MODULAR FORMS EXAMPLE SHEET 3

1. Let $M_k(\mathbb{Z})$ be the space of modular forms of weight k with integral q-expansions. Show that the graded ring:

$$\bigoplus M_k(\mathbb{Z})$$

is generated over \mathbb{Z} by E_4 , E_6 , and Δ .

This follows easily from the argument of problem 4 of example sheet 2; indeed, the f_i constructed there are easily seen by induction to be integer polynomials in E_4 , E_6 , and Δ , and any modular form with integral coefficients is an integral linear combination of the f_i .

2a. Show that the map $\operatorname{SL}_2(\mathbb{Z}) \to \operatorname{SL}_2(\mathbb{Z}/N\mathbb{Z})$ is surjective, for any N > 1.

Let γ be a matrix in $\operatorname{SL}_2(\mathbb{Z}/N\mathbb{Z})$, and lift γ to a matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ with entries in \mathbb{Z} , and c nonzero. Then ad - bc = 1 + kN for some k. In particular the gcd of d, c, and N is 1. Let t be the product of the primes that divide c but not d. Then d + tN is nonzero modulo all primes dividing c (if p divides d then p does not divide tN; if p does not divide d then it divides tN), so c and d + tN are relatively prime. Replacing d with d + tN we can thus assume that c and d are relatively prime.

Now choose u, v such that ud - vc = -k, where ad - bc = 1 + kN. Then $\begin{pmatrix} a + uN & b + vN \\ c & d \end{pmatrix}$ is a lift of γ with determinant 1.

2b. Show that the map $\operatorname{GL}_2(\mathbb{Z}) \to \operatorname{GL}_2(\mathbb{Z}/N\mathbb{Z})$ is not surjective, for any N > 6.

On determinants, the induced map is the map $\pm 1 \to (\mathbb{Z}/N\mathbb{Z})^{\times}$, which is clearly not surjective for N > 6.

3. Compute the matrix of the Hecke operator T_2 acting on S_{24} with respect to the basis $E_4^3\Delta$, Δ^2 of S_{24} , and show that its characteristic polynomial is irreducible. What does this mean about the eigenforms of level 24?

The computation of the polynomial is routine, if tedious: one uses the formula for T_2 on q-expansions to obtain the q and q^2 coefficients of $T_2 E_4^3 \Delta$ and $T_2 \Delta^2$; these suffice to express $T_2 E_4^3 \Delta$ and $T_2 \Delta^2$ as linear combinations of $E_4^3 \Delta$ and Δ^2 . The characteristic polynomial of the resulting matrix is $x^2 - 1080x - 20468736$; it is irreducible over \mathbb{Q} since its discriminant is not a perfect square. This implies that the eigenforms of level 24 do not have integer coefficients, and come in a Galois conjugate pair. 4. Let V be a three dimensional real vector space, and let \mathcal{L} denote the space of lattices in V. For a, b positive integers with a dividing b, define a correspondence $T_{a,b}$ on \mathcal{L} by letting $T_{a,b}L$ be the sum of the sublattices $L' \subset L$ such that L/L' is isomorphic to $\mathbb{Z}/a \times \mathbb{Z}/b$.

4a. Show that if (b, b') = 1, then $T_{a,b}T_{a',b'} = T_{aa',bb'}$.

NOTATION: We will write $L' \subseteq_{a,b} L$ to mean that L' is a sublattice of L with L/L' isomorphic to $\mathbb{Z}/a \times \mathbb{Z}/b$.

For arbitrary a, b, a', b' we have:

$$T_{a,b}T_{a',b'}L = \sum_{L'\subseteq a',b'}\sum_{L\,L''\subseteq a,bL'}L'',$$

and we may rewrite the latter as

$$\sum_{L''} C_{(a,b),(a',b')}(L,L'')$$

where $C_{(a,b),(a',b')}(L,L'')$ counts the number of lattices L' such that $L'' \subseteq_{a,b}$ $L' \subseteq_{a',b'} L$. (Or, equivalently, the number of subgroups A of L/L'' such that A is isomorphic to $\mathbb{Z}/a' \times \mathbb{Z}/b'$ and (L/L'')/A is isomorphic to $\mathbb{Z}/a \times \mathbb{Z}/b$.)

If b and b' are relatively prime, then so are ab and a'b'. We will show that in this case $C_{(a,b),(a',b')}(L,L'') = 1$ if $L'' \subseteq_{aa',bb'} L$, and zero otherwise. This will prove 4a.

First suppose there exists an L' such that $L'' \subseteq_{a,b} L' \subseteq_{a',b'} L$. Then L'/L''is a subgroup of L/L'' isomorphic to $\mathbb{Z}/a \times \mathbb{Z}/b$, and the quotient of L/L''by this subgroup is isomorphic to L'/L'' and hence to $\mathbb{Z}/a' \times \mathbb{Z}/b'$. On the other hand, if A is a finite abelian group, and B is a subgroup of A such that the orders of B and A/B are relatively prime, then A is isomorphic to $A \times B/A$. (This follows from the fact that any abelian group is the product of its maximal subgroups of prime power order.) Thus L/L'' is isomorphic to $\mathbb{Z}/a \times \mathbb{Z}/b \times \mathbb{Z}/a' \times \mathbb{Z}/b'$, and the latter is isomorphic to $\mathbb{Z}/aa' \times \mathbb{Z}/bb'$.

On the other hand it is easy to see that there is a unique subgroup of order a'b' in $\mathbb{Z}/aa' \times \mathbb{Z}/bb'$, consisting of all the elements of order dividing a'b'. Thus, for any $L'' \subseteq_{aa',bb'} L$, there is a unique intermediate L' such that $L'' \subseteq_{a,b} L' \subseteq_{a',b'} L.$

4b. Fix a prime p, and express T_{1,p^2} , T_{1,p^3} , and T_{p,p^2} as polynomials in $T_{1,p}$, $T_{p,p}$, and the "rescaling by p" operator R_p .

We compute $T_{1,p}^2$, $T_{1,p}T_{p,p}$, and $T_{1,p}T_{1,p^2}$ (in this order.) First, $T_{1,p}^2 = \sum_{L''} C_{(1,p),(1,p)}(L'',L)L''$. If we have a lattice L' such that

 $L'' \subseteq_{1,p} L' \subseteq_{1,p} L$, then L'' has index p^2 in L, so L/L'' is isomorphic to \mathbb{Z}/p^2 or \mathbb{Z}/p . The former has exactly one cyclic subgroup of order p; the latter has p+1. Thus $T_{1,p}^2 = T_{1,p^2} + (p+1)T_{p,p}$. (In particular, $T_{1,p^2} = T_{1,p}^2 - (p+1)T_{p,p}$.) Next, $T_{1,p}T_{p,p} = \sum_{L''} C_{(1,p),(p,p)}(L'',L)L''$. If we have L' such that $L'' \subseteq_{1,p}$

 $L' \subseteq_{p,p} L$, then L/L'' is isomorphic to $\mathbb{Z}/p \times \mathbb{Z}/p^2$ or $(\mathbb{Z}/p)^3$. (It cannot be isomorphic to \mathbb{Z}/p^3 as it has a quotient L/L' that is not cyclic.) The former

has p + 1 subgroups A of order p, but for only one such subgroup is the quotient $(\mathbb{Z}/p \times \mathbb{Z}/p^2)/A$ isomorphic to $\mathbb{Z}/p \times \mathbb{Z}/p$. Thus $c_{(1,p),(p,p)}(L'',L) = 1$ if L/L'' is isomorphic to $\mathbb{Z}/p \times \mathbb{Z}/p^2$. On the other hand, if L/L'' is isomorphic to $(\mathbb{Z}/p)^3$, then $L'' = R_pL$, there are $p^2 + p + 1$ subgroups of L/L'' of order p, and the quotient by any of those is $\mathbb{Z}/p \times \mathbb{Z}/p$. Thus $C_{(1,p),(p,p)}(L'', :) = p^2 + p + 1$ in this case, and we get $T_{1,p}T_{p,p} = T_{p,p^2} + (p^2 + p + 1)R_p$. (In particular $T_{p,p^2} = T_{1,p}T_{p,p} - (p^2 + p + 1)R_p$.) As for $T_{1,p}T_{1,p^2}$, suppose we have L' with $L'' \subseteq_{1,p} L' \subseteq_{1,p^2} L$. Then L/L''

As for $T_{1,p}T_{1,p^2}$, suppose we have L' with $L'' \subseteq_{1,p} L' \subseteq_{1,p^2} L$. Then L/L''is isomorphic to \mathbb{Z}/p^3 or $\mathbb{Z}/p \times \mathbb{Z}/p^2$. (It cannot be $(\mathbb{Z}/p)^3$ as it has a cyclic quotient of order p^2 .) In the former case there is a unique intermediate L'; in the latter case there are p intermediate L' such that L/L' is cyclic of order p^2 . Thus $T_{1,p}T_{1,p^2} = T_{1,p^3} + pT_{p,p^2}$. From this we conclude that

$$T_{1,p^3} = T_{1,p}T_{1,p^2} - pT_{p,p^2} = T_{1,p}^3 - (p+1)T_{1,p}T_{p,p} - pT_{1,p}T_{p,p} + p(p^2+p+1)R_p.$$

In fact, one can show that every $T_{a,b}$ is a polynomial in $T_{(1,p)}$, $T_{(p,p)}$ and R_p as p varies, and these operators all commute!