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“A poet once said, “The whole universe is in a glass of wine.” We will probably never know

in what sense he meant that, for poets do not write to be understood. But it is true that if

we look at a glass of wine closely enough we see the entire universe.

“There are the things of physics: the twisting liquid which evaporates depending on

the wind and weather, the reflections in the glass, and our imagination adds the atoms.

The glass is a distillation of the Earth’s rocks, and in its composition we see the secrets

of the universe’s age, and the evolution of stars. What strange arrays of chemicals are in

the wine? How did they come to be? There are the ferments, the enzymes, the substrates,

and the products. There in wine is found the great generalization: all life is fermentation.

Nobody can discover the chemistry of wine without discovering, as did Louis Pasteur, the

cause of much disease. How vivid is the claret, pressing its existence into the consciousness

that watches it!

“If our small minds, for some convenience, divide this glass of wine, this universe, into

parts - physics, biology, geology, astronomy, psychology, and so on - remember that Nature

does not know it! So let us put it all back together, not forgetting ultimately what it is for.

Let it give us one more final pleasure: drink it and forget it all!”

Richard P. Feynman
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Abstract

The study of swimming micro-organisms has been of interest not just to biologists, but

also to fluid dynamicists for over a century. As they are rarely in isolation, much interest

has been focused on the study of the swimmers’ interaction with their environment. By

virtue of the typically small sizes of these organisms and their swimming protocols, the

characteristic Reynolds number of the motion of the fluid around them is small. Hence

they reside in a Stokes flow regime where viscous forces dominate inertial effects and

where far-field interactions (e.g. with nearby walls) can have a significant effect on the

swimmer’s dynamical evolution.

This thesis provides a detailed investigation of idealised models of low Reynolds number

swimmers in a variety of wall-bounded fluid domains. Our approach employs a combina-

tion of analytical and numerical techniques.

A simple two-dimensional point singularity is used to model a swimmer. We first study its

dynamics when placed in the half-plane above an infinite no-slip wall and find it to be in

qualitative agreement with numerical and experimental studies. The success of the model

in this case encourages its use to study the swimmer’s dynamics in more complicated do-

mains. Specifically, we next explore the dynamics of the same swimmer above an infinite

straight wall with a single gap, or orifice. Using techniques of complex analysis and con-

formal mapping theory, a dynamical system governing the swimmer’s motion is explicitly

derived. This analysis is then extended to the case in which the swimmer evolves near an

infinite straight wall with two gaps.
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We are also interested in how the presence of background flows can affect the swimmer’s

dynamics in these confined geometries. We therefore employ the same techniques of com-

plex analysis and conformal mappings to find analytical expressions for pressure-driven

flows near a wall with either one or two gaps. We then extend this to find new solutions for

the shear flows and stagnation point flows in the same geometry. The effect of a background

shear flow on the swimmer’s dynamics is then explored.

Finally, while there have been a number of studies of Stokes flows within domains which

are simply connected, the doubly connected analogues are rather rare. By building upon

the analytical techniques presented in this thesis, we present numerical solutions to such

problems, including that of the Weis-Fogh mechanism in the low Reynolds number regime.
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Chapter 1

An introduction to swimming in low

Reynolds numbers.

The locomotion of small microorganisms has been of interest to fluid dynamicists and biol-

ogists for many years. While their motion occurs within fluids of non-negligible kinematic

viscosity, they do so at very small length scales and speeds. The Reynolds number as-

sociated with these motions is therefore very small and so they reside in a world where

inertial forces are negligible in comparison to the viscous effects of the fluid. For example,

the Reynolds number associated withEscherichia coli(E. Coli) motion is approximately

O(10−4) while that of a spermatozoan is roughlyO(10−2).

As a consequence of this, any velocity perturbation on their boundary is diffused much

more rapidly into the fluid relative to the speed at which the fluid particles are, themselves,

carried by the flow. The fluid’s response to the motion of the swimmer’s body is therefore

nearly instantaneous and so the rate of change of the swimmer’s momentum is completely

negligible in comparison to the typical magnitudes of the surrounding viscous forces. Be-

cause of this, the force and torque on the swimmer’s body from the fluid is instantaneously

balanced by the external forces and torques. However, in most cases there are no external

forces and so the fluid exerts no force on the swimmer. Also, unless the swimmer is a

nose or bottom-heavy cell (both cases we shall not consider), there will be no torque on the

swimmer either.



Chapter 1. An introduction to swimming in low Reynolds numbers. 20

Recently, a large amount of attention has been placed on understanding swimming dy-

namics inunboundedlow Reynolds number flows [6, 7, 8]. This has been used to ex-

plain the methods which the swimmers adopt in order to propel themselves through the

fluid. In reality, however, most organisms are typically in the vicinity of other bodies or

boundaries, where the hydrodynamic interaction with these has a significant effect on their

motion. Therefore, in order to gain a complete understanding of low Reynolds number

swimming, one must also study the hydrodynamic interaction between swimmers and their

boundaries.

The boundaries of the fluid may either take the form of a deformable interface between

two different fluids [9, 10] or, alternatively, a solid boundary. On the former, fluid stress

is continuous across the interface while the fluid remains stationary on the surface of the

latter. Free surfaces generally move with the local fluid and so their positions are harder to

control than a solid boundary (which may be fixed in place): it is because of this that we

restrict our attention to how swimmers interact with solid surfaces.

There have been a number of recent investigations into how a swimming micro-organism

interacts with solid surfaces. Laugaet al. [11] have shown that due to the hydrodynamic

interaction with solid boundaries around them,E. Coli swim in a clockwise circular mo-

tion when placed near to a wall, while Cossonet al. [12] and Berkeet al. [13] demonstrate

how spermatozoa andE. Coli are attracted to solid boundaries that confine their domain.

More recently, Drescheret al. [14] have presented some interesting steady states of cir-

cular Volvoxalgae when placed next to a wall, where pairs of cells “dance” around each

other, while Zilmanet al. [4] have studied the shear induced orbits of ocean larvae. Much

theoretical work in this area has focused on quantifying the change in swimming speed and

energetics near solid boundaries [15, 16, 17, 18].

In order to investigate the effects of solid boundaries on a low Reynolds number swimmer’s

trajectory, a number of authors began by considering the interaction of such a swimmer with

the simplest domain possible; that of a fluid bounded by an infinite flat wall. This wall is
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referred to as ano-slip boundarydue to the fact that any viscous fluid remains stationary

on a solid surface, or moves with the surface’s own velocity. Moreover, it is the swimmer’s

hydrodynamic interaction with this wall that may allow it to undertake an interesting swim-

ming trajectory and so authors have devised experiments and theoretical models in order to

study this interaction. In particular, it is a well known fact that swimmers in a low Reynolds

number regime tend to be attracted towards no-slip surfaces [19, 20, 15, 21, 22, 13]. Berke

et al. [13] investigated the hydrodynamics ofE. Colicells and their subsequent attraction to

solid boundaries by placing a cell mixture in a density matched fluid between two parallel

plates. Once the cells had been given time to settle, their distribution was photographed

and recorded as a function of distance away from one of the plates, where it can be seen

that there is an overall tendency for the cells to move towards one of the surfaces and then

swim along it, in agreement with a previous experiment carried out by Rothschild [19].

To provide a physical explanation to these results, Berkeet al. [13] model a single swimmer

near a no-slip boundary as a force-free and torque-free prolate spheroid under a force dipole

(a stresslet) model and find that the vertical component of the velocity is given by

uy = −
3p

64πηy2
(1 − 3 cos2 θ) (1.1)

wherey is the distance from the wall in the normal direction,p is the dipole strength,

η is the viscosity (either positive or negative corresponding to whether the swimmer is a

“pusher” or “puller” [13]) andθ is the angle of the head’s orientation, measured from the

vertical.

Whenθ = π/2, 3π/2, the swimmer is aligned with the wall and will swim parallel to it.

The authors find that the evolution of this head angle is governed by

dθ

dt
= −

3p cos θ sin θ

64πηy3

[

1 +
(γ2 − 1)

2(γ2 + 1)
(1 + cos2 θ)

]

(1.2)

whereγ is the aspect ratio for the spheroid. In the case of a sphere, this parameter is equal to

1 and hencedθ/dt = −3p cos θ sin θ/(64πηy3). While the authors did not perform the full
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dynamical calculations, they were able to deduce that the swimmers will always reorient

themselves with the boundary whatever their initial orientation is. While this simple model

captures the general attraction of the swimmers to walls, it also predicts that they will crash

into them in finite time, in contrast with experimental findings.

Or and Murray [23] have studied the dynamics of a fully three-dimensional swimmer when

placed in such a geometry. The authors constructed a theoretical swimmer by connecting

up to three rigid spheres using thin rods. This model was then submerged in a quiescent

viscous fluid next to a long flat wall. The sphere’s centers lie in thex − y plane and all

motion was constrained to that plane. Next, two (and sometimes three) of the spheres were

made to rotate about an axis parallel to the z-axis in order to generate a motion.

The equations of motion imply that forces and torques on the sphere are linearly related

to their linear and angular velocities via a mobility (or resistance) matrix. In the case of

spherical particles near a planar wall, this matrix has been found by Swan and Brady [24].

While Or and Murray [23] do not compute this matrix exactly, they use scaling arguments

to approximate it. In doing so, Or and Murray [23] show that in some cases the swimmer

may take an interesting oscillating periodic orbit. Here, the swimmer moves towards the

wall and, once it gets close to it, spends some time moving parallel to it. During this time

spent in parallel motion, it reorients itself and then moves away from the wall again. This

process is then repeated and is interpreted as a steady orbit within the solution space of the

governing dynamics. In other cases, the swimmer will form “spiralling” motions along the

wall. This is shown diagrammatically in Figure 2 of [23].

To verify this, the authors built a macro-scale version of this swimmer with up to three

rotating spheres, and placed it in a viscous bath of fluid next to a wall [25]. The periodic

orbits, predicted by their theory [23] can clearly be seen in their experiments. While this is

a three-dimensional model, all the motion is coplanar and hence lends itself well to study

in two dimensions.

Other authors have also studied the effect of an ambient background flow on the motion of
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swimmers near planar walls. Zilman, Novak and Benayahu [4] construct a hydrodynamic

model for the motion of marine larvae in the presence of a background linear shear flow

near flat solid boundaries. By accounting for the flow vorticity and the swimmers’ own

method of self-propulsion, the authors find that if the swimmers are sufficiently close to

the wall, they may undergo interesting spiralling trajectories, similar to those found by Or

and Murray [23].

However, while Zilmanet al. [4] take the wall as a reference point for the shear flow (where

the shear velocity is zero), they do not to take into account the hydrodynamic interaction

that the swimmer has with the wall itself. Their results nevertheless give a qualitative

insight into the trajectories when the shear rate is high and hence its effect plays a more

dominant role in the swimmer’s motion than the interaction with the wall.

There has also been much attention placed on the class of circular swimmers that do not

change their shape but produce a purely tangential velocity field on their boundaries. This

is often referred to astreadmilling [26] and is associated with the presence of cilia on the

organism’s body. Similar models have been used to capture the collective action of short

cilia on the surface of motile cells such asOpalinaandVolvox[27, 28]. Swimmers of these

form were first considered by Blake [27] who demonstrated how a circular swimmer with

an imposed tangential and normal velocity on its body can propel itself in an unbounded

Stokes flow. The surface velocities, or surface waves, are viewed as an “envelope” (or a

smooth approximation) to the motion of the tips of all the cilia on the body’s surface [29, 30,

28]. The advantage of this model is that it ignores the added complication of shape variation

and focuses only on the interaction with its environment. Blake [27] demonstrated that even

a purely tangential velocity profile may produce a net displacement for the swimmer.

Since the Stokes equations are linear, the superposition of appropriately chosen singular-

ities have also been used in order to solve for the flow and pressure around a swimming

organism. In particular, Blake [27] used a distribution of Stokeslet singularities to model

the collective action of cilia on the surface of a slender body. This model also demonstrated

that a tangential velocity profile was much more effective at providing a propulsive force



Chapter 1. An introduction to swimming in low Reynolds numbers. 24

than a normal velocity component.

This thesis is motivated by the study of swimmers which do not have any means to propel

themselves through the fluid without the assistance of an external boundary. In other words,

these organisms would not be able to move if they were placed in an unbounded fluid. Re-

stricting the study to swimmers of this form will isolate the effect that solid surfaces have

on low Reynolds number locomotion. Recently, Crowdy and Or [1] have proposed a sin-

gularity model for such swimmers when placed near a solid boundary. Their model, which

will be discussed in chapter 2, was based on a circular treadmilling swimmer which had

no means of self-propulsion. The authors then found the appropriate Stokes singularities

that represented the flow field that this treadmiller created in the global fluid. By studying

the interaction between these singularities and the no-slip wall, they were able to infer the

dynamics of a low Reynolds number swimmer in the same geometry.

Blake and Chwang [31] has also used singularity models such as these to explain the mo-

tion of swimming microorganisms in the vicinity of flat walls. In general, the singularities

themselves will not satisfy the no-slip condition on the boundary. Therefore, a superposi-

tion of those singularities together with their images is often necessary in order to satisfy

the boundary conditions. This method is similar to that used in electrostatics where im-

age charges may be placed throughout the domain in order to satisfy a constant-potential

condition on a given surface. For example, in the case of a point charge above a flat wall,

the boundary condition is satisfied by simply placing an equal and opposite charge at the

point of reflection in the wall. Within the context of low Reynolds number swimming,

the zero horizontal and vertical velocity requirements constitute two boundary conditions

which the singularities must satisfy. Determining which singularities are appropriate may

be more challenging and less straight-forward than within problems of electrostatics, whose

boundary conditions are scalar. For example, in documenting various image systems in the

vicinity of a no-slip boundary in a Stokes flow, Blake and Chwang [31] showed a Stokeslet

generated not only an image Stokeslet, but also an image force dipole as well as a source

dipole flow field.
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In this thesis, we will adopt the singularity model proposed by Crowdy and Or [1] in order

to represent a low Reynolds number swimmer. Using this singularity model within domains

of geometric complexity will shed light on how a swimmer, such as the type modelled by

Crowdy and Or [1], will behave in such surroundings. This thesis appears to be the first

study to present a systematic and flexible approach to modelling low Reynolds number

swimming in confined environments.

The thesis will be structured as follows: chapter 2 will begin with a general description of

Stokes flows within the framework of complex variables and will then introduce, in greater

detail, the Crowdy and Or [1] singularity model for a low Reynolds number swimmer. Our

attention will then turn towards domains which are more complicated than those considered

by Crowdy and Or [1] and Blake [27, 31]. In chapter 3, we introduce a new method using

conformal mapping theory in order to retrieve, in a unified fashion, previously discovered

exact solutions of Stokes flows past a wall with a gap. Chapter 4 will then extend this

method in a natural way to incorporate the swimming model of Crowdy and Or [1]. This

will enable us to write down the dynamical system of a low Reynolds number swimmer

near a wall with a gap explicitly and categorise the different swimming trajectories which

it may undertake. We will then add a further degree of complication to the fluid domain

by introducing a second gap in the wall. Chapter 5 will then present exact solutions to

various Stokes flow problems near these two gaps by using complex variable techniques in

this doubly connected domain. In chapter 6, we extend these solutions by reintroducing the

Crowdy and Or [1] singularity model in order to find the dynamical system which governs

a swimmer’s motion near a wall with two gaps explicitly. Finally, in contrast to the exact,

analytical solutions we present in the previous chapters, chapter 7 will discuss various

numerical approaches to Stokes flows problems within multiply connected domains.
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Chapter 2

Application of singularity theory to low

Reynolds number swimming.

2.1 Complex variable methods in Stokes flows.

We begin our study of swimming near solid boundaries with a review of the complex vari-

able formulation of two-dimensional Stokes flows. We shall use this formulation, as well

as the models within, when solving similar problems throughout the thesis.

In the limit of zero Reynolds number, the Navier-Stokes equations reduce to

∇p(x) = μ∇2u(x)

∇ ∙ u(x) = 0
(2.1)

whereu is the velocity of the fluid at a pointx ∈ R3 and μ is the dynamic viscosity.

These are theStokes equationsand are the governing equations of fluid mechanics in flow

environments where either the kinematic viscosity of the fluid is very high, or the typical

speed or length scale of the flow is very low. Taking the curl of equation (2.1) results in

∇∧∇p(x) = μ∇∧∇2u(x). (2.2)

As the curl of a gradient field is zero (assuming that the pressure is a continuous function)
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and after invoking the second equation of (2.1), the right hand side of this becomes

0 = μ∇2(∇∧ u). (2.3)

Defining thevorticity field, ω(x), of a fluid as the curl of the velocity field, we arrive at the

alternative form of the Stokes equation

0 = ∇2ω(x). (2.4)

When the flow is purely two-dimensional, withu = (u, v) andx = (x, y), the vorticity is

directed out of the plane and given by

ω(x) = (0, 0, ω(x, y)). (2.5)

Next, as the velocity satisfies the second equation of (2.1), there exists a scalar function

ψ(x, y) such thatu = ∇∧ (0, 0, ψ), or

(u, v) =

(
∂ψ

∂y
,−

∂ψ

∂x

)

. (2.6)

The functionψ(x, y) is called thestream functionand exists for all two-dimensional in-

compressible flows. Taking the curl of the velocity field gives

ω(x, y) = (0, 0,−∇2ψ(x, y)), (2.7)

from which we see that the stream function satisfies

∇2ψ(x, y) = −ω(x, y). (2.8)

However, equation (2.4) revealed that the vorticity satisfies the Laplace equation and so,

after taking the Laplacian of equation (2.8), we deduce that the stream function is governed

by the biharmonic equation

∇4ψ(x, y) = 0. (2.9)



2.1 Complex variable methods in Stokes flows. 28

We will now use a representation of the biharmonic operator using complex variables.

Define the variablez = x + iy. Using this, we have that

∂

∂z
=

1

2

(
∂

∂x
− i

∂

∂y

)

,
∂

∂z
=

1

2

(
∂

∂x
+ i

∂

∂y

)

(2.10)

and so it is easy to show that the Laplace operator is given by

∇2 = 4
∂2

∂z∂z
(2.11)

with z = x − iy being the complex conjugate ofz and hence the biharmonic equation is

given by

0 =
∂4ψ

∂z2∂z2 . (2.12)

By integrating this equation four times, it can be shown to have the general solution

ψ(z, z) = Im[zf(z) + g(z)] (2.13)

The functionsf(z) andg(z) are called theGoursat functionsand are analytic everywhere

inside the fluid domain. This was shown by Muskhelishvili [32] in the context of elasticity

problems whereψ was an Airy stress function. Richardson [33] demonstrated its usefulness

for Stokes flow problems when considering the dynamics of two-dimensional bubbles in

zero Reynolds number regimes. In order to solve a Stokes flow problem in two dimensions

it is sufficient to determinef(z) andg(z), and these are usually found from the boundary

conditions.

2.1.1 Representation of field variables using Goursat functions.

From this representation, one can deduce various physical quantities of the fluid such as

the velocity, vorticity, pressure and the surface stress.
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Velocity

From the definition of the stream function, the horizontal and vertical components of the

velocity are given byψy and−ψx respectively. Therefore, using relation (2.10), we have

u + iv =
∂ψ

∂y
− i

∂ψ

∂x
= −i

(
∂ψ

∂x
+ i

∂ψ

∂y

)

= −2i
∂ψ

∂z
. (2.14)

Next, using the definition ofψ(z, z), we see that the velocity is given by

u + iv = −f(z) + zf
′
(z) + g′(z) (2.15)

wheref ′(z) = df/dz.

Pressure and Vorticity

It can be seen directly from the Stokes equation (2.1) that

1

μ

∂p

∂x
= ∇2u,

1

μ

∂p

∂y
= ∇2v. (2.16)

Therefore, forming a complex combination of these gives

1

μ

(
∂p

∂x
+ i

∂p

∂y

)

= ∇2(u + iv). (2.17)

Again using relation (2.10) together with relation (2.15) gives

2

μ

∂p

∂z
= 4

∂2

∂z∂z

[
−f(z) + zf

′
(z) + g′(z)

]
. (2.18)

Integrating this and adding the constant function4f ′(z) to make the pressure real-valued,

gives
p

μ
= 2

[
f ′(z) + f

′
(z)
]
. (2.19)

Next, using the fact thatω = −∇2ψ, we have that

ω = 2i
∂2

∂z∂z

[
zf(z) + g(z) − zf(z) − g(z)

]
= 2i

[
f ′(z) − f

′
(z)
]
. (2.20)
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Putting this together with (2.19) gives

p

μ
− iω = 4f ′(z) (2.21)

which we shall refer to throughout the thesis.

Fluid Stress

The fluid stress on a surface is given by

− pnj + 2μeijnj (2.22)

whereni denotes the components of the unit normal vector to the boundary andeij is the

usual fluid rate of strain tensor. WritingN = n1 + in2 then, upon using the continuity

equation, it can be seen that both components (corresponding toj = 1, 2) are satisfied by

the real and imaginary parts of

− pN + 2μ(e11 + ie12)N (2.23)

respectively. Noting thate11 = ∂u/∂x and thate12 = (1/2)(∂u/∂y+∂v/∂x) and following

a similar method used to derive (2.15), we find that

e11 + ie12 = zf
′′
(z) + g′′(z). (2.24)

Furthermore, the complexified normal is given byN = −ieiθ = −izs wheres is an element

of arc length along the boundary. Also, from (2.21), we have that

p = 4μRe[f ′(z)]. (2.25)

Putting this together with (2.24) in (2.23) gives

− pN + 2μ(e11 + ie12)N = 2iμzs

[
f
′
(z) + f ′(z)

]
+ 2iμzs

[
zf

′′
(z) + g′′(z)

]
. (2.26)
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It is a remarkable fact the right hand side of this is an exact derivative,

2iμ
dH

ds
(2.27)

where

H(z, z) = f(z) + zf
′
(z) + g′(z) (2.28)

and we shall make use of this relation within a number of different studies later in this

thesis.

2.2 Singularity model for swimmers.

We must take special care when considering two-dimensional Stokes flow problems ana-

lytically due to the well-known Stokes paradox, which states that it is impossible to find

an exact two-dimensional solution for flow past an isolated body in such a way that its ve-

locity decays at infinity. The presence of the non-vanishing far field velocity is due to the

presence of a net force on the body. Therefore, in order to study this area analytically, we

must restrict our attention to Stokes flow problems in which there is no such force exerted

by the fluid on the objects within it.

These are not rare nor difficult to find. A characteristic feature of swimming microorgan-

isms in low Reynolds numbers is that they produce a sequence of changing body shapes,

often referred to as “squirming”. As discussed in the introduction, it does so in such a

way that the body remains force and torque free as, in a Stokes flow, the rate of change of

momentum and angular momentum is zero. Therefore we have that

∮

∂B

F (z, z)ds =

∮

∂B

F (z, z)(z − zd)ds = 0 (2.29)

whereF is the force of the fluid on a body∂B (with infinitesimal arc lengthds) and

zd a point insideB. From equation (2.28), the condition that the swimmer experiences

no net torque or force is a crucial one as it means thatH(z, z), which shall be used to

solve various swimming problems, must not include any logarithmic singularities. As these
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are precisely the singularities that are at the heart of the Stokes paradox, avoiding these

means that problems of swimming microorganisms lends itself well to analytic study in

two dimensions.

Any swimmer in a low Reynolds number flow will locally generate a flow which may

equivalently be modelled by a distribution of Stokes flow singularities positioned either

inside, or on the boundary of, the swimmer. In our study we adopt a similar approach

where the swimming micro-organism is represented by a superposition of two-dimensional

point singularities.

2.2.1 Modelling swimmers using Goursat singularities.

A swimming micro-organism will generate a flow around it. In order to determine the

stream functionψ(z, z) for that flow, one must find the appropriate Goursat functionsf(z)

andg(z) which are associated with it. These functions are analytic everywhere inside the

fluid domain except, possibly, at a set of isolated singularities introduced to model the

swimmer. We begin the search for an appropriate singularity description by supposing that

the swimmer is located atz = zd and also that the Goursat functionf(z) is allowed to

admit a logarithmic singularity there. Hence, to leading order, this function takes the form

f(z) = λ log(z − zd) (2.30)

whereλ ∈ C is the strength of the singularity. Upon substitution into (2.15), the velocity

is then

u + iv = −λ log(z − zd) +
λz

z − zd

+ g′(z)

= −λ log(z − zd) +
z(z − zd)

z − zd

+
λzd

z − zd

+ g′(z).

(2.31)
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Therefore, in order to ensure that the velocity is both single valued and, at most, logarith-

mically singular (and does not have a simple pole atzd), we must choose

g′(z) = −
λzd

(z − zd)
− λ log(z − zd). (2.32)

Therefore, if locally tozd we have

f(z) = λ log(z − zd) + analytic function,

g′(z) = −
λzd

(z − zd)
− λ log(z − zd) + analytic function,

(2.33)

then we have a stokeslet [34] nearzd, which we have seen is the key to the Stokes paradox.

This is also clear by noticing that the velocity here takes the form

u + iv ∼ −λ log |z − zd| (2.34)

and hence grows logarithmically asz → ∞. Also note that enforcingf(z) to take certain

singularities forcesg′(z) to take singularities too.

If, instead,f(z) is allowed to admit a simple pole singularity atzd,

f(z) =
λ

z − zd

, (2.35)

then following a similar argument to that above,g′(z) must be chosen as

g′(z) =
λzd

(z − zd)2
(2.36)

in order to ensure that the velocity scales asO(1/|z− zd|) rather thanO(1/|z− zd|2). This

corresponds to an irrotational dipole contribution of strength−λzd (a dipole is represented
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by a simple pole ofg(z)). We say that if the Goursat functions take the local form

f(z) =
λ

z − zd

+ analytic function,

g′(z) =
λzd

(z − zd)2
+ analytic function,

(2.37)

thenf(z) has astresslet singularityat zd of strengthλ. Again we see that including a

simple pole intof(z) imposes a double pole intog′(z): an “associated” stresslet-dipole.

Said another way,g′(z) may be chosen to admit independent singularities fromf(z), but

not conversely. Specifically, allowingg′(z) to admit a logarithmic singularity

g′(z) = c log(z − zd) (2.38)

wherec ∈ R represents a source (or sink) atzd while if c ∈ iR then this is a rotlet at

zd. A double pole ofg′(z) corresponds to an irrotational dipole singularity, a triple pole

corresponds to an irrotational quadrupole and so on. With regard to modelling a swimming

micro-organism, we are free to choose any combination of Stokes flow singularities that is

deemed appropriate for the problem at hand. However, each of these singularities will be a

(potentially complicated) function of the swimmer’s size, shape, its swimming protocol and

its local effect on the fluid around it. The attention is therefore focused on which specific

combination of singularities can be used to accurately model a physical swimmer.

2.2.2 The Crowdy and Or point singularity model [1].

In order to rationalise the three-dimensional numerical [23] and laboratory [25] experi-

ments of Murrayet al. of a three-linked swimmer near a flat solid wall, Crowdy and Or

[1] adopt a singularity model to represent the swimmer by a combination of Stokes flow

singularities. By arguing that the mechanical motion in the above experiments are copla-

nar, they propose that many of the qualitative dynamics recorded within may be retrieved

by modelling the swimmer using an appropriate singularity configuration inside an infinite

two-dimensional fluid. This fluid fills the upper half of a complex plane above a no-slip

wall, on which the fluid’s velocity is zero. Furthermore, changing the actuation rates of
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the spheres simply corresponds to tweaking the corresponding choice and strength of the

singularities that will replace them.

Their specific choice of singularity structure is motivated by the swimming protocol of a

treadmilling micro-organism of radiusε in an unbounded fluid. This acts as a sensible

first approximation to how a treadmilling swimmer would behave when in the vicinity of a

boundary. The swimmer is assumed to induce a tangential velocity profile of the form

U(φ, θ, t) = 2V sin(2(φ − θ(t)) (2.39)

whereφ is the angle measured from the positivex-direction andφ = θ is an angle from the

horizontal which is interpreted as the distinguished direction of the swimmer’s head. The

magnitude of the the constantV sets the timescale for the treadmilling motion. Notice that

while an organism may produce a time-dependent tangential velocity profile, the Stokes

equations imply that the fluid reacts instantaneously to it.

The singularity structure that they propose is that of a stresslet of strength

λ(t) = exp(2iθ(t)). (2.40)

Due to the presence of this stresslet, the associated stresslet-dipole has strengthλzd at

the swimmer’s image position. In addition to this, the authors’ [1] model also includes

an irrotational quadrupole of strength2ε2λ. Interestingly, note that the orientation of the

stresslet singularity is twice the orientation of the swimmer. This differs from [13] who

assume that their stresslet direction is in the same as that of the body. In the language of

Goursat functions, this means that nearz = zd,

f(z, t) =
λ(t)

z − zd(t)
+ f0(t) + f1(t)(z − zd(t)) + O(z − zd(t))

2,

g′(z, t) =
2ε2λ(t)

(z − zd(t))3
+

λ(t)zd(t)

(z − zd(t))2
+ g0(t) + O(z − zd(t)).

(2.41)

From here on, we will suppress any explicit time dependence on the parameters and func-
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tions for convenience (and sozd(t) will simply be written aszd, f(z, t) asf(z), and so

on).

It should be noted that while this singularity configuration depicts a non-self propagating

treadmilling swimmer in free-space well, it is unlikely to model its behaviour accurately

when effected by another external entity such as a solid boundary or another swimmer. In

order to model this accurately, the effective singularity description of the swimmer would

have to change in response to its surroundings. However, as a first model and in order not

to over-complicate the dynamics, Crowdy and Or [1] assume that the swimmer is passive

with respect to its surroundings and thus takes the same singularity structure whether in

free space or in a more complicated surrounding. Previous authors have made similar

assumptions [26]. Within the context of this model, this means that their swimmers will

alwaysbe modelled using a stresslet of strengthλ together with a superposed quadrupole

of strength2λε2, no matter what their surroundings are.

Once this singularity model has been chosen, the authors place it at the pointzd(0) and

endow the swimmer with an initial head orientation,θ(0). Due to the simplicity of the

domain, it is clear that an image singularity should be placed at the point of the swimmer’s

reflection in the wall, zd. Using this, the authors find that in addition to the stresslet singu-

larity at the swimmer’s position, the Goursat functionf(z) must admit up to a third order

pole at theimageposition, too. This is an important result which we refer to throughout

the thesis.

Using the method of images, the authors allowzd andθ to evolve as a result of the swim-

mer’s interaction with its image. In doing so, the velocity and rotation of the swimmer

is deduced from the finite part of the fluid velocity and (half of the) fluid vorticity at the

swimmer’s position. The resulting dynamical system is then given in closed form by

dzd

dt
= −

2λ

(zd − zd)
− 2ε2 (λ + 3λ)

(zd − zd)3
(2.42)
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dθ

dt
= −i

[
λ − λ

(zd − zd)2
+ 6ε2 (λ − λ)

(zd − zd)4

]

(2.43)

The authors are able to retrieve many of the qualitative swimming dynamic that are recorded

by Murray et al. [23] [25]. In the limit ε → 0 (the zero-area swimmer as considered by

Berke et al. [13]) the model is one of a stresslet only with no superposed quadrupole and

hence (2.42) and (2.43) reduce to

dzd

dt
= −

2λ

(zd − zd)
and

dθ

dt
=

i(λ − λ)

(zd − zd)2
. (2.44)

Solving these equations numerically (using a Newton solver which marches forward in

time) does not allow any solutions where the swimmer moves parallel to the wall in either

a rectilinear motion (or a more complicated one). Instead, whatever its initial orientation

is, the swimmer eventually reorients itself and finally crashes into the wall, see Figure2.1.

This is consistent with the findings of Berkeet al. [13] who claim that while a swimmer

will initially either move away or towards the wall (depending on its initial orientation),

the hydrodynamic effects will reorient the swimmer in such a way that it will always swim

towards the wall.

Whenε 6= 0, the swimmer’s dynamics reveal interesting trajectories where it takes a wave-

like motion along the wall, a few of which are shown in Figure2.2 for different initial

conditions. These are interpreted as nonlinear period solutions of the dynamical system

(2.42) and (2.43). For all initial orientationsθ(0) 6= 0, the swimmer will always reorient

itself such that it swims towards the wall. It then spends a period of time swimming on an

approximately rectilinear trajectory at a distance of approximatelyε from the wall. While

it does so, its orientation is still in evolution and, after a while, the swimmer “takes off”

from the wall again only to later be reoriented back towards it, and so on. The swimmer

continues this cycle indefinitely. This motion should be compared with Figures 2(c) and

4(c) of Or and Murray [23]. From here on, we shall refer to these asbouncing orbits.
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Figure 2.1: Dynamics forε = 0 for different initial orientations [1]. Whenθ(0) = 0, the
swimmer moves directly down and crashes into the wall.

Finally, we note that Berkeet al. [13] predicted various qualitative properties of the swim-

mer’s trajectory but did not perform the full dynamic calculations. The above is a complete

model dynamical system that can provide detailed predictions of the swimmer’s evolution.

Interestingly, the dynamical system defined by equations (2.42) and (2.43) is integrable

with solution

θ(y) =
1

2
arcsin

[

sin(2θ0) exp

(
3

2
log

y

y0

−
1

4
log

y2 − ε2

y2
0 − ε2

)]

, (2.45)

where(θ0, y0) is an initial point on the trajectory. Figure2.3 is a phase space portrait

of the possible swimming trajectories in the(θ, y) space forε = 0.2 and in the range

of −90◦ ≤ θ ≤ 90◦. When−90◦ ≤ θ, the swimmer moves to the right while when

0 ≤ θ ≤ 90◦ the swimmer moves to the left. The separating lineθ = 0 corresponds to

when the swimmer moves directly away from the wall while those atθ = ±90◦ are for the

cases when the swimmer moves directly towards the wall. The dynamics areπ periodic

and hence this diagram gives a complete description of the phase space for the swimming

motion by a wall. For comparison, note the close similarity to Figure 2(b) presented in [23]

for a three-dimensional swimmer propelled by two actuated spheres.
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Figure 2.2: Three examples of bouncing orbit trajectories for a treadmilling swimmer with
ε = 0.2. Here,zd(0) = i, θ(0) = −2π/5 (black, dashed),zd(0) = 0.8i, θ(0) = −π/3
(black, dotted) andzd(0) = 0.6i, θ(0) = −π/5 (blue, solid).
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Figure 2.3: Phase space portrait in(θ, y) space as given by equation (2.45) for a tread-
milling swimmer withε = 0.2 [4].

2.3 A swimmer above an infinite wall in the presence of a background

shear flow.

Using the above solution for a swimmer above an infinite flat wall in an otherwise ambient

background flow, we now explore situations with different background flows. Consider, for

example, the swimmer placed in a background shear flow of the form

ψ = γy2, (u, v) = (2γy, 0) (2.46)

whereU is the strength of the shear flow andy = Im[z]. Hence the velocity is given by

u + iv = 2γy = −i2γ(z − z)/2 and, comparing with (2.15) we see that the corresponding

Goursat functions for this are

f(z) =
iγ
2

z, g′(z) = −iγz. (2.47)
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Due to the linearity of the Stokes equations, the resulting dynamics are a superposition

of the above solution for the swimmer in an ambient flow with that of a swimmer in an

unbounded shear flow. In this case, both the image singularity and the background shear

flow drive the swimmer and there is therefore a natural competition between these two

effects. For larger shear rates,2γ, the shear flow effect is more dominant and acts to draw

out the “wavelengths” of the bouncing orbits, see Figures2.4, 2.5and2.6.

Interestingly, when the shear rate is low, the swimmer’s interaction with its image dom-

inates its dynamics and undergoes the familiar bouncing orbits. As the shear rate is in-

creased it is possible for the swimmer to undergo a spiralling motion. The trajectories for

larger shear rates should be compared with Figure 9 in [4], however it should be noted

that Zilmanet al. do not seem to take into account the swimmer’s own hydrodynamic

interaction with the wall (i.e. the interaction with the image singularity). Therefore, the

comparison is only valid for higher shear rates, when the shearing effect dominates the

wall-interaction effect.

2.4 Summary

We have presented the model of Crowdy and Or [1] used to describe the hydrodynamic

interaction between a two-dimensional (circular) treadmilling swimmer and an infinite flat

surface. While this two-dimensional model was not as realistic as a three-dimensional

one, it afforded the authors the opportunity to tackle these problems with analytic tools.

Furthermore, many of the three-dimensional dynamics of swimming problems are quasi

two-dimensional in that the motion takes place predominantly in some plane. Therefore,

many of the qualitative phenomena are preserved within the two-dimensional description.

An important implication of the above model is the contribution of the quadrupole singu-

larity. Other authors have used a force dipole (stresslet) model to simulate micro-organism

swimming, however we have seen that if the swimmer is modelled with this singularity

alone, it will generically crash into the wall. The inclusion of the superposed quadrupole

singularity appears to prevent this from happening and leads to bouncing orbits. These are
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γ = 0

γ = 0.15

γ = 0.6
γ = 0.4

Figure 2.4: Trajectories of swimmer (withε = 0.2, zd(0) = 0.4i, θ(0) = 0.7π) in the
presence of a background shear flow of varying strength:γ = 0 (Black, solid),γ = 0.15
(Blue, dashed),γ = 0.4 (black, dash-dot) andγ = 0.6 (blue, dash-dot).

interpreted as stable, nonlinear, period orbits of the resulting dynamical system.

We have shown that the model presented by Crowdy and Or [1] captures the physical

phenomena observed by Murray and Or [23] and Murrayet al. [25] for similar experiments

within an numerical and laboratory setup, respectively. That Crowdy and Or [1] have done

so using an independent method suggests that this model is a useful one and supports the

idea that many qualitative phenomena of two-dimensional low Reynolds number swimming

can be captured by this model. Indeed it can be expected that it may be used to predict the

behaviour of similar swimmers in more complicated geometries: this will be the focus of

the next two chapters.
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Figure 2.5: Trajectories of a swimmer (withε = 0.2, zd(0) = 0.55i, θ(0) = 4π/5) in
the presence of a background shear flow of varying strength:γ = 0.5 (Black, solid) and
alsoγ = 0.75 (Red, dash). We see that the combined effect of the shear with the image
singularity interaction gives rise to “spiralling” orbits.

Figure 2.6: Trajectories of the swimmer (ε = 0.05) in the presence of a strong background
shear flow (γ = 8.5) at different heights (bottom to top): Im[zd(0)] = 0.2, 0.4, 0.6, 0.8, 1.



44

Chapter 3

Stokes flows past a gap in a wall.

3.1 Introduction

In chapter 2 we saw that much attention has been recently paid to the study of swimming

dynamics near a solid boundary. Crowdy and Or [1] have shown that it is the hydrodynamic

interaction between the swimming micro-organism and the infinite flat boundary that deter-

mines its subsequent motion and allows “bouncing orbits”. It is likely that these dynamics

may be altered by a change in the solid boundary that the swimmer interacts with. Prob-

lems of swimming near more geometrically complicated domains are therefore of interest.

However, this does not appear to have been previously studied in any detail.

As a first step towards doing so, a careful study of how a general Stokes flow behaves in

the presence of such boundaries is necessary. For example, it is straight-forward to write

down the solution for the shear flow of a fluid in the upper half plane above an infinite flat

wall, but it is not immediately clear how the resulting streamlines would be altered when

near a more complicated no-slip surface.

As a natural extension to the simple half plane we consider the case where the flat wall

admits a finite gap, or orifice. In this case the fluid fills the entirety of the complex plane,

above and below this wall which now has a gap in the interval[−1, 1]. Only the fluid in the

upper half plane will be driven by some far field flow, while the fluid far below the wall in
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the lower half plane is assumed to remain at rest.

In the past, problems of fluid flow past an aperture have been notoriously difficult due

to the fact that no boundary condition can be seta priori in the gap region, except that

the velocities and stresses must be continuous across this region (however, this is a basic

physical requirement across any line in the fluid). For example, Weinbaum [35] indicated

that there may not be a separation streamline, defined by a contour on which the stream

function vanishes, emanating from a sharp corner. Daganet al. [36] have demonstrated

the difficulty associated with fixing a boundary condition when a net flux across a slit is

present.

We will focus our attention on two cases: one where the fluid is driven by a far field uniform

shear flow and one where it is forced by a stagnation point flow. Analytical solutions to both

of these cases have been previously found, though by rather different methods. We shall

aim to develop a new mathematical approach using conformal mapping theory which will

provide exact solutions to these problems in a unified fashion, so that only minor changes

to the method are required in order to solve both problems. Furthermore, we would like

our method to also accommodate the cases where the flow is driven by other singularities

too, either at a point inside the fluid (such as a Crowdy-Or singularity model [1]) or by one

at infinity.

Smith [2] found the solution for a uniform Stokes flow past a wall with a gap, such that the

stream function approached that of a uniform shear flow

ψ → Uy2 (3.1)

or, alternatively,

(u, v) →

{
(2Uy, 0), asz → ∞+

(0, 0), asz → ∞−
(3.2)

in the far field. Here we write∞+ to represent the region far above the wall such that

y → +∞, while ∞− correspondsy → −∞. Herey = Im[z] andU is the strength of
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the shear flow, which Smith [2] takes as unity. Smith [2] then wrote the global flow as the

addition of a symmetric and an antisymmetric stream function. The antisymmetric stream

function was an odd function ofy, and as the velocity was therefore an even function

of y, this represented the behaviour when the direction of the shear flow above the wall

was exactly the same as that beneath the wall. The symmetric part, an even function ofy,

described the shear flow which was in opposite directions on both sides of the boundary and

could be directly written asy2/2. The antisymmetric stream function was found by taking

the Fourier transform (inx) of the biharmonic equation, applying the no-slip boundary

conditions and expressing the solution in terms of the first Bessel function. The solution

was then inverted using a result of Erdelyi [37] and, upon adding both stream function

contributions together, eventually gave the exact solution

ψ(x, y) =
1

2
y2 +

y

2
√

2

{
y2 − x2 + a2 +

[
(y2 + x2)2 + 2a2(y2 − x2) + a4

] 1
2

} 1
2

(3.3)

wherea is half the gap width (and hence is equal to one in the geometrical configurations

of this chapter). The first term accounts for the antisymmetric velocity while the second

accounts for the symmetric one. The flows in the lower half plane, which were in opposite

directions, cancelled each other out and the resulting solution was the desired one. This

agrees with the results of O’Neill [38] and Wakiya [39] who considered slow viscous flows

above a plane with a cylindrical trough, when the limit of infinite cylindrical depression is

taken.

We will also consider the a stagnation point flow of the form

ψ(x, y) = kxy2 (3.4)

near the same geometry, wherek is a real constant which determines the strength of the

flow. We see that the origin is a natural stagnation point of this flow and that this stream

function is the equivalent of a uniform straining flow, see Figure3.1.

The stagnation point flow (3.4) has the associated velocity profile(u, v) = (2kxy,−ky2)
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Figure 3.1: Streamlines for a stagnation point flow. If the flow was unbounded, there would
be a natural stagnation point at the origin (hence the name of the flow). This is equivalent
to a linear straining flow.

and hence, from the Stokes equations (2.1) we see that the pressure is given by

p(x, y) = −2ky (3.5)

plus a possible constant. Aside from this linearly decreasing pressure which is associated

with the driving stagnation point flow, the pressure at the upstream infinity can be set higher

than that at the lower infinity by a value2ΔP which may cause a discharge through the gap

in the wall.

The problem of stagnation point flow above a wall with a hole or a gap has been previously

solved by Ko and Jeong [3]. The authors approached this problem by expressing the stream

function as a combination of analytic functions

ψJ(z, z) = Im

[∫
FJ(z)dz +

∫
GJ(z)dz + (z − z)GJ(z)

]

(3.6)



3.1 Introduction 48

where these analytic functions satisfy

u + iv = F J(z) + (z − z)F
′
J(z) − GJ(z). (3.7)

Applying this form of the velocity to the boundary conditions on either side of the walls,

they find that

0 =[FJ + GJ ]+ − [FJ + GJ ]−

0 =[FJ + GJ ]+ + [FJ + GJ ]−
(3.8)

where[∙]± evaluates the relevant expression above and below the real line respectively. This

is a Riemann-Hilbert problem for the two analytic functionsFJ(z), GJ(z). To find them,

they assume that these functions take the form

FJ(z) + GJ(z) =A0 + A1z + A2z
2

FJ(z) − GJ(z) =(z2 − 1)1/2(B0 + B1z)
(3.9)

where they choose the branch cut to lie along the two walls, which is identical to selecting

− π < arg(z + 1) < π, 0 < arg(z − 1) < 2π. (3.10)

Therefore, the functions remain single-valued across the gap. Consequently, Ko and Jeong

[3] find that

FJ(z) = −
ikz

8

[
z + (z2 − 1)1/2

]
+

ΔP

4μ
(z2 − 1)1/2

GJ(z) =
ikz

8

[
z + (z2 − 1)1/2

]
+

ΔP

4μ
(z2 − 1)1/2.

(3.11)

Notice that, from (3.7), we see that this solution is valid up to an additive constant, as the

translationsFJ → FJ(z) + c andGJ → GJ(z) + c leave the velocity unchanged.

Interestingly, while this work is similar in nature to that of Smith [2] (who considered

exactly the same geometry only with a driving shear flow, as opposed to stagnation point
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flow), Ko and Jeong [3] seem to be unaware of Smith’s work [2]. An interesting test on

Ko and Jeong’s method would be to use it to solve Smith’s problem. While both of these

problems above were solved using rather different methods, they will serve as a useful

check on the formulation that we will present in this chapter.

Due to the sharp corners at the start and end of the gap, special attention must be drawn to

the structure of the flow there. The approach we take here originates from the description

of the singularity structure at a sharp corner, first proposed by Dean and Montagnon [40].

They showed that near a sharp corner with interior angle2π, the stream function takes the

form

ψ(r, θ) ∼ r
3
2 (3.12)

wherer is the radial distance from the corner. We use this results to argue the structure of

the Goursat functions around corners.

While we focus our attention on flows which are purely two-dimensional, it should be noted

that by solving a pair of dual integral equations, Davis [41] was able to find exact solutions

to the axisymmetric analogue of the problem considered by Smith [2]. In this problem,

Davis considers a uniform shear flow above an infinite wall which admits a circular orifice

(as opposed to a rectilinear slit, as in Smith’s problem). Davis’ [41] work was motivated

by the study of fluid skimming and particle entrainment performed by Yanet al. [42] and

is a generalization of the classical solution of Sampson flow past a circular orifice in a wall

[43].

3.2 Stokes flow near the end of a plate.

Consider two infinite walls conjoined atz = z0 with internal angle2α. When this separa-

tion angle is2π, the walls lie along the same line and wedge corner becomes the end of a

plate. Based on the above leading order form of the stream function (3.12) together with

(2.13), the Goursat functionf(z) can be shown to take the form

f(z) ∼ a0(z − z0)
1/2 + O(z − z0) (3.13)
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with a0 constant, in the vicinity of this corner. From the no-slip velocity condition (2.15),

it follows thatg′(z) takes the form

g′(z) ∼ b0(z − z0)
−1/2 (3.14)

with b0 constant, nearz = z0 so that the velocity does not diverge there. Knowledge of the

Goursat functions’ singularity structure around the sharp end of a plate will be crucial in

our study of Stokes flows around complex geometries in this, as well as later, chapters.

3.3 Shear flow past a wall with a gap.

Using conformal mapping techniques, we will now attempt to find an exact solution to the

problem considered by Smith [2]: that of a uniform shear flow above an infinite no-slip

wall with a gap.

3.3.1 Mathematical formulation

We want to find a stream function,ψ which satisfies the biharmonic equation everywhere

in the fluid,

∇4ψ(z, z) = 0 (3.15)

such that the velocity is zero along the walls|x| > 1 and that, as we move far above the

wall, the flow behaves as a regular shear flow with strengthU = 1,

ψ(x, y) → y2 as z → ∞+. (3.16)

In this case, the far field velocity is given by

u + iv = ψy − iψx = 2y = −i(z − z). (3.17)

Next, recall that we express the stream function which satisfies the biharmonic equation as

ψ(z, z) = Im[zf(z) + g(z)] (3.18)
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wheref(z) andg(z) are analytic functions ofz with the velocity relation

u + iv = −f(z) + zf
′
(z) + g′(z). (3.19)

Equating this to (3.17), our functions take the far field form

f(z) ∼

{
iz/2 asz → ∞+

f∞ asz → ∞−,
(3.20)

and

g′(z) ∼

{
−iz asz → ∞+

g∞ asz → ∞−
(3.21)

wheref∞ andg∞ are constants.

3.3.2 Conformal mapping: a wall with a single gap.

Let us now introduce an analytic function which maps the interior of a disk with unit

radius in a complex plane, whose coordinates are measured by the complex variableζ,

to the physical fluid domain, which has the usualz-coordinates. This is an example of a

conformal map; an angle preserving function at all points where it has non-zero derivative.

We construct this map as a composition of a Möbius map and a reciprocal map: the Möbius

map,

η(ζ) =
1

2

(
ζ−1 + ζ

)
(3.22)

maps the interior of the unit disk in theζ-plane to the exterior of a slit of length 2 in the

complexη-plane. The reciprocal map

z(η) =
1

η
=

2ζ

ζ2 + 1
(3.23)

therefore maps the interior unitζ-disk to the exterior of the fluid domain. Chosen in this

way, we ensure that

z(1) = 1 and z(−1) = −1. (3.24)
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Note also that the pointsζ = ±i both map to infinity. However, it isζ = +i which

corresponds toz = ∞+ and hence it will be here that the far field shear flow condition

shall be imposed in theζ-plane. Figure3.2 shows a schematic diagram of the mapped

regions.

1

1-1
-1

i

-i

wall

Figure 3.2: Conformal mapping from the interior of the unit disk (in theζ-plane) to the
exterior of an infinite horizontal wall with a gap betweenx = ±1 (in the fluidz-plane).

It is possible to invert this map (3.23) explicitly to give

ζ(z) =
1 − (1 − z2)1/2

z
. (3.25)

The negative square root is taken to ensure that the origin in the fluid domain is the image

of a point inside the unit disk in theζ-plane. This map has two branch points, atz = ±1;

the two ends of the gaps. The branch cuts are taken to lie along the walls and so there will

not be any discontinuities across the gap. Also notice that the Taylor expansion ofz(ζ)
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reveals that

ζ ∓ 1 = O
(
(z ∓ 1)1/2

)
(3.26)

near the pointz = ±1. Thereforeζ(z) also has square root branch point singularities of

exactly the same type that is required of the Goursat functionsf(z) and g′(z). This is

a crucial observation for the analysis as it follows thatζ may serve as a uniformisation

variable for the problem. Therefore, the problem of determining the multi-valued functions

f(z) andg′(z), which admit branch cuts in the physical domain, reduces to finding the

single-valued, analytic functionsF (ζ) andG(ζ) defined by

F (ζ) ≡ f(z(ζ)) and G(ζ) ≡ g′(z(ζ)) (3.27)

whereζ is a point in the unit disk.

As a conformal map is analytic, we may form a Taylor expansion about the pointζ = 1,

corresponding to one of the corners, as

z(ζ) = z(1) + z′(1)(ζ − 1) +
1

2
z′′(1)(ζ − 1)2 + . . . (3.28)

However, the derivative of a conformal map vanishes at the corners,

z′(±1) = 0 (3.29)

as this is a point of non-conformality. Hence we have

z − 1 = (ζ − 1)2

[
1

2
z′′(1) + O(ζ − 1) + . . .

]

= (ζ − 1)2P (ζ) (3.30)

whereP (ζ) is analytic everywhere inside the disk. Substituting this into (3.13), we have

that

f(z(ζ)) ≡ (ζ − 1)[P (ζ)]
1
2 H(z(ζ)). (3.31)
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As H(z(ζ)) is also analytic, this can be written as

F (ζ) = (ζ − 1)H1(ζ) (3.32)

whereH1(ζ) is also an analytic function. As we have two corners atz = ±1 in our problem,

f(z) takes the form

f(z) = (z2 − 1)
1
2 H(z) (3.33)

which, by a similar argument to that above, can be written as

F (ζ) ≡ (ζ2 − 1)H2(ζ). (3.34)

Note that asH2(ζ) is an analytic function ofζ, so isF (ζ). By a similar argument we also

have that

G(ζ) =
K2(ζ)

(ζ2 − 1)
(3.35)

for analyticK2(ζ). Keeping this in mind we rewrite the Goursat functions as

F (ζ) =
(ζ2 − 1)(ζ − i)H2(ζ)

(ζ − i)
=

F̂ (ζ)

ζ − i
(3.36)

and

G(ζ) =
Ĝ(ζ)

(ζ − i)(ζ2 − 1)
(3.37)

where nowF̂ (ζ) andĜ(ζ) = K2(ζ)(ζ − i) are two functions to be found: they are analytic

and single-valued on the inside, and on the boundary, of the unit disk.

3.3.3 DetermininĝF (ζ) andĜ(ζ) from the no-slip boundary condition.

We now use the fact that the fluid is stationary on the walls, which correspond to the bound-

ary of the unit disk in theζ-plane, or where

ζ =
1

ζ
. (3.38)
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Writing the no-slip condition (3.19) in theζ-coordinates gives

u + iv = 0 = −F (ζ) +
z(ζ)

z′(1/ζ)
F ′(1/ζ) + G(1/ζ). (3.39)

Next, we have that
z(ζ)

z′(1/ζ)
=

1 + ζ2

ζ(ζ2 − 1)
(3.40)

and so upon substitution of the ansatz (3.37) and the conformal map into this, we have

0 = −
F̂ (ζ)

(ζ − i)
+

(1 + ζ2)

ζ(ζ2 − 1)

[
ζ2F̂ (1/ζ)

(ζ − i)2
−

iζF̂ ′(1/ζ)

(ζ − i)

]

+
ζ3Ĝ(1/ζ)

(1 + iζ)(1 − ζ2)
. (3.41)

Rearranging this, we see that

0 = − ζ(ζ2 − 1)(ζ − i)F̂ (ζ) + ζ2(1 + ζ2)F̂ (1/ζ)

− i(1 + ζ2)ζ(ζ − i)F̂ ′(1/ζ) + iζ4(ζ − i)Ĝ(1/ζ).
(3.42)

From this it is clear that

F̂ (ζ) = F0 + F1ζ (3.43)

only, as any term ofO(ζ2) cannot be balanced by any other terms and hence is not present.

Furthermore, this implies that

F (ζ) =
F0 + F1ζ

ζ − i
= F1 +

F0 + iF1

ζ − i
(3.44)

and so we can setF1 = 0 without loss of generality, as the velocity condition (3.19) shows

thatf(z) has an additive degree of freedom. The constantF0 may be found from the far

field condition (3.20) which, inζ-plane, is that

F (ζ) →
i
2
z(ζ) =

iζ
(ζ2 + 1)

=
iζ

(ζ + i)
1

(ζ − i)
(3.45)

and hence, asζ → +i,

F (ζ) →

(
i
2

)
1

ζ − i
. (3.46)
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This implies thatF0 = i/2 and so

F (ζ) =
i

2(ζ − i)
. (3.47)

Similarly it can be shown that

G(ζ) → −iz(ζ) = (−i)
1

ζ − i
. (3.48)

Next, we rearrange (3.42) to give

Ĝ(ζ) = iζ(1 − ζ2)F̂ (1/ζ) + ζ(1 + ζ2)F̂ ′(ζ) − ζ(ζ + i)F̂ (ζ). (3.49)

But, from (3.46) we know thatF̂ (ζ) = i/2, and so relation (3.49) reveals that

Ĝ(ζ) =
1

2

[
2ζ − iζ2 − ζ3

]
. (3.50)

In summary, we have that

F (ζ) =
i

2(ζ − i)
and G(ζ) =

2ζ − iζ2 − ζ3

2(ζ − i)(ζ2 − 1)
. (3.51)

Additionally, note that

G(ζ) →
4i

(−4)

1

ζ − i
= −

i
ζ − i

(3.52)

asζ → i which is consistent with (3.48).

Now that we have the Goursat functions everywhere in the unit disk (and hence in the

physical domain, via the conformal map), expression (3.19) gives the velocity everywhere.

The streamlines for this flow are shown in Figure3.3.

3.3.4 Comparison to Smith’s solution [2].

Smith [2] found that (3.3) is the stream function for the problem of a uniform shear flow

past a wall with a gap. As a check on our solution, we retrieve his from ours. Using our
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Figure 3.3: Streamlines of shear flow past a single gap. The fluid in the lower half plane
is only driven by the shear flow in the upper half plane and hence, if there was no gap, it
would remain stationary.

solution in the velocity condition (3.19) gives the velocity at any given point in the flow as

a function ofζ and its conjugate,ζ. Specifically, using (3.42) we have

u + iv = −
i

2(ζ − i)
+

iζ(1 + ζ
2
)2

2(ζ2 + 1)(1 − ζ
2
)(ζ + i)2

+
2ζ + iζ

2
− ζ

3

2(ζ + i)(ζ
2
− 1)

= −
i

2(ζ − i)
+

iζ(1 + ζ
2
)(ζ + i)(ζ − i)

2(1 + ζ2)(1 − ζ
2
)(ζ + i)2

+
(2ζ + iζ

2
− ζ

3
)(ζ − i)(1 + ζ2)

2(1 + ζ2)(1 + ζ
2
)(ζ

2
− 1)

=κ(ζ, ζ)
[
2iζ2ζ

3
− 2iζ2ζ + 3ζ2ζ

2
+ 2iζ

3
− 2iζ + 3ζ

2
− 2iζζ

4
− 2ζζ

3

+ 2iζ − 2ζζ − ζ2ζ
4
− 1
]

where

κ(ζ, ζ) =
1

2(1 + ζ2)(1 + ζ
2
)(ζ

2
− 1)

. (3.53)
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This describes the velocity anywhere inside the fluid. It has been written in this way for

ease of comparison to Smith’s solution (3.3).

Next, we may write Smith’s solution (3.3) as

ψ =
1

2
y2 +

y

2
√

2
α(x, y) (3.54)

where

α(x, y) =
[
y2 − x2 + 1 +

{
(y2 + x2)2 + 2(y2 − x2) + 1

} 1
2

] 1
2

. (3.55)

Introducing the complex variablez = x + iy gives

ψ = −
1

8
(z − z)2 −

i

4
√

2
(z − z)α(z, z). (3.56)

From this, the velocity can be deduced as

u + iv = −2i
∂ψ

∂z
(3.57)

and hence is

u + iv|S =
i
2
(z − z) +

1

2
√

2

{

α + (z − z)
∂α

∂z

}

=i

[
ζ

ζ
2
+ 1

−
ζ

ζ2 + 1

]

+
1

2
√

2

{

α + 2

(
ζ

ζ
2
+ 1

−
ζ

ζ2 + 1

)
∂α

∂z

} (3.58)

where|S denotes the velocity found by Smith [2]. Let us now explore the functionα(z, z)

in order to simplify the above expression. Note that

y2 − x2 = −
1

2
(z2 + z2) and y2 + x2 = zz. (3.59)
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Using these in the definition ofα(x, y) gives

α(z, z) =

[

1 −
1

2
(z2 + z2) +

{
z2z2 − z2 − z2 + 1

} 1
2

] 1
2

=
1
√

2

[
2 − z2 − z2 + 2(z2 − 1)

1
2 (z2 − 1)

1
2

] 1
2
.

Next, using the definition ofz(ζ) we have that

z2 − 1 = −
(ζ2 − 1)2

(ζ2 + 1)2
. (3.60)

Thus, taking the square root of this gives

(z2 − 1)
1
2 = ±i

(ζ2 − 1)

(ζ2 + 1)
and (z2 − 1)

1
2 = ∓i

(ζ
2
− 1)

(ζ
2
+ 1)

. (3.61)

Using this in the above expression forα gives

α(z, z) =
1
√

2

[

2 −

(
4ζ2

(ζ2 + 1)2
+

4ζ
2

(ζ
2
+ 1)2

)

+ 2
(ζ2 − 1)(ζ

2
− 1)

(ζ2 + 1)(ζ
2
+ 1)

] 1
2

=
1

√
2(ζ2 + 1)(ζ

2
+ 1)

[2(ζ2 + 1)2(ζ
2
+ 1)2 − 4ζ2(ζ

2
+ 1)2−

− 4ζ
2
(ζ2 + 1)2 + 2(ζ4 − 1)(ζ

4
− 1)]

=
1

√
2(ζ2 + 1)(ζ

2
+ 1)

[
4ζ4ζ

4
− 8ζ2ζ

2
+ 4
] 1

2

=
√

2
(ζ2ζ

2
− 1)

(ζ2 + 1)(ζ
2
+ 1)

.
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Next, we can differentiate (3.60) with respectto z to give

∂α

∂z
=

1

2α

[

−z +
z(z2 − 1)

1
2

(z2 − 1)
1
2

]

= −
z

2α

[

1 −

(
z2 − 1

z2 − 1

) 1
2

]

. (3.62)

Using relations (3.61), we have that

∂α

∂z
= −

z

2α

[

1 +
(ζ2 − 1)(ζ

2
+ 1)

(ζ2 + 1)(ζ
2
− 1)

]

= −
z

2α(ζ2 + 1)(ζ
2
− 1)

[
(ζ2 + 1)(ζ

2
− 1) + (ζ2 − 1)(ζ

2
+ 1)

]

= −
z(ζ2ζ

2
− 1)

α(ζ2 + 1)(ζ
2
− 1)

.

When we use the above expression forα, we get

∂α

∂z
=

√
2 ζ

ζ
2
− 1

. (3.63)

Using this in the expression for Smith’s velocity (3.58) gives

u + iv|S =i

[
ζ

ζ
2
+ 1

−
ζ

ζ2 + 1

]

−
(ζ2ζ

2
− 1)

2(ζ2 + 1)(ζ
2
+ 1)

+
ζ

(ζ
2
− 1)

(
ζ

ζ
2
+ 1

−
ζ

ζ2 + 1

)

=

[
ζ

ζ
2
+ 1

−
ζ

ζ2 + 1

](

i +
ζ

ζ
2
− 1

)

−
ζ2ζ

2
− 1

2(ζ2 + 1)(ζ
2
+ 1)
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which may be written as

u + ivS =κ(ζ, ζ)
[{

ζ(ζ2 + 1) − ζ(ζ
2
+ 1)

}{
2i(ζ

2
− 1) + 2ζ

}]

− κ(ζ, ζ)
[
(ζ2ζ

2
− 1)(ζ

2
− 1)

]

=κ(ζ, ζ)
[
2iζ2ζ

3
− 2iζ2ζ + 3ζ2ζ

2
+ 2iζ

3
− 2iζ + 3ζ

2
− 2iζζ

4
− 2ζζ

3

+ 2iζ − 2ζζ − ζ2ζ
4
− 1
]

with κ(ζ, ζ) given by (3.53). This is exactly the same as our solution and hence we have

shown that our solution is identical to that of Smith [2], although both were found using

different techniques.

3.4 Stagnation point flow past a wall with a gap.

We have shown how the use of complex variable techniques greatly simplified the task of

determining the solution for a uniform shear flow past an infinite no-slip wall with a gap,

compared to the method taken by Smith [2]. We now use our method to find the stagnation

point flow, defined in (3.4), past the same geometry as above. The fluid in the lower half

plane is driven only by the flow in the upper half plane, and is quiescent far beneath the

wall. Our method offers a new approach to solving the same problem which was previously

solved by Ko and Jeong [3].

3.4.1 Mathematical formulation

We want to find a stream function,ψ, which satisfies the biharmonic equation everywhere

in the fluid such that the velocity is zero along the walls|x| > 1 and that, as we move far

above the wall, the flow becomes a regular stagnation point flow with velocity

u + iv →

{
2kxy − iky2, asz → ∞+

0 asz → ∞−.
(3.64)
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Furthermore, we require that the pressure takes the form

p →

{
−2ky + ΔP, asz → ∞+

−ΔP, asz → ∞−.
(3.65)

Consider first the limiting form of the velocity far above the wall. Here , we have that

u + iv = ky(2x − iy) so upon using the fact thatx = (z + z)/2 andy = −i(z − z)/2, we

have

u + iv = −
ik
4

z2 −
ik
2

zz +
3ik
4

z2. (3.66)

From (3.19) we see that the far field forms of the velocityf(z) andg′(z) are therefore

f(z) →
ikz2

4
, g′(z) → −

3ikz2

4
. (3.67)

However, given that there is an additional pressure (which has no velocity contribution) at

the upper and lower infinities, and thatp = 4μRe[f ′(z)] (whereμ is the viscosity), we see

that the limiting forms of the Goursat functions are

f(z) →

{
ikz2/4 + ΔPz/4μ + O(1), asz → ∞+

−ΔPz/4μ + O(1), asz → ∞−
(3.68)

and

g′(z) →

{
−3ikz2/4 + O(1), asz → ∞+

O(1), asz → ∞−.
(3.69)

We again introduce the conformal map (3.23) and recall thatζ → +i as we move away

from the wall towards∞+. Here,f(z) has both a double pole (for the velocity) and a

single pole (for the additional pressure), whileg′(z) only has a double pole. At the lower

infinity, corresponding toζ = −i, f(z) only admits a simple pole whileg′(z) is, at most, a

constant there. The only other singularities in the functions arise by virtue of the corners at

the end of the plates at which pointf(z(ζ)) is analytic whileg′(z(ζ)) admits a simple pole.

Putting this together, we again defineF (ζ) ≡ f(z(ζ)) andG(ζ) ≡ g′(z(ζ)) and assume

the ansatz
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F (ζ) =
F̂ (ζ)

(ζ − i)2(ζ + i)
, G(ζ) =

Ĝ(ζ)

(ζ2 − 1)(ζ − i)2
(3.70)

whereF̂ (ζ) andĜ(ζ) are the two functions to be found: again they are analytic and single-

valued in the closure of the unit disk.

3.4.2 DetermininĝF (ζ) andĜ(ζ) from the no-slip boundary condition.

We again refer to the fact that the fluid is stationary on the walls, which correspond to the

boundary of the unit disk in theζ-planewhereζ = 1/ζ. The no-slip velocity condition

reads

0 = −F (ζ) +
z(ζ)

z′(1/ζ)
F̂ ′(1/ζ) + Ĝ(1/ζ). (3.71)

Upon substitution of the ansatz (3.70) and the conformal map into this, we have

0 = −
F (ζ)

(ζ − i)2(ζ + i)

+
(1 + ζ2)

ζ(ζ2 − 1)

[
−iζ3F ′(1/ζ)

(ζ − i)2(ζ + i)
+

2ζ4F (1/ζ)

(ζ − i)3(ζ + i)
−

ζ4F (1/ζ)

(ζ − i)2(ζ + i)2

]

+
ζ4G(1/ζ)

(ζ − i)2(ζ2 − 1)
.

(3.72)

Rearranging this, we see that

0 = − (ζ2 − 1)F̂ (ζ) − iζ2(1 + ζ2)F̂ ′(1/ζ) + 2ζ3(ζ + i)F̂ (1/ζ)

− ζ3(ζ − i)F̂ (1/ζ) + ζ4(ζ + i)Ĝ(1/ζ).
(3.73)

From this it can be seen that̂F (ζ) is at most a cubic as any term ofO(ζ4) cannot be

balanced by any other terms and hence is not present. With this in mind, we may write

F (ζ) = A +
B

(ζ − i)2
+

C

ζ − i
+

D

ζ + i
, (3.74)

whereA, B, C andD are constants. Again, we may set theA = 0 without loss of generality

from the additive degree of freedom. The other constants can be found from the far field
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condition (3.68) and (3.69) as the map takes the form

z(ζ) =
1

ζ − i

[
2ζ

ζ + i

]

(3.75)

which can be expanded aroundζ = −i to give

z(ζ) =
1

ζ − i
−

i
2

+ . . . (3.76)

while aroundζ = +i the map takes the form

z(ζ) =
1

ζ + i
+ . . . . (3.77)

Hence, the far field forms off(z) are

F (ζ) →
ik
4

1

(ζ − i)2
+

k/μ + ΔP

4

1

(ζ − i)
+ . . .

F (ζ) →−
ΔP

4

1

(ζ + i)
+ . . .

(3.78)

as we move to infinity in the upward and downward directions respectively. Writing these

limiting forms in this way means that we may read off the constants in (3.74) as

B =
ik
4

, C =
1

4

(
k

μ
+ ΔP

)

, D = −
ΔP

4μ
(3.79)

and hence we have the full expression forf(z),

F (ζ) =
ik
4

1

(ζ − i)2
+

[
ΔP

4μ
+

k

4

]
1

(ζ − i)
−

ΔP

4μ

1

(ζ + i)
. (3.80)

By rearranging (3.71), we then haveG(ζ) given by

G(ζ) = F (1/ζ) −
z(1/ζ)

z′(ζ)
F ′(ζ) (3.81)
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Note that from (3.73) we see that whenζ → i, Ĝ(ζ) takes the value

Ĝ(i) =
3ik
2

. (3.82)

Note also that this is consistent with (3.69) as

G(ζ) → −
3ik
4

z2 = −

(
3ik
4

)
1

(ζ − i)2
+ . . . (3.83)

and so, given (3.70) we can expect thatG(ζ) = 3ik/2 asζ → i.

3.4.3 Results: streamlines of stagnation point flow near a wall with a gap.

Now that the Goursat functions are known, we are able to determine the velocity every-

where. We now study the streamlines of this flow for a number of representative values of

k andΔP in order to present different qualitative phenomena of this flow. In what follows,

we fix μ = k = 1 and vary the value ofΔP . This is equivalent to varying the number,N ,

defined by Ko and Jeong [3] as

N =
ΔP

kμ
(3.84)

whereμ is the viscosity of the fluid [3]. The first case to consider is one where there is no

stagnation point flow and only a pressure difference between the upper and lower infinities

drives the flow. This corresponds to a Sampson flow [43] with ΔP = 1, k = 0 (and hence

N = ∞). The flow has reflectional symmetry in both the real and imaginary axes, and has

no stagnation points or eddies anywhere within the fluid; see Figure3.4.

The second fundamental case to consider is where there is no added pressure contribution,

so the flow is only driven by the far field stagnation point flow in the upper half plane.

ThereforeΔP = N = 0 and in this case a saddle point appears at the origin. In addition

to this, there are a pair of viscous eddies extending to infinity in the lower half plane, both

symmetric about the imaginary axis, see Figure3.5.

For the general case whereN 6= {0,∞}, the additional pressure contribution2ΔP acts in
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Figure 3.4: Streamlines for a flow through a gap driven only by a downwardly directed
pressure gradient. HereΔP = 1 andk = 0 so that there is no stagnation point flow. This
corresponds toN = ∞, as defined by Ko and Joeng [3] .
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Figure 3.5: Streamlines for a stagnation point flow above a gap with no added pressure
gradient and soΔP = N = 0 with k = 1. A single saddle stagnation point appears at
the origin while two viscous eddies, both extending to infinity, are formed symmetrically
in the lower half plane below the gap and the wall.
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competition with the strength of the (downwardly directed) stagnation point flow: Ifk and

ΔP are of the same sign and magnitude, andΔP is positive, then both the stagnation point

flow and the added pressure act in the same direction and fluid will be “pushed” downwards

through the gap and no eddies will be formed, see Figure3.6. If, on the other hand,k is

of the same magnitude asΔP , but this timeΔP is negative, there is an upwards pressure

gradient pushing fluid against the downward stagnation point flow, as in Figure3.7. Here

there is only one saddle stagnation point in the upper half plane, and one pair of viscous

eddies appearing between the ends of the plates and the streamlines which have separated

from the edges. Finally, ifk is larger thanΔP , then the flow will be dominated by the

stagnation point flow which acts in “competition” with the pressure, as demonstrated by

Figure3.8.
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Figure 3.6: Streamlines when the added pressure gradient is in the same direction as the
stagnation point flow. Herek = ΔP = 1, and the fluid is pushed through the gap. There
are no viscous eddies formed.

3.4.4 Comparison to Ko and Jeong’s solution [3].

Ko and Jeong [3] found that (3.11) are the appropriate analytic functions which construct

the stream function of this problem. From their definition ofFJ(z) andGJ(z) from the
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Figure 3.7: Streamlines when the added pressure gradient is in the opposite direction to the
stagnation point flow. HereΔP = N = −0.5 with k = 1. There is one saddle stagnation
point appearing above the gap while two viscous eddies formed underneath the edges of
the plates and above the streamline which separates from the edge.
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Figure 3.8: Streamlines fork = 1 and ΔP = 0.07. The effect of the added (slight)
downward directed pressure gradient is to reduce the size of the symmetric viscous eddies,
visualised in Figure3.5.
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velocity condition, it can be seen that these functions are related tof(z) andg′(z) via the

relations

FJ(z) = g′(z) + zf ′(z) = −
ikz

8

[
z + (z2 − 1)1/2

]
+

ΔP

4μ
(z2 − 1)1/2

GJ(z) = f(z) =
ikz

8

[
z + (z2 − 1)1/2

]
+

ΔP

4μ
(z2 − 1)1/2.

(3.85)

As a check on our method, we must show that our solutions are identical. Let us examine

(3.80) for f(z) and check that this is the same asGJ(z): FJ(z) will then necessarily follow

from the no-slip boundary condition. Note that we may write expression (3.80) as

F (ζ) =
kζ

4(ζ − i)2
+

iΔP

2μ(ζ2 + 1)
. (3.86)

Also note that from (3.23) we have thatζ = (1± i(z2 − 1)1/2)/z, and we choose the upper

branch of this so thatζ = 0 is mapped toz = 0. Hence

ζ =
1 + i(z2 − 1)1/2

z
. (3.87)

Consider the first term of (3.86). We have that

1

(ζ − i)
=

z(ζ + i)
2ζ

,
1

(ζ − i)2
=

z2(ζ + i)2

4ζ2
(3.88)

and so
kζ

4(ζ − i)2
=

kz

4

(

zζ + 2iz −
z

ζ

)

. (3.89)

Next, as we have thatz/ζ = 1 − i(z2 − 1)1/2, this becomes

kiz
8

[
z + (z2 − 1)1/2

]
(3.90)

which is exactly the first term ofGJ(z) as given in (3.85) by Ko and Jeong [3]. Next, the

second term of (3.80) is
iΔP

2μ

1

(ζ2 + 1)
=

iΔPz

4μζ
(3.91)
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which can be simplified to

c +
ΔP

4μ
(z2 − 1)1/2 (3.92)

wherec = iΔP/4, which is exactly the second term ofGJ(z) in (3.85) up to an additive

constant. Note that we have set our additive degree of freedom by settingA = 0 in (3.74)

while the authors have not, and hence the two solutions can be expected to differ by this

constant. Indeed, a translationGJ(z) → GJ(z) + c will not affect the velocity ifFJ(z) →

FJ(z)+ c. And, asFJ(z) = g′(z)+ zf ′(z), we can expect our functiong′(z) to differ from

FJ(z) by c. In other words, we can expect that

g′(z) = FJ(z) − zf ′(z) − c (3.93)

We have therefore shown that the two solutions are identical, although our approach has

been fundamentally different.

3.5 Summary

We have presented exact solutions for the Stokes flow past an infinite flat wall with a gap.

Using the results of Dean and Montagnon [40] we have been able to characterise the flow

at the sharp ends of the walls. Then, by developing a new mathematical approach based on

conformal mappings, we have been able to find the flow that is driven either by a uniform

shear flow or a stagnation point flow at infinity. Both of these cases have been indepen-

dently solved by Smith [2] (for the former) and Ko and Jeong [3] (for the latter) using

entirely different methods. We have shown that our solutions to both problems are identi-

cal to the results published by these authors.

A significant advantage of the method we have presented in this chapter is that only a slight

change in far field conditions was necessary in order to solve both problems considered

by the above authors. Indeed, the method may readily be modified to handle other forms

of far field flows, too. In particular, Antanovskii [44] studied the Taylor four-roller mill

experiment, where a deformable bubble is placed in a viscous fluid which was driven, in

the far field, by four rotating cylinders. In this case,f(z) tends to a cubic polynomial in the
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far field, whileg′(z) approaches a linear function [44]. The method presented here would

then be amended in such a way that the ansatz forF (ζ) would be

F (ζ) = A +
B

(ζ − i)3
+

C

(ζ − i)2
+

D

(ζ − i)
+

E

ζ + i
(3.94)

with the constants matched to the far field forms of the Goursat functions. Another example

of a far field velocity would be one that is constructed using a combination of any, or all,

of the above three.

These solutions have been documented as a contribution to the mathematical theory of

Stokes flows. The solutions have been used to study the effects of an occlusion in the wall

and are expected to be useful in a variety of different physical applications, in particular to

the study of low Reynolds number swimming near boundaries with gap. In the following

chapter, we will build on the solutions of this chapter and employ the singularity model of

Crowdy and Or [1] in order to provide insight into the dynamics of such a swimmer in this

complicated geometry.
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Chapter 4

Swimming in low Reynolds numbers

near a wall with a gap.

4.1 Introduction

Chapter 2 presented a study of a two-dimensional swimming micro-organism in the vicinity

of an infinite flat wall. The next natural question to ask is how a low Reynolds number

swimmer behaves in a more complicated confined geometry than that of a simple half

plane above a wall. We do this by allowing the boundary to admit a finite-length gap [45].

Studying the swimmer’s interaction with such a domain will provide insight on how such

organisms behave in the presence of an orifice or an opening in their bounding domains.

This will be the focus of the present chapter.

The fluid in this confined region fills the area above and below a no-slip wall, positioned

along the real axis with a gap betweenx = ±1. The ends of the wall endow the domain

with two sharp corners - this is an additional complication which will be resolved in this

chapter.

As we have seen in chapter 3, this is not the first study of Stokes flows near such a region.

In particular both Smith [2] and Ko and Jeong [3] each considered various Stokes flows

past similar solid boundaries. The work within that chapter expounded a novel conformal
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mapping approach which reappraised the solutions of Smith [2] and Ko and Jeong [3] in a

unified fashion. This approach is a useful one as it can be generalised in a natural way to

solve the problem of interest here.

4.1.1 The point swimmer model.

We will use the Crowdy and Or [1] point singularity model to study the swimming dynam-

ics of a swimmer near a wall with a gap. Recall that using this description, the swimmer is

represented by a stresslet of strengthλ = exp(2iθ) together with a superposed irrotational

quadrupole of strength2ε2λ. As described in chapter 2, Crowdy and Or [1] derived their

choice of singularities by assuming their treadmilling swimmer had radiusε, however in

this chapter it will enter our analysis only as a parameter. The model’s success in capturing

the qualitative motion of swimmers near an infinite wall (as seen in numerical and labo-

ratory experiments [23, 25]) motivates its adoption when considering swimmers in more

complicated confined domains. Therefore, in order to extend this study to the case where

the wall admits a finite-length gap, we focus attention on how the abovepoint singularity

interacts with its bounding environment. Indeed, we aim to provide a predictive theory

which may be tested in future laboratory and numerical experiments.

In studying the dynamics of a swimmer above an infinite flat wall, Crowdy and Or [1]

utilised the familiar method of images to determine how the swimmer interacted with the

boundary. The simplicity of this method was due to the straight forward geometry of the

fluid domain which made it immediately clear that the swimmer’s image should be placed at

its reflection in the wall. In the case where the boundary admits a gap, it quickly becomes

less clear where an image system should be placed. This, together with the presence of

the sharp corners at the ends of the gap, present additional complications to the model. We

overcome these by using complex variables techniques to model the appropriate singularity

structure of the swimmer and the corners of the wall. By introducing a conformal map to

associate the physical fluid domain with a simpler one, these complications are ameliorated

and an exact representation of the swimming dynamics is found.
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4.2 Swimming near a gap in a wall.

With the singularity structure of the Goursat functions for this problem known, we turn our

attention to finding the equations of the swimmer’s motion explicitly.

4.2.1 Mathematical formulation.

Mathematically, we want to find a stream functionψ such that

∇4ψ(z, z) = 0 (4.1)

with u+iv = 0 on |x| > 1. We also require that the velocity has singularities corresponding

to those of a superposed stresslet and irrotational quadrupole at the position of the swimmer,

zd. We again use the same solution for the biharmonic equation (2.13) as in previous

chapters, wheref(z) andg(z) are the usual Goursat functions which will now be analytic

everywhere in the flow except at the position of the swimmer and corners. Once we have

these functions, we may construct the velocity everywhere inside the fluid domain via the

usual relation

u + iv = −f(z) + zf
′
(z) + g′(z). (4.2)

We have shown that in order to attach the correct singularity model to the swimmer, we

must choose

f(z) =
λ

z − zd

+ f0 + f1(z − zd) + . . . (4.3)

and also

g′(z) =
2ε2λ

(z − zd)3
+

λzd

(z − zd)2
+ g0 + . . . (4.4)

whereλ = exp(2iθ). Recall that the double pole ofg′(z) corresponded to the dipole that

is associated with the stresslet, while the triple pole is that of the quadrupole. Also, the

method of chapter 3 has taught us that near the corner atz = ±1, the Goursat functions

take the local form

f(z) = (z ∓ 1)1/2H1(z), g′(z) =
H2(z)

(z ∓ 1)1/2
(4.5)
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with Hj(z) being analytic functions ofz for j = 1, 2.

4.2.2 The Goursat functions for a swimmer near a wall with a gap.

In chapter 3, we studied the structure of the Goursat functions around the sharp corners

within a fluid domain of identical geometry. We did this by introducing a conformal map

of the form

z(ζ) =
2ζ

ζ2 + 1
(4.6)

with inverse

ζ(z) =
1 − (1 − z2)1/2

z
(4.7)

which maps the interior of the unit disk to the region exterior to the walls in the physical

(fluid) domain. With the map defined in this way, the pointsζ = ±1 were mapped to the

right and left-most corners respectively. Note also that the pointsζ = ±i are mapped to

z = ∞± respectively. Recall thatζ(z) has the required square root branch point singular-

ity that is required of the Goursat functions and henceζ may be used as a representative

uniformisation variable. The problem then reduces to determining

F (ζ) ≡ f(z(ζ)), G(ζ) ≡ g′(z(ζ)) (4.8)

which are analytic and single-valued functions within the unit disk, except for at the posi-

tion of the isolated singularities which we impose in order to incorporate the Crowdy and

Or singularity structure [1].

With the form of the functions around the corners known, let us deduce what they must be

at the swimmer’s position. Recall that in the infinite wall case, Crowdy and Or [1] used the

method of images to show thatf(z) requires a third order pole to be present at the image

position of the swimmer. They also demonstrated thatg′(z) requires a fourth order pole at

the same place. With this in mind, it is also reasonable to assume that the Goursat functions

for this problem admit image singularities of the same type as those for the flat wall case.

The method of images used by Crowdy and Or [1] placed the image swimmer at its reflec-
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tion in the wall, i.e atz = zd. However, when the wall admits a gap, thepoint zd is inside

the fluid and so it is not immediately clear where the swimmer’s image should be placed.

Instead, recall that the conformal map (4.6) associates the entire two-dimensionalζ-plane

to two sheets of Riemann surface in thez-plane. The interior of the unitζ-disk is mapped

to the “physical” fluid domain - the first sheet of the Riemann surface - while the exterior

of the unitζ-disk is mapped to the second sheet of the same surface. We therefore choose

the image of the swimmer to be on the second sheet and, asζ = ζd is the preimage point of

the swimmer in the unit disk, the point of reflection in the unit circle

ζ =
1

ζd

(4.9)

is the pointoutsidethe unit disk corresponding to the image of the swimmer on the second

sheet. See Figure4.1for a diagrammatic representation of the two-sheeted Riemann surface

with the swimmer and its image. Thus, we conclude thatF (ζ) will admit a first order pole

at ζ = ζd (corresponding to a stresslet) together with, at most, a third order pole at the

image pointζ = 1/ζd. MeanwhileG(ζ) admits a third order pole atζ = ζd (allowing for

the quadrupole) as well as, at most, a fourth order pole atζ = 1/ζd. These singularities

will be in addition to those that arise from the corners atζ = ±1, as discussed above.

Keeping this in mind, we may take the ansatz

F (ζ) =
F̂ (ζ)

(ζ − ζd)(1 − ζdζ)3
, G(ζ) =

Ĝ(ζ)

(ζ − ζd)3(1 − ζdζ)4(ζ2 − 1)
(4.10)

whereF̂ (ζ) andĜ(ζ) are analytic functions ofζ with no poles inside the unit disk.

4.2.3 DetermininĝF (ζ) andĜ(ζ) from the no-slip boundary condition.

We now refer to the fact that the fluid is stationary on the walls, which correspond to the

boundary of the unit disk in theζ-plane. On here, we have that

ζ =
1

ζ
(4.11)
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physical sheet

non-physical sheet

swimmer

image of swimmer
on non-physical sheet

+1-1

wall

Figure 4.1: The two sheets of the Riemann surface associated with the conformal map
(4.6). The upper sheet corresponds to the “physical” fluid domain, in which the swimmer
resides. The lower sheet is the non-physical sheet, in which swimmer’s image will remain.
In the analysis, the two sheets are glued together along the branch cuts taken as the walls:
here the sheets are shown “unglued” along the walls to indicate that the image singularity
is at the swimmer’s reflection in the wall on the lower sheet.

as well as the relation
z(1/ζ)

z′(ζ)
=

ζ(ζ2 + 1)

1 − ζ2
(4.12)

which we define asR(ζ). Next, the no-slip velocity condition on the boundary is

0 = u + iv = −F (ζ) +
z(ζ)

z′(1/ζ)
F

′
(1/ζ) + G(1/ζ). (4.13)
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Upon substituting the ansatz (4.10) and the conformal map into this, we have that

0 = −
F̂ (ζ)

(ζ − ζd)(1 − ζdζ)3

+
ζ3(1 + ζ2)

(ζ2 − 1)(ζ − ζd)4(1 − ζdζ)2

[
(ζ − ζd)(1 − ζdζ)F̂ ′(1/ζ)

− ζ(ζ − ζd)F̂ (1/ζ) + 3ζdζ(1 − ζdζ)F̂ (1/ζ)
]

+
ζ9 Ĝ(1/ζ)

(1 − ζdζ)3(ζ − ζd)4(1 − ζ2)
.

(4.14)

This can be rearranged to give

0 = − (ζ2 − 1)(ζ − ζd)
3F̂ (ζ) + ζ3(1 + ζ2)(1 − ζdζ)2(ζ − ζd)F̂

′(1/ζ)

− ζ4(1 + ζ2)(ζ − ζd)(1 − ζdζ)F̂ ′(1/ζ) + 3ζdζ
4(1 + ζ2)(1 − ζdζ)2F̂ (1/ζ)

− ζ9Ĝ(1/ζ).

(4.15)

From here it is clear that̂F (ζ) can not have any terms of the formζ5, as it would not be

possible to balance them with another term in the above expression. Hence, we deduce that

F̂ (ζ) = Â + B̂ζ + Ĉζ2 + D̂ζ3 + Êζ4. (4.16)

Putting this together with relation (4.10), this means that

F (ζ) =
Â + B̂ζ + Ĉζ2 + D̂ζ3 + Êζ4

(ζ − ζd)(1 − ζdζ)3
= Ê + . . . (4.17)

Therefore,Ê acts as an additive constant toF (ζ), which can be set to zero without loss of

generality. This is because the velocity condition (4.13) admits a natural additive degree

of freedom to one of two functionsF (ζ) or G(ζ). With this in mind, we may equivalently

express (4.17) in partial fraction form as

F (ζ) =
A

(ζ − ζd)
+

B

(ζ − 1/ζd)3
+

C

(ζ − 1/ζd)2
+

D

(ζ − 1/ζd)
. (4.18)
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whereA, B, C andD are constants. Written in this way, the first term of this corresponds to

the stresslet singularity while the other terms account for the singularities generated by the

swimmer’s image. Next, the conjugate of the velocity condition (4.13), may be rewritten

in the form

G(ζ) = F (1/ζ) −
ζ(ζ2 + 1)

(1 − ζ2)
F ′(ζ) (4.19)

and so provides a functional relationship betweenF (ζ) andG(ζ) which also holds inside

the unit disk. Upon using expression (4.18) in this, we have

G(ζ) =
Aζ

1 − ζζd

−
Bζ3ζ3

d

(ζ − ζd)3
+

Cζ2ζ2
d

(ζ − ζd)2
−

Dζζd

(ζ − ζd)

+
ζ(ζ2 + 1)

(1 − ζ2)

[
A

(ζ − ζd)2
+

3B

(ζ − 1/ζd)4
+

2C

(ζ − 1/ζd)3
+

D

(ζ − 1/ζd)2

]

.

(4.20)

Notice that this expression has simple poles atζ = ±1; these are precisely the Moffatt-type

singularities that we would expectG(ζ) to have due to the two corners at the ends of the

walls. It also has a fourth order pole atζ = 1/ζd.

We have therefore reduced the problem to finding the four constantsA, B, C andD. These

are found by imposing four physical conditions, which come from equating the expansions

of F (ζ) andG(ζ) in the z-plane tof(z) andg′(z) as given by equations (4.3) and (4.4).

Specifically we find the constantsA, B, C, D such that:

1. f(z) has the correct singularity strength that corresponds to a stresslet atz = zd of

strengthλ.

2. g′(z) must not have a simple pole atz = zd, as this would correspond to a rotlet.

3. g′(z) must have the correct double pole atzd, accounting for the dipole of strength

λzd that is associated with the stresslet.

4. g′(z) must also have a triple pole atzd of strength2ε2λ, corresponding to the super-

posed irrotational quadrupole that the model requires.
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To do this we must express (4.18) and (4.20) in thez-plane and then compare the appropri-

ate singularities. Note that by expanding expression (4.20) aroundζ = ζd,

G(ζ) =
1

(ζ − ζd)3

[
−Bζ6

d

]
+

1

(ζ − ζd)2

[
−3Bζ5

d + Cζ4
d + AR(ζd)

]

+
1

(ζ − ζd)

[
−3Bζ4

d + 2Cζ3
d − Dζ2

d + AR′(ζd)
]

+

[

Cζ2
d − Bζ3

d − Dζd +
1

2
ARζζ(ζd)

]

+ O(ζ − ζd)

(4.21)

with R(ζ) defined in (4.12). Next, we refer to the expansion

1

ζ − ζd

=
α̂

(z − zd)
+ β̂ + γ̂(z − zd) + δ̂(z − zd)

2 + . . . (4.22)

which is derived in the appendixA, with the constantŝα, β̂, γ̂, δ̂ known explicitly. Using

this in the expression forF (ζ) given by (4.18) and comparing the simple poles correspond-

ing to the stresslet singularity, gives

A =
λ

z′(ζd)
=

λ(1 + ζ2
d)2

2(1 − ζ2
d)

(4.23)

and hence is known explicitly. Next, using the same expansions in equation (4.21) and

comparing quadrupole strengths, we have that−Bζ6
d α̂3 = 2λε2 or

B = −
λε2

4ζd
6

(1 + ζd
2
)6

(1 − ζd
2
)3

. (4.24)

Similarly, comparing the double and simple poles results in

C =
λzd(1 + ζ2

d)4

4ζ4
d(1 − ζ2

d)2
−

3λε2(1 − 3ζ2
d)(1 + ζ2

d)5

4ζ5
d(1 − ζ2

d)4
−

λ(1 + ζ2
d)3

2ζ3
d(1 − ζ2

d)2
(4.25)

and

D =
λzd(1 − 3ζ2

d)(1 + ζ2
d)4

2ζ3
d(1 − ζ4

d)(1 − ζ2
d)2

+
3λε2(1 + ζ2

d)4(−1 + 5ζ2
d − 11ζ4

d − ζ6
d)

4ζ4
d(1 − ζ2

d)5

+
λ(1 + ζ2

d)2(ζ4
d + 4ζ2

d − 1)

2ζ2
d(1 − ζ2

d)3
.

(4.26)
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With these constants known explicitly, we have expressions forf(z) andg′(z) in terms of

the swimmer’s position,zd, and orientation,θ, at that instant. We will now use these to

derive the full dynamical system which controls the swimmer’s evolution.

4.2.4 Equations of motion.

Recall that we have shown that the swimmer’s translational velocity is given by

dzd

dt
= −f0 + zdf1 + g0. (4.27)

This corresponds to the finite part of the fluid velocity at the swimmer’s position. Expressed

another way, the swimmer is convected only with the local fluid velocity which arises in

response to the swimmer’s interaction with the boundaries. The real and imaginary parts

of this constitute two ordinary differential equations that govern the swimmer’s horizontal

and vertical displacements, respectively. To find the numbersf0, f1 andg0, let us write

F (ζ) =
A

ζ − ζd

+ FNS(ζ) (4.28)

whereFNS(ζ) corresponds to the non-singular components ofF (ζ) given by the last three

terms of (4.18). Upon using expansion (4.22) we find thatf0 = β̂A + FNS(ζd), or

f0 =
ζd(ζ

2
d − 3)A

(1 − ζ4
d)

+
ζd

3
B

(|ζd|2 − 1)3
+

ζd
2
C

(|ζd|2 − 1)2
+

ζdD

(|ζd|2 − 1)
(4.29)

and

f1 = γ̂A +
1

z′(ζd)
F ′

NS(ζd) (4.30)

or

f1 = −
A

2

[
(ζ2

d + 1)2

(1 − ζ2
d)3

]

−
(1 + ζ2

d)2

2(1 − ζ2
d)

[
3ζd

4
B

(|ζd|2 − 1)4)
+

2ζd
3
C

(|ζd|2 − 1)3
+

ζd
2
D

(|ζd|2 − 1)2

]

.

(4.31)
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ComparingO(1) terms ofg′(z) from (4.21) reveals that

g0 = −Bζ6
d [3α̂2δ̂ + 6α̂β̂γ̂ + β̂3] +

[
−3Bζ5

d + Cζ4
d + AR(ζd)

] [
2α̂γ̂ + β̂2

]

+ β̂
[
−3Bζ4

d + 2Cζ3
d − Dζ2

d + AR′(ζd)
]

+
Aζd

1 − |ζd|2
+ R(ζd)

[
3Bζd

4

(|ζd|2 − 1)4
+

2Cζd
3

(|ζd|2 − 1)3
+

Dζd
2

(|ζd|2 − 1)2

]

− Bζ3
d + Cζ2

d − Dζd +
1

2
AR′′(ζd).

(4.32)

Recall that the evolution of the swimmer’s head angle,θ, was taken as half of the finite part

of the local fluid vorticity. Given that the vorticity is given by equation (2.21), the evolution

of the head angle is governed by the single real ordinary differential equation

dθ

dt
= −2Im[f1] (4.33)

and so, given the above expression forf1, we also know this explicitly. Notice that the

only free parameters are the swimmer’s initial position, orientation andε. Its subsequent

motion is then determined by three ordinary differential equations: two from the real and

imaginary parts of (4.27) and one from (4.33).

Deriving the governing dynamical system explicitly, as we have done above, has a signif-

icant advantage over other methods. For example, one may study this (and similar prob-

lems, as in [34]) using numerical boundary integral methods at each time step in order to

compute the flow and hence the subsequent swimming dynamics. However, the analytic

methods presented here obviate this and provide a more direct way to explore the full range

of possible swimming trajectories that may be taken. Indeed, the analytic approach is also

computationally cheaper than a numerical one.

4.3 Dynamics of a swimmer near an orifice.

Recall that the dynamics of the swimmer are fully determined by three ordinary differential

equations; one for the development of the swimmer’s orientation angle and two for its hor-
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izontal and vertical displacement. Therefore the initial orientationθ(0), the initial position,

zd(0), andε are the only free parameters of this model.

When the swimmer is placed above a wall which doesn’t have a gap, the resultant motion

is given by Crowdy and Or [1], where the swimmer follows the periodic “bouncing orbit”

depicted in Figure2.2. As a check on the analysis, when the swimmer is initially placed

on one side of the gap, and given an initial orientation such that it travels away from it,

the effect of the gap becomes minimal and the subsequent motion should be in accord with

the bouncing orbits of the flat wall case. Indeed, as shown in Figure4.2, this physically

intuitive result is confirmed.

Placing a gap in the wall breaks the translational symmetry associated with displacements

along the wall. We can expect these to lead to interesting dynamical scenarios, which

we explore next. We setε = 0.2 and present possible trajectories which the swimmer may

undertake. These are shown as solid lines with smaller lines added at intervals to present the

angleθ. While they differ qualitatively, all the possible paths fall into one of the following

few categories.

4.3.1 Deflection from the wall.

When the swimmer is initially pointed directly downwards (which corresponds toθ(0) =

π/2) above a wall without a gap, Crowdy and Or [1] demonstrated that the swimmer will

move directly downwards coming to a halt at a distanceε away from the wall. In the current

study, the gap in the wall provides an asymmetry which acts to repel the swimmer away

from it. This is shown in Figure4.3 for two scenarios - one where the organism starts on

the left of the gap, and one where it starts on the right.

4.3.2 Jumping over the gap.

Another interesting possibility is that the swimmer may avoid the gap by jumping over it,

as in Figure4.4. Once it has passed the gap, its subsequent motion is a different bouncing

orbit and so the gap may act as a “switching device” between different nonlinear periodic
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Figure 4.2: A swimmer moving away from a gap (positioned atx = ±1) above a wall,
with zd(0) = −3 + 0.3i, ε = 0.2 and has initial orientationθ(0) = 0.24. The swimmer is
placed away from the gap and is initially oriented away from it. As the effect of the gap is
small, the swimmer’s trajectory is reminiscent of the bouncing orbits exhibited by Crowdy
and Or [1].

orbits. As the figures demonstrate, while the swimmer moves on a nonlinear periodic orbit

before and after the gap, the height of the jump above the gap, as well as its periodic motion

before and after the gap, may vary dramatically according to the swimmer’s initial position

and orientation. In the bottom right of Figure4.4, the swimmer jumps over the gap but

appears to return to a period bouncing orbit afterwards which is almost identical to the

approaching orbit.

4.3.3 Rebounding from the gap.

Another category of motion is shown in Figure4.5. Here the initial conditions are such

that as the swimmer approaches the gap region, it is reversed at some critical position that

always appears to be close to the first edge of the gap that it encounters. After the swimmer

has been repelled from the gap, it will continue to swim along another bouncing orbit away

from it. The gap affects the height and wavelength of this subsequent periodic motion and
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Figure 4.3: Two swimmers starting atzd(0) = ±5 + i, both initially directed downwards
with θ(0) = π/2. The presence of the gap “breaks” the symmetry and the swimmer results
in moving away from the gap. It then continues along the a bouncing orbit in the respective
direction.

in Figure4.5the “rebounded” orbit has a larger amplitude than the incoming one.

4.3.4 Trapping near the gap: equilibrium points.

We have seen instances where the swimmer either jumps over the gap or is repelled away

from it. In addition to this, we have recorded some cases the swimmer approaches the gap

in such a way that it becomes trapped inside the gap’s vicinity. In doing so, it enters the

gap and may draw close to an “attracting point”, upon which the swimmer will spiral in

towards it. We have found, at most, four such points. These are positioned at the four

vertices of a rectangle which, by symmetrical arguments, is expected. As we shall see later,
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Figure 4.4: The gap provides a “switching mechanism” from one bouncing periodic orbit
to another. The dynamics near the gap region are shown. Upper right figure: The orbit
switches to a trajectory which is close to the steadily translating state found in [16]. Bottom
right figure: The approaching and departing orbits (before and after the gap, respectively)
are almost identical. Clockwise from top leftθ(0) = 0.15π, 0.25π, 0.3π, 0.1π with initial
positionszd(0) = 6.8 + i, 8 + 0.21i, 5 + 0.3i, 10.5 + 0.6i.



Chapter 4. Swimming in low Reynolds numbers near a wall with a gap. 87

Figure 4.5: The gap may act to repel the swimmer, sending it back in the direction from
which it came from. Here, we haveθ(0) = 0.1π with initial conditionzd(0) = 3.4 + 0.5i.

the precise geometry of this rectangle depends on the parameterε. Figure4.6 shows four

different choices of initial conditions which result in the swimmer ultimately spiralling in

towards each of these four attracting points.

From a dynamical systems perspective, these are stationary points and, by watching tra-

jectories draw into their basins of attraction, we may infer that these points are stable. To

determine this more rigorously, we may perform a linear stability analysis. In doing so, the

three (real) expressions (4.27) and (4.33), which give the equations that define the dynam-

ical system for the swimmer’s evolution, may be linearised and expressed as

d

dt
X = J X (4.34)

whereX = (Re[zd], Im[zd], θ). Points of equilibrium are found numerically by searching
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for the points where the left hand side of this is zero. We then search for solutions about

this equilibrium point with exponential time dependence of the form

exp(σt) (4.35)

whereσ are the eigenvalues of the Jacobian matrix,J . Then, the nature of the equilibrium

point’s stability is determined from the values of these eigenvalues. At each of the above

four stationary points, the eigenvalues appeared in a complex conjugate pair with a negative

real parts, and a third negative real eigenvalue. These are therefore categorised as stable

spiral points. A full bifurcation analysis, performed in the next section, reveals that these

are the only stable points in this case.

Figure 4.6: For some choices of initial conditions, the swimmer may become trapped in
the gap region. The swimmers spiral into one of, at most, four attracting points. Clockwise
from top left to bottom left, we have:θ(0) = 0.3, 0.25π, 0.05π, 0.75 with initial positions
zd(0) = 3.6 + 0.8i, 10.2 + i, 0.6i, 0.6i.

That swimmers may be brought to a standstill by the strategic placement of a gap in a wall

is an important result from a control theory perspective. It is therefore interesting to ask
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whether there is a systematic way to determine the basins of attraction of each of these

stationary points. We have found that this is not an easy matter and the initial conditions

for the trajectories found in Figure4.6 were found by trial and error. Furthermore, the

ultimate fate of the swimmer’s trajectory is sensitively dependent on the choice of initial

conditions.

4.3.5 Escaping the gap region.

Given the above trapped orbits, it is natural to ask whether all swimmers which enter the

gap region ultimately enter a basin of attraction of one of the four stable points. We have

found that this is not the case. Figure4.7 shows several examples in which the swimmer

“escapes” the gap region and attaches to a nonlinear bouncing orbit away from the gap,

either above or below the wall.

Figure 4.7: The swimmer may also escape the gap region to take a bouncing orbit on either
side of the gap and wall. The two trajectories on the left correspond toθ(0) = 0.05 with
zd(0) = 0.1 + 0.5i, 0.5i (above and below the wall, respectively) while the two on the
right correspond toθ(0) = ±0.05 with zd(0) = −0.1 + 0.5i, 0.5i (also, above and below,
respectively). Note the sensitivity of the swimmer’s ultimate path on its initial conditions;
all starting configurations are very close to each other here.

4.4 Bifurcation analysis in the parameterε.

The above trajectories were found forε = 0.2 and were qualitatively representative of the

various swimming protocols that the swimmer may undertake. In addition to the four stable
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stationary points we have noted, the system may admit other stationary points which are

unstable in nature, and therefore not attractors in the dynamics. These points were found

by using Newton’s method to locate the zeros of the left hand side of the dynamical system

(4.34). Their linear stability was then determined from the method described in the last

section. We will now study the structure of the stationary points as the parameterε is

varied.

For 0 ≤ ε ≤ ε
(1)
h = 0.3584, five other stationary points have been found: three are on the

real axis in the gap (one at the origin and one at each side of it) and two on the imaginary

axis (one above and one below the origin). All of these are found to be linearly unstable.

At ε = ε
(1)
h = 0.3584, the complex conjugate eigenvalues associated with each of the four

stable points simultaneously become purely imaginary, all approaching from the left hand

side of theσ-plane where Re[σ]< 0. This is therefore a Hopf bifurcation [46] and, for

ε just greater thanε(1)
h , the complex conjugate eigenvalue pair acquire positive real parts.

When this occurs, the dynamical simulations reveal the presence of small closed periodic

orbits around each of the four stationary points, as shown in Figure4.8. Based on these

simulations, we find that these periodic orbits are stable and so we conclude that this is

an example of a supercritical Hopf bifurcation. These local bifurcations are interesting

because they lead to bound states meaning that a swimmer may become trapped near the

gap while still engaged in a non-trivial closed period orbit, see Figure4.8.

As ε is increased further, we see the occurrence of a global bifurcation. Specifically, when

ε = ε
(1)
g = 0.36895 we have observed that pairs of periodic orbits growing around two (now

unstable) spirals merge together with the unstable saddle point on the imaginary axis. This

occurs symmetrically in both the upper and lower half planes, see Figure4.9. The result

of this is the formation of closed “figure of eight” orbits which, following the descriptive

nomenclature introduced by Coulletet al. [47], aregluing bifurcations, see Figures4.10

and4.12-4.13. This orbit is found to persist forε(1)
g < ε < ε

(2)
g = 0.4805 when, upon

reaching the latter value, the gluing bifurcation reverses and the two orbits “unglue”. This

leaves a separate periodic orbit around each of the four (still unstable) stationary points

once again, see Figure4.11. Increasingε further shows the existence of a second Hopf
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0.84

0.64 + 0.484i

0.92i

0.84

0.56 + 0.89i

1.40i

Figure 4.8: Stationary point locations before (upper figure) and after (lower figure) the
Hopf bifurcation whenε = ε

(1)
H = 0.3584. As ε passes through this value, the two stable

spirals become unstable spirals surrounded by fixed periodic orbits. Only the points in the
upper half plane are displayed.
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1.39i

0.55 + 0.91i

0.69

Figure 4.9: Growth of the periodic fixed orbits associated with two of the (unstable)
stationary points in the upper half plane. Whenε reaches the gluing bifurcation value
(ε(1)

g = 0.36895), the two fixed orbits make contact on the imaginary axis, together with the
saddle point (which was also on the imaginary axis for allε < ε

(1)
g ). The stationary points

are shown forε = ε
(1)
g .

bifurcation atε = ε
(2)
h = 0.5000 at which the four stationary (previously unstable) points

become stable spirals again and the fixed periodic orbits disappear. Finally these four (now

stable) spiral points merge in pairs on the imaginary axis atε = εb = 0.5510. Figure4.14

shows the locus of the eigenvalues asσ is varied. The complex values ofσ associated with

the two Hopf and two gluing bifurcations of the stationary point in the first quadrant are

clearly indicated.

4.5 Background shear effects on a swimmer near a wall with a gap.

Zilman, Novak and Benayahu [4] have studied the hydrodynamic attraction of ocean larvae

(which are also swimmers that reside in a low Reynolds number environment) towards solid

surfaces. They showed that when such a swimmer is placed in a uniform background shear

flow parallel to a wall, the associated local flow vorticity causes the larvae to rotate their
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0.47 + 1.1i

1.39i

0.64

Figure 4.10: Location of stationary points just after the gluing bifurcation (ε > ε
(1)
g ). This

shows the well defined “figure of eight” fixed orbit formed after the gluing of two separate
periodic orbits.

direction of self-propulsion which leads to their congregation at the surface. However,

while the authors attempt to explain the larvae’s attraction to the wall, they use the wall

only as a reference point of zero shear flow, but do not take into account the larvae’s direct

interaction with the wall itself.

In chapter 2, we found the solution for a swimmer’s interaction with an infinite no-slip wall

as well as that of a uniform shear flow of the formψ = γy2. By superposing the two, we

were able to properly study the swimmer’s hydrodynamic interaction with the wall in the

presence of the background shear flow. In chapter 3, we considered the same uniform shear

flow past the more complicated geometry of an infinite wall with a gap and found that the

exact solution was given by

F (ζ) =
iγ

2(ζ − i)
, G(ζ) = −

γζ

2(ζ − i)
+

iγζ

2

[
1 + ζ2

1 − ζ2

]
1

(ζ − i)2
, (4.36)
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0.36 + 1.22i

1.38i

0.587

Figure 4.11: Typical periodic orbits just after the ungluing bifurcation atε = ε
(2)
g , when the

single figure of eight periodic orbit has split into two separate orbits, each containing an
unstable spiral around both fixed points.

whereζ = (1 − (1 − z2)1/2)/z. In a similar fashion, we may now superpose this result

with the solution presented in this chapter to accurately study a swimmer’s evolution near

a wall with a gap in the presence of a background shear flow. Including a this ambient flow

introduces a new parameter,γ, into the model and so a new set of dynamical scenarios is

expected. Here we present only a small sample of the new effects focussing on possible

bound states. The results of this are depicted in Figures4.15- 4.17. The value ofε was

fixed at 0.2, however the trajectories for different values of this parameter are qualitatively

similar.

When no shear was present and the swimmer starts to the right of the gap such that it

is attracted to one of the four stable spiral points near the gap then, as the shear rate is

increased slightly, the swimmer no longer falls into the basin of attraction. Instead, it jumps

over the gap and continues on a periodic orbit on the other side of the orifice, (though with

a different height and amplitude). As the shear rate increases further, the background flow
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Figure 4.12: Two projections of the periodic orbits forε = ε
(1)−
g = 0.3689, just before the

gluing bifurcations. These are visualised in three-dimensional space (Re[zd], Im[zd], θ).
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Figure 4.13: Two projections of the newly formed figure of eight orbits, just after the gluing
bifurcation [73] whereε = ε

(1)+
g = 0.369. These are also shown in three-dimensional space

(Re[zd], Im[zd], θ).
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Figure 4.14: The stability diagram for one of the complex eigenvaluesσ associated with
the stationary point in the first quadrant asε is increased. There is also another complex
conjugate eigenvalue and a negative real eigenvalue, both of which are not shown here.

is eventually strong enough to reverse the direction of the swimmer and send it travelling

to the right. The swimmer’s eventual motion will either be that of a “spiral orbit” (akin to

those reported by Zilmanet al. [4]) if the shear rate is not too high or, for large shear rates,

a bouncing orbit.

Recall that the bifurcation analysis found no periodic solutions whenε = 0.2. Interestingly,

we have found that by imposing asymmetricshear flow above and beneath the wall, a

symmetric (diamond-shaped) closed periodic orbit exists. This is shown in Figure4.17.

They appear to be attractors in the dynamics and are different from the closed periodic

orbits we have witnessed in the absence of a background shear flow in that they provide a

mechanism for the swimmer to cross over from one side of the wall to the other.

4.6 Summary

We have extended the solutions presented in chapter 3 for a Stokes flows past a wall with

a gap to include the singularity model presented by Crowdy and Or [1]. By studying the
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γ = 2.5

γ = 0.25

γ = 0.1

γ = 0.075

γ = 0

Figure 4.15: The effect of increasing the strength of a background shear flow above the
wall: without shear the swimmer proceeds along the same bouncing orbit towards one of
the attracting points. Increasing the shear rate further leads to the swimmer eventually
moving away from the gap in another periodic bouncing orbit.
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γ = 0

γ =0.175

γ =0.23

γ =0.4

Figure 4.16: Closed periodic orbit within the gap. Without any background shear, the
swimmer moves towards one of the four stable spiral. As the shear flow is introduced and
increased in strength, there exists a close periodic orbit in the gap’s vicinity. This orbit is
not symmetric about the real axis (which is to be expected, as there is a background shear
flow only in the upper half plane). As the shear rate increases further the swimmer leaves
the gap region and enters into a spiral orbit.
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Figure 4.17: Closed periodic orbit in the gap when a uniform background shear (with
γ = 0.128) flow is introduced symmetrically above and below the wall. The diamond-
shaped orbit is now up-down symmetric.

interaction between the singularities within that model and the boundary, we have been

able to catalogue various dynamics of a low Reynolds number swimmer near an orifice.

The results within this chapter provide a predictive theory of how such a swimmer would

behave near such a boundary. These results could be tested using the laboratory experi-

ments akin to those involving quasi two-dimensional robotic swimmers, as performed by

Murray et al. [25] for a swimmer near a flat wall with no gaps. The singularity model of

Crowdy and Or [1] has proven to provide excellent agreement with these experiments and,

as we have used exactly the same model in conjunction with this more complicated domain,

we have confidence that the results presented in his chapter are verifiable using similar ex-

perimental procedures. Another test of this chapter’s results in a fully three-dimensional

setting would be to extend the numerical experiments of Murray and Or [23] to study the

dynamics of their model swimmer near a wall with a gap. As this model consists of three

rotating spheres attached by rigid rods, the calculation would require the generalisation of

the Swan-Brady mobility tensors [24] for spheres near a wall with a gap, which are yet to
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be computed.

Or and Murray [23] studied the motion of a swimmer near a flat wall (with no gap) within

the framework of control theory. The generic motion of a swimmer near such a boundary

is to travel on nonlinear “bouncing orbits” along it [23]. We have noticed that a gap in

the wall could be used as a control device for a low Reynolds number swimmer near an

orifice. In particular, it has the ability to manipulate swimmers between its various orbits.

The gaps may be used to trap swimmers in their locale: depending onε, the swimmers

may either spiral in towards a stationary point, or become trapped in a periodic closed orbit

indefinitely. Alternatively, the gap may serve as a switching mechanism between different

bouncing orbits, affecting the height and amplitude of the oncoming swimmer. It may

also reverse the swimmer away from the wall, sending it back in the direction that it came

from. Finally, the gap may even send the swimmer through the gap to the other side of the

wall. While this is rare, we have seen that the addition of a background shear flow appears

to promote this crossover by allowing closed, diamond-shaped, periodic orbits through

the gap. As an application, the existence of these closed periodic orbits may be a useful

mechanism for self-driven mixing devices in low Reynolds number flows.

The resulting dynamical system for a swimmer near a wall with a gap is an interesting one,

in that it allows a variety of non-trivial bifurcations and possible swimming trajectories.

The conformal mapping presented here may, in principle, be extensible to other planar do-

mains. Together with the singularity description of Crowdy and Or [1], the door is opened

to the construction of dynamical system models for low Reynolds number swimmers in

arbitrary confined geometries. In general, however, it will not be possible to find these

dynamical systems in explicit form; this is a fortuitous and rather special feature of the

particular geometry and conformal map we use in this chapter. Nevertheless, the system

of ordinary differential equations for the swimmer’s motion may still be computed numer-

ically within a similar framework.

Despite this, we will now attempt to find other, more complicated, confined domains for

which we are able to express the resulting dynamical system explicitly. The geometry that
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we will attempt to do this in is that of a wall withtwo gaps, as this will highlight the effect

of placing a finite piece of wall inside the single gap we have studied in this chapter. It is

already known that even small occlusions in Stokes flows may lead to dramatic “blocking

effects” [48, 49] and it will be interesting to study the influence this has on the swimmer’s

behaviour. This domain is also a further complication to the single gap case and, as the

length of the added wall segment presents another control parameter, it is likely that the

resulting dynamical system will also produce interesting features.
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Chapter 5

Stokes flows past a wall with two gaps.

5.1 Introduction

In chapter 3 we studied the slow viscous flow of fluid near an infinite no-slip wall with

a gap in it. By using conformal mapping techniques we were able to characterise the

behaviour near the ends of the gap (or, equivalently, the sharp corners of the wall) and

retrieve previous results by Smith [2] as well as those by Ko and Jeong [3] for the Stokes

flow with far field shear and stagnation point velocity fields respectively. Both of these

authors used entirely different methods to solve their respective problems (the latter authors

seem to have been unaware of the former’s work). A clear benefit of the method that we

presented was that only a slight change to the imposed far field conditions of the Goursat

functions was necessary in order to model the two problems. Furthermore, we have shown

in chapter 4 that our method lends itself much more readily to the study of micro-organism

swimming near such boundaries.

Later, we will want to study the motion of a similar swimming organism near a no-slip

wall with two gaps. As in the study of a swimmer above a wall with a single gap, we

begin by considering a general Stokes flow around this geometrical configuration without

the swimmer. We let a viscous fluid fill the entirety of the two-dimensional plane above

and below an infinite no-slip wall which admits two gaps: one between[−1, r] and another

between[r, 1] where0 < r < 1. The finite length plate, placed symmetrically about
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the origin in [−r, r], will be referred to as thecentral plate. As in the simply connected

analogue of chapter 3, we will focus on the specific cases where the far field Stokes flow

takes two different forms: those that in the far field above the wall tend to either a uniform

shear flow or a stagnation point flow (with an added pressure gradient across the wall),

while in the fluid far below the wall remains at rest.

By generalising the method presented in chapter 3 to the case where the wall admits two

gaps, we will produce a range of new, exact, solutions to this problem. These results

are of interest as the fluid domain is doubly connected due to the fact that there are two

disconnected boundaries in the fluid. Analytical solutions for Stokes flows in multiply

connected domains are few and far between. Most relevantly, Hasimoto [48] studied a

purely pressure-driven flow (Sampson flow) past precisely the same geometry. By building

on work by Roscoe [50], he refers to assumptions about the symmetry of certain field

variables in order to form analogy with flows of ideal fluids. The approach taken here is

more general than this as it does not rely on fore-aft wall symmetry and only a simple

modification of the far field conditions is necessary in order to find both the shear flow and

stagnation point flow solutions past the same geometry.

There have been only a small number of other studies of Stokes flows confined in doubly

connected geometries: Jeffery [51] found solutions for the slow viscous flow in the annular

region between two concentric cylinders (where one or both of the cylinders move and

thus drives the flow) using a formulation with bipolar coordinates; Frazer [52] later used

ideas based on the method of reflection to find the unbounded Stokes flow around two

cylinders; later again, Jeffery and Onishi [53] used bipolar coordinates again to find closed-

form formulae for the motion of a translating and rotating cylinder above a no-slip wall

(as well as the forces and torques on the cylinder); lastly, Davis [54] found formulae for

the Stokes flow past a cylinder over an infinite flat wall and used these to demonstrate the

formation of viscous eddies when the cylinder is brought close to the plane. These classical

solutions continue to be useful in the study of mixing of viscous fluids [55] as well as in

the investigation of wall effects in electrophoresis [56].
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5.2 The force on a central plate in a Stokes flow.

While exposed to the oncoming flow, the central plate remains in place at[−r, r] and hence

we must assume that there is a non-zero net force exerted on it (equal and opposite to the

force that keeps it in this position) . In chapter 2 we have seen that the complex form of the

fluid stress,−pni + 2μeijnj whereni are the components of the unit normal to the wall,

can be written as

2i
dH

ds
(5.1)

whereH = f(z) + zf
′
(z) + g′(z). As this is a total derivative, the total force around the

central plate is conveniently given by

∮

Γ

(−pni + 2μeijnj)ds = 2iμ[H]Γ (5.2)

whereΓ is any contour that encircles the central plate and is positively oriented with respect

to it.

5.3 Conformal mapping: a wall with two gaps.

Similarly to the simply connected case, we introduce a conformal map in order to utilize

a uniformisation variable for this problem. In the case where the wall has a disconnected

central plate, the fluid domain is doubly connected. It is well known [57] that there always

exists a univalent conformal map to this domain from an annulusρ < |ζ| < 1 in a complex

ζ-plane, with0 < ρ < 1: the annular region is mapped to the fluid region above and below

the walls. The innerρ circle in the annulus is mapped to the central plate,[−r, r], while

the outer unit circle is mapped to the walls extending to infinity. The (unique) specific

conformal map that is appropriate for this is given by Crowdy and Marshall [58] as

z(ζ, ρ) =
P 2(−ζ, ρ) − P 2(ζ, ρ)

P 2(−ζ, ρ) + P 2(ζ, ρ)
(5.3)
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where we shall suppress theρ dependence in the notation for the conformal map from here

on. The special functionP (ζ, ρ) is defined by

P (ζ, ρ) = (1 − ζ)
∞∏

k=1

(1 − ρ2kζ)(1 − ρ2k/ζ) (5.4)

which has zeros at the pointsζ = ρ2n for n ∈ Z. The conformal map (5.3) depends on the

single real parameterρ. Different choices of this number correspond to different central

plate lengths (or, equivalently, gap widths). Asρ → 0, the annulus becomes the simply

connected unit disk and the central plate vanishes. A graph of the width of the central plate

against values ofρ is shown in Figure5.1.
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Figure 5.1: Central plate length (2r) in the fluid domain as a function ofρ, the radius of the
inner circle of the annulus in theζ-plane.

It follows from (5.3) that the derivative of the conformal map is given by

z′(ζ, ρ) =
4 [P 2(ζ, ρ)P (−ζ, ρ)P ′(−ζ, ρ) − P (ζ, ρ)P 2(−ζ, ρ)P ′(ζ, ρ)]

(P 2(−ζ, ρ) + P 2(ζ, ρ))2
(5.5)

whereP ′(ζ, ρ) ≡ ∂P (ζ, ρ)/∂ζ. As P (1, ρ) = 0, we see that (5.5) vanishes at the points
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ζ = ±1. Next, the parameterρ is chosen so that the ends of the central plate are atz = ±r.

This is found numerically using Newton’s method. Also, for convenience, we shall also

suppress the explicitρ dependence of the conformal map from here on.

Note that it follows from the definition ofP (ζ, ρ) that

P (ζ−1, ρ) = (1 − ζ−1)
∞∏

k=1

(1 − ρ2k/ζ)(1 − ρ2kζ)

= −ζ−1P (ζ, ρ)

(5.6)

and also that

P (ρ2ζ, ρ) = (1 − ρ2ζ)
∞∏

k=1

(1 − ρ2kρ2ζ)(1 − ρ2k/ρ2ζ)

= (1 − ρ2ζ)(1 − 1/ζ)
∞∏

k=1

(1 − ρ2k+2ζ)(1 − ρ2k/ζ)

= −ζ−1(1 − ζ)
∞∏

k=1

(1 − ρ2kζ)(1 − ρ2k/ζ)

= −ζ−1P (ζ, ρ).

(5.7)

Next, notice that from the definition of the map (5.3) together with the above relations that

the special functionP (ζ, ρ) satisfies, we see that

z(ρ2ζ) =
P 2(−ρ2ζ, ρ) − P 2(ρ2ζ, ρ)

P 2(−ρ2ζ, ρ) + P 2(ρ2ζ, ρ)

=
(1/ζ2)P 2(−ζ, ρ) − (1/ζ2)P 2(ζ, ρ)

(1/ζ2)P 2(−ζ, ρ) + (1/ζ2)P 2(ζ, ρ)

(5.8)

and hence

z(ρ2ζ) = z(ζ), for all ζ 6= 0. (5.9)

This is an example of aloxodromic function[59]: a functionu(ζ) is defined to be loxo-

dromic if it is meromorphic everywhere (i.e. it is analytic except at a discrete set of isolated

singularities) inside, and on the boundary of, thefundamental annulusρ ≤ |ζ| < ρ−1 and
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which satisfies the functional relationu(ρ2ζ) = u(ζ). Given the singularity structure of

u(ζ) inside the fundamental annulus, the singularity structure in all other annuli in the

complexζ-plane follows from this functional relation. This will be a key feature and a

crucial fact for what follows.

Next we may writeP (ζ, ρ) = (1 − ζ)Y (ζ, ρ) where

Y (ζ, ρ) =
∞∏

k=1

(1 − ρ2kζ)(1 − ρ2k/ζ). (5.10)

Notice that the denominator of the map (5.3) vanishes atζ = i (and also at−i) as

P 2(−i, ρ) + P 2(i, ρ) = (1 + i)2Y 2(−i, ρ) + (1 − i)2Y 2(i, ρ)

= [(1 + i)2 + (1 − i)2]Y 2(i, ρ) = 0
(5.11)

where we have used the fact that

Y (−i, ρ) = Y (i, ρ) =
∞∏

k=1

(1 + ρ4k). (5.12)

This also follows from relation (5.6) and means thatz(ζ) admits a simple pole atζ = ±i.

It is shown in the appendixB that

z(ζ) =
a

ζ − i
+ b + O(ζ − i) . . . (5.13)

where

a =
1

2

[
P 2(−i, ρ) − P 2(i, ρ)

P (i, ρ)P ′(i, ρ) − P (−i, ρ)P ′(−i, ρ)

]

(5.14)

and

b =
P (i, ρ)P ′(i, ρ) + P (−i, ρ)P ′(−i, ρ)

P (−i, ρ)P ′(−i, ρ) − P (i, ρ)P ′(i, ρ)

−
P 2(−i, ρ) [P ′2(i, ρ) + P ′2(−i, ρ) + P (i, ρ)P ′′(i, ρ) + P (−i, ρ)P ′′(−i, ρ)]

2(P (−i, ρ)P ′(−i, ρ) − P (i, ρ)P ′(i, ρ))2
.

(5.15)
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We will also use the fact that, nearζ = −i, z(ζ) takes the form

z(ζ) =
a

ζ + i
+ O(1) + . . . (5.16)

Next, we introduce the new function

K(ζ, ρ) =
ζP ′(ζ, ρ)

P (ζ, ρ)
. (5.17)

From this, and using the relation (5.6) we have that

K(ζ−1, ρ) =
P ′(ζ−1, ρ)

ζP (ζ−1, ρ)

= −
P ′(ζ−1, ρ)

P (ζ, ρ)
.

(5.18)

Differentiating relation (5.6) gives

P ′(ζ−1, ρ) = ζP ′(ζ, ρ) − P (ζ, ρ) (5.19)

and so using this in equation (5.18) gives the result

K(ζ−1, ρ) = 1 − K(ζ, ρ) (5.20)

while it can similarly be shown that

K(ρ2ζ, ρ) = K(ζ, ρ) − 1. (5.21)

Note that from its definition,K(ζ, ρ) has simple poles atζ = ρ2n for n ∈ Z. Notice also

that

log P (ζ, ρ) = log(1 − ζ) +
∞∑

k=1

log(1 − ρ2kζ) + log(1 − ρ2k/ζ) (5.22)

and so
P ′(ζ, ρ)

P (ζ, ρ)
=

1

ζ − 1
+

∞∑

k=1

−
ρ2k

(1 − ρ2kζ)
+

ρ2k/ζ2

(1 − ρ2k/ζ)
. (5.23)

Using this in the definition ofK(ζ, ρ), we see that nearζ = 1, this function takes the
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leading order form

K(ζ, ρ) =
1

ζ − 1
+ analytic function. (5.24)

5.4 Shear flows past a wall with two gaps.

We now turn our attention to the problem of Stokes flow above a wall with two gaps, such

that in the far field above the wall, the flow tends to that of a uniform shear flow, while in

the far field below the wall, the fluid is stationary. Recall that in this case we have that

f(z) ∼

{
iz/2 asz → ∞+

f∞ asz → ∞−
(5.25)

and

g′(z) ∼

{
−iz asz → ∞+

g∞ asz → ∞−.
(5.26)

Next, using the conformal map defined above in (5.3), we define the Goursat functions

F (ζ) ≡ f(z(ζ)), G(ζ) ≡ g′(z(ζ)). (5.27)

While it is not easy to explicitly invert the conformal map (5.3), it is known from general

arguments [60] that z(ζ) has square root branch point behaviour at the pointsζ = ±1,±ρ

corresponding to the preimages of the four corner-points in the fluid domain. Because of

this, ζ will serve as a uniformization variable so thatF (ζ) andG(ζ) may be expressed as

single-valued functions, and will not admit any branch points.

We have shown that we must allow for a net force to be present on the central plate. From

(5.2) it is clear that the functionH(z, z) must include a multi-valued component in order

for a non-zero contribution to remain present after encircling the central plate. We therefore

let

F (ζ) = Fl log ζ + F̂ (ζ), G(ζ) = Gl log ζ + Ĝ(ζ) (5.28)

whereFl andGl are numbers to be found whilêF (ζ) andĜ(ζ) are both analytic and single-

valued inside the preimage annulusρ < |ζ| < 1. Note that while we requireH(z, z) to be



Chapter 5. Stokes flows past a wall with two gaps. 111

multi-valued, the velocity must not be. The no-slip velocity condition on the unit circle is

given by

0 = −Fl log ζ − F̂ (ζ) +
z(ζ)

z′(1/ζ)

[
Flζ + F̂ ′(1/ζ)

]
+ Gl log ζ + Ĝ(1/ζ) (5.29)

so, in order for this to be single-valued, we must choose

Gl = −F l. (5.30)

With this choice of coefficient, the velocity is given by

u + iv = −Fl log ζ − Fl log ζ + Laurent series

= −2Fl log |ζ| + Laurent series
(5.31)

and is therefore single-valued as well. Next, upon substitution ofH(z, z) into the force

equation (5.2) gives the force on the central plate as

2iμ[H]Γ = 2iμ
[
Fl log(ρ2η) − Fl log(ρ2/η) + single-valued

]
|ζ|=ρ

(5.32)

whereζ = ρ2η andz(|ζ| = ρ) = Γ. In order forΓ to be positively oriented, we must

traverse the innerρ circle of the annulus in a positive (counter-clockwise) manner. This

gives the force on the plate as

− 8μπFl. (5.33)

Note also that the force on the wall is computed by performing the same calculation whilst

on theouter (unit) circle of the annulus. In this case the|ζ| = 1 circle is traversed in a

negative (clockwise) fashion around the logarithmic singularity (atζ = 0) and hence the

force on the wall is given by8μπFl. It is precisely because the force on the wall is equal

and opposite to that on the plate that there is no net force on the fluid and hence we do not

encounter the Stokes paradox. Also, given the choice of constants (5.30), the velocity at a
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general point in the fluid is given by

u + iv = −2Fl log |ζ| − F̂ (ζ) +
z(ζ)

z′(ζ)

[
Fl

ζ
+ F̂ ′(ζ)

]

+ Ĝ(ζ) (5.34)

and hence has no logarithmic contribution in the far field (asζ → ±i). Next, the no-slip

condition on the unit circle takes the form

− F (ζ) +
z(ζ)

z′(1/ζ)
F ′(1/ζ) + G(1/ζ) = 0. (5.35)

Upon substitution of ansatz (5.28) into this, we have that

− F̂ (ζ) +
z(ζ)

z′(1/ζ)

[
Flζ + F̂ ′(1/ζ)

]
+ Ĝ(1/ζ) = 0. (5.36)

Next, on the inner circle where|ζ| = ρ, we have

− F (ρ2ζ) +
z(ρ2ζ)

z′(ρ2/ζ)
F ′(ρ2/ζ) + G(ρ2/ζ) = 0 (5.37)

and, again after substitution of the same ansatz,

− F̂ (ζ) +
z(ζ)

z′(ρ2/ζ)

[
Flζ

ρ2
+ F̂ ′(ρ2/ζ)

]

− F l log ρ2 + Ĝ(ρ2/ζ) = 0. (5.38)

Making the substitutionζ → ρ2ζ into the above (5.38) gives

− F̂ (ρ2ζ) +
z(ρ2ζ)

z′(1/ζ)

[
F lζ + F̂ ′(1/ζ)

]
− Fl log ρ2 + Ĝ(1/ζ) = 0. (5.39)

Subtraction of (5.39) from (5.36) gives the relation

F̂ (ρ2ζ) − F̂ (ζ) +
{
z(ρ2ζ) − z(ζ)

}
[

F l + F̂ ′(1/ζ)

z′(1/ζ)

]

= −Fl log ρ2. (5.40)

We now invoke the special loxodromic property of this map (5.9) to reduce this to

F̂ (ρ2ζ) − F̂ (ζ) = −Fl log ρ2. (5.41)
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As we shall see, is precisely this condition that will make it possible to find an exact solution

to this problem.

The far field conditions forf(z) andg′(z) are given by (5.25) and (5.26). As f(z) tends

to a linear function ofz in the upper far field, corresponding toζ = i, while tending to a

constant atζ = −i, we let

F̂ (ζ) = AK(ζ/i, ρ) (5.42)

whereA is a constant to be determined. This is the analytic function that may satisfy

condition (5.41) given relation (5.21) for K(ζ, ρ). Using this in (5.41) together with (5.21)

reveals that

A = Fl log ρ2. (5.43)

Notice that, asA is generally of order unity, this means thatFl ∼ 1/ log(ρ) which ap-

proaches zero extremely slowly. As a consequence, even exponentially small central plate

lengths have non-negligibleFl, and hence finite logarithmic contributions. Following the

language of Hasimoto [48] we shall refer to this as theblocking effect.

It now just remains to findFl. To do this, recall that the conformal mapz(ζ) takes the

leading order form aroundζ = i (corresponding toz → ∞+ in the fluid domain)

z(ζ) =
a

ζ − i
+ analytic function, or

1

ζ − i
=

z

a
+ analytic function. (5.44)

Therefore, given our solution (5.42) together with the expression forA in (5.43) and the

leading order expansion ofK(ζ, ρ) in (5.24), we have that

F (ζ) = AK(ζ/i, ρ) =
iA

ζ − i
+ ∙ ∙ ∙ =

iA
a

z + . . .

=
iFl log ρ2

a
+ . . .

(5.45)

and as, from equation (5.25), this must tend to iz/2, we see that

Fl =
a

4 log ρ
. (5.46)
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Using this, we finally arrive at the result

F (ζ) =
a

4 log ρ

[
log ζ + (2 log ρ)K(ζ/i, ρ)

]
. (5.47)

Once we have this,̂G(ζ) follows from the no-slip condition (5.36) and thus we have com-

pletely determined the flow everywhere above and below the wall.

As given by equation (5.33), the total force on the plate is given by−8μπFl and is graphed

in Figure5.2as a function of central plate length. Interestingly, the force is horizontal and

there is no vertical component to it. While this may be surprising, it is consistent with the

observation by Smith [2] who, in the case of a single gap in the wall, observed that there is

no mass flux or mixing of fluids through the gap. The fluid beneath the gap is stirred only

by the shear stresses across the gap, generated by the motion of the fluid in the upper half

plane. The force on the central plate is then a result of the differential shear stresses across

it, while the absence of any fluid flux through the gap justifies the lack of vertical forces on

the plate.

5.4.1 Limit of diminishing central plate length: comparison to Smith [2].

In chapter 3 we studied a shear flow past a wall which had only one gap (and no central

plate). It therefore serves as an important check on the above analysis to ensure that in

the limit of zero central plate length (and henceρ → 0) we retrieve the solution found in

chapter 3, or that

F (ζ) =
i

2(ζ − i)
(5.48)

plus possibly a constant (as in the double gap analysis we have not necessarily set the same

additive constant off(z) to zero).

To do this, notice that from the definition ofP (ζ, ρ) we see that in the limit ofρ → 0,

P (ζ, 0) = 1 − ζ, P ′(ζ, 0) = −1, P ′′(ζ, 0) = 0. (5.49)
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Figure 5.2: Total horizontal force on the central plate for varying plate length, for an on-
coming shear flow. There is no vertical force on this.

Using these in the definition of the doubly connected conformal map (5.3) means that

z(ζ) →
(1 + ζ)2 − (1 − ζ)2

(1 + ζ)2 + (1 − ζ)2
=

2ζ

1 + ζ2
(5.50)

which is precisely the single gap map, defined in chapter 3. Furthermore, the parametera

defined in (5.14) reduces to 1. Next, using (5.17) we see that

K(ζ, 0) =
ζ

ζ − 1
. (5.51)



5.5 Stagnation point flow past a wall with two gaps. 116

Putting these together in our functionF (ζ) defined by (5.47) gives

F (ζ) =
a

4 log ρ

[
log ζ + (2 log ρ)K(ζ/i, ρ)

]

→
a

2
K(ζ/i, 0) as ρ → 0

=
i

2(ζ − i)
+ constant

(5.52)

which is the required solution for the single gap case, and we conclude that the doubly

connected solution is consistent with the simply connected case.

5.4.2 Results: shear flow past a wall with two gaps.

Some typical streamlines are shown in Figure5.3, where the central plate lengths are 0.3,

1 and 1.9, (or 15%, 50% and 95%, respectively), of the gap width. When the plate length is

1.9, the gaps are narrow and the resulting streamlines resemble Figure 2 in Smith [2], who

considered a shear flow past a wall with an infinite array of equally separated gaps. This

gives a good qualitative verification of our results.

5.5 Stagnation point flow past a wall with two gaps.

As in the case of a single gap in the wall, we next turn our attention to the case where the

same geometry is subjected to an oncoming stagnation point flow of strengthk with an

additional up-down pressure gradient as defined in chapter 3 for the similar flow above a

wall with only one gap. Recall that, in this case, the far field forms off(z) andg′(z) are

given by

f(z) →

{
ikz2/4 + ΔPz/4μ + O(1), asz → ∞+

−ΔPz/4μ + O(1), asz → ∞−
(5.53)

and

g′(z) →

{
−3ikz2/4, asz → ∞+

O(1), asz → ∞−.
(5.54)

Whenk = 0, the fluid is driven only by a pressure difference across the wall and corre-

sponds to the problem studied by Hasimoto [48]. We follow the same solution method as
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Figure 5.3: Typical streamlines for shear flow above a wall with two gaps, with varying
central plate length of 0.3 (top), 1 (middle) and 1.9 (bottom). These may be qualitatively
compared to Figures 1 and 2 in Smith [2].
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above, so all the details carry over to this case too. In particular,F (ζ) andG(ζ) have the

same functional form and relation (5.41) still holds. In order to solve for this flow, introduce

the function

L(ζ, ρ) = ζK ′(ζ, ρ). (5.55)

From this definition we have that

L(ζ−1, ρ) =
1

ζ
K ′(ζ−1, ρ) (5.56)

and, upon differentiating relation (5.20) we see thatK ′(ζ−1, ρ) = ζ2K ′(ζ, ρ) and hence

L(ζ−1, ρ) = L(ζ, ρ). (5.57)

Similarly, using the derivative of relation (5.21), it is straight forward to show that

L(ρ2ζ, ρ) = L(ζ, ρ). (5.58)

Due to this relation,L(ζ, ρ) is example of a loxodromic function. It has simple pole singu-

larities at the isolated pointsζ = ρ2n for n ∈ Z and, as equation (5.24) gives the leading

order form ofK(ζ, ρ) near the pointζ = 1, we see that

L(ζ, ρ) = −
1

(ζ − 1)2
−

1

(ζ − 1)
+ . . . (5.59)

near the same point.

We now propose that

F̂ (ζ) = AL(ζ/i, ρ) + BK(ζ/i, ρ) + CK(−ζ/i, ρ) + D (5.60)

with constantsA, B, C andD. Without loss of generality, we chooseD = 0 due to the

additive degree of freedom in the functionf(z). Next, condition (5.41) together with the
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above properties ofL(ζ, ρ) andK(ζ, ρ), we see that

B + C = Fl log ρ2. (5.61)

We now use the far field conditions to to determine the constants. To do this, notice that

since

z(ζ) =
a

ζ − i
+ b + . . . (5.62)

we may write
1

ζ − i
=

z

a
−

b

a
+ O(z−1) + . . . (5.63)

therefore
1

(ζ − i)2
=

z2

a2
−

2bz

a2
+ . . . (5.64)

and similarly
1

ζ + i
=

z

a
+ O(1) + . . . (5.65)

Given these expansions, we see that asζ → i (corresponding toz → ∞+ in the physical

fluid domain) we have that

F (ζ) → A

[
1

(ζ − i)2
−

i
ζ − i

+ . . .

]

+ B

[
i

ζ − i
+ . . .

]

+ . . .

= A

[
z2

a2
−

(
2b

a2
+

i
a

)

z + . . .

]

+ B

[
iz
a

+ . . .

]

+ . . .

=
A

a2
z2 +

(
iB
a

− A

{
2b

a2
+

i
a

})

z + O(1) + . . .

(5.66)

Comparing this with (5.53) asz → ∞+ we see that

A =
ika2

4
, B = −

iΔPa

4μ
+

k

4
(ia2 + 2ba). (5.67)

In the limit ζ → −i (corresponding toz → ∞−) we have

F (ζ) → −
iC
a

z + . . . (5.68)
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which, upon again comparing to the far field form off(z) in the lower plane implies that

C = −
iΔPa

4μ
. (5.69)

Finally, relation (5.61) gives the last constantFl to be

Fl =
1

2 log ρ

[
−

iΔPa

2μ
+

k

4
(ia2 + 2ab)

]
. (5.70)

Notice again the inverse relation betweenFl and log ρ, implying that the blocking effect

will alter this flow too even for exponentially small valuesρ.

Putting this together, we find that

F (ζ) =
1

2 log ρ

[
−

iΔPa

2μ
+

k

4
(ia2 + 2ab)

]
log ρ +

ika2

4
L(ζ/i, ρ)

+

[
k

4
(ia2 + 2ab) −

iΔPa

4μ

]

K(ζ/i, ρ) −
iΔPa

4μ
K(−ζ/i, ρ).

(5.71)

Once we have this, then the no-slip condition (5.36) gives Ĝ(ζ), and so we have fully

determined the flow everywhere.

Again, we compute the force from equation (5.33) and graph this as a function of varying

plate length in Figure5.4 for the case whereΔP = μ = k = 1. This force is purely

vertical, as can be expected by the left-right symmetry (about they-axis) of the driving far

field flow, the added pressure gradient and the geometrical configuration.

Hasimoto [48] also included a similar graph for the case of purely pressure-driven (Samp-

son) flow, corresponding tok = 0. Hasimoto also noted the blocking effect for very small

ρ, which is also evident in Figure5.4: From Figure5.1, we see that the plate length (2r) is

approximately a linear function ofρ asρ → 0, and hence the force falls off like1/ log(2r)

asr → 0. This is a very slow decay.
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Figure 5.4: Total vertical force on the central plate as a function of varying plate length,
where the fluid is driven by a far field stagnation point flow of strengthk = 1 (with μ = 1)
as well as an added pressure gradient withΔP = 1 in the downward direction. Due to the
symmetry of the geometry together with that of the forcing flows, there is no horizontal
force on the plate.

5.5.1 Limit of diminishing central plate length: comparison to Ko and

Jeong [3].

Again, as a check on the analysis, the solution given here should tend to that of the same

driving flow in the simply connected case when the wall had only gap, as studied in chapter

3. Recall thatF (ζ) was given by

F (ζ) =
kζ

4(ζ − i)2
+

iΔP

2μ(ζ2 + 1)
. (5.72)

Our solution should converge to this in the limit of diminishing central plate length (or as

ρ → 0). To show this, recall that in this limit,K(ζ, ρ) → ζ/(ζ − 1) and so

L(ζ, ρ) → −
ζ

(ζ − 1)2
. (5.73)
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Using this, taking the limit ofρ → 0 of F (ζ) in (5.71) gives

F (ζ) → 0 +
ka2

4

ζ

(ζ − i)2
+

[
k

4
(ia2 + 2ab) −

iaΔP

4μ

] [
i

ζ − i
+ . . .

]

−
iΔPa

4μ

[
ζ

ζ + i
+ . . .

]

=
kζ

4(ζ − i)2
+

iaΔP

2μ(ζ2 + 1)
−

k(ia2 + 2ab)

4(ζ − i)
.

(5.74)

Next, in this limit, the constantsa andb defined by (5.14) and (5.15) reduce to 1 and 0

respectively and hence,

F (ζ) →
kζ

4(ζ − i)2
+

iaΔP

2μ(ζ2 + 1)
(5.75)

which is precisely the correct functionF (ζ) for the simply connected case.

5.5.2 Results: stagnation point flow past a wall with two gaps.

We now look at the flow streamlines as the oncoming flow is altered, similar to as was

done in chapter 3, as well as when the geometry of the domain is changed. First we fix the

strength of the stagnation point flow and the viscosity by settingk = 1 andμ = 1, and then

vary the pressure difference between the upper infinity and lower infinity,2ΔP . This gives

the number

N =
ΔP

kμ
(5.76)

as defined by Ko and Jeong [3]. WhenN is positive, it corresponds to there being a pressure

gradient in the downwards direction. WhenN = 0, the flow is driven by the stagnation

point flow only, and finally, whenN is negative, there is an upwards pressure gradient.

The competition between the two drivers, together with the length of the central plate (and

therefore the gaps), determines the nature of the flow above and below the walls.

First, we set the pressure gradient in the downwards direction so thatΔP = N = 1. When

there is no central plate, the streamlines pass downwards through the gap as in Figure3.6,

as well as Figure 5(a) of Ko and Jeong [3]. When the central plate is present, but is small

in length, small (Moffatt-type) eddies are formed underneath it. The size of these eddies



Chapter 5. Stokes flows past a wall with two gaps. 123

grow as the central plate length grows and the gap width decreases; see Figure5.5.

WhenN = 0.07 there is only a slight pressure gradient in the downwards direction and

so the fluid motion is driven predominantly by the stagnation point flow. When there is no

central plate and the gap width is2, the streamlines are as given by Figure3.8, as well as in

Figure 5(b) of [3]. When the central plate is introduced and varied in length, eddies form

once again underneath the wall and appear to be almost vertically oriented, see Figure5.6.

As the gap width is reduced and the central plate is made longer, the eddies “emanate” from

the gap. When the central plate is long (and fills 95% of the gap), the streamlines below

the wall are strongly reminiscent of those depicted in Figure 2 of Smith [2] for the case of

shear flow past an infinite array of very narrow gaps. This is to be expected, as when the

gaps are narrow and sufficiently far from the center of the plate, then in the region above

the gap the oncoming flow locally resembles a shear flow.

Finally when we introduce a negative pressure gradient,N is negative and the flow is

forced upwards from below in competition with the stagnation point flow which sends fluid

downwards. In the absence of a central plate, the streamlines are as in Figure3.6 as well

as in Figure 5(c) of [3]. The flow creates eddies underneath the walls in the vicinity of the

sharp edges. When a central plate is introduced, we see that the same eddies are present,

but vary their position as the central plate length is increased and the gap width becomes

smaller. In particular, the eddies do not form beneath the plate but underneath the sidewalls

instead; see Figure5.7.

On comparison of three cases from Figures5.6-5.7 for N = 1, 0.07,−0.5 respectively,

we see that in all cases viscous eddies are formed beneath the plate or sidewall, and the

presence of the pressure gradient causes these eddies to be inclined at different angles:

when the pressure gradient is almost absent (ΔP = N = 0.07), the eddies are almost

vertically oriented below the gaps; as the pressure gradient becomes increasingly positive

and hence forces the fluid downwards (ΔP = N = 1), the eddies rotate towards the plate;

if the pressure gradient becomes increasingly negative and hence forces the fluid upwards

against the driving stagnation point flow, the eddies rotate to incline themselves away from
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Figure 5.5: Flow streamlines forN = 1 and central plate length =0.3, 1, 1.9 (top to bot-
tom). This corresponds to an additional (downward directed) pressure gradient. The effect
of this pressure gradient is to incline the viscous eddies inwards beneath the central plate.
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Figure 5.6: Flow streamlines forN = 0.07 and central plate length =0.3, 1, 1.9 (top to
bottom). In this case,ΔP = 0.07 and hence there is almost no additional pressure gradient
and the flow is predominantly driven by the far field stagnation point flow. In this case, the
viscous (Moffatt-type) eddies are almost vertically oriented below the gaps.
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Figure 5.7: Flow streamlines forN = −0.5 and central plate length =0.3, 1, 1.9 (top to
bottom). In this case, a pressure gradient is introduced in the upward direction, against
the oncoming (downward) stagnation point flow. The effect of this is to orient the viscous
eddies away from the central plate and beneath the sidewalls.
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the plate and settle underneath the sidewall.

5.6 Summary

We have presented exact solutions for Stokes flows past a no-slip wall with two gaps for the

cases where the fluid is driven at the far field either by a uniform shear flow, or a stagnation

point flow together with an added pressure gradient. As the only difference between the

methods of solution for both these cases was a change in far field boundary condition, it

should be clear that this technique is easily amendable to cases where the fluid is driven by

other far field flows.

Following Hasimoto [48], this study has been focussed on the case where the gaps on

either sides of the central plate have been symmetric. In general, one could perform the

same analysis for when the gaps are asymmetric. The appropriate conformal map for this

case would be

z(ζ) =
P 2(−ζ, ρ) − R2P 2(ζ, ρ)

P 2(−ζ, ρ) + R2P 2(ζ, ρ)
(5.77)

from the annular regionρ < |ζ| < 1 in the ζ-plane to the asymmetric double gap plane.

This map is also loxodromic and the caseR = 1 corresponds to the symmetric case above.

It is straightforward to generalise the analysis to the asymmetric domain whenR 6= 1.

This work is analogous to the motion of a point vortex around geometrically complicated

domains, as was studied by Crowdy and Marshall [58]. In this work, the authors considered

the same symmetric double gap domain and find the trajectories that a point vortex takes

around such a boundary. The authors then present explicit formulae for the conformal map

(from an appropriate preimage domain) to the exterior ofanyfinite number of gaps in the

wall. Therefore, by analogy, one should ask whether the above Stokes flow problem may

be similarly extended to the case where there aremorethan two gaps present in the wall.

We have investigated this and have found the simply and doubly connected cases (where

the wall admits one or two gaps) are rather special, and have been unable to generalise the

above analysis to a triply connected fluid domain. In particular, the loxodromic condition
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(5.9) can not be extended to a triply connected case. It should be noted that numerical

solutions can, of course, be found.

The special functionsP (ζ, ρ), K(ζ, ρ) andL(ζ, ρ) used in the analysis here have a close

connection to the Weierstrass sigma, zeta andP functions [61]. While the solutions may

be rewritten in the language of elliptic function theory, as Hasimoto [48] did, we believe

that for both theoretical and computational purposes, the approach we have taken here is

clearer and, as the analysis is self-contained, we have not had to invoke any results from

special function theory.

These solutions have been documented as a contribution to the mathematical theory of

Stokes flows and the solutions will become useful in a variety of different contexts. In the

following chapter, we will build on these solutions by incorporating the singularity model

of Crowdy and Or [1] in order to study the motion of a swimming micro-organism in the

same geometry.
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Chapter 6

Swimming in low Reynolds numbers

near a wall with two gaps.

6.1 Introduction

In chapter 4 we studied the motion of a swimming micro-organism in the presence of an

infinite flat wall with a gap. We derived exact expressions for the swimmer’s governing dy-

namical equations and from this we were able to find the swimmer’s subsequent evolution.

We also considered the position and stability of the stationary points of those dynamics,

and determined the associated bifurcations as the parameter,ε, was increased.

In this chapter we extend the study to the case where the wall admitstwo gaps. As in the

case of a swimmer by one gap, we aim to derive three ordinary differential equations for

the swimmer’s position,zd(t), and orientation,θ(t). These expressions will then be used to

deduce interesting features of the swimmer’s dynamics.

In chapter 5, we considered the slow viscous shear and stagnation point flows in the same

confined domain as we consider here. The far field velocities were represented by appro-

priate singularities at infinity. An advantage of the method is that it may be generalised

in a natural way to the case where the flow is driven by a set of singularities at a finite

position in the fluid, such as those of the Crowdy and Or [1] singularity structure which
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model a swimmer. We will therefore build upon the results found in chapter 5 to construct

the appropriate Goursat functions for a swimming organism within this confined domain.

As in chapter 5, the presence of the central plate means that there is a non-zero net force

on the wall. We account for this force by including appropriate logarithmic singularities in

the relevant Goursat functions.

6.2 Conformal mapping: the symmetric double gap.

Let the central plate occupy the interval[−r0, r0] and let the infinite walls lie along the real

axis where|x| > r0 + W . Hence, the central plate has a length2r0 while each gap has

width W and is at[±r0,±(r0 + W )]. These are parameters that we are free to specify.

We now introduce a conformal map,z(ζ), which is a slight variation to that given by (5.3).

The appropriate map is

z(ζ, ρ) = R

(
P (−ζ, ρ)2 − P (ζ, ρ)2

P (−ζ, ρ)2 + P (ζ, ρ)2

)

(6.1)

where, from here on, we suppress theρ dependence inz(ζ, ρ) for convenience. This map

associates the interior of an annulus0 < ρ < |ζ| < 1 with the fluid region and the real

numbersR andρ are found numerically so that

z(ρ) = r0 and z(1) = r0 + W. (6.2)

In this manner, the image of inner circle of the annulus,|ζ| = ρ, is the central plate. As

z(ζ) admits simple poles at the two pointsζ = ±i on the boundary of the outer circle of

the annulus, the image of this circle are the walls|x| > r0 + W extending out towards

infinity. It is known [60] that z(ζ) has the appropriate square root branch point behaviour

at ζ = ±ρ,±1 which are the preimages of the corners in physical fluid domain. Therefore,

using this map allows us to treatζ as a uniformization variable for the Goursat functions

for this problem, which may now be expressed as single-valued functions ofζ. This will
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simplify the analysis greatly.

Note also that we must assume that there exists a non-zero force on the central plate. The

expression for this force was given in chapter 5 by equation (5.2) as

2μi
∮

Γ

dH

ds
ds = 2μi

[
H
]

Γ
(6.3)

whereΓ is any closed contour encircling the central plate with positive orientation and the

square bracket denotes the change in the quantityH(z, z) = f(z) + zf
′
(z) + g′(z) as this

curve is traversed.

6.3 Swimming near two gaps.

In chapter 4 we were able to find the equations of motion for a low Reynolds number

swimmer in the vicinity of a single gap within the wall. We will now attempt to find the

dynamical system which describes the swimmer’s evolution when around two gaps.

6.3.1 The Goursat functions for swimming near a wall with two gaps.

Once we have introduced the conformal map, we will attempt to construct the Goursat

functions within the preimageζ-plane. Define

F (ζ) ≡ f(z(ζ)) and G(ζ) ≡ g′(z(ζ)) (6.4)

which must be analytic everywhere inside the annulus, except for at the positions of the

isolated singularities which model the swimmer. We have shown that the presence of the

force on the central plate necessitates a logarithmic singularity in the Goursat functions at

some point within it. They may therefore be decomposed as

F (ζ) = Fl log ζ + F̂ (ζ), G(ζ) = −F l log ζ + Ĝ(ζ) (6.5)
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where the coefficients of the logarithmic terms are again chosen so that the velocity is

single-valued everywhere in the fluid. Then, equation (6.3) gives the total force on the

central wall as

2iμ

[

Fl log

(
ζ

ζ

)

+ F̂ (ζ) + z(ζ)
F̂ ′(ρ2ζ−1)

z′(ρ2ζ−1)
+ Ĝ(ρ2ζ−1)

]

|ζ|=ρ

= −8πμFl. (6.6)

Once again the Stokes paradox does not present itself here as the force on the infinite wall

is equal and opposite to the force on the central plate. This crucial observation means that

a solution is not precluded by this paradox.

6.3.2 Determining the Goursat functions from the no-slip boundary con-

dition.

The fluid is stationary on both the infinite walls as well as the central plate. Considering

the walls first, we that on its primage,|ζ| = 1, the no-slip condition takes the form

− F (ζ) +
z(ζ)

z′(ζ−1)
F ′(ζ−1) + G(ζ−1) = 0 (6.7)

while on the innerρ-circle of the annulus, we have

− F (ζ) +
z(ζ)

z′(ρ2ζ−1)
F ′(ρ2ζ−1) + G(ρ2ζ−1) = 0. (6.8)

Next, substitution of ansatz (6.5) into (6.7) and (6.8) gives

− F̂ (ζ) +
z(ζ)

z′(ζ−1)

[
F lζ + F̂ ′(ζ−1)

]
+ Ĝ(ζ−1) = 0 (6.9)

and

− F̂ (ζ) +
z(ζ)

z′(ρ2ζ−1)

[
F lζ

ρ2
+ F̂ ′(ρ2ζ−1)

]

− 2Fl log ρ + Ĝ(ρ2ζ−1) = 0. (6.10)
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Making the substitutionζ 7→ ρ2ζ in (6.10) gives

− F̂ (ρ2ζ) +
z(ρ2ζ)

z′(ζ−1)

[
F lζ + F̂ ′(ζ−1)

]
− 2Fl log ρ + Ĝ(ζ−1) = 0 (6.11)

and so subtracting equation (6.9) from (6.11) gives the relation

F̂ (ζ) − F̂ (ρ2ζ) +
{
z(ρ2ζ) − z(ζ)

}
[

F lζ + F̂ ′(ζ−1)

z ′(ζ−1)

]

= 2Fl log ρ. (6.12)

However,z(ζ) is a loxodromic conformal map and hence satisfies the property

z(ζ) = z(ρ2ζ) for all ζ 6= 0. (6.13)

Therefore, relation (6.12) is reduced to

F̂ (ρ2ζ) − F̂ (ζ) = −2Fl log ρ (6.14)

and it is precisely this condition that allows us to find closed form analytic expressions for

the swimmer’s governing equations.

6.3.3 The form ofF̂ (ζ) andĜ(ζ).

In light of the special functionsK(ζ, ρ), L(ζ, ρ) introduced in chapter 5, the special func-

tion M(ζ, ρ) is defined by

M(ζ, ρ) = ζL′(ζ, ρ) (6.15)

and can be shown to satisfy

M(ζ−1, ρ) = M(ζ, ρ), M(ρ2ζ, ρ) = M(ζ, ρ) (6.16)

in a similar fashion to the equivalent relations forK(ζ, ρ) andL(ζ, ρ), also presented in

that chapter. From the definition ofM(ζ, ρ) and from the limiting form ofL(ζ, ρ), we have



6.3 Swimming near two gaps. 134

that

M(ζ, ρ) = ζ
d

dζ

[

−
1

(ζ − 1)2
−

1

(ζ − 1)2
+ analytic function

]

=
2

(ζ − 1)3
+

3

(ζ − 1)2
+

1

(ζ − 1)
+ analytic function.

(6.17)

Recall that in order to model a swimmer by this singularity configuration, we must allow

the functionf(z) to admit a simple pole, corresponding to the stresslet, at the swimmer’s

position. In addition to this, we must allow it to admit a third order pole at the swimmer’s

image position, too. As the conformal map preserves singularity structure, we must allow

F̂ (ζ) to also admit a simple pole atζd (wherez(ζd) = zd) as well as up to a third order pole

at1/ζd, the image of the swimmer in the annulus.

We have seen that the special functionsK(ζ, ρ), L(ζ, ρ) andM(ζ, ρ) are analytic functions

everywhere inside the annulusρ < |ζ| < 1 and that they also have first, second and third

order simple poles respectively. This means that they may potentially be useful functional

tools to model the swimmer, as they would provide the appropriate singularity structure

that the Goursat functions require. However, due to the condition (6.14) together with the

functional relations (5.21), (5.58) and (6.16) for K(ζ, ρ), L(ζ, ρ) andM(ζ, ρ) respectively,

we conclude that these are the only analytic functions that may be used here.

With this in mind, we deduce that̂F (ζ)

F̂ (ζ) = AM(ζζd, ρ) + BL(ζζd, ρ) + CK(ζζd, ρ) + DK(ζζ−1
d , ρ) + E (6.18)

whereA, B, C, D andE are constants to be determined. WithF̂ (ζ) written in this way,

the first three terms alloŵF (ζ) to admit a first, second and third order pole at the position

1/ζd while the fourth term is included to ensure thatF̂ (ζ) has a simple pole at the point

ζ = ζd. Finally, the constant term,E, may be set to zero without loss of generality due to

the additive degree of freedom inf(z).
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6.3.4 Determining the constants ofF̂ (ζ).

Using this form ofF̂ (ζ) in the condition (6.14) and using the relation

K(ρ2ζ, ρ) = −ζ−1K(ζ, ρ) (6.19)

(together with similar relations forL(ζ, ρ) andM(ζ, ρ) presented in chapter 5) gives the

condition

C + D = 2Fl log ρ. (6.20)

Next, note that nearζ = ζd, we may express the mapz(ζ) using its Taylor expansion as

z(ζ) = zd + z′(ζd)(ζ − ζd) + O(ζ − ζd)
2 + . . . (6.21)

or
1

ζ − ζd

=
z′(ζd)

z − zd

+ O(1) + . . . (6.22)

while using the limiting form ofK(ζ, ρ) given in chapter 5, we have that

K(ζζ−1
d , ρ) =

ζd

ζ − ζd

+ O(1) + . . . (6.23)

and so upon use of expansion (6.22) in this,

K(ζζ−1
d , ρ) =

ζdz
′(ζd)

z − zd

+ O(1) + . . . (6.24)

Therefore, near the swimmer’s physical position, the function

F (ζ) ∼
Dζz′(ζd)

z − zd

+ . . . (6.25)

As we require this to be stresslet of strengthλ, we must choose

D =
λ

ζdz′(ζd)
(6.26)

to ensure the stresslet singularity is of the correct strength.
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Next, it follows from equation (6.9) that

Ĝ(ζ−1) = F̂ (ζ) −
z(ζ)

z′(ζ−1)

[
F lζ + F̂ ′(ζ−1)

]
. (6.27)

Letting ζ 7→ 1/ζ and then taking the conjugate gives

Ĝ(ζ) = F̂ (ζ−1) −
z(ζ−1)

z′(ζ)

[
Fl

ζ
+ F̂ ′(ζ)

]

. (6.28)

Substituting the expression (6.18) for F̂ (ζ) into this results in

Ĝ(ζ) = AM(ζdζ
−1, ρ) + BL(ζdζ

−1, ρ) + CK(ζdζ
−1, ρ) + DK(ζ

−1

d ζ−1, ρ)

−
z(ζ−1)

z′(ζ)

[
Flζ + ζdAM ′(ζζd, ρ) + ζdBL′(ζζd, ρ)

+ ζdCK ′(ζζd, ρ) + Dζ−1
d K ′(ζζ−1

d , ρ)
]
.

(6.29)

Notice that the first term takes the leading order form

M(ζ−1ζd, ρ) = M((ζ/ζd)
−1, ρ) = −

ζd

ζ
M(ζ/ζd, ρ)

= −
ζd

ζ

[
2ζ3

d

(ζ − ζd)3
+ . . .

]

∼ −
2ζ3

d

(ζ − ζd)3
+ . . .

(6.30)

near the pointζ = ζd. Therefore,Ĝ(ζ) has a third order pole at this point, but this is exactly

the condition that is required of it in order to account for the quadrupole at the swimmer’s

position. Comparing this to the form ofg′(z) near the swimmer’s positionz = zd gives the

relation

A = −
λε2

ζ
3

dz
′(ζd)

3
(6.31)

which ensureŝG(ζ) has the correct quadrupole strength at the swimmer’s position.

We see that expression (6.29) for Ĝ(ζ) admits simple poles at the pointsζ = ±1,±ρ as

these are the zeros of the derivative of the map,z′(ζ). However, these are precisely the
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simple pole singularities thatG(ζ) is expected to admit at the sharp ends of the walls and

plate (i.e. the images ofζ = ±1,±ρ respectively). This is therefore consistent with the

form of the stream function near a sharp corner, as given by Dean and Montagnon [40]

in equation (3.12). Furthermore, the function also incorporates “image singularities” at an

infinite set of other points in theζ-plane, but as these are outside the annulus, they are

not physically relevant to the problem at hand. As a result,Ĝ(ζ) has exactly the correct

singularity structure needed insideρ < |ζ| < 1.

Expressions (6.26) and (6.31) give two of the five unknownsA, B, C, D, Fl while rela-

tion (6.20) provides one additional constraint. Two additional conditions may be found by

equating the coefficient of(z − zd)
−2 in Ĝ(ζ) to λzd, while setting the coefficient of the

simple pole,(z−zd)
−1, to zero. This ensures that the Goursat functions admit the appropri-

ate (stresslet-associated) dipole at the swimmer’s position while disallowing a simple pole

(a rotlet) to be present. This can be done by using expressions (6.20), (6.26) and (6.31) to

substitute forA, C, D and, upon using the residue theorem,B andFl may be determined

from the two conditions

λzd =
1

2πi

∮

Cδ

G(ζ)(z(ζ) − zd)
dz

dζ
dζ,

0 =
1

2πi

∮

Cδ

G(ζ)
dz

dζ
dζ

(6.32)

whereCδ is a small circle that encircles theζd in the annulus.

6.3.5 The blocking effect.

It can be shown that in the limit of vanishing central plate length, and henceρ → 0,

the functionsF̂ (ζ) andĜ(ζ) tend to the Goursat functions for the equivalent single gap

problem, as expected. The only difference between them, therefore, is in the logarithmic

term which is present in the two gap case but not in the single gap case.

Equation (6.20) shows that

Fl ∼ O

(
1

log ρ

)

(6.33)
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as the constantsC andD are generally of order unity. Therefore, this term vanishes expo-

nentially slowly asρ tends to zero. For example, whenρ = 10−10 (andr0 ≈ ρ), Fl ∼ 10−2

and hence is not negligible. As a consequence of this inverse logarithmic dependence, we

expect the convergence of the two-gap solution to the single gap solution to be extremely

slow.

6.4 Dynamical system of a swimmer near a wall with two gaps.

Once the above five constants have been found,F (ζ) andG(ζ) are then known. These

are then used to update the swimmer’s position, which varies as a result of its own hy-

drodynamic interaction with the boundaries. As this is the only method of propulsion for

the swimmers in question, we do not allow for any self propagation effects and hence the

swimmer’s velocity is taken to be only the finite part of the velocity

− f(z) + zf
′
(z) + g′(z) (6.34)

at z = zd. This means that the horizontal and vertical components of the swimmer’s

velocity are given by the real and imaginary part of the ordinary differential equation

dzd

dt
= −f0 + zdf 1 + g0 (6.35)

with f0, f1 andg0 defined by equations (4.3) and (4.4). The equation for the evolution of

head angle,θ(t) relates the local solid body rotation to the finite part of the local vorticity

generated by the flow atz = zd, or

dθ

dt
= −2Im[f ′(z)] = i(f1 − f 1). (6.36)

Thus, once the initial conditions(zd(0), θ(0)) for the swimmer and the length of the central

plate have been set, these three ordinary differential equations determine the subsequent

motion of the swimmer. We will now use them to study some interesting features of the

swimmer’s dynamics.
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6.4.1 Stationary points and their linear stability.

In chapter 4 we considered the dynamics of the swimmer in the vicinity of one gap and

found the stationary points together with their associated stability. We found that whenε

is small enough, there were four stable spiral points at the vertices of a rectangle. When

the swimmer was near such a point, it spiralled in towards it, ultimately remaining in that

position and, as the value ofε was increased, we noted some interesting bifurcations to that

stability.

We follow a similar strategy in order to find interesting dynamical features of low Reynolds

number swimming near to a wall with two gaps. However, the presence (and length) of the

central plate adds another parameter, and hence degree of complication, to the dynamical

system. As this widens the parameter space, we restrict our attention to two physically

relevant studies. Firstly, we consider the case where the parameter,ε, is fixed while the

separation of the two gaps is varied. This will demonstrate how the position and stability

of the stationary points are gradually affected by the presence of the other gap as they get

closer to each other. Furthermore, when the central plate length is very small, the blocking

effect on the dynamics of a swimmer around a single gap will become evident. Secondly,

we fix the plate length at some small value and consider the effect of varyingε. This will

demonstrate how the bifurcations which we have seen in the single gap study are affected

by the presence of a small solid boundary.

6.4.2 Varying the parameterε with fixed gap separation.

During the study of a swimmer around a wall with a single gap in chapter 4, we saw how

the stability of the stationary points changed asε, was varied. By increasing its size, we

noticed an interesting sequence of bifurcations which the swimmer underwent, including

instances where the stationary points changed from being stable to unstable in nature, as

well as the gluing of fixed orbits to form figure-of-eight trajectories.

It is interesting to see whether the addition of a small central plate would disturb this se-

quence of bifurcations. To this end, we keep the ends of the walls atx = ±1 and place a
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central plate of length0.1 symmetrically inside the gap, so that its ends are atx = ±0.05.

Note that keeping the plate length small is not a necessary detail for the analysis (indeed,

the conformal map is constructed to allow central plates of any length, as long as it “fits”

within the gap). Keeping the plate short enables it to be used as a small perturbation to the

single gap case, and therefore to isolate its effect on the bifurcations.

As ε is increased from 0.1 to 0.5, the structure of the stationary points allows for only four

stable points, (marked as the point C in the figures below), while the others remain unstable.

These stable points are again at the four corners of a rectangle, with their positions near to

the corresponding stable point locations within the single gap case (for the same value of

ε). Whenε = 0.1, the point C is a stable spiral; see Figure6.1. However, asε is increased,

it ultimately becomes unstable at the first Hopf bifurcation value

ε
(1)
h = 0.1722. (6.37)

At this stage, although the swimmer may not be attracted towards a single stagnation point,

it may nevertheless become trapped within an interesting figure-of-eight period orbit, see

Figure6.3. While these look qualitatively similar to the figure-of-eight trajectories which

arose from the dynamics around a single gap, there is a crucial difference between them:

the orbits within the single gap study were generated by the gluing of two fixed orbits

(each associated with an unstable stationary point). However, in this two-gap case there is

a stationary point within only one of the “lobes” of the figure-of-eight. If the governing dy-

namical system was dependent on the swimmer’s position only, then this transition from a

stable spiral to this more complicated orbit (which crosses over itself, without an additional

equilibrium point) asε is slightly increased would be impossible. However, recall that in

addition to the swimmer’s position, the governing dynamical system is also a function of the

swimmer’s orientation,θ. Hence, any fixed orbit of this system is, in fact, a closed curve

within the three-dimensional space(Re[zd], Im[zd], θ). The trajectories we see in Figure

6.3 are simply the projections of this three-dimensional curve onto the two-dimensional

(Re[zd], Im[zd]) plane. This is consistent with the fact that the three-dimensional fixed orbit

near to the stationary point C, drawn in Figure6.4, does not overlap itself.
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Figure 6.1: Hereε = 0.1. The point C (and its corresponding reflections in the real and
imaginary axes) are the only stable points.
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Figure 6.2: Hereε = 0.115. The points B and D, both of which are unstable points, are
near to each other. They meet and cancel each other out whenε reaches the value of0.1175.
The point C is still the only stable point.
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Figure 6.3: Two figure-of-eight fixed orbits whenε = 0.18 > ε
(1)
h . Each one is the projec-

tion on to the (Re[zd], Im[zd]) plane of the orbit which lies in the three-dimensional space
(where the third axis corresponds to the swimmer’s orientation,θ). Point F has emerged as
a result of a saddle-node bifurcation.
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Figure 6.4: Fixed orbit around the stagnation point C whenε = 0.18. It does not cross
itself. Projecting this onto the (Re[zd],Im[zd]) plane retrieves one of the figure-of-eight
orbits drawn in Figure6.3.
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As the value ofε is increased further, we notice another Hopf bifurcation point when

ε
(2)
h = 0.3360, (6.38)

where the stagnation point C becomes stable once again. The eigenvalues of the linear

stability of point C are shown in the dispersion diagram6.5asε is increased. The point C

is unstable (during which the trajectories follow a figure-of-eight orbit) when the real part

of its eigenvalue is positive and this occurs whenε
(1)
h < ε < ε

(2)
h .
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Figure 6.5: Eigenvalues,σ, for the linear stability of point C asε is increased. When
Re[σ]< 0, it is a stable spiral point while when Re[σ]> 0, the points becomes unstable.

Another interesting phenomenon occurs to the stagnation points asε increases from 0.1

to 0.5. There are specific values forε at which two stagnation points undergo a saddle-

node bifurcation, defined as a local bifurcation in which two equilibria of a dynamical

system collide and annihilate each other [62] or, alternatively, two equilibrium points are
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created. For example, recall that whenε = 0.1, the positions of the stationary points

are demonstrated in Figure6.1. However, asε is increased, the two points A and A2 get

closer together and ultimately collide on the real axis. When they do this, their effects

cancel each other out and, from then on, there are no more stagnation points in either of

the two positions. Figure6.6 shows how the saddle-node bifurcation process evolves asε

is increased.
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Figure 6.6: A saddle point bifurcation: the points A, A2 and A3 all lie on the horizontal
axes inside the gaps. Any swimmer placed inside a gap with initial orientationθ = π/2
will only swim horizontally. Here we chart the horizontal swimming velocity as a function
of its position asε is increased. Botḣθ and Im[żd] are zero at all times and so a stagnation
point is attained when the horizontal velocity is zero. We see that whenε approaches the
valueεm = 0.3183, A and A2 cancel each other out. This is an example of a saddle-node
bifurcation.

The points B and D also meet asε is increased to the value ofε = 0.1175 and again

cancel each other out in the process. This can be seen in Figure6.2, whenε = 0.115 and

therefore shows the positions of B and D just before they meet. Shortly after this, the system

undergoes another saddle-node bifurcation on the real axis within the gap, creating two
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more stagnation points: the point F emerges just above the gap (together with its reflection

in the real line) and can be seen in Figure6.3. Finally, whenεs = 0.4343, the points C and

F meet and also cancel each other out. Once this has happened, E and A3 (both of which

are unstable) are the only remaining stagnation points left in the fluid, as is seen in Figure

6.7.

A
3

E

Figure 6.7: The positions of the only remaining stationary points whenε > εs = 0.4343
(hereε = 0.5), and all points are unstable. There are no more saddle-node bifurcations as
ε increases further.

6.4.3 Varying gap separation with fixedε.

We now fix the value ofε = 0.1 and begin by keeping the gaps, each of unit width, away

from each other at large distances. We find that the stationary points are in the same position

(relative to the gap’s position) as in the single-gap study: in the case wherer0 = 5, there

are four stable points at(5.5 ± 0.82 ± 0.24i) each of which are stable spiral points. There

are also two saddle points directly above the center of the gap at the points(5.5± 0.70i) as

well as at the three unstable stagnation points on the real line between the edges of the gap

at(5.5, 5.5±0.41). In addition to these points, which are present around both gaps, there is
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another unstable stagnation point both above and below the origin (the center of the plate),

at the points(±0.1i). These stationary points are depicted in Figure6.8 where the stable

spiral points are highlighted. Figure6.9 shows a magnified view of one of the gaps and

labels the stagnation points for future reference. The point E is the (unstable) stagnation

point that appears directly above the center of the plate.

Figure 6.8: The stationary points around two widely separated gaps (r0 = 5) with unit
width. The stars highlight the stationary points which are stable while the crosses corre-
spond to unstable stagnation points.ε is fixed at 0.1.
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Figure 6.9: A close-up view of the stationary points in Figure 6.8 withr0 = 5. Points C
and D are stable spiral points, B is an unstable saddle point while the others are unstable
points. Point E (not shown) is on the imaginary axis above the center of the plate and is an
unstable point.

An interesting phenomenon occurs as the distance between the gaps is decreased. The un-

stable saddle point, B, and the stable point D move towards each other and, asr0 approaches

the value

r0
(1)
h = 0.06446, (6.39)

the point D undergoes a Hopf bifurcation and becomes unstable. When the gap is decreased

further, (andr0 ≈ 0.016), they collide (a saddle-node bifurcation) and their effects cancel

each other out. See Figures6.10- 6.12.

Whenr0 is decreased further to the value of2×10−5, two new stationary points are “born”

on the imaginary axis directly above the (small) central plate. Both of these are unstable
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Figure 6.10: Stagnation points as the length of the central plate diminishes. Here we have
r0 = 0.1 > r

(1)
h and the stagnation points have the same stability structure as those in Figure

6.8. The presence of the other gap, however, moves them off slightly off the “standard”
positions, as seen in Figure6.8.
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Figure 6.11: Herer0 = 0.02 < r
(1)
h , just before points B and D meet and cancel each other

out during a saddle-node bifurcation. Here, the stability of point D has changed from a
stable spiral to that of an unstable spiral.
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Figure 6.12: Herer0 = 0.01, just after points B and D have met.
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points; one of which, E3, is a saddle point which moves upwards asr0 is further decreased

to zero, while the other, E2, is an unstable point which moves downwards in the same limit.

Whenr0 is taken to be extremely small (at a value of10−16), the saddle point E3 tends to

the position of the saddle point that we have seen on the imaginary axis in the single-gap

study; see Figure6.13- 6.14.

It is interesting to note that due to the blocking effect, even an exponentially smallr0 will

give rise to a slight disturbance in the position of the stationary points when compared to

the case where there is no wall at all. Indeed, this phenomenon allows a number of new

stagnation points to appear within the flow, as highlighted in Figure6.14.

C

A
3AA

2

E

E
3

E
2

Figure 6.13: Asr0 is decreased further to2 × 10−5, two new points are born on the imag-
inary axis. The upper stagnation point, E3 is an unstable saddle point while the lower
stationary point, E2 is an unstable point.
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Figure 6.14: Even whenr0 is exponentially small, the blocking effect (top figure) ensures
that the flow is altered from the single gap counterpart, (bottom figure), wherer0 is exactly
zero. The effect of the blocking effect is highlighted by the dotted circle.
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6.5 Summary

We have extended the ideas of chapter 5 to model a swimming micro-organism moving in

the vicinity of an infinite wall with two symmetric gaps. By building on the Crowdy and

Or [1] model for such a swimmer, we have been able to determine the flow and note some

interesting dynamical features of the system. Due to the close agreement which this model

has with experimental findings for a swimmer near a flat wall without gaps, we believe that

the dynamics presented here provide a predictive theory for how a similar swimmer would

evolve near the present confined geometry in three dimensions.

The dynamics presented chapter 4 for a swimmer near an infinite wall with only one gap

experienced some interesting phenomena such as gluing, saddle-node and Hopf bifurca-

tions asε was increased. In this case, however, the addition (and length) of a central plate

introduces an extra variable which widens the parameter space. We have therefore focused

on two limits which have exposed some interesting dynamical features of the system.

By placing a small plate symmetrically inside a gap betweenx = ±1, we have been able

to see how this introduction affects the bifurcations of the single gap case asε is increased.

For smallε, we saw four stable-spiral stagnation points which are in similar positions to

their single gap counterparts. Asε was increased toε(1)
h , these points underwent a Hopf

bifurcation, after which a swimmer may have its trajectory trapped in a figure-of-eight

pattern indefinitely. We have noted that while they may look qualitatively similar to the

figure-of-eight trajectories of the single gap swimmer in chapter 4, they did not form as a

result of a gluing bifurcation of two fixed orbits (like the single gap swimmer did). Asε

was made even larger, the dynamics underwent a second Hopf bifurcation atε = ε
(2)
h , after

which the four points became stable once again. Ultimately, asε approachedεs, each of

these stable points were annihilated during a saddle-node bifurcation. Afterε > εs, there

were only four other stagnation points left - one on either side of the central plate on the

real axis, and one above and below the central plate on the imaginary axis - none of which

were stable. Recall that asε was made large in the single-gap case, the two remaining

stagnation points on the imaginary axis (one above and one below the origin) were stable.
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This therefore further illustrated how the stability of the single gap stationary points were

altered by the introduction of a small central plate.

Turning to the other limit, we studied the effect of the two gaps on each other by controlling

their separation and determining the dynamics around each (for a fixed value ofε). We saw

that when the gaps were sufficiently separated, each had little effect on the other and hence

a swimmer near one of the gaps behaved in much the same way as it did in the single gap

study. As the gaps’ separation was decreased, the system underwent a number of saddle-

node bifurcations, resulting in the annihilation of stable-spiral points and the creation of

new unstable saddle points. In the limit of exponentially small plate length, we saw a

similar stagnation point structure to that of the single gap: there were four stable spiral

points at the four corners of a rectangle; two unstable points near the ends of the gaps on

the real axes and two unstable saddle points above and below the origin, on the imaginary

axis. All of these points were in much the same position as their single gap counterparts.

The key difference was manifested in the stationary points around the origin - there were

eight new stagnation points around the exponentially small wall. This demonstrated the

blocking effect, where an extremely short wall had a non-negligible effect on the flow.

However, all of these points were unstable and no trajectories were found to accumulate at

any of them.
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Chapter 7

Numerical solutions to Stokes flows in

complex geometries.

7.1 Introduction

In previous chapters, we have employed various methods of complex analysis to find exact

solutions to Stokes flows near walls with gaps. A common feature of the fluid domains in

question was that they all admitted sharp corners. By building on the form of the stream

function in the vicinity of these corners, as first proposed by Dean and Montagnon [40],

we deduced the singularities that the Goursat functions were forced to admit there. Con-

formal maps which had the same singularity structure as the Goursat functions were then

introduced which allowed us to utilise a uniformization variable. Doing this meant that

the corresponding Goursat functions in the preimage domain of the conformal map were

single-valued and analytic. The problem was then reduced to determining these analytic

functions and we were able to call upon a variety of complex variable techniques in order

to do this. For example, by virtue of the fact that the conformal map of chapter 5 was

loxodromic, we were able to find the Goursat functions explicitly and find exact solutions

for the uniform shear and stagnation point flow around a wall with two gaps.

A natural question to ask is whether all Stokes flows near domains of double, or even

higher, connectivity are solvable using the same techniques. We have studied this and have
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found that this is not the case: not all conformal maps between annuli and doubly connected

fluid regions with sharp corners are loxodromic and so, for some domains, the techniques

presented in chapter 5 would not necessarily generate exact solutions. While numerical

solutions have been used to solve problems which would otherwise be intractable to solve

analytically [63], the presence of boundary discontinuities at sharp corners often makes it

hard to find solutions even by numerical means. However, the introduction of a conformal

map which has the same singularity structure as the Goursat functions in the fluid domain

means that, even if they can not be found exactly, their counterparts in the preimage domain

will be analytic and free of branch cuts. These problems therefore often lend themselves

well to study using numerical techniques.

In this chapter we will demonstrate how the combination of conformal mapping theory

with numerical methods may be used to solve Stokes flow problems near various doubly

connected fluid regions. By retrieving a result found by Davis and O’Neill [54] for the

uniform shear flow past a cylinder above a wall, we demonstrate a numerical procedure

which we shall use in other, more complicated, fluid geometries. Then, by combining this

numerical approach with the ideas presented in earlier chapters for the flow around sharp

edges, we find the shear flow around a finite vertical, and inclined, plate above a wall. We

will demonstrate the formation of viscous eddies in such regions and show that this has

an interesting relevance to the problem considered by Moffatt [64] for the viscous flow

in a wedge. Finally, we apply a similar method to find the viscous flow generated by the

Weis-Foghmechanism for lift generation [65].

7.2 Slow viscous shear flow past a cylinder above a wall.

We begin by presenting a new approach to the problem of an oncoming slow viscous uni-

form shear flow past a cylinder placed above an infinite flat wall. The cylinder is centered

on the imaginary axis at a heightα and has radiusr < α. A viscous fluid fills the upper

half plane above the wall and exterior to the cylinder where, on both, the no-slip condition

holds and so the fluid is stationary. We also assume that the cylinder is held in place and

can oppose any fluid force that is exerted on it.
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This problem has been previously solved by Davis and O’Neill [54]. With the use of bipolar

coordinates, they map the fluid domain to the region between two parallel lines and solve

the transformed biharmonic equation there with the use of Fourier transforms. We shall

refer to their solution as a basis of comparison to ours.

As before, we seek the stream function in terms of a complex variablez with the general

solution (2.13) where, again,f(z) andg(z) are two analytic functions everywhere in the

fluid domain, except perhaps at specified positions where singularities are imposed in order

to model the problem at hand. Assume that in the far field the fluid is driven by a uniform

shear flow with velocity

(u, v) = (2Uy, 0) (7.1)

with U = 1 from here on and soψ(z, z) → y2 asz → ∞+. We aim to find the flow

structure everywhere in the fluid and study any interesting phenomena that occur as the

cylinder is brought down towards the plane.

7.2.1 Conformal map: a cylinder above a plane.

Next, let us consider the physical fluid domain as the image of an annulusρ < |ζ| < 1 in

a preimageζ-plane under a conformal mapz ≡ z(ζ). The form of this will be a M̈obius

map, as this maps one circle onto another (the real axis can be thought of an as arc of a

circle of infinite radius). The specific M̈obius map can be written as

z(ζ) = A

(
ζ − i
ζ + i

)

(7.2)

whereA ∈ C and the radius of the annulus,ρ, are found by imposing the condition that

the unit disk,C0, is mapped to the infinite (horizontal) no-slip wall while the innerρ-circle,

C1, in the annulus is mapped to the boundary of the cylinder. Upon doing so, it is shown in

appendixC that

A = −i
√

α2 − r2, ρ =

√
1 + δ

1 − δ
, δ = −

√
α2 − r2

α
. (7.3)
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Written in this way, the origin is mapped to a point inside the cylinder and the pointζ = −i

is mapped to infinity. This is the appropriate conformal Möbius map which associates the

preimage annulus to a cylinder of radiusr centered atz = iα above the plane.

7.2.2 Constructing the Goursat functions.

As the fluid flows past the cylinder, it exerts a force on it. In chapter 5, we showed that the

net force around any object bounded by the curveΓ in the fluid is given by

2iμ
[
H
]

Γ
(7.4)

whereH(z, z) = f(z) + zf
′
(z) + g′(z). Once we have determined the flow, we will use

this expression to compute the force on the cylinder.

Defining to Goursat functions in theζ-plane by

F (ζ) ≡ f(z(ζ)), G(ζ) ≡ g′(z(ζ)) (7.5)

then, apart from the singularity at infinity which drives the background shear flow, these

functions are completely analytic inside the annulus and hence admit a Laurent series in

ζ. As these Laurent series are single-valued and hence give no contribution to the force,

we must also allowH(z, z) to take a multi-valued component. Thus, they also incorporate

a logarithmic contribution, the coefficient of which is proportional to the force on each of

the solid boundaries, as in chapter 5. The force on the cylinder is equal and opposite to the

force on the wall.

Next we know that as we move away from the cylinder and the wall, the velocity tends

to that of a uniform shear flowu + iv = 2y, which is equivalent tof(z) → iz/2 and

g′(z) → −iz. As these are linear functions ofz then, given the form of the conformal map

(7.2), we see that

F (ζ) =
A

ζ + i
and g′(z(ζ)) = −

2A

ζ + i
(7.6)
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asζ → −i. With this in mind, we may decompose our Goursat functions further as

F (ζ) = Fl log ζ +
F̂ (ζ)

(ζ + i)
(7.7)

and

G(ζ) = −F l log ζ +
Ĝ(ζ)

(ζ + i)
(7.8)

where

F̂ (ζ) =
N∑

j=0

Fjζ
j +

N∑

j=1

F−j
ρj

ζj
, (7.9)

and whereĜ(ζ) admits a similar Laurent series too. Notice that we have scaled the coef-

ficients within the second summation; without doing so, it would be numerically unstable

when evaluated on the inner circle of the annulus where|ζ| = ρ. Finally, we may choose

F0 = 0 (7.10)

without loss of generality due to the additive degree of freedom in the functionf(z).

7.2.3 The no-slip boundary conditions.

The velocity of the fluid on any boundary is zero and hence is also zero on the correspond-

ing boundary in theζ plane. Therefore we have

u + iv = 0 on ζ ∈ C0, C1. (7.11)

Let us first consider the velocity on the unit circleC0, on which ζ = 1/ζ. We have the

relations

z(ζ) = A

(
ζ − i
ζ + i

)

and z′(ζ) =
2iA

(ζ + i)2
(7.12)

and hence
z(ζ)

z′(1/ζ)
= −

iA

2Aζ2
(ζ − i)(ζ + i) =

i
2ζ2

(ζ2 + 1) (7.13)
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where we have used the fact thatA is purely imaginary andsoA = −A. Next, using the

chain rule we differentiate expression (7.7) to get

f ′(z) =
1

z′(ζ)

[
Fl

ζ
+

F̂ ′(ζ)

(ζ + i)
−

F̂ (ζ)

(ζ + i)2

]

(7.14)

and hence

f ′(z) =
1

z′(1/ζ)

[

F lζ +
iζF̂ ′(1/ζ)

(ζ + i)
+

ζ2F̂ (1/ζ)

(ζ + i)2

]

. (7.15)

Putting this into the no-slip boundary condition, we have that

0 = −
1

(ζ + i)
F̂ (ζ) +

i(ζ2 + 1)

2ζ2

[

F l +
iζF̂ ′(1/ζ)

(ζ + i)
+

ζ2F̂ (1/ζ)

(ζ + i)2

]

+
iζĜ(1/ζ)

(ζ + i)
(7.16)

Multiplying this expression by(ζ + i) results in

0 =
1

2ζ
(1 + ζ2)(1 − iζ)Fl − iζF (1/ζ) −

i
2ζ

(1 + ζ2)ζF ′(ζ)

+
1

2
(1 + iζ)F (ζ) + G(ζ).

(7.17)

We now consider the boundary condition onC1, the inner circle of the annulus on which

we have ζ = ρ2/ζ. Note that here it is convenient to write

ζ = ρη (7.18)

and consider the curve where|η| = 1. We then have that

z′(ρ/η) =
2iAη2

(η + iρ)2
(7.19)

and therefore arrive at the relation

z(ρη)

z′(ρ/η)
=

i
2η2

(
ρη − i
ρη + i

)

(η + iρ)2. (7.20)
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Also on this curve we have that

f ′(z) =
1

z′(ρ/η)

[
ηF l

ρ
+

iηF̂ ′(ρ/η)

(η + iρ)
+

η2F̂ (ρ/η)

(η + iρ)2

]

. (7.21)

Using these in the no-slip condition onC1 gives

0 = − i(1 − iρη) log ρ2F l +
1

2ρη

(
ρ + iη
ρ − iη

)

(1 − iρη)3Fl

+
1

2

(
ρ + iη
ρ − iη

)

(1 − iρη)F̂ (ρη) −
i
2

(
ρ + iη
ρ − iη

)

(1 − iρη)2F̂ ′(ρη)

− iη

(
1 − iρη

ρ − iη

)

F̂ (ρ/η) + Ĝ(ρη).

(7.22)

Equations (7.16) and (7.22) constitute two functions relations on thêF (ζ) andĜ(ζ) and

hence provide a linear relation between their Laurent coefficients. Furthermore, the two far

field conditions (7.6) mean that

F̂ (−i) = A and Ĝ(−i) = −2A. (7.23)

7.2.4 Numerical procedure

These conditions can be used together to find the coefficients ofF̂ (ζ) andĜ(ζ) either by

a spectral analysis or by the method of least squares. For the former, as the system is

linear in the coefficients of the Laurent series, the functions may be found from a direct

comparison of the powers ofζ from the no-slip conditions (7.16) and (7.22) together with

the far field conditions (7.23). In the latter, the method of least squares enforces the no-

slip conditions by attempting to “fit” a set of Laurent coefficients to the right hand side of

equations (7.16) and (7.22), such that they also satisfy the far field conditions, at a set of

collocation points distributed across both boundaries. In doing so, these conditions will not

be satisfied exactly; the method of least squares converges to a solution by minimising the

sum of the squares of the errors encountered at each collocation point.
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z = 0.6 + 0.3i z = 1 + i
Davis andO’Neill 0.0449101332 +0.0215225474i 0.1500124809 -0.0884469812i
Spectralanalysis 0.0449101331 +0.0215225474i 0.1500124808 -0.0884469811i
Leastsquares 0.0449101331 +0.0215225473i 0.1500124808 -0.0884469810i

Table 7.1: Comparison of velocities as worked out by Davis and O’Neill [54] , as well as
those computed using a spectral analysis and a least squares analysis. The results are the
same to within an accuracy ofO(10−10) of each other.

Davis and O’Neill [54] have presented a solution to this problem using bipolar coordinates

together with Fourier transform methods. Their solution therefore serves as a useful check

on both of the above numerical methods. Indeed the use of a spectral and least squares

method to determine the Laurent coefficients ofF̂ (ζ) andĜ(ζ) yields extremely similar

results to Davis and O’Neill [54]. This is demonstrated in Table7.1 by comparing the

velocities at a few locations inside the fluid, as computed by a spectral analysis, a least

squares method and finally from the form of the velocity given by Davis and O’Neill [54].

Both spectral and least squares methods produce accurate results forN = 64 coefficients

of the Laurent series together with 128 collocation points. These choices of parameters will

also be appropriate when solving similar problems of Stokes flows past multiply connected

fluid regions, including those with sharp corners. As the above results for the shear flow

past a cylinder differ from each other only in their tenth decimal place, we have confidence

that these numerical methods may also be useful in these (more complicated) geometries.

7.2.5 Results: shear flow past a cylinder above a wall.

We now consider the flow in the vicinity of the cylinder for a variety of different configu-

rations. When the cylinder is placed far away from the plane, the streamlines pass above

and below the cylinder as they would if it was placed in free space with an oncoming shear

flow, see Figure7.1. As the cylinder is moved closer to the plane, Figure7.2, the presence

of the wall attracts streamlines downwards towards it in the fore and aft of the cylinder.

As the cylinder is brought further down towards the plane, we see the same behaviour as
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Figure 7.1: Here the cylinder is far away from the no-slip wall and hence the wall’s effect
on the fluid around the cylinder is minimal. The cylinder is centered above the origin with
heightα = 2.7 andr = 0.4. The streamlines are attracted slightly downwards towards the
plane before and after the cylinder.
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exhibited by Davis and O’Neill [54]. The authors find that when the gap width is less than

(approximately) 0.865 times the cylinder radius the streamlines separate and single eddies

are formed. Placing the cylinder just above this critical distance ensures that no eddies

appear, as shown in Figure7.3. Lowering the cylinder further to just below the critical

height, we see that a single eddy is formed adjacent to the plane at the base of the cylinder

as shown in Figures7.4 and7.5. This is consistent with the results of Davis and O’Neill

[54].

Figure 7.2: As the cylinder is brought downwards, the effect of the wall on the fluid around
the cylinder becomes more evident. Here,α = 0.8 andr = 0.4.

These results demonstrate that both the spectral analysis and least squares method yield,

to excellent accuracy, the same results as those found by Davis and O’Neill [54] using

the Fourier transform methods. The success of the authors’ method relied on the specific

geometry of the domain which enabled exact solutions to be found. However, it is not
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Figure 7.3: Streamlines for when the ratio of gap width to cylinder radius is 0.935. Eddies
have not formed yet.

immediately clear how their method would be adapted to accommodate, say, a sharp edge

in the fluid domain. It is this that we turn our attention to now. By using the methods that we

have developed in previous chapters regarding sharp corners together with the numerical

techniques we have demonstrated here, we will attempt to find numerical solutions to the

Stokes flow past a finite length plate above a wall.

7.3 Shear flow past a finite perpendicular plate above a wall.

We now consider a similar problem in which a uniform shear flow is present above an

infinite no-slip wall but, instead of a cylinder, a finite length plate is placed vertically above,

and perpendicular to, the wall. Assume that the lower end of the plate is at heightz = ia

while the upper end is atz = ib = i(α + L), so that it has lengthL. Unlike the case of

the cylinder above the wall, the sharp ends of the plate present an additional complication
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Figure 7.4: Eddies begin to form as the cylinder is brought towards the plane. Hereα = 0.5
andr = 0.4.

Figure 7.5: When the ratio of the gap width to cylinder radius is much less than the critical
value of 0.865 (as found by Davis and O’Neill [54]) the eddies become fully formed. Here
α = 0.43 andr = 0.4.
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which must be resolved in order to accurately find the flow. We take the same approach

as we have done in previous chapters, namely that the Goursat functions take the form

f(z) ∼ a0(z − z0)
1/2 andg′(z) ∼ b0(z − z0)

−1/2 in the vicinity of a2π-corner atz = z0

(wherea0 andb0 are constants). Modelling the exact nature of this singularity is essential

in guaranteeing convergence of solution at points near to the ends of the plate. Therefore

the ansatz for the Goursat functions will be chosen in such a way that it exploits the above

behaviour near these points.

7.3.1 Conformal mapping: finite plate above a wall

We shall consider the physical fluid region to be the image of the same annulus as used in

the case of a cylinder above a plane. The appropriate map can be constructed in terms of

special transcendental functions,ω(ζ, γ), which consists of an infinite products depending

only on the inner radius of the annulus,ρ. The required map is then represented as

z0(ζ) = R
ω(ζ, γ1)

ω(ζ, γ2)
(7.24)

whereR is a complex constant scaling parameter andγ1 andγ2 are taken to be two distinct

points in the closure of the annulus [60]. While this map can be extended to any number of

plates (constructing a map to a wall withn plates requires the same connectivity inside the

unit disk and hence will be the image of a unitζ-disk withn holes inside), the form of the

map for the current study requires that

ω(ζ, γ) = −γC−2P (ζ/γ, ρ) (7.25)

where

P (ζ, ρ) = (1 − ζ)
∞∏

k=1

(1 − ρ2kζ)(1 − ρ2kζ−1) (7.26)

andC =
∏∞

k=1(1 − ρ2k). Full details of this map are discussed by Crowdy and Marshall

in [58, 60]. There are a few notable properties of this function. Firstly, it is clear to see

thatω(ζ, γ) has a simple zero atζ = γ and hence the map (7.24) admits a simple zero at

ζ = γ1 and a simple pole atζ = γ2. Therefore, if we choose|γ1| = |γ2| = 1, then since
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the map has a zero and a simple pole on the unit disk, it follows thatC0 is mapped to a line

that passes through the origin and infinity. Secondly, it will also map the inner circle,C1,

to a finite length radial plate emanating from the origin in thez-plane. By choosing

γ1 = 1, γ2 = −1, R ∈ R− (7.27)

we have that the pointζ = 1 is mapped to the origin, while the pointζ = −1 is mapped

to infinity. Also, the image of the interior of the annulus is the right half plane, except

for a finite plate which lies purely on the real axis. The length of this plate,L, and its

minimum distance away from the wall will be determined by an appropriate choice ofR

andρ. Indeed, these numbers are found numerically from the two equations

z(ρ) = a and z(−ρ) = b (7.28)

using Newton’s method, where the numbersa < b define the start and end points of the

plate. Lastly, note that this map does not satisfy the loxodromic condition (5.9) and so the

analytic methods presented in chapters 5 and 6 are not applicable to this problem.

OnceR andρ have been found, we then rotate the above map by an angle ofπ/2 counter-

clockwise in order to ensure that the unit disk is mapped to the real line. The required

conformal map is then given by

z(ζ) = iz0(ζ) = −iR
P (ζ, ρ)

P (−ζ, ρ)
. (7.29)

Note that we may write this as

z(ζ) =
ẑ(ζ)

ζ + 1
(7.30)

where we have used the fact thatz(ζ) admits a simple pole atζ = −1. Hereẑ(ζ) is given

by

ẑ(ζ) = −iR
(1 − ζ)T (ζ, ρ)

T (−ζ, ρ)
with T (ζ, ρ) =

∞∏

k=1

(1 − ρ2kζ)(1 − ρ2kζ−1). (7.31)
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It also follows from this that the derivative of the conformal map is given by

z′(ζ) =
ẑ′(ζ)

(ζ + 1)
−

ẑ(ζ)

(ζ + 1)2
(7.32)

where, using some elementary manipulations, it is readily seen that

ẑ′(ζ) = −iR

[

−
T (ζ, ρ)

T (−ζ, ρ)
+

(1 − ζ)T ′(ζ, ρ)

T (−ζ, ρ)
+

(1 − ζ)T (ζ, ρ)T ′(−ζ, ρ)

T (−ζ, ρ)2

]

,

T ′(ζ, ρ) = T (ζ, ρ)
∞∑

k=1

ρ2k

[
1

ζ2(1 − ρ2kζ−1)
−

1

(1 − ρ2kζ)

]

.

These are the expressions that will be useful when defining the equations that need to be

solved in order to find the appropriate Goursat functions.

7.3.2 Constructing the Goursat functions

Using the map we may, again, define the Goursat functions in theζ-plane by the relation

F (ζ) ≡ f(z(ζ)), G(ζ) ≡ g′(z(ζ)). (7.33)

We know that at a far distance from the plate and plane, the fluid motion tends to a uniform

shear flow and hence the stream function for this problem must converge toy2. We have

seen that this is equivalent to requiring that the Goursat functions have simple poles at

infinity and, specifically, they must take the far field form off(z) → iz/2 andg′(z) → −iz.

As a simple pole in thez-plane corresponds to a simple pole in theζ-plane, we allowF (ζ)

andG(ζ) to both admit simple poles atζ = −1. Additionally, our choice of parameters

ensured that the two points in the annulus atζ = ±ρ are mapped to the two ends of the

plate. Recall thatF (ζ) will be regular whileG(ζ) will admit simple poles at these points.
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Putting these properties together, we assume that

F (ζ) = Fl log ζ +
F̂ (ζ)

(ζ + 1)

G(ζ) = −F l log ζ +
Ĝ(ζ)

(ζ + 1)(ζ2 − ρ2)

(7.34)

where we have ensured that the functions behave appropriately near the three singularity

points corresponding to infinity and the two edges of the plate in the fluid domain. As

F̂ (ζ) andĜ(ζ) are analytic everywhere inside the annulus, they admit a Laurent series as

in (7.9). Also, given the far field conditions on the Goursat functions, it follows that

F (ζ) → R
T (−1, ρ)

T (1, ρ)
and G(ζ) → −2R

(1 − ρ2)T (−1, ρ)

T (1, ρ)
(7.35)

asζ → −1.

7.3.3 The no-slip boundary conditions

Next we refer to the no-slip condition on the plate as well as on the plane. Therefore, on

the corresponding curvesC0 andC1 in theζ plane, we have the condition that

0 = −F (ζ) +
z(ζ)

z′(ζ)
F ′(ζ) + G(ζ) (7.36)

First consider the unit diskC0 where therelationζ = 1/ζ holds. Differentiating the first

expression of (7.34) gives

f ′(z) =
1

z′(1/ζ)

[

F lζ +
iζF̂ ′(1/ζ)

(ζ + i)
+

ζ2F̂ (1/ζ)

(ζ + i)2

]

(7.37)

and similarly

G(1/ζ) = Fl log ζ +
ζ3Ĝ(1/ζ)

(ζ + 1)(1 − ρ2ζ2)
. (7.38)
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Putting this together, we see that after some arrangement the boundary condition on the

unit disk in the annulus is

−Ĝ(ζ) = −ζF̂ (1/ζ) +

[
(1 + ζ)z(1/ζ)

ζz′(ζ)

]

Fl +

[
z(1/ζ)

z′(ζ)

]

F̂ ′(ζ)

+

[

−
z(1/ζ)

(1 + ζ)z′(ζ)

]

F̂ (ζ)

(7.39)

while onC1, whereζ = ρ2/ζ, the velocity condition becomes

0 =

[

−
2ρ2

η2
log ρ(η + ρ)(1 − η2)

]

Fl +

[
ρz(ζ)(η + ρ)(1 − η2)

η2z′(ρ/η)

]

F l

+

[

−
ρ2(η + ρ)(1 − η2)

η3(1 + ρη)

]

F̂ (ρη) +

[
ρ2(1 − η2)z(ρη)

η2z′(ρ/η)

]

F̂
′
(ρ/η)

+

[

−
ρ2(1 − η2)z(ρη)

η(ρ + η)z′(ρ/η)

]

F̂ (ρ/η) + Ĝ(ρ/η).

(7.40)

Together with the far field conditions (7.35), the no-slip conditions (7.39) and (7.40) are

used to find the coefficients of the Laurent expansions ofF̂ (ζ) andĜ(ζ). Using the same

method that was demonstrated for the shear flow past a cylinder over a plane, we do this

either by a spectral analysis or by a least squares method.

7.3.4 Results: shear flow past a finite plate above a wall.

We will now look at the solutions of the above equations with their generated streamlines.

As the strength of the shear flow is constant, the only parameters we vary area andb which

determines the length and position of the plate. We begin by placing the plate far away

from the wall, so that it has little effect. The streamlines pass by the wall in a similar

fashion to if the plate was it a free space shear flow. The effect of the wall, while being

weak, nevertheless provides a slight downwards attraction towards it, as it did in the case of

a cylinder above a wall. This is shown below in Figure7.6. As the plate is brought nearer

to the wall, the effect of the wall becomes more apparent in its attraction of streamlines;

see Figures7.7and7.8.
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Figure 7.6: When the plate is far away from the wall, the streamlines behave similarly to
when in a free space shear flow past a plate. Herea = 2 andb = 3.

Figure 7.7: When the plate is brought further down, the effect of the wall becomes more
evident and streamlines are pulled downwards towards it. Herea = 1 andb = 2, and so
the plate is unit length.
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Recall that in the case of a cylinder instead of a plate, single eddies are formed when the

cylinder is brought close to the plane. We saw that the closer the cylinder was to the plane,

the larger the eddies became. The same phenomenon occurs in the case of the plate above

a wall. Notice that in the above two examples, while the wall had a slight effect on the

streamlines, they did not separate and thus no eddies were created. However, as the plate

is brought close to the wall, we see a single viscous eddy being formed on each side of the

plate. The eddy increases in size as the gap between the plate and the wall is reduced to

zero. This is illustrated in the Figures7.9-7.11below.

Figure 7.8: The plate is of unit length and the gap width is 0.7. The effect of wall becomes
even more pronounced as the plate is brought down further. The plate has unit length.

7.3.5 Limiting case: diminishing gap width.

The method of least squares provides the coefficients of the Laurent series of the Goursat

functions which satisfy conditions (7.35), (7.39) and (7.40). When the plate is brought

down towards the wall, the gap width decreases and the fluid domain approaches one that

has a perpendicular corner. The boundaries of such domains are associated with disconti-

nuities and so it is necessary to increase the number of collocation points near the contact
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Figure 7.9: Eddies begin to form as the plate becomes close to the wall. Here, the gap
width is0.5 and the plate’s length is1.5.

Figure 7.10: Here the gap between the plate and the plane is0.3 and the plate’s length is
1.8. The eddies become more pronounced as the plate is brought even further down towards
the wall.
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Figure 7.11: The plate length is 1.5 and the gap width is further reduced to 0.1. At this
stage the separation of the streamlines create eddies which prevent the fluid from travelling
through the small gap between the plate and the wall.

points in order to establish an accurate solution in this limit. The case when the plate is

directly in contact with the plane, and soa = 0, has been solved by Kim [5] with use of

Weiner-Hopf techniques. The author computes that the force on the wall by the oncoming

shear flow is

Fk = 5.817αμ (7.41)

whereα is the strength of the oncoming flow (equal to−2 in our case: this is because he

considers a flow of half the strength from the opposite direction) andμ is the coefficient of

viscosity (equal to one here). In our study it was shown that we may compute the force on

the plate by the quantity

F = −8πFl. (7.42)

As a useful check on our method, the force in the doubly connected regime (7.42) should

approach the result of Kim [5] as the gap width is reduced to zero. Indeed, this is confirmed

and a graph of the force on the plate as it is brought closer to the wall is shown in Figure
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7.12.

It should be noted, however, that when the gap width is exactly zero we can not accurately

solve the problem using the numerical method we have presented above. This is because

whena = 0, the domain becomes simply connected and the vicinity of the contact points

on both sides of the plate forms a perpendicular wedge shaped region. The locale of these

points are precisely the flow regions studied by Moffatt when demonstrating the existence

of eddies in wedge shaped domains [64]. Based on his results, it can be shown that when-

ever the wedge angle is less than roughly146.6◦, the Goursat functions necessarily take the

form

f(z) = Azλ + Bzλ (7.43)

with λ ∈ C related to the wedge anglesin(πλ/2) = ±λ. The positive sign relates to flow

that is symmetric about the lineθ = π/4 while the negative relates to the antisymmetric

flow about the same line. Whena → 0 the angle between the wall and the plate isπ/2 and

hence, in order to correctly solve this problem using the above conformal mapping method,

we would be required to include such singularities into our ansatz forf(z) as well as for

g′(z). However, any term of the form

zλ (7.44)

introduces a branch cut, as well as being divergent as|z| → ∞. This presents significant

difficulties to the method presented here and, as yet, it is not known how to accurately

include these singularities in our model. However, we have shown that we can retrieve

accurate solutions in thelimit of diminishing gap width, while still in the doubly connected

regime. This supports the idea that, by using the numerical method presented here, deter-

mining the flow near two (slightly) disconnected sections of wall may be used to provide a

good approximation to the flow in the wedge-shaped region when the walls touch.

Indeed, this idea is not specific to the perpendicular wedge and hence considering the flow

past an inclined plate provides the equivalent doubly connected approximation to a non-

perpendicular wedge shaped region. This will be the focus of the next section and, later in

the chapter, we will use the same proposition when studying the Weis-Fogh mechanism in
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low Reynolds numbers.
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Figure 7.12: Force on the plate as a function of gap width (solid, blue). We see that as the
width is reduced to zero, the force tends to the value of 5.817 (dashed, red) as predicted by
Kim [5].

7.4 Shear flow past a finite inclined plate above a wall.

We now consider the case where the finite plate is not perpendicular to the no-slip wall but

is radially inclined, while still above it. Letφ be the inclination angle of the plate relative

to the horizontal and letr0 be the distance of the near edge to the origin, as depicted in

schematic Figure7.13. In this case, a gap of sizer0 sin φ will be present between the

wall and the plate, allowing a net fluid flux through it. We will again study the formation

of viscous eddies as the plate is brought downwards towards the wall and hence the gap

becomes smaller.

Many of the details of the perpendicular plate carry over to this case, except that the confor-

mal map is changed and, therefore, the preimage points of the plate’s sharp ends may not
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φ

Oncoming
shear flow

Plate

Wall

Figure 7.13: Schematic diagram of the shear flow past an inclined plate above a wall. The
on-coming shear flow has strengthU = 1.

necessarily be atζ = ±ρ. Recall that whenγ1 = 1 andγ2 = −1, expression (7.24) mapped

theρ-circle of the annulus to a radial plate emanating from the origin along the real axis,

while mapping the unit circle to an infinite vertical line passing through the origin. Now,

we take

z0(ζ) = −R
P (ζ, ρ)

P (ζ/γ2, ρ)
(7.45)

where it then remains to find the values ofR, ρ andγ2 ∈ C. This will map the inner circle

of the annulus to a finite line along the real axis, starting atr0 and ending atr0 + L, (where

L is the chosen length of plate).

Choosingγ1 = 1 also means that the pointζ = 1 will be mapped to the origin and hence

the image of the unit circle will pass through the origin. Additionally, selecting|γ2| = 1

will ensure thatz0(ζ) admits a simple pole atζ = γ2 and so will be mapped to infinity.

Therefore, the unit circle will be mapped to an infinite straight line which passes through

the origin. Crowdy and Marshall [60] have shown that the explicit angle made by the
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straight line image of the unit circle to the positive real axis is given by

arg[R] −
1

2
arg [γ2] . (7.46)

Therefore, the condition

arg[R] −
1

2
arg [γ2] = π − φ (7.47)

together with the requirements that the minimum and maximum real values of the radial

plate are atx = r0, r0 + L respectively gives a system of three nonlinear equations for

ρ, R, arg γ2, which may be solved numerically using a Newton method. Once these are

found, we rotate the domain by an angleφ so that the infinite line lies along the real axis.

The required conformal map is therefore given by

z(ζ) = eiφz0(ζ). (7.48)

Next, in order to account for the singularities at the end of the plate in the “physical”

fluid domain, we must find their preimage points on theρ-circle in the annulus. We again

find these two pointsζ1 andζ2 numerically from the condition that the derivative of the

conformal map,z′(ζ), vanishes there.

With these parameters found, the Goursat functions take the modified form

F (ζ) = Fl log ζ +
F̂ (ζ)

(ζ − γ2)
(7.49)

and

G(ζ) = −F l log ζ +
Ĝ(ζ)

(ζ − γ2)(ζ − ζ1)(ζ − ζ2)
(7.50)

with F̂ (ζ) andĜ(ζ) again admitting Laurent series in the annulus. In this case, the far field

conditions onf(z) are applied asζ → γ2. To simplify this, notice that the conformal map

(7.45) takes the form

z0(ζ) =

{
Rγ2e

iφP (ζ, ρ)

T (ζ/γ2, ρ)

}
1

(ζ − γ2)
(7.51)
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and so we see that̂F (ζ) tends to

F̂ (ζ) =
i
2
Rγ2e

iφ P (γ2, ρ)

T (1, ρ)
(7.52)

asζ → γ2 while Ĝ(ζ) tends to

Ĝ(ζ) = −iRγ2e
iφ P (γ2, ρ)(γ2 − ζ1)(γ2 − ζ2)

T (1, ρ)
(7.53)

in the same limit. The coefficients of the Laurent series are again found either by a spectral

method or by a least squares algorithm.

Below are some typical streamlines around a plate with varying inclination angle,φ, and

gap width. Kim and Jeong [66] studied the problem of an oncoming shear flow past an

infinite no-slip wall with a protruding fence (attached to the wall) at different angles, using

Wiener-Hopf techniques. This is a limiting case of the present study as the gap width is

reduced to zero, and so the below figures should be compared to Figure 2 of [66].

In the plots of Figure7.14, the inclination angle is kept constant atφ = π/3 while the

distance of the nearest edge to the origin,r0, is reduced. Similarly to the case of the

perpendicular plate, we see that viscous eddies are formed as the gap width, given by

√
3

2
r0 (7.54)

is reduced. The size of these eddies grow as the gap width is reduced and, when the gap

width is very small, eddies also form on the left (or upstream) of the plate. When the

plate is made longer and again brought very close to the no-slip wall, but kept at the same

inclination angleφ = π/3, a secondary set of eddies appears in the vicinity of the resultant

wedge, see Figure7.15. This is consistent with the theory by Moffatt [64] that when the

fluid is driven by some far field flow, viscous eddies appear sequentially in a wedge. The

eddies on the left (upstream) of the plate grow also as the length of the plate is increased.

Note that even a very small gap allows for a small volume of fluid to pass through it and
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distorts the eddies that would be formed if the fluid domain was an exact wedge.

In Figure7.16, we demonstrate the effect of varying inclination angle while keeping the

length of the plate at a constant length. We see that eddies may form on both sides of the

plate, but that upstream eddies will not form whenφ < 33◦, as then the upstream angle will

be greater than 147◦, in agreement with Moffatt [64].

7.5 The Weis-Fogh mechanism: the low Reynolds number limit

In the observation and study of the hovering motion of insects, Weis-Fogh proposed a

mechanism [65] by which many of these insects, such as theEncarsia formosa(wing chord

∼ 0.2mm) [67] generate their required lift. This is often referred to as theclap and fling

mechanism: an insect “claps” both its wings together so that they meet along the (say) ver-

tical line of contact. It then rotates both wings around the common point of contact at the

bottom of both wings (the “opening phase”) and in doing so, air quickly fills the gap gener-

ated. It then moves its wings apart horizontally, (the “spreading phase”) by which time the

circulation around each wing is of the correct sign to provide upward lift. The remarkable

feature of this mechanism is that it does not depend on the usual vortex shedding method

of generating lift and hence it is applicable to a hovering insect in a purely inviscid fluid.

Instead, its success relies on the instantaneous circulation that is generated around each

wing as the two wings separate from each other and thus change the flow domain topology.

In the same year, Lighthill [68] provided a mathematical rationalisation of this process by

considering an irrotational, inviscid, two-dimensional model. With the use of a Schwarz-

Christoffel mapping, he produced an explicit mathematical representation for the “opening

out” phase of the motion. However, as the connectivity of the flow domain is changed

(from simply to doubly connected) when the wings begin to separate, the expression for

the lift which Lighthill computed was not extensible to the spreading phase of the mecha-

nism. Using conformal mapping techniques in the doubly connected regime, Crowdy [69]
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Figure 7.14: A plate, inclined at angle ofπ/3 from the horizontal is gradually brought
downwards towards the no-slip wall. Here the gap has widths 0.26, 0.08 and 0.02 (top to
bottom). As the gap becomes narrower, less fluid may pass through it and the resulting
viscous eddies increase in size.
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Figure 7.15: As the plate is made longerL = 3 and kept very close to the wall, with gap
width 0.02 (and inclined withφ = π/3), a secondary set of eddies appear in the immediate
vicinity of the wedge, to the right of the plate.

presented analytical expressions for the lift generated during the spreading phase in the

infinite Reynolds number regime.

The focus of the section is to study the spread out phase of the Weis-Fogh mechanism in the

low Reynolds number regime. The two plates are separated by an angleφ(t) at their lowest

point and move away from each other with speedU (so that their total speed of separation

is 2U ), as shown in Figure7.17.

We again aim to find the Goursat functions that satisfy the appropriate boundary conditions

for this problem, i.e that

− f(z, t) + zf
′
(z, t) + g′(z, t) = ±U for z ∈ Γ1,2 (7.55)

whereΓ1,2 corresponds to the right and left wings respectively. To do this, we introduce

a (time dependent) conformal map from the annulusρ(t) < |ζ| < 1 to the fluid domain
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Figure 7.16: Typical streamlines around a plate with varying inclination angle. In all cases,
r0 = 0.2 andr0 + L = 2, andφ = π/10, π/5, 3π/5, 9π/10 (top to bottom, respectively).
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φ /2

U U

φ /2

Figure 7.17: Schematic diagram for the spreading out phase of the Weis-Fogh mechanism.
Both wings are separated by an angleφ(t) at their lowest point and move away from each
other with relative speed2U .

exterior to the two wings. This map is given by

z(ζ) = iA(t)e−iφ(t)/2R(ζ, ρ(t)) − id(t) (7.56)

whereA(t) andρ(t) are real functions of time. Here,R(ζ, ρ(t)) is given by

R(ζ, ρ(t)) = A(t)
P (ζ

√
ρ(t)

−1
eiφ(t), ρ(t))P (ζ

√
ρ(t)eiφ(t), ρ(t))

P (ζ
√

ρ(t)
−1

, ρ(t))P (ζ
√

ρ(t), ρ(t))
(7.57)

with the usualP (ζ, ρ) given by (7.26). This is a doubly connected case of the so called

radial slit mapas discussed in [70]: the unit circle,C0 where|ζ| = 1 is mapped onto the

a finite straight line along the rayarg R = φ(t); the inner circle of the annulus,C1 where

|ζ| = ρ(t), is mapped to another ray of the same length lying along the real axis. The

parametersρ(t), A(t) ∈ R are found numerically from the condition

Max [R(ρ(t)η, ρ(t))] = r0 + L, Min [R(ρ(t)η, ρ(t))] = r0, |η| = 1 (7.58)
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using a Newton solver wherer0 is the minimum distance from the origin andL is the length

of the wings. This functionR(ζ, ρ(t)) is then multiplied by

ie−iφ(t)/2 (7.59)

to ensure that the wings lie symmetrically about the vertical axis, and then translated by a

distance

d(t) = (r0 + L/2) sin [(π − φ(t))/2] (7.60)

downwards so that their centers lie along the real axis. From here on, we suppress the time

dependence in the notation for convenience. Once again the preimages of the sharp ends

of the plates are atζ = ζj, with j = 1, ..., 4, and are found numerically from the condition

that the derivative of the conformal map vanishes at these points of non-conformality.

With the conformal map known, we propose that the Goursat functionsF (ζ) ≡ f(z(ζ))

andG(ζ) ≡ g′(z(ζ)) are given by

F (ζ) = Fl log ζ + F̂ (ζ), G(ζ) = −F l log ζ +
Ĝ(ζ)

∏4
j=1(ζ − ζj)

(7.61)

with the logarithmic singularities included to account for the force required to move each

wing, and their coefficients chosen so that the velocity remains single valued along on each

wing. Once again, the functionŝF (ζ) and Ĝ(ζ) are both analytic and single valued in

the closure of the annulus. It should be noted that this condition circumvents the Stokes

paradox and the force on one wing is both equal and opposite to the force on the other.

Using this ansatz in the two no-slip conditions (7.55) gives, on|ζ| = 1,

U = −F̂ (ζ) +
z(ζ)

z′(ζ−1)

[
F lζ + F̂ ′(ζ−1)

]
+

ζ4Ĝ(ζ−1)
∏4

j=1(1 − ζjζ)
(7.62)
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while on the inner circle of the annulus,|ζ| = ρ, we have

− U = −2Fl log ρ − F̂ (ρζ) +
z(ρζ)

z′(ρ/ζ)

[
F lζ

ρ
+ F̂ ′(ρ/ζ)

]

+
ζ4Ĝ(ρ/ζ)

∏4
j=1(ρ − ζjζ)

(7.63)

The conformal map for this fluid domain does not satisfy the loxodromic condition and

hencez(ρ2ζ) 6= z(ζ) for all ζ in the annulus. The two equations (7.62) and (7.63) are linear

in the coefficients of the Laurent series of the Goursat functions and hence this system can

once again be solved by either a spectral analysis or by a least squares method.

Snapshots of typical streamlines associated with the flow around the two wings are shown

in Figure7.18for the “opening” phase and in Figure7.19for the “spreading” phase. As

they open, the lower ends of the wings are kept close together (but not in contact) during

which time their angle of separation increases. When the wings reach an inclination angle

of π/6 (and hence have a separation ofφ = π/3) they complete the first part of their motion

and commence the spreading phase. At this point, they maintain this inclination and move

apart at constant speed at which point a pair of viscous eddies are formed in the vicinity

of the lower ends of the two wings only and, as the wings move further apart, these eddies

increase in size.
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Figure 7.18: Typical streamlines around two wings during the “opening” phase of the Weis-
Fogh mechanism. They rotate with angular velocityU until reaching a separation angle of
φ = π/3. Here they are pictured at separation anglesφ = 0.2, π/9, π/6 (top to bottom).
The wings have unit length and their lower corners are at a distance of 0.1 away from each
other (or 10% of the wing’s length).
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Figure 7.19: Typical streamlines around two wings during the “spreading” phase. They are
inclined with separation angleφ = π/3 and move with speedU = 1 away from each other.
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7.6 Summary

We have presented a numerical procedure which is useful for determining solutions for

Stokes flows past domains of complicated geometry. By retrieving a previous result by

Davis and O’Neill [54] for the uniform shear flow past a cylinder above a wall, we have

demonstrated the accuracy of this method which motivates its use in problems which have

not been previously considered. In particular, we turned our attention to fluid domains

whose boundaries included sharp corners. These problems could, in theory, be solved us-

ing standard boundary integral methods [34], however the discontinuities at these corners

would present severe complications to this. By calling on the results from previous chap-

ters, we have been able to characterise the singularity structure of the Goursat functions

at these sharp corners and, by introducing a conformal map, we have reformulated the

problem in terms of analytic functions that have (well-behaved) Laurent expansions.

Following this procedure has allowed us to find the uniform shear flow past a finite length

plate above a wall, at any angle of inclination, and study the formation of eddies as the plate

is brought down towards the wall. These results are of interest as in the limit of diminishing

gap width (between the wall and the plate’s lowest corner), we retrieve a wedge shaped

fluid domain, similar to those considered by Moffatt [64]. Moffatt’s analysis was a local

one from which we may infer the local singularity structure of the Goursat functions at the

wedge corner, however these singularities are divergent and a method for including them

in a global expression for the stream function is currently unknown. However, an inclined

plate above a wall provides a good approximation to this and hence the numerical method

presented here could be used as a first approximation for the global solution of fluid flows

near wedge shaped regions.

We have also used this method to find the Stokes flow around two wings during the open-

ing out and spreading phase of the Weis-Fogh mechanism [65]. While we are unable to

determine the flow while the lower ends of the wings are in contact, separating them by a

small length provides a good approximation to this stage of the mechanism.
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Special care must be taken when considering two-dimensional Stokes flows past solid sur-

faces due to the Stokes paradox. The presence of the fluid’s force on the object necessitates

a logarithmically divergent velocity field. However, the scenarios we have considered here

has been concerned with doubly connected fluid regions and we have shown that the force

exerted on one object is equal and opposite to the force exerted on the other. Because of

this, the forces cancel each other out and therefore these problems are not susceptible to

this paradox.
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Chapter 8

Conclusions and future work.

Problems of low Reynolds number swimming have received a great deal of attention re-

cently. Most of the interest has been devoted to swimmers in an unbounded fluid, while

the studies of swimming in bounded domains has been limited to cases where the fluid is

confined by a simple boundary, such as an infinite flat wall. This thesis has extended the

study to cases where the confining geometries of the swimmer are more complicated.

In order to do so, we have first studied general Stokes flows near complicated boundaries.

By presenting a new approach using conformal mapping theory, we have been able to find

exact solutions for the uniform shear flow and stagnation point flow past a wall with one or

two gaps in such a way that retrieves, in a unified manner, the results previously found by

Smith [2] and Ko and Jeong [3].

Then, by incorporating the singularity model proposed by Crowdy and Or [1], we have been

able to explicitly determine the dynamical system which governs low Reynolds number

swimming in these complicated geometries. Their model, which was based on a non self-

propelling treadmilling swimmer of radiusε in free space, is a two-dimensional one and

provides excellent qualitative agreement with numerical and laboratory experiments for the

case of a fully three-dimensional motion of a swimmer near a flat wall. Therefore, we have

confidence that the results presented in this thesis establish a predictive theory for how

similar swimmers will behave around walls with one or two gaps.
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A characteristic feature of the boundaries of the domains we have studied is that they admit

sharp corners at the ends of their boundaries. One can construct many other fluid domains

that have similar corners, however it may not always be possible to find analytical solutions

to Stokes flows in these domains. Nevertheless, the numerical procedures used to solve

these problems are greatly ameliorated by incorporating the ideas introduced within this

thesis and we have presented a number of Stokes flows in doubly connected domains with

sharp corners in order to demonstrate this.

The idea of modelling a swimmer as a two-dimensional point singularity is also currently

being employed within other contexts. For example, a similar model is being used to

provide insights into low Reynolds number swimming beneath a deformable free surface

[9].

The singularity model that was proposed by Crowdy and Or [1] was chosen in a passive

way, such that the swimmer is always described by a stresslet together with a superposed

irrotational quadrupole. This model could be extended to a non-passive one where the

swimmer reacts to its surroundings by changing its singularity structure appropriately. One

could, in principle, perform a full matched asymptotic expansion to deduce the dynamics

of the swimmer. In doing so, one would match the “inner” flow generated by a small,

finite-area swimmer of radiusε with the “outer” solution in which the flow generated by

that swimmer interacts with the solid boundary. The implicit assumptions in this method

would be thatε is small relative to its distance from the boundary. This would result in

corrections to the singularity strengths in powers ofε while the leading order term of this

would be the Crowdy and Or [1] singularity model. The solutions found in this thesis would

then serve as the “outer” solution in such a scheme. Antanovskii [44] used precisely the

same strategy of matched asymptotic expansions to present a complex variable formulation

of a deformable bubble in Taylor’s four-roller mill. We have not pursued this asymptotic

approach for two reasons: firstly, such a strategy would be necessarily more complicated

than the simpler point model which, as we have shown, already captures key features of low

Reynolds number swimming dynamics near walls. Secondly, in order to do this matching
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accurately, one would need to make assumptions as tohow the treadmiller responds to its

surrounds. As this is dependent on the precise details of the fluid domain the swimmer is

in, these are challenges left for the future.

The results presented here are interesting from the viewpoint of dynamical systems. Gluing

bifurcations have been observed in only a few other fluid dynamical systems [71, 72, 73]

and this study adds to the short list. An intriguing possibility is that the presence of the gaps

provide a route to chaos for the swimmer’s dynamics. The single and symmetric double gap

cases we have considered in this thesis provide one and two parameters for the dynamical

system respectively, and we have not witnessed any chaotic behaviour. However, the two-

gap study may be extended to the case where the gaps are asymmetrically placed about the

origin. In this case, the required conformal map is

z(ζ) = R

(
P (−ζ, ρ)2 − λP (ζ, ρ)2

P (−ζ, ρ)2 + λP (ζ, ρ)2

)

(8.1)

whereλ is real. The positions of a non-symmetric central plate would add a third parameter

into the dynamics and it would be interesting to determine whether doing so would result

in a chaotic system.

In presenting the numerical procedure for determining the Stokes flow past stationary sur-

faces, such as cylinders or inclined plates, the flows were driven by a far field uniform shear

flow. Another advantage of the method we have presented here is that it may readily adopt

other forms of far field flow. For example, the stagnation point flow considered in chapters

3 and 5 could equally drive the fluid in these problems. The formulation we have presented

would remain largely unchanged, except for a slight modification of value of the Goursat

functions at one point in the preimage domain; that which corresponds to infinity (in the

fluid domain). Moreover, by incorporating the Crowdy and Or [1] singularity structure, it

would be interesting to use this numerical approach in order to study the dynamics of a low

Reynolds number swimmer in these complicated geometries.

Finally, there are other physical scenarios where the ideas of this thesis may be useful. Zhao
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and Bau [56] have studied the two-dimensional problem of the induced electro-osmosis on

a cylindrical particle placed near to an infinite no-slip flat wall. The governing equations

are very similar to those of a swimmer confined within the same geometry, except that the

motion of the charged, or dielectric, object is induced by its interaction with an ambient

electric field. In a similar approach that we have taken to low Reynolds number swimming,

it would be interesting to extend Zhao and Bau’s work [56] to study the dynamics of this

cylinder near to a wall with a gap, using the techniques presented in this thesis.
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Appendix A

Analysis of single gap conformal map.

The conformal map for the single gap studies of chapters 3 and 4 is given by

z(ζ) =
2ζ

(ζ2 + 1)
(A.1)

This is analytic inside the unit disk in theζ-plane and has the Taylor expansion

z(ζ) = zd + z′(ζ)(ζ − ζd) +
1

2
z′′(ζ)(ζ − ζd)

2

+
1

6
z′′′(ζd)(ζ − ζd)

3 +
1

24
z′′′′(ζd)(ζ − ζd)

4 . . .
(A.2)

Rearranging this, we can write (A.2) as

(z − zd) = (ζ − ζd)

[

z′(ζ) +
1

2
z′′(ζ)(ζ − ζd) +

1

6
z′′′(ζd)(z − zd)

2 + . . .

]

. (A.3)

Diving by the square bracket and expanding, we have

ζ − ζd =
z − zd

z′(ζ)

[
1 −

z′′(ζd)

2z′(ζd)
(ζ − ζd)

+

{
z′′(ζd)

2

4z′(ζd)2
−

z′′′(ζd)

6z′(ζd)

}

(ζ − ζd)
2 + O((z − zd)

3) . . .
] (A.4)
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which can be written as

(ζ − ζd) =
1

z′(ζd)
(z − zd) −

z′′(ζd)

2z′(ζd)2
(z − zd)(ζ − ζd)+

+
1

z′(ζd)

{
z′′(ζd)

2

4z′(ζd)2
−

z′′′(ζd)

6z′(ζd)

}

(z − zd)(ζ − ζd)
2 + . . .

(A.5)

Using this expression in itself again, we get

(ζ − ζd) = a1(z − zd) + a2(z − zd)
2 + a3(z − zd)

3 + . . . (A.6)

where

a1 =
1

z′(ζd)
, a1 = −

z′′(ζd)

2z′(ζd)3
, a3 =

z′′(ζd)
2

2z′(ζd)5
−

z′′′(ζd)

6z′(ζd)4
(A.7)

Furthermore, from expansion (A.3), we have

1

(ζ − ζd)
=

1

(z − zd)

[

z′(ζd)+
1

2
z′′(ζd)(ζ − ζd) +

1

6
z′′′(ζd)(ζ − ζd)

2

+
1

24
z′′′′(ζd)(ζ − ζd)

3 + . . .

]

.

(A.8)

Upon using (A.6) in this, we have

1

(ζ − ζd)
=

α̃

(z − zd)
+ β̃ + γ̃(z − zd) + δ̃(z − zd)

2 (A.9)

where

α̃ = z′(ζd), β̃ =
z′′(ζd)

2z′(ζd)
, γ̃ =

z′′′(ζd)

6z′(ζd)2
−

z′′(ζd)
2

4z′(ζd)3

δ̃ =
z′′(ζd)

3

4z′(ζd)5
−

z′′(ζd)z
′′′(ζd)

4z′(ζd)4
+

z′′′′(ζd)

24z′(ζd)3
.

Note that cubing this, we get the expression

1

(ζ − ζd)3
=

ω−3

(z − zd)3
+

ω−2

(z − zd)2
+

ω−1

(z − zd)
+ ω0 (A.10)
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where

ω−3 = z′(ζd)
3, ω−2 =

3

2
z′(ζd)z

′′(ζd), ω−1 =
1

2
z′′′(ζd)

ω0 =
z′′′′(ζd)

8z′(ζd)
−

z′′(ζd)z
′′′(ζd)

4z′(ζd)2
+

z′′(ζd)
3

8z′(ζd)3
.
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Appendix B

Analysis of double gap conformal map.

We have seen that the conformal map (5.3) admits a simple pole at the pointsζ = ±i.

Therefore, we may write

z(ζ) =
A(ζ)

B(ζ)

=
A(i) + A′(i)(ζ − i) + . . .

B′(i)(ζ − i) + B′′(i)(ζ − i)2/2 + . . .

=
A(i)
B′(i)

1

(ζ − i)
+

[
A′(i)
B′(i)

−
A′(i)B′′(i)

2B′(i)2

]

+ O(ζ − i) + . . .

(B.1)

where we have used the fact thatB(i) = 0. From the Taylor expansion ofA(ζ) andB(ζ)

we see that

A(i) = P 2(−i, ρ) − P 2(i, ρ) = 2P 2(−i, ρ) (B.2)

using property (5.6) of the special functionP (ζ, ρ). We also have that

A′(i) = −P (i, ρ)P ′(i, ρ) − P (−i, ρ)P ′(−i, ρ). (B.3)

The Taylor expansion ofB(ζ) reveals thatB(i) = 0 while

B′(i) = P (i, ρ)P ′(i, ρ) − P (−i, ρ)P ′(−i, ρ) (B.4)
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and

B′′(i) = 2[P ′2(i, ρ) + P (i, ρ)P ′′(i, ρ) + P ′2(−i, ρ) + P (−i, ρ)P ′′(−i, ρ)]. (B.5)

Putting these together in expansion (B.1) gives the required constantsa andb, given by

equations (5.14) and (5.15)
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Appendix C

Derivation of conformal map for a

cylinder above a plane.

Let us assume that the Mobius map may be written in the form

z(ζ) = A

(
ζ − i
ζ + i

)

(C.1)

Written in this way, the pointζ = −i is mapped to infinity in thez-plane. As a point on the

unit disk is also mapped to the origin, this allows us to map the outer circle to a line that

passes through the origin and extends towards infinity. We also ensure thatA is chosen so

the image of the interior of the unit disk lies only in the upper half complex plane.

We prescribe the radius,r, of the cylinder and its height above the plane,α > 0, so that

its center is atz0 = iα. In order to determine the map, we must findA ∈ C andρ ∈ R in

terms ofr andα. We have that

r2 = |z(ζ) − d|2 (C.2)

This means that

r2 =

[

A

(
ζ − i
ζ + i

)

− d

] [

A

(
ζ + i

ζ − i

)

− d

]

(C.3)
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Using the factthatζζ = ρ2, this can be rearranged to give

γ(ρ2 + 1) = |A|2(ρ2 + 1) − (ρ2 − 1)d A − (ρ2 − 1)d A (C.4)

whereγ = r2 − |d|2 = r2 − α2 < 1. Next, we may compare different orders ofζ. At the

order ofζ we have

γ = dA − dA − |A|2 = 2iαAx − |A|2 (C.5)

while the orderof ζ gives

γ = −2iαAx − |A|2 (C.6)

from which we can conclude that

Ax = 0 A = iAy A2
y = −γ = d2 − r2 (C.7)

At the order of unity, we have

γ(ρ2 + 1) = −αAy(ρ
2 − 1) (C.8)

which simplifies to
ρ2 − 1

ρ2 + 1
=

Ay

α
= δ (C.9)

and hence

ρ =

√
1 + δ

1 − δ
(C.10)

Note that forρ < 1, we must take the negative square root forAy and thus we are left with

A = −i
√

α2 − r2, ρ =

√
1 + δ

1 − δ
, δ = −

√
α2 − r2

α
(C.11)

These parameters give the required map.
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