M3P14 EXAMPLE SHEET 2

1. Compute (%) and (%) using quadratic reciprocity. (571 and 641 are

both prime.)
5
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We have:
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We also have:
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2a. Find all 8 primitive roots modulo 17.
You can do this exhaustively, but there’s a shortcut using problem 7. Note
that 3 is a primitive root mod 17, as its first sixteen powers are distinct.
Now by problem 7, since ®(17) = 16, the other primitive roots are the odd

powers of 3. In particular one has 3, 3% = 10, 3° = 5, 37 = 11, 3° = 14,
31 =7 313 =12 and 3" = 6 are all primitive roots mod 17.

2b. Show that there exist primitive roots modulo 6, 9, and 18.

Note that —1 has order 2 mod 6, and is thus a primitive root, since
d(6) = 2.

Mod 9, 5 is a primitive root; since ®(9) = 6, we must show that 5 has
order 6. Certainly 5 has order dividing 6 and greater than one, so we must
show that the order of 5 is not 2 or 3. But 52 = 7 (mod 9) and 5% = —1
mod 9, so the order of 5 must be 6.

Mod 18, 5 is still a primitive root: ®(18) = 6, so we must show that the
order of 5 is not less than 6 mod 18, but this is true since it is already true
mod 9.

2c. Show that if n is odd and there exists a primitive root mod n, then there

also exists a primitive root mod 2n. [HINT: ®(2n) = ®(n) when n is odd.]

Let a be a primitive root mod n. Then a and a + n both have order ®(n)

modulo n. Let ¢ = a if a is odd, or ¢ = a + n if a is even. Then g is odd

and congruent to a mod n. I claim that ¢ is a primitive root mod 2n. Note

that ®(2n) = ®(n), so we must show that g has order ®(n) mod 2n. But
1
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if g* =1 (mod 2n) for any k < ®(n), the same would be true mod n, and
then a would have order less than ®(n).

3. Let p be a prime and let a be a primitive root mod p. Show that a is also
a primitive root mod p? if, and only if, a?~! is not congruent to 1 mod p?.
[HINT: what is the order of a mod p? What does this say about the order
of a mod p??]

The order of @ mod p? must divide ®(p?) = p(p — 1). On the other hand,
suppose the order of @ mod p? is k. Then ¢* =1 (mod p?), and so at =1
(mod p). Since a is a primitive root mod p, this means that p — 1 divides
k. So the order of a mod p? is either p — 1 or p(p — 1). Since a?~! is not
congruent to 1 mod p?, the order of a must be p(p — 1), which means that
a is a primitive root.

4. Let p be a prime, and suppose that a is not divisible by p. Show that

the equation #¢ = a (mod p) has a solution if, and only if, a@r-0 T = =1 (mod

p). Show further that if this is the case then this equation has (d,p — 1)
solutions mod p. [HINT: what happens when you fix a primitive root g mod
p, and take the discrete log of the equation % = a (mod p)?]

Let g be a primitive root mod p. Then log, gives an isomorphism of
(Z/p)* with Z/(p—1). Applying log, to the equation 2% = a (mod p) gives
the equation dlog,z =log,a (mod p —1). Let y = log, z, and z = log, a.
We are then trying to solve the equation dy = z (mod p — 1). We know
by our study of linear equations that this has a solution if, and only if, z is
divisible by (d,p — 1), and that if this is the case that there are (d,p — 1)
such solutions.

It thus suffices to show that z is divisible by (d,p — 1) if, and only if,

-1
a@rD =1 (mod p). Suppose first that z is divisible by (d,p — 1). Slnce
1

-1 —
z = log, a, we have a = g* (mod p). Thus a@r D = g @D (mod p). Since
(d,p—1) divides z, the exponent is an integral multiple of p — 1, and raising
g to such a power gives 1 by Fermat’s little theorem.

—1
Conversely, if gz<dpp D =1 (mod p), then (since g has order p — 1) we
must have z = d ) divisible by p — 1, and thus z is divisible by (d,p — 1).

5. Let p be an odd prime different from 7. Show that 7 is a square mod p
if, and only if, p is congruent to 1,3,9,19,25 or 27 modulo 28. [HINT: use

. . . 7 p
quadratic reciprocity to relate (5> to (7)}

If p =1 mod 4, then (%) = (%) The quadratic residues mod 7 are 1, 2, 4.

Thus 7 is a square mod p if p is congruent to 1 mod 4 and 1,2, or 4 mod 7,
and not a square if p is congruent to 1 mod 4 and 3,5, or 6 mod 7. Using
the Chinese Remainder theorem, we see that 7 is a square mod p if p is
congruent to 1, 9, or 25 mod 28, and not if p is congruent to 17, 5, or 13
mod 28.
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If p = 3 mod 4, then (%) = —(£). Thus 7 is a square mod p is p is

congruent to 3 mod 4 and 3,5, or 6 mod 7, and not if p is congruent to 3

mod 4 and 1,2, or 4 mod 7. Using the Chinese Remainder theorem, we see

that 7 is a square mod p if p is congruent to 3, 19, or 27 mod 28, and not if
p is congruent to 15, 23, or 11 mod 28.

6a. Let n and m be relatively prime. Show that every element of (Z/nm)*
has order dividing the least common multiple of ®(n) and ®(m).

Let a be in (Z/nm)*. Then a®™ =1 (mod n), and a®™ =1 (mod m).
Thus, if k is the least common multiple of ®(n) and ®(m), then a* = 1 (mod
n) and a* = 1 (mod m). By the Chinese remainder theorem this means that
a® =1 (mod mn). Thus the order of a divides k.

6b. Show that if n and m are relatively prime, then Z/nm has a prim-
itive root if, and only if, both Z/n and Z/m have primitive roots, and
(D(n), B(m)) = 1.

Suppose that Z/mn has a primitive root g. Then the order of ¢ mod mn
is ®(mn) = ®(m)®(n). On the other hand, the order of g mod mn divides
the least common multiple of ®(m) and ®(n). Thus ®(m)®(n) must be
the least common multiple of ®(m) and ®(n), and thus (®(m), ®(n)) = 1.
Finally, note that the powers of g contain every invertible congruence class
mod mn, and thus contain every invertible congruence class mod m. Thus
g is a primitive root mod m, and similarly is a primitive root mod n.

Conversely, if a is a primitive root mod m and b is a primitive root mod
n, choose a g congruent to a mod m and b mod n. Let k be the order of
g mod mn. Then ¢g* = 1 mod m, so (since g = a (mod m)), the order
of @ mod m divides k. Thus ®(m) divides k. Similarly ®(n) divides k.
Since (®(n), ®(m)) = 1, the product ®(m)®(n) divides k, and thus k =
®(n)®(m), and g is a primitive root mod mn.

7. Suppose a is a primitive root modulo n. Show that a? is also a primitive
root modulo n for all d such that (d,®(n)) = 1. [Hint: show that there
exists k such that (a?)* is congruent to a modulo n.]

Let k be a multiplicative inverse of a mod ®(n). Then dk =1 mod ®(n),
and so (a®)* = a'™®(™ for some integer m. Thus (a%)* = a mod n by
Euler’s theorem.

Now let 7 be the order of a® mod n. Then (a?)” = 1 mod n, so, raising
both sides to the kth power, we have ((a?)*)” = 1 mod n and thus a" =
mod n. Thus r must be divisible by ®(n) since a is a primitive root. Since
7 is the order of a?, it divides ®(n) and thus must equal ®(n).

8. Show that if p is a prime congruent to 1 mod 120 then none of 2, 3,4, 5,6
is a primitive root modulo p. [Hint: show that 2, 3, and 5 are squares mod

]
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By Euler’s criterion, if a is a quadratic residue mod p then a7 =1 mod
p; in particular the order of a is NOT p — 1, so a can’t be a primitive root.
We will show that if p is congruent to 1 mod 120 then 2,3,4,5,6 are all
quadratic residues mod p. This is clear for 4, and if 2 and 3 are quadratic
residues then so is 6, so it suffices to show this for 2, 3, and 5.

If p is congruent to 1 mod 120, then p is congruent to 1 mod 8, so (%) =1.

Similarly, since p is congruent to 1 mod 4, and 1 mod 3, we have (%) =

_ (1y _
(5)=(G) =1
Finally, since p is congruent to 1 mod 4 and 1 mod 5, we have (§> =

5)=1. p



