
MODULAR FORMS EXAMPLE SHEET 3

1. Let Mk(Z) be the space of modular forms of weight k with integral
q-expansions. Show that the graded ring:⊕

Mk(Z)

is generated over Z by E4, E6, and ∆.

This follows easily from the argument of problem 4 of example sheet 2; in-
deed, the fi constructed there are easily seen by induction to be integer
polynomials in E4, E6, and ∆, and any modular form with integral coeffi-
cients is an integral linear combination of the fi.

2a. Show that the map SL2(Z)→ SL2(Z/NZ) is surjective, for any N > 1.

Let γ be a matrix in SL2(Z/NZ), and lift γ to a matrix

(
a b
c d

)
with entries

in Z, and c nonzero. Then ad − bc = 1 + kN for some k. In particular the
gcd of d, c, and N is 1. Let t be the product of the primes that divide c but
not d. Then d + tN is nonzero modulo all primes dividing c (if p divides
d then p does not divide tN ; if p does not divide d then it divides tN), so
c and d + tN are relatively prime. Replacing d with d + tN we can thus
assume that c and d are relatively prime.

Now choose u, v such that ud − vc = −k, where ad − bc = 1 + kN . Then(
a+ uN b+ vN

c d

)
is a lift of γ with determinant 1.

2b. Show that the map GL2(Z) → GL2(Z/NZ) is not surjective, for any
N > 6.

On determinants, the induced map is the map ±1 → (Z/NZ)×, which is
clearly not surjective for N > 6.

3. Compute the matrix of the Hecke operator T2 acting on S24 with respect
to the basis E3

4∆,∆2 of S24, and show that its characteristic polynomial is
irreducible. What does this mean about the eigenforms of level 24?

The computation of the polynomial is routine, if tedious: one uses the for-
mula for T2 on q-expansions to obtain the q and q2 coefficients of T2E

3
4∆

and T2∆
2; these suffice to express T2E

3
4∆ and T2∆

2 as linear combinations
of E3

4∆ and ∆2. The characteristic polynomial of the resulting matrix is
x2 − 1080x− 20468736; it is irreducible over Q since its discriminant is not
a perfect square. This implies that the eigenforms of level 24 do not have
integer coefficients, and come in a Galois conjugate pair.
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4. Let V be a three dimensional real vector space, and let L denote the
space of lattices in V . For a, b positive integers with a dividing b, define
a correspondence Ta,b on L by letting Ta,bL be the sum of the sublattices
L′ ⊂ L such that L/L′ is isomorphic to Z/a× Z/b.
4a. Show that if (b, b′) = 1, then Ta,bTa′,b′ = Taa′,bb′ .
NOTATION: We will write L′ ⊆a,b L to mean that L′ is a sublattice of L
with L/L′ isomorphic to Z/a× Z/b.

For arbitrary a, b, a′, b′ we have:

Ta,bTa′,b′L =
∑

L′⊆a′,b′L

∑
L′′⊆a,bL′

L′′,

and we may rewrite the latter as∑
L′′

C(a,b),(a′,b′)(L,L
′′),

where C(a,b),(a′,b′)(L,L
′′) counts the number of lattices L′ such that L′′ ⊆a,b

L′ ⊆a′,b′ L. (Or, equivalently, the number of subgroups A of L/L′′ such that
A is isomorphic to Z/a′ × Z/b′ and (L/L′′)/A is isomorphic to Z/a× Z/b.)

If b and b′ are relatively prime, then so are ab and a′b′. We will show that
in this case C(a,b),(a′,b′)(L,L

′′) = 1 if L′′ ⊆aa′,bb′ L, and zero otherwise. This
will prove 4a.

First suppose there exists an L′ such that L′′ ⊆a,b L
′ ⊆a′,b′ L. Then L′/L′′

is a subgroup of L/L′′ isomorphic to Z/a × Z/b, and the quotient of L/L′′

by this subgroup is isomorphic to L′/L′′ and hence to Z/a′ × Z/b′. On the
other hand, if A is a finite abelian group, and B is a subgroup of A such
that the orders of B and A/B are relatively prime, then A is isomorphic to
A×B/A. (This follows from the fact that any abelian group is the product
of its maximal subgroups of prime power order.) Thus L/L′′ is isomorphic
to Z/a× Z/b× Z/a′ × Z/b′, and the latter is isomporphic to Z/aa′ × Z/bb′.

On the other hand it is easy to see that there is a unique subgroup of
order a′b′ in Z/aa′ × Z/bb′, consisting of all the elements of order dividing
a′b′. Thus, for any L′′ ⊆aa′,bb′ L, there is a unique intermediate L′ such that
L′′ ⊆a,b L

′ ⊆a′,b′ L.

4b. Fix a prime p, and express T1,p2 , T1,p3 , and Tp,p2 as polynomials in T1,p,
Tp,p, and the “rescaling by p” operator Rp.

We compute T 2
1,p, T1,pTp,p, and T1,pT1,p2 (in this order.)

First, T 2
1,p =

∑
L′′
C(1,p),(1,p)(L

′′, L)L′′. If we have a lattice L′ such that

L′′ ⊆1,p L
′ ⊆1,p L, then L′′ has index p2 in L, so L/L′′ is isomorphic to Z/p2

or Z/p. The former has exactly one cyclic subgroup of order p; the latter has
p+1. Thus T 2

1,p = T1,p2+(p+1)Tp,p. (In particular, T1,p2 = T 2
1,p−(p+1)Tp,p.)

Next, T1,pTp,p =
∑
L′′
C(1,p),(p,p)(L

′′, L)L′′. If we have L′ such that L′′ ⊆1,p

L′ ⊆p,p L, then L/L′′ is isomorphic to Z/p× Z/p2 or (Z/p)3. (It cannot be
isomorphic to Z/p3 as it has a quotient L/L′ that is not cyclic.) The former
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has p + 1 subgroups A of order p, but for only one such subgroup is the
quotient (Z/p×Z/p2)/A isomorphic to Z/p×Z/p. Thus c(1,p),(p,p)(L

′′, L) =

1 if L/L′′ is isomorphic to Z/p × Z/p2. On the other hand, if L/L′′ is
isomorphic to (Z/p)3, then L′′ = RpL, there are p2 + p + 1 subgroups of
L/L′′ of order p, and the quotient by any of those is Z/p × Z/p. Thus
C(1,p),(p,p)(L

′′, :) = p2 + p+ 1 in this case, and we get T1,pTp,p = Tp,p2 + (p2 +

p+ 1)Rp. (In particular Tp,p2 = T1,pTp,p − (p2 + p+ 1)Rp.)
As for T1,pT1,p2 , suppose we have L′ with L′′ ⊆1,p L

′ ⊆1,p2 L. Then L/L′′

is isomorphic to Z/p3 or Z/p×Z/p2. (It cannot be (Z/p)3 as it has a cyclic
quotient of order p2.) In the former case there is a unique intermediate L′;
in the latter case there are p intermediate L′ such that L/L′ is cyclic of order
p2. Thus T1,pT1,p2 = T1,p3 + pTp,p2 . From this we conclude that

T1,p3 = T1,pT1,p2−pTp,p2 = T 3
1,p−(p+1)T1,pTp,p−pT1,pTp,p+p(p2+p+1)Rp.

In fact, one can show that every Ta,b is a polynomial in T(1,p), T(p,p) and
Rp as p varies, and these operators all commute!


