commutative diagram of functors:

LLas o
D(MY)p, 7 ——— QC'(X¥ )

gl luQ)*wzs

LLc,.
D(G¥)(L, )~ QC(X}q).

Proof. We have isomorphisms:
LLg,(i$.V) = Hom(cInd§ 7,i5.V) @ k. Sy

~ Homjsv (CIndJI\é;v TMVY , V) ®H(Mv Koy mary) (LQ)*’ITést v
(LQ)*'/TZ}(LLJVI,V V)

from which the result follows. O

lle

APPENDIX A. PROOFS

This appendix contains proofs of technical results used in the body of the paper.
A.1. Functoriality of Hochschild homology in geometric settings.

Proof of Proposition[3.1]} The first and second statements are Theorem 2.21 (or Proposition
5.5) in [BN19]. We give a direct argument for the third statement (which can also be adapted
toward the second). We let Z := X xy X, and denote the diagonals by Ax : X — X x X
(and likewise for Y), the relative diagonal by A : X — Z = X xy X, and its inclusion by
1:Z=Xxy X —>XxX.

Note that we use !-integral transforms in our convention; thus to describe the integral trans-
forms it is convenient to pass between #-pullbacks and !-pullbacks. For any quasi-smooth map
g : E — B we denote by ﬂ;“ () = f!(—) Qo wg/lB and ﬁ; : f!(—) ~ f*(-) Qoy wp/p the
canonical equivalences.

The integral transform corresponding to fi f* : Coh(Y) — Coh(Y) is given by the kernel

Kf*f* = Ay*f*(w_x (g?{ w;(}y).

Letting 7y denote the unit for the adjunction (f*, fx), the unit 7 € Homy y (Ayswy, Ky, %)
is defined:

n:= AY*(ﬁ}k ony) : Ayswy — Ay (fafFwy) ~ AY*(f*(fIWY (g@ W)_(}y))
X
The integral transform corresponding to f* f, : Coh(X) — Coh(X) is given by the kernel:

ICf*f* = i*(wz g@Z(JJE/lX)
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Letting na denote the unit for the adjunction (A*, Ay), the counit € € Homy x x (Ks# ¢, , Axswx)
is defined:

e:=ix (Bt ona) tik(wz ® wg}x) — 05 Ay (A*wz @ wy)z) ~ ixAswx
OZ OZ

where we implicitly use the canonical identification A*wg/lx ~ wx/z (i.e. since wy/x is canon-
ically trivial). We leave verification of the adjunction identites to the reader.

The functoriality w(L4Y) — w(LsX) is given by composing the unit and counit after applying
FOFiby and I‘OI‘;X (where, somewhat confusingly, I' denotes the global sections functor, and Iy
denotes the graph). Recall the factorization and notation of Lemma let px : LoYx — X
and py : L4,Yx — Y denote the natural maps, and evy : L4 X — X the evaluation (and likewise
for ). For the unit map 7, we have

F|¢Y77 : F;ﬁy AY*WY —> Flby Ay*f* (UJX ®Ox w;(}y).
We perform a base change along the diagram:
LYy —— LY —— Y

[ o

x 1 sy & vy

to find
Fiﬁy Ay fr(wx ®ox w;(}y) ~ py«px (Wx ®ox w;(}y) ~ py (W, vy ®or, vy p}’}w}}y)
~ py«(We, vy ®o£¢yx wziyx/%y) S eVy § T T WL,y
and an identification of n with the unit 7, for the adjunction (7%, m):
N~ evys(Ne(we,y)) @ eVysWe,y — eVy T T we,y
For the counit map ¢, we have
F;Xe : Fiﬁxi*(wz R0, wg/lx) — Fizﬁx Axqewx.
We perform a base change along the diagram:
LoX —2 Loyy —2X 5 X

J{ev X J{s . J{F bx

X 4 7z T XxX.

to find that
1 . — ! — —
Ty ix(wz ®o, wy/x) = Pxas (wz ®0, Wy x) = Pxx(We,vx B0, vy 5¥ Wy x)
-1
= px*(wcd,yx ®OC¢YX w£¢yx/£¢y) = pX*(;*WE(,,Y-

Since the Calabi-Yau equivalence of Proposition provides a canonical equivalence we, x /¢,y ~

. . e, — . : .
Or,x, we have a canonical equivalence wr, x/z, vy, =~ 0*w, Passing through this equiv-

1
$Yx/LgY"
alence, we have

Tl i Awx > Pxss Dpwx ~ Pxabsbwr, vy ~ Pxads(0*we, vy ®0c,x WL, X/L4Yx)
-1
= pX*(S*(S* (w£¢YX ®O£¢Yx w£¢yx/£d)y)'
Thus, € is identified with the unit 7s for the adjunction (6*,dy):
€ > Pxx(M5(Weyx/L,vx BOc, vy Wi, vy e,y)) P PXsT WL,y — eVX4WE, X
Taking global sections and composing, we see that the map
w(£¢Y) — F(£¢YX7WL¢YX X wZ;YX/L¢Y) ~ F(£¢Yx,w£¢yx X 6*w£¢x/£¢yx) — w(£¢X)

is induced by the unit of the adjunction (L4 f*, L4 f+), twisted by the Calabi-Yau equivalence.
O



70 DAVID BEN-ZVI, HARRISON CHEN, DAVID HELM, AND DAVID NADLER

The following is a generalization of Proposition While Proposition |3.18]is stated in the
setting of derived loop spaces, the arguments hold in the following more general setting.

Proposition A.1. Let f: X — Y be a proper map of derived stacks, and let Z = X xy X with
projections p1,p2 : Z — X and p: Z — Y. There is a canonical equivalence:

Cr i psHomz(Oz,wz) ~ Homy (f«Ox, frwx).
In particular, if X is Calabi-Yau, then we have a natural equivalence w(Z) ~ Endy (fiwx).
This equivalence is functorial in the following sense. Let f': X' =Y’ (and p’ : Z' - Y") be as
above.

o Suppose that aoy : Y — Y’ is proper, and that X = X'. We let f : X — Y be as above,
ff=ayof:X—>Y =Y Wehave commuting squares

()]
aypxHomz(Oz,wz) aY*Tf> aysHomy (f+Ox, fawx)
Defml lDef

peHomz (Oz,wyzr) —i> Homy (f+Oxr, frewxr).

e Suppose that ay : Y — Y’ is Calabi-Yau, and that X = X' xy' Y (so ax is also
Calabi-Yau). Then we have commuting squares

Cor
p’*’Homzl(Ozl,wZ/) —i> Homy(fxOx, fawxr)
Defml lDefm
ayx(Cy)

ayspsHomz(Oz,wz) —= aysHomy (f+Ox, fewx).

Proof. The first statement is a formal consequence of adjunctions and base change:
pxHomz(Oz,wz) = fxHomx (Ox,prawz) =~ fxHomx (Ox, f' fawx) ~ Homy (f+Ox, fawx).

Functoriality for proper morphisms follows by a diagram chase on:
ayxpsHomz(Oz,wz) —— p,Homz (Oz,wz)
f;HomX(£;7pl*WZ) _— f,’kﬂomx(gx,p'l*wz’)

i: i:
fiHomx (Ox, f' fawx) ——— fiHomx (Ox, f" frwx)
OZY*/HomY(}E_OX7f*WX) — aY*HomY'é;OXJ;WX)

where we use the identification in the middle left terms ay 4 fo >~ fraxs ~ fi (i.e. since X = X’
and ax = idx), and the middle horizontal maps are given by functoriality of pushforwards of
dualizing sheaves. In the Calabi-Yau case, we pass to left adjoints, apply the base change
o fi. ~ fya™ and chase the diagram:

p*azﬂomz/(oz/,wz/) _— p*HomZ(OZ,wz)

l: N

frakHomx (Ox,pluwz) —— fuHomx(Ox,prawz)

l: ~

frak Homx (Ox, f/!fkaX') — fyHomx:(Ox, f!f*wx)

l: -

ayHomy (f,Ox/, frwx) ——— Homy (f«Ox, fewx)
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where the middle arrows arise by functoriality of Calabi-Yau pullback (as in Definition [3.13])
after passing to left adjoints. O

A.2. Horizontal trace of convolution categories.

Proof of Theorem[3.23. We will employ the notation in Theorem 3.3.1 of [BNPI7D] to point out
how its argument can be modified to acommodate this more general setting. First, note that
the surjectivity condition is not needed nor used in the proof of the theorem; it is subsumed by
the singular support condition, so we omit it from the statement. The quasi-smoothness of ¢,
follows by quasi-smoothness of the graph I',. We replace, in the definition of C,, the diagonal
module Perf(X) with the module defined by the graph I',. In the definition of Z,, this amounts
to replacing LY with Y (informally, introducing a twist by ¢ as we “come around the circle,”
i.e. in Lemma 3.3.2 the automorphism ¢ lives in Mapy () (y,0(y))). In the definition of Wi,
this amounts to replacing the last factor of X xy X = X Xy ; X representing the “segment
containing the twist by ¢” with X xfy,4,0r X (i.e. in Lemma 3.3.3, the final point z,, should
lie in the fiber f~1(¢(y)) rather than f~!(y)). The rest of the proof goes through without
modification as the formulas still hold with the ¢-twist. O

Proof of Proposition[3.30, The argument in Theorem 3.3.1 of [BNP17bh] may be adapted in the
following way. Let M = QC'(Z12) and N = QC'(Za3), and following the notation of loc. cit. we
let A = QC'(Zas) and B = QC'(X5). Then, writing M®a N = M®a A ®a N, and (following
the argument of loc. cit.) resolving A as a A ®g A"-module via the relative bar complex for
A over B, we find that M ®a N can be realized as the geometric realization of the cosimplicial
object:
M ®a N = colim(QC) (Z»))
where we define
n+1

———
anZn I=X1><X2><"'XXQXX3—>W7LI=Z12XZ;2X223,
Y Y Y Y

n

An = ¢ (Ar2 T;[;] e TZ[_;] ] Ags).
(0) (n)

Explicitly, for n = (z1,25,...,25 ,x3) € Z,(k) with each coordinate living in the fiber over

y € Y(k), we have

T;E:l] = {(wlg,wégl), . ,wégfl’n),wgg) € T;y | dfffwia = 0,dffwas = 0, dfz*wg;l’i) = df;wéé’iﬂ)},
An = {(wlg, wégl), e ,wég_l’n),w%) € T)’;/’y | w12 € Algm,wgg € Agg,n, df;wggi-'_l) = O}

Here, we note that the fiber of the singular support condition A;; at the point (z;,z;) € Z;;(k)
in the fiber over y is naturally a subset Ay (4, 2;) < T;"/U The singular support stability
condition implies that the face maps (Z,,, Ay) — (Zn, Ay,) are maps of pairs. Pullback along
the augmentation is conservative by definition of A;3. Analogous formulas in Lemma 3.3.9 of
op. cit. hold in this situation (without the need to “loop around”), and the strictness condition
follows by an argument analogous to Proposition 3.3.8 of op. cit. Thus, we have an equivalence

QCl,,(Z13) ~ Tot(QCY (Zy)).

For functoriality, we note that the resulting maps (Z,,A,,) — (Z,, A]) are maps of pairs by
our description above for n > 0, and the case n = —1 is a straightforward verification. The claim
then follows by functoriality of the descent with support discussed in Section 2.4 of [BNP17h].
We adopt the notation of loc. cit.: let (Xo,As) — (X_1,A_1) and (Y,,0.) — (Y_1,0_1) be
augmented simplicial diagrams of maps of pairs satisfying the descent conditions of Theorem
2.4.1 and Corollary 2.4.2 of [BNPI17b], and let g : (X.,As) — (Y, 0,) be a level-wise proper
map of augmented simplicial diagrams of pairs. We claim that we have a limit Tot(g}) ~ g* , and
a colimit Real(gex) =~ g_14, which proves the functoriality claims (i.e. since the maps g. are the
identity, the functors ges are the inclusion functors and g are the local cohomology functors).
The first statement follows by commutativity of !-pullbacks with supports (see Remark 2.3.3 of
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[BNP17b]) and by universal property of the limit. The second statement follows by passing to
left adjoints (as in Corollary 2.4.2 of op. cit.). O

Proof of Proposition[3.36. Consider the functors
T(—) := — ®qck) QC(X) : dgCat; — QC(Y)-mod,

TH(-) :== = ®qc(y) QC(X) : QC(Y)-mod — dgCat,.
We claim that (T, TF) are adjoint. Let Ay : X — X x X denote the diagonal, p : X — pt
denote the structure map, and Ay y : X — X xy X the relative diagonal. We define the unit
1 : idagcat, — T% o T via the functor Ay y.p* : QC(pt) — QC(X xy X) and the counit
e:ToTR — idqc(y)-moa by the functor fA% : QC(X x X) — QC(Y). Verification of the
adjunction axioms is a straightforward application of base change and Theorem 4.7 of [BENT10].

To compute the trace, we apply base change and find that [QC(X), ¢x«] is the pull-push of
k € QC(pt) along the diagram (where Ay : Y — Y x Y is the diagonal):

X ><Z £¢YX >~ £¢X

LyYx ~ X X Y
A (f,fopx),Y xY,Ay
XY
Z=XxyX=(XxX) x Y LY,
(£:0), Y xY,Ay
e. [QC(X),oxs] ~ Ly fuOr,x- O
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