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1. Compute
(

54
571

)
and

(
164
641

)
using quadratic reciprocity. (571 and 641 are

both prime.)
We have: (

54

571

)
=

(
3

571

)3 ( 2

571

)
.

Since 571 ≡ 3 mod 8, we have
(

2
571

)
= −1 and

(
3

571

)
=

(
571
3

)
=

(
1
3

)
= 1. So(

54
571

)
= −1.

We also have: (
164

641

)
=

(
2

641

)2 ( 41

641

)
=

(
41

641

)
=

(
641

41

)
=

(
−15

41

)
=

(
−1

41

)(
3

41

)(
5

41

)
= 1 ·

(
41

3

)(
41

5

)
=

(
2

3

)(
1

5

)
= −1.

2a. Find all 8 primitive roots modulo 17.
You can do this exhaustively, but there’s a shortcut using problem 7. Note

that 3 is a primitive root mod 17, as its first sixteen powers are distinct.
Now by problem 7, since Φ(17) = 16, the other primitive roots are the odd
powers of 3. In particular one has 3, 33 = 10, 35 = 5, 37 = 11, 39 = 14,
311 = 7, 313 = 12, and 315 = 6 are all primitive roots mod 17.

2b. Show that there exist primitive roots modulo 6, 9, and 18.
Note that −1 has order 2 mod 6, and is thus a primitive root, since

Φ(6) = 2.
Mod 9, 5 is a primitive root; since Φ(9) = 6, we must show that 5 has

order 6. Certainly 5 has order dividing 6 and greater than one, so we must
show that the order of 5 is not 2 or 3. But 52 ≡ 7 (mod 9) and 53 ≡ −1
mod 9, so the order of 5 must be 6.

Mod 18, 5 is still a primitive root: Φ(18) = 6, so we must show that the
order of 5 is not less than 6 mod 18, but this is true since it is already true
mod 9.

2c. Show that if n is odd and there exists a primitive root mod n, then there
also exists a primitive root mod 2n. [HINT: Φ(2n) = Φ(n) when n is odd.]

Let a be a primitive root mod n. Then a and a+n both have order Φ(n)
modulo n. Let g = a if a is odd, or g = a + n if a is even. Then g is odd
and congruent to a mod n. I claim that g is a primitive root mod 2n. Note
that Φ(2n) = Φ(n), so we must show that g has order Φ(n) mod 2n. But
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if gk ≡ 1 (mod 2n) for any k < Φ(n), the same would be true mod n, and
then a would have order less than Φ(n).

3. Let p be a prime and let a be a primitive root mod p. Show that a is also
a primitive root mod p2 if, and only if, ap−1 is not congruent to 1 mod p2.
[HINT: what is the order of a mod p? What does this say about the order
of a mod p2?]

The order of a mod p2 must divide Φ(p2) = p(p− 1). On the other hand,
suppose the order of a mod p2 is k. Then ak ≡ 1 (mod p2), and so ak ≡ 1
(mod p). Since a is a primitive root mod p, this means that p − 1 divides
k. So the order of a mod p2 is either p − 1 or p(p − 1). Since ap−1 is not
congruent to 1 mod p2, the order of a must be p(p − 1), which means that
a is a primitive root.

4. Let p be a prime, and suppose that a is not divisible by p. Show that

the equation xd ≡ a (mod p) has a solution if, and only if, a
p−1

(d,p−1) ≡ 1 (mod
p). Show further that if this is the case then this equation has (d, p − 1)
solutions mod p. [HINT: what happens when you fix a primitive root g mod
p, and take the discrete log of the equation xd ≡ a (mod p)?]

Let g be a primitive root mod p. Then logg gives an isomorphism of

(Z/p)× with Z/(p− 1). Applying logg to the equation xd ≡ a (mod p) gives
the equation d logg x ≡ logg a (mod p − 1). Let y = logg x, and z = logg a.
We are then trying to solve the equation dy = z (mod p − 1). We know
by our study of linear equations that this has a solution if, and only if, z is
divisible by (d, p − 1), and that if this is the case that there are (d, p − 1)
such solutions.

It thus suffices to show that z is divisible by (d, p − 1) if, and only if,

a
p−1

(d,p−1) ≡ 1 (mod p). Suppose first that z is divisible by (d, p − 1). SInce

z = logg a, we have a ≡ gz (mod p). Thus a
p−1

(d,p−1) ≡ g
z p−1
(d,p−1) (mod p). Since

(d, p−1) divides z, the exponent is an integral multiple of p−1, and raising
g to such a power gives 1 by Fermat’s little theorem.

Conversely, if g
z p−1
(d,p−1) ≡ 1 (mod p), then (since g has order p − 1) we

must have z p−1
(d,p−1) divisible by p− 1, and thus z is divisible by (d, p− 1).

5. Let p be an odd prime different from 7. Show that 7 is a square mod p
if, and only if, p is congruent to 1, 3, 9, 19, 25 or 27 modulo 28. [HINT: use

quadratic reciprocity to relate
(

7
p

)
to

(p
7

)
.]

If p ≡ 1 mod 4, then
(

7
p

)
=

(p
7

)
. The quadratic residues mod 7 are 1, 2, 4.

Thus 7 is a square mod p if p is congruent to 1 mod 4 and 1, 2, or 4 mod 7,
and not a square if p is congruent to 1 mod 4 and 3, 5, or 6 mod 7. Using
the Chinese Remainder theorem, we see that 7 is a square mod p if p is
congruent to 1, 9, or 25 mod 28, and not if p is congruent to 17, 5, or 13
mod 28.
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If p ≡ 3 mod 4, then
(

7
p

)
= −

(p
7

)
. Thus 7 is a square mod p is p is

congruent to 3 mod 4 and 3, 5, or 6 mod 7, and not if p is congruent to 3
mod 4 and 1, 2, or 4 mod 7. Using the Chinese Remainder theorem, we see
that 7 is a square mod p if p is congruent to 3, 19, or 27 mod 28, and not if
p is congruent to 15, 23, or 11 mod 28.

6a. Let n and m be relatively prime. Show that every element of (Z/nm)×

has order dividing the least common multiple of Φ(n) and Φ(m).

Let a be in (Z/nm)×. Then aΦ(n) ≡ 1 (mod n), and aΦ(m) ≡ 1 (mod m).
Thus, if k is the least common multiple of Φ(n) and Φ(m), then ak ≡ 1 (mod
n) and ak ≡ 1 (mod m). By the Chinese remainder theorem this means that
ak ≡ 1 (mod mn). Thus the order of a divides k.

6b. Show that if n and m are relatively prime, then Z/nm has a prim-
itive root if, and only if, both Z/n and Z/m have primitive roots, and
(Φ(n),Φ(m)) = 1.

Suppose that Z/mn has a primitive root g. Then the order of g mod mn
is Φ(mn) = Φ(m)Φ(n). On the other hand, the order of g mod mn divides
the least common multiple of Φ(m) and Φ(n). Thus Φ(m)Φ(n) must be
the least common multiple of Φ(m) and Φ(n), and thus (Φ(m),Φ(n)) = 1.
Finally, note that the powers of g contain every invertible congruence class
mod mn, and thus contain every invertible congruence class mod m. Thus
g is a primitive root mod m, and similarly is a primitive root mod n.

Conversely, if a is a primitive root mod m and b is a primitive root mod
n, choose a g congruent to a mod m and b mod n. Let k be the order of
g mod mn. Then gk ≡ 1 mod m, so (since g ≡ a (mod m)), the order
of a mod m divides k. Thus Φ(m) divides k. Similarly Φ(n) divides k.
Since (Φ(n),Φ(m)) = 1, the product Φ(m)Φ(n) divides k, and thus k =
Φ(n)Φ(m), and g is a primitive root mod mn.

7. Suppose a is a primitive root modulo n. Show that ad is also a primitive
root modulo n for all d such that (d,Φ(n)) = 1. [Hint: show that there
exists k such that (ad)k is congruent to a modulo n.]

Let k be a multiplicative inverse of a mod Φ(n). Then dk ≡ 1 mod Φ(n),

and so (ad)k = a1+mΦ(n) for some integer m. Thus (ad)k ≡ a mod n by
Euler’s theorem.

Now let r be the order of ad mod n. Then (ad)r ≡ 1 mod n, so, raising
both sides to the kth power, we have ((ad)k)r ≡ 1 mod n and thus ar ≡ 1
mod n. Thus r must be divisible by Φ(n) since a is a primitive root. Since
r is the order of ad, it divides Φ(n) and thus must equal Φ(n).

8. Show that if p is a prime congruent to 1 mod 120 then none of 2, 3, 4, 5, 6
is a primitive root modulo p. [Hint: show that 2, 3, and 5 are squares mod
p.]
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By Euler’s criterion, if a is a quadratic residue mod p then a
p−1
2 ≡ 1 mod

p; in particular the order of a is NOT p− 1, so a can’t be a primitive root.
We will show that if p is congruent to 1 mod 120 then 2, 3, 4, 5, 6 are all
quadratic residues mod p. This is clear for 4, and if 2 and 3 are quadratic
residues then so is 6, so it suffices to show this for 2, 3, and 5.

If p is congruent to 1 mod 120, then p is congruent to 1 mod 8, so
(

2
p

)
= 1.

Similarly, since p is congruent to 1 mod 4, and 1 mod 3, we have
(

3
p

)
=(p

3

)
=

(
1
3

)
= 1.

Finally, since p is congruent to 1 mod 4 and 1 mod 5, we have
(

5
p

)
=(p

5

)
= 1.


