
M3P8 LECTURE NOTES 5: FIELD EXTENSIONS

1. Prime Fields

Let K be a field. We have a unique ring homomorphism ι : Z → K; its
kernel is a prime ideal of Z. Thus the kernel is either the zero ideal (if K
has characteristic zero) or the ideal 〈p〉 for some prime p of Z.

In the latter case we get an injection of the field Z/pZ (which we often
denote Fp when we think of it as a field) into K. In the former case, the
injection of Z into K extends to an injection of Q into K, sending a

b to ιaιb−1.
Thus the field K contains exactly one of Q, F2, F3, F5, etc. depending on its
characteristic. This field is called the “prime field” of K, and it is contained
in K in a unique way.

2. Field Extensions

The prime fields are in some sense the smallest possible fields. Once we
know they exist, it makes sense to study fields by studying pairs K,L of
fields such that K ⊆ L. Such a pair is called a field extension of L over K,
and is often denoted L/K. Note that such an inclusion of fields makes L
into a vector space over K.

Definition 2.1. We say that a field extension L/K is finite if L is finite-
dimensional as a K-vector space. The degree of such an extension is the
dimension of L as a K-vector space, and is denoted [L : K].

Proposition 2.2. Let K ⊆ L ⊆ M be fields. Then M/K is finite if, and
only if, M/L and L/K are both finite. If this is the case then [M : K] =
[M : L][L : K].

Proof. First suppose that M/K is finite. Then L is a K-subspace of M ,
so finite dimensional as a K-vector space. Moreover, there exists a finite
K-basis for M , and this basis spans M over K and thus also over L. Thus
M is finite-dimensional as an L-vector space.

Conversely, let e1, . . . en be a K-basis of L, and let f1, . . . , fm be an L-
basis for M . Then every element x of M can be expressed uniquely as
c1f1 + · · ·+ cmfm, with ci in L. Each ci in turn can be expressed as d1,ie1 +
d2,ie2 + · · · + dn,ien with dj,i ∈ K. Thus we can express x as d1,1e1f1 +
d2,1e2f1 + · · · + dn,menfm. In particular the set {eifj} for 1 ≤ i ≤ n and
1 ≤ j ≤ m spans M over K.

In this case the degree of L over K is n and the degree of M over L is m,
so it remains to show that {eifj} is linearly independent over K. Suppose
we have elements ri,j of K such that

∑
ri,jeifj = 0. Then, regrouping, we

find that
∑

j(
∑

i ri,jei)fj is an L-linear combination of the fj that is zero;
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since the fj are linearly independent we must have
∑

i ri,jei = 0 for all j.
Since the ei are linearly independent over K we must have ri,j = 0 for all
i, j. �

3. Extensions generated by one element

Let L/K be a field extension, and let α be an element of L. We let K(α)

denote the subfield of L consisting of all elements of L of the form P (α)
Q(α) ,

where P and Q are polynomials with coefficients in K and Q(α) is not zero.
This is the smallest subfield of L containing K and α.

We have a map K[X]→ K(α) that takes a polynomial P (X) to P (α); it
is a ring homomorphism. Let Iα be the kernel of this homomorphism; we
then get an injection of K[X]/Iα into the field K(α). Thus K[X]/Iα is an
integral domain, so Iα is a prime ideal of K[X].

Since K[X] is a PID, every nonzero prime ideal is maximal. There are
thus two cases. In the first Iα is the zero ideal; that is, there is no nonzero
polynomial Q in K[X] such that Q(α) is zero in L. We say that α is
transcendental over K in this case. In the second Iα is a maximal ideal of
K[X]; in this case we say α is algebraic over K.

Assume first that α is transcendental over K. In this case the map taking
P (X) to P (α) is an injection of K[X] into L; in particular every nonzero
element of K[X] gets sent to a nonzero (hence invertible) element of L. Thus
the map from K[X] to L extends to a map from the field of fractions of K[X]

(which we denote K(X)) to L. This map takes P (X)
Q(X) to P (α)

Q(α) . The image

of this map is K(α); in particular K(X) and K(α) are isomorphic. We call
K(X) the field of rational functions in X. Note that in this case K(α) is
infinite dimensional as a K-vector space (it contains a subspace isomorphic
to K[X], for instance.)

If α is algebraic over K, then Iα is a nonzero maximal ideal of the PID
K[X], so it is generated by a single polynomial Q(X). Since the units
in K[X] are just the constant polynomials, the polynomial Q(X) is well-
defined up to a constant factor; it is called the minimal polynomial of α.
By definition, it divides every polynomial P (X) such that P (α) = 0. The
ring K[X]/〈Q(X)〉 is a field, whose dimension as a K-vector space is equal
to the degree of Q(X). The map K[X]→ K(α) descends to an injection of
K[X]/〈Q(X)〉 into K(α); since its image is a subfield of K(α) containing K
and α, this map is an isomorphism of K(α) with K[X]/〈Q(X)〉. Thus in
this case the extension K(α)/K is a finite extension, of degree equal to the
degree of Q(X).

4. Algebraic Extensions

Definition 4.1. An extension L/K is algebraic if every element of L is
algebraic over K.

Proposition 4.2. If L/K is finite, then L/K is algebraic.
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Proof. Let L/K be finite, and suppose α ∈ L is transcendental over K.
Then we have an injection of K[X] into L taking X to α. Since K[X] is an
infinite-dimensional K vector space, L cannot be finite over K.

(More explicitly, there is also the following argument: let d be the dimen-
sion of L over K. Then for any α, the set 1, α, . . . , αd must be linearly de-
pendent over K; this gives a nonzero polynomial P such that P (α) = 0.) �

Corollary 4.3. Let L/K be a field extension, and suppose α, β are elements
of L algebraic over K. Then α+β and αβ are algebraic over K. Moreover,
if α is nonzero then α−1 is algebraic over K.

Proof. Consider the chain of extensions:

K ⊆ K(α) ⊆ K(α, β)

where we write K(α, β) for (K(α))(β). Since α is algebraic over K, K(α)
is finite over K. Since β is algebraic over K, it is also algebraic over K(α),
so K(α, β) is finite over K(α). Thus K(α, β) is algebraic over K. On the
other hand, we also have a chain of extensions:

K ⊆ K(α+ β) ⊆ K(α, β),

so K(α + β) is finite over K. Hence α + β is finite over K. The proofs for
αβ and α−1 are similar. �

Corollary 4.4. For any extension L/K, let L′ be the subset of L consisting
of all elements that are algebraic over K. Then L′ is a field.

Proof. We have seen that L′ is closed under addition, multiplication, and
taking inverses. �

In particular, the set Q of complex numbers that are algebraic over Q is
a field, called the field of algebraic numbers.

5. Example

Consider the polynomial X2 + X + 1 in F2[X]. It has no roots in F2,
so it is irreducible (as a polnyomial of degree 2 any nontrivial factor would
be linear). Thus the quotient F2[X]/〈X2 + X + 1〉 is a field extension of
degree 2 of F2, which is denoted F4. Its four elements are 0, 1, X,X + 1 (or
more precisely, their classes modulo 〈X2 +X + 1〉.) Note that X2 = X + 1,
(X + 1)2 = X, and X3 = X(X + 1) = 1; in particular the multiplicative
group of F4 is cyclic of order 3. (This is not particularly surprising, as all
groups of order 3 are cyclic. We will see later, though, that the multiplicative
group of any finite field is cyclic.)


