M3P8 LECTURE NOTES 4: THE CHINESE REMAINDER THEOREM

1. Products

Let R and S be rings. The direct product $R \times S$ is a ring whose elements are pairs (r, s) with $r \in R, s \in S$. The addition and multiplication are given componentwise:

$$(r,s) + (r',s') = (r+r',s+s')$$

 $(r,s)(r',s') = (rr',ss')$

The product comes with two natural homomorphisms π_1, π_2 (projection onto the first and second factors) defined by:

$$\pi_1(r,s) = r : R \times S \to R$$
$$\pi_2(r,s) = s : R \times S \to S$$

and the following universal property:

Proposition 1.1. Let T be any ring. For any pair $f: T \to R$, $g: T \to S$ of homomorphisms, there is a unique homomorphism $f \times g: T \to R \times S$ such that $\pi_1 \circ (f \times g) = f$ and $\pi_2 \circ (f \times g) = g$.

Proof. The homomorphism $f \times g$ is defined by $(f \times g)(t) = (f(t), g(t))$; one checks easily that it is the unique map $T \to R \times S$ with the given property.

One can define multiple products $R_1 \times R_2 \times \cdots \times R_n$ inductively, by iterating the above process. More generally, if I is any index set, and for each $i \in I$ we have a ring R_i , we can define the product $\prod_i R_i$. An element r of this product is a choice, for each $i \in I$, of an element of R_i ; we write such an element as $(r_i)_{i \in I}$. For each $j \in I$ we have a map $\pi_j : \prod_i R_i \to R_j$ given by $\pi_j((r_i)_{i \in I}) = r_j$.

Such a product satisfies a very similar universal property: for any collection $f_i: T \to R_i$ of maps for each $i \in I$, we get a unique map $\prod_i f_i: T \to \prod_i R_i$ such that $\pi_j \circ \prod_i f_i = f_j$.

2. The Chinese Remainder Theorem

Let R be a ring, and let I_1, \ldots, I_n be a finite collection of ideals of R. For each j, we have the natural map $R \to R/I_j$, which is surjective with kernel I_j .

Consider the product map:

$$R \to R/I_1 \times R/I_2 \times \cdots \times R/I_n.$$

It is easy to see that the kernel of this map is the intersection $I_1 \cap I_2 \cap \cdots \cap I_n$. Call this ideal J. We thus have an embedding:

$$R/J \hookrightarrow R/I_1 \times R/I_2 \times \cdots \times R/I_n.$$

A natural question to ask is, what can we say about the image? In other words, given congruence classes mod I_1 , I_2 , etc., when is there a *single* element of R that lives in all those congruence classes simultaneously? Note that (because the above map is injective) if one such element exists, then there is a unique congruence class modulo J that satisfies all of the required congruences.

Of course, without further hypotheses we can't expect this map to be surjective (think about what happens when $I_1 = I_2$, for instance.) Nonetheless, we have:

Theorem 2.1. Suppose that for each $i \neq j$, the sum $I_i + I_j$ is the unit ideal. Then the natural map:

$$R/J \hookrightarrow R/I_1 \times R/I_2 \times \cdots \times R/I_n$$

is an isomorphism.

Proof. We have to prove it is surjective. It suffices to construct, for each i, an element e_i of R that is congruent to 1 modulo I_i and zero modulo I_j for $j \neq i$. (Suppose we have such an element. Then for any tuple (r_1, \ldots, r_n) of elements of r, the element $r_1e_1 + \cdots + r_ne_n$ is congruent to r_i modulo I_i for all i.)

Given $i \neq j$, we know $I_i + I_j$ is the unit ideal; that is, we can write 1 = r + s with $r \in I_i$ and $s \in I_j$. Then s is congruent to 1 mod I_i and 0 mod I_j . Set $f_{ij} = s$. Then for any i we can take $e_i = \prod_{j \neq i} f_{ij}$, and e_i will be 1 mod I_i and zero modulo I_j for $j \neq i$. The result follows.

3. Examples

When $R = \mathbb{Z}$, then every ideal is principal, so we can write $I_i = \langle n_i \rangle$ for all *i*. The condition that $I_i + I_j$ is the unit ideal becomes the condition that the integers n_i are pairwise relatively prime. In this case the ideal J is generated by the product n of the n_i . Specializing, we find the version of the Chinese Remainder Theorem from elementary number theory:

Theorem 3.1. If $\{n_i\}$ is a finite collection of pairwise relatively prime integers, and n is their product, then for any integers a_i , there is an integer a (unique up to congruence mod n) such that a is congruent to $a_i \mod n_i$ for all i.

Now let K be a field and take R = K[X]. Then if a_1, \ldots, a_n are distinct elements of K, the ideals $I_i = \langle X - a_i \rangle$ are pairwise relatively prime. Moveover, for each i, I_i is the kernel of the evaluation map $K[X] \to K$ that takes X to a_i . We thus have an isomorphism of $K[X]/I_i$ with K that takes P(X) to $P(a_i)$ for all polynomials P. We thus obtain: **Theorem 3.2.** For any $c_1, \ldots, c_n \in K$, There is a polynomial P(X) in K[X], unique up to congruence modulo $(x - a_1)(x - a_2) \ldots (x - a_n)$ such that $P(a_i) = c_i$ for all i.