
MODULAR FORMS EXAMPLE SHEET 4

1a. Show that the group SL2(Z/pZ) (p prime) has order p(p2 − 1).

The rows of an element of GL2(Z/pZ) are a pair of linearly independent
vectors v1, v2 in (Z/pZ)2. There are p2 − 1 choices for v1, and for any fixed
v1, p vectors v2 that are scalar multiples of v2. Thus there are p2−p vectors
v2 such that v1, v2 is linearly independent. The matrix with rows v1 and v2

is then invertible, so its determinant is a unit in Z/pZ. Rescaling v2 so that
the determinant is 1 reduces the number of choices for v2 from p2 − p to p.
Thus there are p(p2 − 1) choices for v1 and v2 together.

1b. Show by induction on e that SL2(Z/peZ) has order p3e(1− 1
p2

).

It suffices to show that the kernel of SL2(Z/peZ)→ SL2(Z/pe−1Z) has order

p3. An element of this kernel has the form

(
1 + pe−1a pe−1b
pe−1c 1 + pe−1d

)
, with

a, b, c, d well-defined modulo p. The determinant is 1 mod pe iff a+d is zero
mod p. There are thus p3 choices for a, b, c, and these choices determine d
uniquely as an element of Z/pZ.

1c. Show that Γ(N) has index N3
∏
p|N (1− 1

p2
) in SL2(Z), where the product

is over all prime divisors p of N .

It is equvialent to show that this is the order of SL2(Z/NZ). This follows
easily from 1b and the Chinese Remainder Theorem.

1d. Show that Γ1(N) has index N2
∏
p|N (1− 1

p2
) in SL2(Z).

The quotient Γ1(N)/Γ(N) is isomorphic to the strictly upper triangular
matrices with entries in Z/N/Z; this is a cyclic group of order N . The
result thus follows from 1c.

1e. Show that Γ0(N) has index N
∏
p|N (1 + 1

p) in SL2(Z).

The quotient Γ0(N)/Γ1(N) is isomorphic to (Z/NZ)×; this has orderN
∏
p|N (1−

1
p). The result thus follows from 1d.

2. Let Γ be a congruence subgroup of SL2(Z), containing ±I. Let x ∈
Q ∪ {∞}. Let Zx denote the stabilizer of x in SL2(Z), and let Γx = Zx ∩ Γ.
The width of the cusp x (relative to the congruence subgroup Γ) is the index
[Zx : Γx], and is denoted RΓ(x).

2a. Show that for γ ∈ Γ, one has RΓ(γx) = RΓ(x).

We have Zγx = γZxγ
−1, so Γγx = γΓxγ

−1. Now Rγx = [Zγx : Γγx] =
[γZxγ

−1 : γΓxγ
−1] = Rx.
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2b. For x, y in Q ∪ {∞}, let Zx,y denote the set {δ ∈ SL2(Z) : δx ∈ Γ · y}.
Show that for any γ ∈ SL2(Z) with γx = y, Zx,y is equal to the “double
coset” ΓγZx of elements of SL2(Z) of the form γ′γz for γ′ ∈ Γ, and z ∈ Zx.

It is clear that any element of ΓγZx takes x to an element of the Γ-orbit of
y. To show the other inclusion, let δ ∈ Zx,y. Then there exists γ′ in Γ that
takes y to δx. Then (γ)−1(γ′)−1δx = x, so (γ)−1(γ′)−1δ is an element z of
Zx. But then δ = γ′γz lies in ΓγZx.

2b. For x, y in Q ∪ {∞}, let Zx,y denote the set {δ ∈ SL2(Z) : δx ∈ Γ · y}.
Show that for any γ ∈ SL2(Z) with γx = y, Zx,y is equal to the “double
coset” ΓγZx of elements of SL2(Z) of the form γ′γz for γ′ ∈ Γ, and z ∈ Zx.

By definition, the set HgK is the (non-disjoint) union of the cosets Hgk
for k ∈ K. For k, k′ in K, Hgk intersects Hgk′ if and only if they are
equal. This occurs if, and only if, there exists h in H such that gk = hgk′,
or, equivalently, if there exists h in H such that gk(k′)−1g−1 = h. The
latter holds if, and only if, k(k′)−1 lies in g−1Hg (and hence in K ∩g−1Hg.)
In particular, Hgk = Hgk′ if, and only if the cosets (K ∩ g−1Hg)k and
(K ∩ g−1Hg)k′ coincide. This gives a bijection betweeen the cosets of H in
HgK and the cosets of K ∩ g−1Hg in K. Conjugating by g gives a bijection
between these cosets and the cosets of gKg−1 ∩H in gKg−1.

2d. Show that the sum of RΓ(x), as x runs over a set of representatives for
the Γ-orbits in Q ∪∞, is equal to the index of Γ in SL2(Z). [HINT: write
SL2(Z) as a disjoint union of cosets Γγi, and for each Γ-orbit Γx in Q ∪∞,
count the number of such cosets that take ∞ to a point in Γx.]

Write SL2(Z) as a disjoint union of cosets Γγi for γ1, . . . , γr ∈ SL2(Z). Let
{xj} represent the set of Γ-orbits on Q∪{∞}. Since SL2(Z) acts transitively
on Q ∪ {∞}, every element of Q ∪ {∞} is in the Γ-orbit of γix1 for some i.
For each j, fix a δj from the set {γ1, . . . , γr} such that δjx1 is in the Γ-orbit
of xj . Then for each j, the set Zx1,xj is the double coset ΓδjZx1 . We have
shown that Zx1,xj is the union of nj right cosets of Γ, where nj is the index

of δjZx1δ
−1
j ∩ Γ in δjZx1δ

−1
j . Since δjZxjδ

−1
j = Zxj , we have nj = RΓ(xj).

Now SL2(Z) is the disjoint union of Zx1,xj over all j. Since each of these
is the disjoint untion of RΓ(xj) cosets of Γ, the sum of the RΓ(xj) is equal
to the index of Γ in SL2(Z).

3a. Find a set of representatives for the set of cusps of the congruence
subgroups Γ0(4),Γ0(6), and Γ1(5), and find their widths.

Γ0(4): Note that there are two Γ0(2)-orbits (those of 0 and∞) on Q∪{∞}.
Since Γ0(4) has index 2 in Γ0(2), each of these orbits breaks up into at most
two orbits for Γ0(4). It is easy to see that the orbit of 0 under both Γ0(2)
and Γ0(4) consists of all fractions of the form b

d with d odd. By contrast,
The Γ0(4)-orbit of ∞ consists of ∞ together with all fractions of the form
a
c with 4|c, a odd. Note that 1

2 is therefore not in the Γ0(4)-orbit of ∞,
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but is in the Γ0(2)-orbit. Thus the Γ0(2)-orbit of ∞ breaks up into two
Γ0(4)-orbits: those of ∞ and 1

2 .
The stabilizer of ∞ in SL2(Z) is the group of matrices of the form ±Tn;

all of these lie in Γ0(4), so the width of∞ is 1. The stabilizer of 0 is matrices

of the form ±
(

1 0
n 1

)
, and such a matrix lies in Γ0(4) if, and only if, n is

divisibly by 4, so the width of 0 is 4. The widths sum to the index of Γ0(4)
in SL2(Z), which is 6, so the remaining cusp 1

2 must have width 1.

Γ0(6): Note that Γ0(6) is the intersection of Γ0(2) (which has index 3 in
SL2(Z)) with Γ0(3) (which has index 4 in SL2(Z).) So Γ0(6) has index 12
in SL2(Z). Moreover, every intersection of a Γ0(2)-orbit with a Γ0(3)-orbit
is stable under Γ0(6), and is thus a union of Γ0(6)-orbits.

There are two Γ0(2)-orbits: those of zero and ∞, and likewise two Γ0(3)-
orbits (also represented by zero and ∞). We have:

• 0 is in the orbit of 0 under both Γ0(2) and Γ0(3): it has width six
for Γ0(6) by the same argument as for Γ0(4).
• ∞ is in the orbit of∞ under both Γ0(2) and Γ0(3); it has width one.
• 1

2 is in the orbit of ∞ for Γ0(2) and of 0 for Γ0(3).

• 1
3 is in the orbit of 0 for Γ0(2) and of ∞ for Γ0(3).

The widths sum to 12, so the widths of 1
2 and 1

3 sum to at most 5, with
equality if, and only if, they are the only cusps other than 0 and ∞. On
the other hand, the width of 1

2 for Γ0(6) is divisible by its width for Γ0(3),
by definition, and this latter width is 3. Similarly 2 divides the width of
1
3 . These widths must therefore be 3 and 2, respectively, and the list above
must be a complete list of cusps for Γ0(6).

Γ1(5): We replace Γ1(5) with ±Γ1(5), so we can use the theory of widths
developed in the last question. The group ±Γ1(5) has index 2 in Γ0(5), and
hence index 12 in SL2(Z).

There are two orbits of Γ0(5) on Q ∪ {∞}: those of 0 and ∞. We have
Γ1(5) ⊂ ±Γ1(5) ⊂ Γ0(5), each with index 2, and (since −1 acts trivially),
the orbits of Γ1(5) and ±Γ1(5) on Q∪{∞} are the same. Thus the orbits of
0 and ∞ under Γ0(5) each decompose into at most two orbits under Γ1(5).

The orbit of ∞ under Γ0(5) consists of all a
c with 5 dividing c but not a.

Under Γ1(5), the orbit of ∞ consists of all a
c with 5 dividing c and a ≡ 1

(mod 5). In particular 2
5 is in the Γ0(5)-orbit of ∞ but not the Γ1(5)-orbit.

Thus the Γ0(5)-orbit of ∞ is the union of the Γ1(5)-orbits of ∞ and 2
5 .

Similarly, the Γ0(5)-orbit of 0 is the union of the Γ1(5)-orbits of 0 and
1
2 . The width of each of these cusps is divisible by the width of 0 for Γ0(5);
that is, by 5.

We thus have four cusps, two of which have width divisible by 5, whose
widths (for ±Γ1(5) sum to 12. The two cusps with width divisible by 5 must
thus have width exactly 5, and the remaining two cusps must have width 1.
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4a. Show that the group Γ0(4) is generated by the matrices ±
(

1 1
0 1

)
and

±
(

1 0
4 1

)
.

Let T denote the matrix

(
1 1
0 1

)
, and let U denote the matrix

(
1 0
4 1

)
.

Left multiplication by T adds the bottom row of a matrix to the top; right
multiplication by T adds the left column of a matrix to its right column.
Similarly, left multiplication by U adds 4 times the top row to the bottom
row, and right multiplication by U adds 4 times the right column to the left
column. We must show we can reduce any matrix in Γ0(4) to ±1 by these
operations.

Given

(
a b
c d

)
, with c nonzero, we can multiply by T (or its inverse) on

the right a number of times to get a new matrix

(
a b′

c d′

)
with |d′| < |c|

2 .

(We won’t get equality because c and d are relatively prime). Multiplying

by a power of U on the right, we can get a new matrix

(
a′ b′

c′ d′

)
with

|c′| < 2|d′| < |c|. Iterating, we eventually obtain c = 0. If c = 0 the matrix
is ±Tn for some n, and we are done.

4b. Show that for n > 6, the matrices ±
(

1 1
0 1

)
and ±

(
1 0
n 1

)
do not

generate Γ0(n).

Under the isomorphism Γ0(n)/Γ1(n) ∼= (Z/nZ)×, the above matrices all
have image ±1.


