
M3P8 LECTURE NOTES 9: POLYNOMIAL RINGS IN

SEVERAL VARIABLES

1. The Hilbert Basis Theorem

In this section, we will use the ideas of the previous section to establish
the following key result about polynomial rings, known as the Hilbert Basis
Theorem:

Theorem 1.1. Let R be a Noetherian ring. Then R[X] is Noetherian.

Proof. The following proof is due to Emmy Noether, and is a vast simpli-
fication of Hilbert’s original proof. Let I be an ideal of R[X]; we want to
show that I is finitely generated.

Let P (X) = b0 + b1X + · · · + bnX
n, with bn ∈ R nonzero. We say that

bn is the leading coefficient of P (X). Let J ⊆ R be the set of leading
coefficients of polynomials in I; that is, the set of a ∈ R such that there
exists a polynomial P (X) in I with leading coefficient b. We will show that
J is an ideal of R.

Certainly if a is the leading coefficient of P (X), then for any r ∈ R, ra
is the leading coefficient of rP (X), so J is closed under multiplication. On
the other hand, if a, b are the leading coefficients of P (X) and Q(X) in I
then let d, d′ be the degrees of P (X) and Q(X) respectively. Without loss
of generality we may assume d ≥ d′. Then a + b is the leading coefficient
of P (X) + Xd−d′Q(X), and the latter polynomial is in I. Thus J is closed
under addition, and is therefore an ideal.

Now since R is Noetherian, J is finitely generated, say by a1, . . . , an.
There are thus polynomials P1, . . . , Pn in I, of degrees d1, . . . , dn, such that
Pi has leading coefficient ai for all i. Let d be the largest of the di.

Let I≤d be the subset of I consisting of all polynomials of degree at most
d. Then I≤d is an R-submodule of the R-module R[X]≤d of all polynomials
of degree at most d. The latter is generated by 1, X,X2, . . . , Xd as an R-
module, so it is finitely generated, hence Noetherian. In particular I≤d is also
a finitely generated R-module. Let Q1, . . . , Qs generate I≤d as an R-module.

We will show that P1, . . . , Pr, Q1, . . . , Qs generate I as an R[X]-module.
More precisely, for any polynomial P of degree e in I we will show that P
is an R[X]-linear combination of the Pi and Qj . The proof is by induction
on e and the base case is clear: if P has degree ≤ d, then P is an R-linear
combination of the Qj .

Suppose the claim is true for polynomials of degree less than or equal
to e − 1, with e > d. Let a be the leading coefficient of P (X), so that
P (X) − aXe has degree at most e − 1. Since a lies in J we can write
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a = r1a1 + · · ·+ rnan. Then the leading term of the polynomial

r1X
e−d1P1 + r2X

e−d2P2 + · · ·+ rnX
e−dnPn

is aXe, so the difference:

r1X
e−d1P1 + r2X

e−d2P2 + · · ·+ rnX
e−dnPn − P (X)

has degree at most e − 1 and lies in I. By the inductive hypothesis this
difference is an R[X]-linear combination of the Pi(X) and Qj(X), and so
P (X) is as well. �

As a corollary, we deduce:

Corollary 1.2. Let R be any field or PID (or indeed any Noetherian ring!).
Then for any n, the ring R[X1, . . . , Xn] is Noetherian.

Indeed, since any quotient of a Noetherian ring is Noetherian, we can say
more:

Definition 1.3. Let R be a ring. An R-algebra is a ring S together with
a homomorphism R → S. If S is an R-algebra, we say that S is finitely
generated over R if there exists a finite set of elements s1, . . . , sn ∈ S such
that the homomorphism R[X1, . . . , Xn]→ S sending Xi to si is surjective.

Note that any finitely generated R-algebra is isomorphic to a quotient
R[X1, . . . , Xn]/I for some ideal I. Thus we can rephrase the Hilbert Basis
theorem as saying that if R is Noetherian, then any finitely generated R-
algebra is Noetherian.

2. Polynomial Rings Over UFDs are UFDs

Our next goal is to study factorization in rings of the formR[X]. Certainly
if R is not a UFD then we can’t expect to have unique factorization in R[X]-
we don’t even have it in R! Assume R is a UFD. Then the ring R[X] might
be quite complicated, but R[X] is contained in a much simpler ring where we
do understand factorization- the ring K[X], where K is the field of fractions
of R. Our goal will thus be to compare factorizations in K[X] and R[X].

Factorizations in these two rings differ in several important ways. The
first, of course, is that if a polynomial P (X) in R[X] factors as a product of
two polynomials in K[X], it is not immediately clear that we can also factor
P (X) in R[X]. The second, slightly more subtle problem is that some irre-
ducible elements of R[X] become units in K[X]; for instance, a polynomial
like 2X + 4 is irreducible in Q[X] (since 2 is a unit in Q), but in Z[X] this
polynomial factors as the product of the two irreducible polynomials X + 2
and 2.

To help us deal with the second issue, we introduce the following termi-
nology: we say that a polynomial P (X) in R[X] is primitive if the greatest
common divisor of its coefficients is 1. We then have:
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Lemma 2.1. Let P (X) be any polynomial in F [X]. Then there exists an
element c ∈ F× such that cP (X) is a primitive polynomial in R[X]. More-
over, c is unique up to multiplication by an element of R×; in particular if
P (X) lies in R[X] then c−1 lies in R and is the greatest common divisor of
the coefficients of P (X).

Proof. Choose d divisible by all the deminominators of coefficients of P [X].
Then dP (X) lies in R[X]. Let d′ be the greatest common divisor of all
the cofficients of dP (X). Then d

d′P (X) is still an element of R[X], and the

greatest common divisor of its coefficients is 1, so we may take c = d
d′ .

For uniqueness, let P (X) be a primitive polynomial in R[X], and let
u = a

b ∈ K[X] be such that uP (X) is also a primitive polynomial in R[X].
We must show that u is a unit. But if the GCD of the coefficients of P (X) is
1, then the GCD of the coefficients of aP (X) is a. Since buP (X) = aP (X),
and uP (X) lies in R[X], b must divide every coefficient of aP (X), so b
divides a. On the other hand, since uP (X) is primitive, the GCD of the
coefficients of buP (X) is b; since P (X) is primitive this means a divides b.
So u is a unit. �

The key to understanding factorization in R[X], for R a UFD, is the
following result, often called Gauss’s Lemma:

Lemma 2.2 (Gauss’s Lemma). Let R be a UFD, and let P (X) and Q(X)
be primitive polynomials in R[X]. Then the product P (X)Q(X) is also
primitive.

Proof. Let d be an element of R that divides every coefficient of P (X)Q(X).
We must show that d is a unit. Suppose not. Then choose irreducible
divisor d′ of d. Since d′ divides every coefficient of P (X)Q(X), we have
P (X)Q(X) = 0 in the polynomial ring R/〈d′〉[X]. But since in a UFD
irreducible elements generate prime ideals, R/〈d′〉 is an integral domain,
and hence so is R/〈d′〉[X]. Thus either P (X) = 0 or Q(X) = 0 in R/〈d′〉,
so d′ divides all of the coefficients of either P (X) or Q(X). Since both of
these polynomials were primitive, this is a contradiction. �

Corollary 2.3. Let P (X) ∈ R[X], and let A(X) be a polynomial in K[X]
that divides P (X) (in K[X]). Then there is an element α ∈ K× such that
αA[X] lies in R[X], and divides P (X) in R[X]. (In particular, if P (X) is
reducible in K[X], then P (X) is also reducible in R[X].)

Proof. Write P (X) = A(X)B(X) in K[X], and choose nonzero elements
α, β ∈ F× such that αA(X) and βB(X) are primitive polynomials in R[X].
Letting d = αβ, we have dP (X) = A′(X)B′(X) with A′(X) = αA(X) and
B′(X) = βB(X). Moreover, dP (X) is a primitive polynomial in R[X].

Let d′ be the greatest common divisor of the coefficients of P (X). Then
(d′)−1P (X) is a primitive polynomial in R[X]. Thus (d′)−1 = ud for some
u ∈ R×. So we have:

P (X) = ud′(dP (X)) = ud′A′(X)B′(X)
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which is a factorization of P (X) over R[X]. �

Note that the converse to the last claim of the Corollary is not true: if
P (X) is reducible in R[X], it might be irreducible in K[X]. For example,
the polynomial 7x factors into irreducibles as 7 · x in Z[X], but since 7 is
a unit in Q[X], 7x is irreducible in Q[X]. The following lemma shows that
this kind of thing is all that can happen, however:

Lemma 2.4. Let P (X) in R[X] be a polynomial and suppose that the great-
est common divisor of all of its coefficents is 1. Then if P (X) is irreducible
in K[X], it is also irreducible in R[X].

Proof. Suppose P (X) is reducible in R[X], and write P (X) = A(X)B(X),
with A and B nonunits. If A(X) or B(X) were constant then it would divide
every coefficient of P (X) and thus divide the GCD of those coefficients, mak-
ing it a unit. Thus A(X) and B(X) are nonconstant and the factorization
P (X) = A(X)B(X) is also a nontrivial factorization in K[X]. �

We are now in a position to prove:

Theorem 2.5. If R is a UFD, then R[X] is a UFD.

Proof. Let P (X) be an element of R[X]. We must show that P (X) factors
into irreducibles. Let d be the greatest common divisor of the coefficients of
P (X), and write P (X) = dQ(X) where Q(X) is primitive. Since d factors
into irreducibles in R, and these remain irreducible in R[X], it suffices to
show that Q(X) factors into irreducibles. We do this by induction on the
degree of Q(X).

If the degree of Q(X) is zero and Q(X) is primitive then Q(X) is a unit
and we are done.

Suppose Q(X) has positive degree d, and that we have proven the claim
for all polynomials of degree less than d. Since the GCD of the coefficients
of Q(X) is one, the same will be true of any divisor of Q(X). Let R1(X) be
an irreducible factor of Q(X), and write Q(X) = R1(X)Q1(X). If R1(X)
had degree zero it would be a unit since the GCD of its coefficents is 1.
Thus R1(X) has positive degree, and the greatest common divisor of the
coefficients of Q1(X) is one, so our inductive hypothesis shows that Q1(X)
factors into irreducible factors and we are done.

It remains to show that ifQ(X) is irreducible inR[X] and dividesA(X)B(X)
in R[X] then Q(X) divides either A(X) or B(X) in R[X]. The irreducible
elements of R[X] are either irreducible elements of R or primitive polyno-
mials in R[X] that are irreducible in K[X].

Suppose first that Q(X) is an irreducible element d of R that divides
A(X)B(X). Let a and b be the greatest common divisors of the coeffi-
cients of A(X) and B(X), so that we have A(X) = aA′(X) and B(X) =
bB′(X) with A′(X) and B′(X) primitive. Then Q(X) = abA′(X)B′(X),
and A′(X)B′(X) is primitive, so d divides ab. But since R is a UFD and d
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is irreducible, we must have d|a or d|b, in which case d also divides A(X) or
B(X), respectively.

Now suppose that Q(X) is a primitive polynomial in R[X] that is irre-
ducible inK[X]. ThenQ(X) divides either A(X) orB(X) inK[X]. Suppose
Q(X) divides A(X) in K[X]. Then there is an element α ∈ K× such that
αQ(X) lies in R[X] and divides A(X) in R[X]. On the other hand, since
Q(X) is irreducible in R[X] it is primitive, so the only way αQ(X) lies in
R[X] is if α lies in R. Thus Q(X) also divides A(X). �

Corollary 2.6. If R is a UFD, then R[X1, . . . , Xn] is a UFD for any n.

3. Irreducible Polynomials

We will now use the results of the previous section to obtain criteria for
proving polynomials are irreducible. We begin with some trivial observa-
tions:

Proposition 3.1. Let K be a field, and P (X) ∈ K[X] of degree at most
three. Then P (X) is irreducible if, and only if, P (X) has no root in K.

Proof. Any nontrivial factor of P (X) would have to have degree one or two;
either way, if P (X) is reducible it must have a linear factor. �

Slightly less trivially, if K is finite there is a necessary and sufficient
criterion for irreducibility:

Proposition 3.2. Let K be a field with q = pr elements and let P (X) in
K[X] have degree d. Then P (X) is irreducible if, and only if, the greatest
common divisor of P (X) and Xqa −X is one for all a < d.

Proof. The polynomial P (X) is reducible if, and only if, it has an irreducible
factor of degree less than d. It thus suffices to show that every irreducible
polynomial Q(X) in K[X] of degree a divides Xqa − X. Let K ′ = K(α),
where α is a root of Q(X); then K ′ has qa elements, so every element of
K ′ is a root of Xqa −X. In particular α is such a root. Since Q(X) is the
minimal polynomial of α over K we must have Q(X)|Xqa −X in K[X]. �

Having obtained a satisfactory criterion for finite fields, the next simplest
case to look at this that of Q[X]. This is already much more complicated!
We will take advantage of the fact that Z[X] lives inside Q[X]. In fact, all
of our tricks will work in the following more general situation: R is a UFD
with field of fractions K, and we consider polynomials over K[X]. As we
have seen, irreducibility over K is closely related to irreducibility in R[X]!

Let P (X) be a polynomial in K[X]; we can multiply P (X) by scalars
without substantially changing its factorization, so we can assume that P (X)
is monic. In general there might be denominators in the coefficients of P (X),
but note that for any r ∈ R, if

P (X) = c0 + c1X + c2X
2 + · · ·+Xn,
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then define a polynomial Qr(X) by

Qr(X) = rnP (
X

r
) = c0r

n + c1r
n−1X + c2r

n−2X2 + · · ·+Xn.

It is easy to see that Qr(X) is irreducible in K(X) if, and only if, P (X)
is. Moreover, we can choose r so that Qr(X) has coefficients in R. We are
thus reduced to the problem of deciding whether a monic polynomial with
coefficients in R is irreducible in K[X]. Moreover, we have shown that such
a polynomial is irreducible in K[X] if, and only if, it is irreducible in R[X]!

We therefore get the following nice criterion for irreducibility:

Proposition 3.3. Let P (X) be a monic polynomial in R[X], and let p be a
prime ideal of R. Suppose that the mod p reduction P (X) is irreducible in
R/p[X]. Then P (X) is irreducible in R[X].

Proof. Suppose P (X) were reducible in R[X]. Since P (X) is monic, P (X)
must factor as S(X)T (X) where both S(X) and T (X) are monic of positive
degree. Then P (X) factors in R/p[X] as S(X)T (X), where both are monic
of positive degree, so P (X) is also reducible. �

This means, for instance, that we can show that a monic polynomial in
Z[X] is irreducible if we can find even one prime p for which it is irreducible
mod p. Unfortunately, even when the polynomial is irreducible we won’t
always be able to do this. For instance, the polynomial X4 + 1 is irreducible
in Z[X], but reducible mod p for every p. (You can prove this with some
elementary number theory, but it would take us a bit far afield to do that
here.)

There is another sufficient criterion for irreducibility by “reducing mod
p”, known as “Eisenstein’s Criterion”:

Proposition 3.4. Let P (X) = c0 + c1X + · · ·+Xn be a monic polnyomial
in R[X], and let p be a prime ideal of R. Suppose that for 0 ≤ i ≤ n− 1, ci
lies in p, and c0 does not lie in p2. Then P (X) is irreducible in R(X).

Proof. Suppose P (X) is reducible; then we can write P (X) = S(X)T (X)
in R[X], with S(X) and T (X) monic of positive degree. Reducing mod
p we find that P (X) = Xn = S(X)T (X). Write S(X) = XsS′(X) and
T (X) = XtT ′(X) where S′(X) and T ′(X) have nonzero constant term.

Then P (X) = Xs+tS′(X)T ′(X), so s + t = n and S′(X) and T ′(X) must
both be 1 (compare the degree s+t terms on both sides, and use that R/p is
an integral domain.) But then the constant terms of S(X) and T (X) both
lie in p, so the constant term of S(X)T (X) must lie in p2, contradicting our
assumptions. �


