MODULAR FORMS EXAMPLE SHEET 4

la. Show that the group SLs(Z/pZ) (p prime) has order p(p? — 1).

The rows of an element of GL2(Z/pZ) are a pair of linearly independent
vectors vy, vy in (Z/pZ)%. There are p? — 1 choices for v1, and for any fixed
v1, p vectors v that are scalar multiples of vo. Thus there are p? —p vectors
vg such that vy, vs is linearly independent. The matrix with rows v; and v
is then invertible, so its determinant is a unit in Z/pZ. Rescaling vs so that
the determinant is 1 reduces the number of choices for vy from p? — p to p.
Thus there are p(p? — 1) choices for v; and vy together.

1b. Show by induction on e that SLa(Z/p°Z) has order p3¢(1 — Z%

).
It suffices to show that the kernel of SLo(Z/p°Z) — SLa(Z/p®~17Z) has order
1+pta  p~lb
pe—lc 1+pe—1d )
a, b, ¢, d well-defined modulo p. The determinant is 1 mod p€ iff a + d is zero
mod p. There are thus p? choices for a, b, ¢, and these choices determine d
uniquely as an element of Z/pZ.

lc. Show that I'(NV) has index N3 [Tn(1= I%) in SLo(Z), where the product
is over all prime divisors p of V.

It is equvialent to show that this is the order of SLa(Z/NZ). This follows
easily from 1b and the Chinese Remainder Theorem.

1d. Show that I't (N) has index N> ], y(1 — ) in SLa(Z).

p3. An element of this kernel has the form with

The quotient I'y(N)/T'(N) is isomorphic to the strictly upper triangular
matrices with entries in Z/N/Z; this is a cyclic group of order N. The
result thus follows from 1c.

le. Show that To(N) has index N [T, (1 + 5) in SLa(Z).

The quotient I'g(N)/I'1 (V) is isomorphic to (Z/NZ)*; this has order N ][, (1—
%). The result thus follows from 1d.

2. Let I' be a congruence subgroup of SLg(Z), containing +1. Let z €
QU {c}. Let Z, denote the stabilizer of = in SLg(Z), and let ', = Z, NT.
The width of the cusp x (relative to the congruence subgroup I') is the index
[Z, : T,], and is denoted Rp(z).

2a. Show that for v € T', one has Rr(vx) = Rr(x).

We have Z,, = 72,7 %, s0 Iy = ATyt Now Ry = [Zyp : Tyl =

[VZyy™! i ATey Y] = Ry
1
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2b. For z,y in QU {oo}, let Z,, denote the set {§ € SLo(Z) : dz € I' - y}.
Show that for any v € SLy(Z) with yo = y, Z,, is equal to the “double
coset” T'vZ, of elements of SLy(Z) of the form 7'~z for v/ € T', and 2 € Z,.

It is clear that any element of I'vZ, takes z to an element of the I'-orbit of
y. To show the other inclusion, let 6 € Z, ,. Then there exists 7/ in " that
takes y to dz. Then (7)~1(y')~'dz = =, so (7)~1(y)~!6 is an element z of
Z,. But then § = ~'yz lies in T'vZ,.

2b. For z,y in QU {oo}, let Z, , denote the set {6 € SLa(Z) : dz € I' - y}.
Show that for any v € SLy(Z) with vy = y, Z,, is equal to the “double
coset” T'vZ, of elements of SLy(Z) of the form 7'~z for v/ € T', and 2z € Z,.

By definition, the set HgK is the (non-disjoint) union of the cosets Hgk
for k € K. For kK in K, Hgk intersects Hgk' if and only if they are
equal. This occurs if, and only if, there exists h in H such that gk = hgk’,
or, equivalently, if there exists h in H such that gk(k’)"'g~! = h. The
latter holds if, and only if, k(k’)~! lies in g~ Hg (and hence in K Ng~'Hg.)
In particular, Hgk = Hgk' if, and only if the cosets (K N g 'Hg)k and
(K Ng~'Hg)K coincide. This gives a bijection betweeen the cosets of H in
HgK and the cosets of KNg 'Hg in K. Conjugating by ¢ gives a bijection
between these cosets and the cosets of gKg~' N H in gKg~!.

2d. Show that the sum of Rp(x), as x runs over a set of representatives for
the I'-orbits in Q U oo, is equal to the index of T in SLo(Z). [HINT: write
SL2(Z) as a disjoint union of cosets I'y;, and for each I'-orbit I'z in Q U oo,
count the number of such cosets that take oo to a point in T'z.]

Write SLy(Z) as a disjoint union of cosets I'y; for v1,...,7 € SLa(Z). Let
{z;} represent the set of I'-orbits on QU{oo}. Since SLo(Z) acts transitively
on QU {oo}, every element of Q U {oo} is in the I'-orbit of ;1 for some i.
For each j, fix a 0; from the set {7y1,...,v,} such that d;z is in the I'-orbit
of z;. Then for each j, the set Zay ;18 the double coset I'6;Z,,. We have
shown that Z;, . ;18 the union of n; right cosets of I', where n; is the index
of @Zzléjl NI in 5ij15]71. Since 5]-ij5;1 = Zy;, we have n; = Rr(xj).

Now SL2(Z) is the disjoint union of Z, ,; over all j. Since each of these
is the disjoint untion of Rr(x;) cosets of I', the sum of the Rr(x;) is equal
to the index of I" in SLy(Z).

3a. Find a set of representatives for the set of cusps of the congruence
subgroups I'g(4),['9(6), and I'1(5), and find their widths.

I'p(4): Note that there are two I'g(2)-orbits (those of 0 and co) on QU {o0}.
Since I'g(4) has index 2 in I'g(2), each of these orbits breaks up into at most
two orbits for I'g(4). It is easy to see that the orbit of 0 under both I'g(2)
and T'g(4) consists of all fractions of the form 3 with d odd. By contrast,
The I'g(4)-orbit of oo consists of co together with all fractions of the form

% with 4|c, a odd. Note that % is therefore not in the I'g(4)-orbit of oo,
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but is in the I'g(2)-orbit. Thus the I'g(2)-orbit of oo breaks up into two
Lo (4)-orbits: those of co and 3.

The stabilizer of co in SLa(Z) is the group of matrices of the form £77;
all of these lie in I'g(4), so the width of co is 1. The stabilizer of 0 is matrices

of the form + (711 (1)>, and such a matrix lies in I'g(4) if, and only if, n is

divisibly by 4, so the width of 0 is 4. The widths sum to the index of I'5(4)
in SLg(Z), which is 6, so the remaining cusp % must have width 1.

I'y(6): Note that I'g(6) is the intersection of I'g(2) (which has index 3 in
SLa2(Z)) with I'g(3) (which has index 4 in SLa(Z).) So I'g(6) has index 12
in SLa(Z). Moreover, every intersection of a I'g(2)-orbit with a I'g(3)-orbit
is stable under I'y(6), and is thus a union of I'g(6)-orbits.

There are two I'g(2)-orbits: those of zero and oo, and likewise two I'g(3)-
orbits (also represented by zero and co). We have:

e 0 is in the orbit of 0 under both I'¢(2) and I'g(3): it has width six
for T'9(6) by the same argument as for I'g(4).

e oo is in the orbit of co under both I'g(2) and I'g(3); it has width one.

is in the orbit of oo for I'g(2) and of 0 for I'g(3).

is in the orbit of 0 for I'p(2) and of oo for I'g(3).

COI—=N| =

The widths sum to 12, so the widths of % and % sum to at most 5, with
equality if, and only if, they are the only cusps other than 0 and co. On
the other hand, the width of § for I'¢(6) is divisible by its width for I'(3),
by definition, and this latter width is 3. Similarly 2 divides the width of
%. These widths must therefore be 3 and 2, respectively, and the list above
must be a complete list of cusps for I'g(6).

I'1(5): We replace I't(5) with £I'1(5), so we can use the theory of widths
developed in the last question. The group £+I'1(5) has index 2 in I'y(5), and
hence index 12 in SLa(Z).

There are two orbits of T'g(5) on Q U {oco}: those of 0 and co. We have
I'1(5) € £I'1(5) C T'g(5), each with index 2, and (since —1 acts trivially),
the orbits of I'1(5) and +I'1(5) on QU {oo} are the same. Thus the orbits of
0 and oo under I'y(5) each decompose into at most two orbits under I'; (5).

The orbit of co under I'g(5) consists of all ¢ with 5 dividing ¢ but not a.
Under I't(5), the orbit of oo consists of all ¢ with 5 dividing ¢ and a = 1
(mod 5). In particular 2 is in the I'g(5)-orbit of co but not the I'y(5)-orbit.
Thus the T'g(5)-orbit of oo is the union of the I'y(5)-orbits of co and 2.

Similarly, the I'g(5)-orbit of 0 is the union of the I';(5)-orbits of 0 and
%. The width of each of these cusps is divisible by the width of 0 for T'(5);
that is, by 5.

We thus have four cusps, two of which have width divisible by 5, whose
widths (for £1'1(5) sum to 12. The two cusps with width divisible by 5 must
thus have width exactly 5, and the remaining two cusps must have width 1.
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4a. Show that the group I'g(4) is generated by the matrices £ (1 1) and

0 1
10
(3 V)

Let T denote the matrix 0

11 1

(0 1>’ 4 1)
Left multiplication by 71" adds the bottom row of a matrix to the top; right
multiplication by T adds the left column of a matrix to its right column.
Similarly, left multiplication by U adds 4 times the top row to the bottom
row, and right multiplication by U adds 4 times the right column to the left
column. We must show we can reduce any matrix in I'g(4) to 1 by these
operations.

. a
Given <c

and let U denote the matrix <

b . . o
d)’ with ¢ nonzero, we can multiply by T (or its inverse) on

/
the right a number of times to get a new matrix <Ccl Z,) with |d'| < %
(We won’t get equality because ¢ and d are relatively prime). Multiplying
!/ /

by a power of U on the right, we can get a new matrix o with

d/
|| < 2|d'| < |e|. Iterating, we eventually obtain ¢ = 0. If ¢ = 0 the matrix
is &£T™ for some n, and we are done.

4b. Show that for n > 6, the matrices + <(1) 1) and + <111 (1)> do not

generate I'yp(n).

Under the isomorphism I'g(n)/I'1(n) = (Z/nZ)*, the above matrices all
have image +1.



