
M3P8 LECTURE NOTES 11: DEDEKIND DOMAINS

1. Dedekind Domains

For number theorists, it is often convenient to work in a ring of the form
Z[α], where α ∈ C is an algebraic integer, or more generally in some sub-
ring O of C that is integral over Z. Unfortunately, unique factorization
only rarely holds in such rings. If O is integrally closed, however, there is a
substitute for unique factorization that is often “good enough”: unique fac-
torization of ideals. In this section we develop the ideas behind this result,
in the more general context of what are called Dedekind Domains.

Definition 1.1. An integral domain R is called a Dedekind Domain if R
is Noetherian and integrally closed, and every nonzero prime ideal of R is
maximal.

In particular, any PID is a Dedekind domain- we have seen that every
nonzero prime ideal is maximal in a PID, and PIDs are certainly Noetherian.
They are integrally closed because any UFD is integrally closed. As another
example, the rings OK , with K a quadratic extension of Q are integrally
closed and generated over Z by a single element. They are thus Noetherian,
and we proved on Example Sheet 2 that every nonzero prime of such a ring
is maximal.

More generally, we have:

Theorem 1.2. Let R be a PID with field of fractions K, and let K ′ be a
finite extension of K. Let R′ be the integral closure of R in K ′. Then R′ is
a Dedekind domain.

We will prove this later in the course, under a mild additional hypothesis
on the extension K ′/K.

The reason Dedekind domains are interesting to us is that the nonzero
ideals in a Dedekind domain factor uniquely as products of prime ideals.
The idea to study factorization of ideals into prime ideals comes from the
following observation:

Lemma 1.3. Let p be a prime ideal of any ring R, let I and J be ideals,
and suppose that p contains IJ . Then either p contains I or p contains J .

Proof. Suppose that p does not contains I, and fix an r ∈ I such that r is
not in p. Then for all s ∈ J , the product rs lies in IJ and hence in p. Since
r does not lie in p, and p is prime, we must have s ∈ p. �

Note the resemblance of this to the property “p|ab implies p|a or p|b for
p irreducible” which holds in UFDs and implies unique factorization. We
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might hope that the above result thus implies “unique factorization into
primes” for arbitrary rings, but this is too much to ask for- the problem is
that ideal multiplication is usually badly behaved compared to multiplica-
tion of elements in integral domains.

For example, let R = Z[
√
−3] (not a Dedekind domain, since it fails to be

integrally closed). Then the ideal p = 〈2, 1 +
√
−3〉 is prime, and we have

〈2, 1 +
√
−3〉2 = 〈4, 2 + 2

√
−3,−2 + 2

√
−3〉 = 〈4, 2 + 2

√
−3〉.

There is thus a chain of inclusions: p2 ( 〈2〉 ( p, so the ideal 〈2〉 is not a
product of prime ideals!

Dedekind domains give precisely the context where this doesn’t happen.
In order to make this precise, we first define:

Definition 1.4. Let R be an integral domain. A fractional ideal of R is
a finitely generated nonzero R-submodule of the field of fractions K of R.
A principal fractional ideal is an R-submodule of K generated by a single
nonzero element of K.

For instance, the subgroup of Q generated by 3
5 is a principal fractional

ideal of Z. (Indeed, every fractional ideal of Z, or any PID, is principal).
More generally, let R be an integral domain, and let I be the R-submodule
of K generated by r1, . . . , rn ∈ K. Then by definition I is a fractional ideal
of R. On the other hand, we can clear denominators: there exists an r ∈ R,
nonzero, such that rri lies in R for all I. Then rI is an ideal J of R, and
I = 1

rJ . Thus the fractional ideals of R are precisely the subsets of K of

the form 1
rJ , where r is a nonzero element of R and J is an ideal of R.

Let I and J be fractional ideals of R. The product IJ is the R-submodule
of K generated by all products of the form i ∈ I, j ∈ J . It is a fractional
ideal of R. The multiplication I, J 7→ I, J is an associative and commutative
operation. Note that R is a fractional ideal of R, and RJ = J for any
fractional ideal J , so R is an “identity element” for this operation.

For a nonzero ideal I of R, let I−1 denote the set {r ∈ K : rI ⊆ R}.
Then I−1 is clearly an R-submodule of K. If r ∈ I is nonzero, then rI−1,
by definition, is contained in R, so I−1 is contained in 1

r · R and is thus a
fractional ideal.

For a prime ideal p of R, and n a positive integer, define p−n := (p−1)n.
We then have:

Theorem 1.5. Let R be a Dedekind domain. Then the set of fractional
ideals of R form a group under multiplication. Moreover, any fractional
ideal I of R factors uniquely as p1

n1 . . . ps
ns, where the ni are integers and

the pi are nonzero prime ideals.

The proof of this statement will occur in several steps. We first show:

Proposition 1.6. Let I be a nonzero ideal of a Dedekind domain R. Then
there exist nonzero primes p1, . . . , ps and positive integers n1, . . . , ns such
that I contains p1

n1p2
n2 . . . ps

ns.



M3P8 LECTURE NOTES 11: DEDEKIND DOMAINS 3

Proof. Note first that if the claim holds for an ideal I then it holds for any
ideal containing I, and that if the claim holds for I and J then it holds for
I ∩ J .

Suppose the claim fails for some I. Since R is Noetherian, there exists
an I such that the claim fails for I but holds for any ideal containing I.
Certainly I can’t be prime. So there exist a, b ∈ R with ab ∈ I but a
and b not in I. Then I + 〈a〉 and I + 〈b〉 strictly contain I, so the claim
holds for both of these ideals. Then it also holds for their product, but this
product is contained in I. Thus the claim holds for I as well and we have a
contradiction. �

Next, we show that prime ideals have “multiplicative inverses”. To do so
we use the following lemma:

Lemma 1.7. Let R be a Dedekind domain with field of fractions K, and let
x be an element of K that is not in R, and let I be any nonzero ideal of R.
Then xI is not contained in I.

Proof. Suppose xI were contained in I. Let a ∈ I, and for each i let Mi be
the ideal of I generated by a, xa, x2a, . . . , xia. This is an increasing tower of
ideals of R; since R is Noetherian, it is eventually constant; i.e. Mi+1 = Mi

for some i. Then xi+1a can be expressed as an R-linear combination of the
xja; that is, we have:

xi+1a =
i∑

j=0

rjx
ja.

Since R is an integral domain we can cancel the a: xi+1 =
i∑

j=0
rjx

j . Thus x

is integral over R. Since R is integrally closed and x does not lie in R this
is a contradiction. �

Proposition 1.8. Let p be a nonzero prime ideal of a Dedekind domain R.
Then p−1p = R.

Proof. We first show that there is an element x ∈ p−1 such that x /∈ R. Let
a be an element of p, so that we have 〈a〉 ⊂ p. Choose a minimal set of
primes p1, . . . , pr such that

p1p2 . . . pr ⊆ 〈a〉.
Then we have in particular:

p1p2 . . . pr ⊆ p,

so by the lemma above we must have p = pi for some i; WLOG we can take
i = 1. Then by our minimality assumption p2 . . . pr is not contained in 〈a〉.
Take b to be an element of p2 . . . pr that is not in 〈a〉. Then x = b

a is not in

R. On the other hand for any y ∈ p, xy = by
a , and by lies in p1 . . . pr and

hence in 〈a〉. Thus xy lies in R. By definition, this means x lies in p−1 but
not in R.
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Now consider p−1p. By definition this is contained in R; since 1 ∈ p−1 it
contains p. Since p is a nonzero prime ideal it is maximal, so we must have
either pp−1 = R or pp−1 = p. Suppose the latter holds. Then in particular
multiplication by x sends p to p. This contradicts the lemma above. �

Proposition 1.9. Let I be a nonzero ideal of a Dedekind domain R. Then
there exists a fractional ideal J of R such that IJ = R.

Proof. Suppose otherwise. Then there is a maximal nonzero ideal I of R
for which no such J exists. The previous proposition shows that I is not
a maximal ideal, so I is properly contained in some maximal ideal p of R.
Then p−1 is contained in I−1. We thus have inclusions:

I ⊆ Ip−1 ⊆ II−1 ⊆ R.

Suppose that Ip−1 = I. By the previous proposition there exists x ∈ p−1

not in R, so we would have xI ⊂ I contradicting the lemma above. Thus
Ip−1 strictly contains I and thus has an inverse J ′. But then J ′p is an
inverse for I. �

Theorem 1.10. Let R be a Dedekind domain. Then the fractional ideals of
R form a group under multiplication.

Proof. We must show that every fractional ideal of R is invertible. Let I
be such a fractional ideal; then there is r ∈ R such that rI is an ideal of
R. The preceding proposition shows that rI has a multiplicative inverse J ;
then r−1J is a multiplicative inverse for I. �

It remains to show that every fractional ideal of R factors uniquely as a
product of prime powers. The hard part is showing such factorizations exist,
and we make heavy use of the fact that the fractional ideals are a group.
Uniqueness is then almost an afterthought:

Proposition 1.11. Every fractional ideal in a Dedekind domain is uniquely
a product of (possibly negative) prime powers.

Proof. We first show that every nonzero ideal I in R is a product of (non-
negative) prime powers. Suppose otherwise. Then there is a largest ideal
I that is not; since every maximal ideal of R is certainly such a product I
cannot be a maximal ideal; thus I is properly contained in a maximal ideal
p. Then J = p−1I is an ideal of R; since the fractional ideals of R form a
group this ideal strictly contains I and thus factors as a product of prime
powers. But then pJ = I is also a product of prime powers, contradicting
our assumption.

Now suppose that I is a fractional ideal. Then I = r−1J for some nonzero
ideal J of R and some nonzero element r of R. Since 〈r〉 and J factor as
products of prime powers, so does I.

It remains to show that such factorizations are unique. Suppose other-
wise. Then we have a finite collection of distinct primes p1, . . . , pr and two
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sequences of integers n1, . . . , nr,m1, . . . ,mr such that

pn1
1 pn2

2 . . . pnr
r = pm1

1 pm2
2 . . . pmr

r

and we must show that mi = ni for all i. Suppose this is not the case. We

can make all prime powers involved positive by cancelling p
min(mi,ni)
i from

both sides of the equation. We then get an expression of the form:

qa11 . . . qass = tb11 . . . tbuu

where the primes qi, tj are all distinct and all powers ai, bj are positive. But
since q1 divides the left hand side it also divides the right hand side, and
thus must be equal to one of the tj ’s, which is impossible. �

2. Ideal class groups

Let R be a Dedekind domain. Then the fractional ideals of R form a
group, which we will denote I(R). The principal fractional ideals are a
subset of I(R) that is easily seen to be closed under multiplication and
inverses: if r, s ∈ K×, then (rR)−1 = r−1R and (rR)(sR) = rsR. Denote
this subgroup by P(R). We can then form the quotient A(R) = I(R)/P(R);
this group is called the ideal class group of R. It is a measure of the failure
of fractional ideals of R to be principal; that is, it measures the failure of R
to be a principal ideal domain.

We will show that if K is a finite extension of Q then the integral closure
OK of Z in K is a Dedekind domain. A fundamental result of algebraic
number theory (which we won’t prove!) is:

Theorem 2.1. The ideal class group A(OK) is a finite group.

The order of the ideal class group of OK is called the class number of
K; the study of class groups and class numbers is a central part of modern
number theory and there are many, many open questions.


