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“A poet once said, “The whole universe is in a glass of wine.” We will probably never know
in what sense he meant that, for poets do not write to be understood. But it is true that if
we look at a glass of wine closely enough we see the entire universe.

“There are the things of physics: the twisting liquid which evaporates depending on
the wind and weather, the reflections in the glass, and our imagination adds the atoms.
The glass is a distillation of the Earth’s rocks, and in its composition we see the secrets
of the universe’s age, and the evolution of stars. What strange arrays of chemicals are in
the wine? How did they come to be? There are the ferments, the enzymes, the substrates,
and the products. There in wine is found the great generalization: all life is fermentation.
Nobody can discover the chemistry of wine without discovering, as did Louis Pasteur, the
cause of much disease. How vivid is the claret, pressing its existence into the consciousness
that watches it!

“If our small minds, for some convenience, divide this glass of wine, this universe, into
parts - physics, biology, geology, astronomy, psychology, and so on - remember that Nature
does not know it! So let us put it all back together, not forgetting ultimately what it is for.
Let it give us one more final pleasure: drink it and forget it all!”

Richard P. Feynman
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Abstract

The study of swimming micro-organisms has been of interest not just to biologists, but
also to fluid dynamicists for over a century. As they are rarely in isolation, much interest
has been focused on the study of the swimmers’ interaction with their environment. By
virtue of the typically small sizes of these organisms and their swimming protocols, the
characteristic Reynolds number of the motion of the fluid around them is small. Hence
they reside in a Stokes flow regime where viscous forces dominate inertial effects and
where far-field interactions (e.g. with nearby walls) can have a significant effect on the
swimmer’s dynamical evolution.

This thesis provides a detailed investigation of idealised models of low Reynolds number
swimmers in a variety of wall-bounded fluid domains. Our approach employs a combina-
tion of analytical and numerical techniques.

A simple two-dimensional point singularity is used to model a swimmer. We first study its
dynamics when placed in the half-plane above an infinite no-slip wall and find it to be in
gualitative agreement with numerical and experimental studies. The success of the model
in this case encourages its use to study the swimmer’s dynamics in more complicated do-
mains. Specifically, we next explore the dynamics of the same swimmer above an infinite
straight wall with a single gap, or orifice. Using techniques of complex analysis and con-
formal mapping theory, a dynamical system governing the swimmer’s motion is explicitly
derived. This analysis is then extended to the case in which the swimmer evolves near an
infinite straight wall with two gaps.



We are also interested in how the presence of background flows can affect the swimmer’s
dynamics in these confined geometries. We therefore employ the same techniques of com-
plex analysis and conformal mappings to find analytical expressions for pressure-driven
flows near a wall with either one or two gaps. We then extend this to find new solutions for
the shear flows and stagnation point flows in the same geometry. The effect of a background
shear flow on the swimmer’s dynamics is then explored.

Finally, while there have been a number of studies of Stokes flows within domains which
are simply connected, the doubly connected analogues are rather rare. By building upon
the analytical techniques presented in this thesis, we present numerical solutions to such
problems, including that of the Weis-Fogh mechanism in the low Reynolds number regime.
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Chapter 1

An introduction to swimming in low

Reynolds numbers.

The locomotion of small microorganisms has been of interest to fluid dynamicists and biol-
ogists for many years. While their motion occurs within fluids of non-negligible kinematic
viscosity, they do so at very small length scales and speeds. The Reynolds number as-
sociated with these motions is therefore very small and so they reside in a world where
inertial forces are negligible in comparison to the viscous effects of the fluid. For example,
the Reynolds number associated witbcherichia coli(E. Coli) motion is approximately
O(10~*) while that of a spermatozoan is roughh(10-2).

As a consequence of this, any velocity perturbation on their boundary is diffused much
more rapidly into the fluid relative to the speed at which the fluid particles are, themselves,
carried by the flow. The fluid’s response to the motion of the swimmer’s body is therefore
nearly instantaneous and so the rate of change of the swimmer's momentum is completely
negligible in comparison to the typical magnitudes of the surrounding viscous forces. Be-
cause of this, the force and torque on the swimmer’s body from the fluid is instantaneously
balanced by the external forces and torques. However, in most cases there are no external
forces and so the fluid exerts no force on the swimmer. Also, unless the swimmer is a
nose or bottom-heavy cell (both cases we shall not consider), there will be no torque on the
swimmer either.
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Recently, a large amount of attention has been placed on understanding swimming dy-
namics inunboundedow Reynolds number flows6[ 7, 8]. This has been used to ex-
plain the methods which the swimmers adopt in order to propel themselves through the
fluid. In reality, however, most organisms are typically in the vicinity of other bodies or
boundaries, where the hydrodynamic interaction with these has a significant effect on their
motion. Therefore, in order to gain a complete understanding of low Reynolds number
swimming, one must also study the hydrodynamic interaction between swimmers and their
boundaries.

The boundaries of the fluid may either take the form of a deformable interface between
two different fluids P, 10] or, alternatively, a solid boundary. On the former, fluid stress

is continuous across the interface while the fluid remains stationary on the surface of the
latter. Free surfaces generally move with the local fluid and so their positions are harder to
control than a solid boundary (which may be fixed in place): it is because of this that we

restrict our attention to how swimmers interact with solid surfaces.

There have been a number of recent investigations into how a swimming micro-organism
interacts with solid surfaces. Laugaal. [11] have shown that due to the hydrodynamic
interaction with solid boundaries around thel,Coli swim in a clockwise circular mo-

tion when placed near to a wall, while Cossairal. [12] and Berkeet al. [13] demonstrate

how spermatozoa ard. Coli are attracted to solid boundaries that confine their domain.
More recently, Dreschegt al. [14] have presented some interesting steady states of cir-
cular Volvoxalgae when placed next to a wall, where pairs of cells “dance” around each
other, while Zilmaret al. [4] have studied the shear induced orbits of ocean larvae. Much
theoretical work in this area has focused on quantifying the change in swimming speed and
energetics near solid boundarid$[16, 17, 18].

In order to investigate the effects of solid boundaries on a low Reynolds number swimmer’s
trajectory, a number of authors began by considering the interaction of such a swimmer with
the simplest domain possible; that of a fluid bounded by an infinite flat wall. This wall is
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referred to as &o-slip boundarydue to the fact that any viscous fluid remains stationary

on a solid surface, or moves with the surface’s own velocity. Moreover, it is the swimmer’s
hydrodynamic interaction with this wall that may allow it to undertake an interesting swim-
ming trajectory and so authors have devised experiments and theoretical models in order to
study this interaction. In particular, it is a well known fact that swimmers in a low Reynolds
number regime tend to be attracted towards no-slip surfd@&&0, 15, 21, 22, 13]. Berke

et al. [13] investigated the hydrodynamics&f Coli cells and their subsequent attraction to
solid boundaries by placing a cell mixture in a density matched fluid between two parallel
plates. Once the cells had been given time to settle, their distribution was photographed
and recorded as a function of distance away from one of the plates, where it can be seen
that there is an overall tendency for the cells to move towards one of the surfaces and then
swim along it, in agreement with a previous experiment carried out by RothséBjld [

To provide a physical explanation to these results, Betlat. [13] model a single swimmer
near a no-slip boundary as a force-free and torque-free prolate spheroid under a force dipole
(a stresslet) model and find that the vertical component of the velocity is given by

o 3p 2
Uy = 647”7?/2(1 3 cos” 0) (1.1)

wherey is the distance from the wall in the normal directignjs the dipole strength,

7 1S the viscosity (either positive or negative corresponding to whether the swimmer is a
“pusher” or “puller” [13]) and is the angle of the head’s orientation, measured from the
vertical.

Wheno = 7/2,3r/2, the swimmer is aligned with the wall and will swim parallel to it.
The authors find that the evolution of this head angle is governed by
df  3pcosfsinf (v?—1)

— = 1 1 20 1.2
dt 64mny? * 2(y2 + 1)( + cos™0) (1.2)

wherey is the aspect ratio for the spheroid. In the case of a sphere, this parameter is equal to
1 and hencelf /dt = —3p cos f sin 0/ (647ny*). While the authors did not perform the full
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dynamical calculations, they were able to deduce that the swimmers will always reorient
themselves with the boundary whatever their initial orientation is. While this simple model
captures the general attraction of the swimmers to walls, it also predicts that they will crash

into them in finite time, in contrast with experimental findings.

Or and Murray 23] have studied the dynamics of a fully three-dimensional swimmer when
placed in such a geometry. The authors constructed a theoretical swimmer by connecting
up to three rigid spheres using thin rods. This model was then submerged in a quiescent
viscous fluid next to a long flat wall. The sphere’s centers lie inathey plane and all
motion was constrained to that plane. Next, two (and sometimes three) of the spheres were
made to rotate about an axis parallel to the z-axis in order to generate a motion.

The equations of motion imply that forces and torques on the sphere are linearly related
to their linear and angular velocities via a mobility (or resistance) matrix. In the case of
spherical particles near a planar wall, this matrix has been found by Swan and Bdady [
While Or and Murray 23] do not compute this matrix exactly, they use scaling arguments
to approximate it. In doing so, Or and Murra33 show that in some cases the swimmer
may take an interesting oscillating periodic orbit. Here, the swimmer moves towards the
wall and, once it gets close to it, spends some time moving parallel to it. During this time
spent in parallel motion, it reorients itself and then moves away from the wall again. This
process is then repeated and is interpreted as a steady orbit within the solution space of the
governing dynamics. In other cases, the swimmer will form “spiralling” motions along the
wall. This is shown diagrammatically in Figure 2 &3.

To verify this, the authors built a macro-scale version of this swimmer with up to three
rotating spheres, and placed it in a viscous bath of fluid next to a @&l [The periodic
orbits, predicted by their theor2§] can clearly be seen in their experiments. While this is

a three-dimensional model, all the motion is coplanar and hence lends itself well to study
in two dimensions.

Other authors have also studied the effect of an ambient background flow on the motion of
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swimmers near planar walls. Zilman, Novak and Benaydhagnstruct a hydrodynamic
model for the motion of marine larvae in the presence of a background linear shear flow
near flat solid boundaries. By accounting for the flow vorticity and the swimmers’ own
method of self-propulsion, the authors find that if the swimmers are sufficiently close to
the wall, they may undergo interesting spiralling trajectories, similar to those found by Or
and Murray R3].

However, while Zilmaret al. [4] take the wall as a reference point for the shear flow (where
the shear velocity is zero), they do not to take into account the hydrodynamic interaction
that the swimmer has with the wall itself. Their results nevertheless give a qualitative
insight into the trajectories when the shear rate is high and hence its effect plays a more
dominant role in the swimmer’s motion than the interaction with the wall.

There has also been much attention placed on the class of circular swimmers that do not
change their shape but produce a purely tangential velocity field on their boundaries. This
is often referred to aseadmilling[26] and is associated with the presence of cilia on the
organism’s body. Similar models have been used to capture the collective action of short
cilia on the surface of motile cells such@palinaandVolvox[27, 28]. Swimmers of these

form were first considered by Blak@7] who demonstrated how a circular swimmer with

an imposed tangential and normal velocity on its body can propel itself in an unbounded
Stokes flow. The surface velocities, or surface waves, are viewed as an “envelope” (or a
smooth approximation) to the motion of the tips of all the cilia on the body’s surfs;80),

28]. The advantage of this model is that it ignores the added complication of shape variation
and focuses only on the interaction with its environment. Bl2kgdemonstrated that even

a purely tangential velocity profile may produce a net displacement for the swimmer.

Since the Stokes equations are linear, the superposition of appropriately chosen singular-
ities have also been used in order to solve for the flow and pressure around a swimming
organism. In particular, Blake2[] used a distribution of Stokeslet singularities to model

the collective action of cilia on the surface of a slender body. This model also demonstrated
that a tangential velocity profile was much more effective at providing a propulsive force
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than a normal velocity component.

This thesis is motivated by the study of swimmers which do not have any means to propel
themselves through the fluid without the assistance of an external boundary. In other words,
these organisms would not be able to move if they were placed in an unbounded fluid. Re-
stricting the study to swimmers of this form will isolate the effect that solid surfaces have
on low Reynolds number locomotion. Recently, Crowdy and XDhpve proposed a sin-
gularity model for such swimmers when placed near a solid boundary. Their model, which
will be discussed in chapter 2, was based on a circular treadmilling swimmer which had
no means of self-propulsion. The authors then found the appropriate Stokes singularities
that represented the flow field that this treadmiller created in the global fluid. By studying
the interaction between these singularities and the no-slip wall, they were able to infer the
dynamics of a low Reynolds number swimmer in the same geometry.

Blake and Chwangdl] has also used singularity models such as these to explain the mo-
tion of swimming microorganisms in the vicinity of flat walls. In general, the singularities
themselves will not satisfy the no-slip condition on the boundary. Therefore, a superposi-
tion of those singularities together with their images is often necessary in order to satisfy
the boundary conditions. This method is similar to that used in electrostatics where im-
age charges may be placed throughout the domain in order to satisfy a constant-potential
condition on a given surface. For example, in the case of a point charge above a flat wall,
the boundary condition is satisfied by simply placing an equal and opposite charge at the
point of reflection in the wall. Within the context of low Reynolds number swimming,
the zero horizontal and vertical velocity requirements constitute two boundary conditions
which the singularities must satisfy. Determining which singularities are appropriate may
be more challenging and less straight-forward than within problems of electrostatics, whose
boundary conditions are scalar. For example, in documenting various image systems in the
vicinity of a no-slip boundary in a Stokes flow, Blake and ChwaBij howed a Stokeslet
generated not only an image Stokeslet, but also an image force dipole as well as a source
dipole flow field.
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In this thesis, we will adopt the singularity model proposed by Crowdy and JOm prder

to represent a low Reynolds number swimmer. Using this singularity model within domains
of geometric complexity will shed light on how a swimmer, such as the type modelled by
Crowdy and Or 1], will behave in such surroundings. This thesis appears to be the first
study to present a systematic and flexible approach to modelling low Reynolds number
swimming in confined environments.

The thesis will be structured as follows: chapter 2 will begin with a general description of
Stokes flows within the framework of complex variables and will then introduce, in greater
detail, the Crowdy and Od] singularity model for a low Reynolds number swimmer. Our
attention will then turn towards domains which are more complicated than those considered
by Crowdy and Or ] and Blake R7, 31]. In chapter 3, we introduce a new method using
conformal mapping theory in order to retrieve, in a unified fashion, previously discovered
exact solutions of Stokes flows past a wall with a gap. Chapter 4 will then extend this
method in a natural way to incorporate the swimming model of Crowdy andJOm his

will enable us to write down the dynamical system of a low Reynolds number swimmer
near a wall with a gap explicitly and categorise the different swimming trajectories which

it may undertake. We will then add a further degree of complication to the fluid domain
by introducing a second gap in the wall. Chapter 5 will then present exact solutions to
various Stokes flow problems near these two gaps by using complex variable techniques in
this doubly connected domain. In chapter 6, we extend these solutions by reintroducing the
Crowdy and Or 1] singularity model in order to find the dynamical system which governs

a swimmer’s motion near a wall with two gaps explicitly. Finally, in contrast to the exact,
analytical solutions we present in the previous chapters, chapter 7 will discuss various
numerical approaches to Stokes flows problems within multiply connected domains.
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Chapter 2

Application of singularity theory to low

Reynolds number swimming.

2.1 Complex variable methods in Stokes flows.

We begin our study of swimming near solid boundaries with a review of the complex vari-
able formulation of two-dimensional Stokes flows. We shall use this formulation, as well
as the models within, when solving similar problems throughout the thesis.

In the limit of zero Reynolds number, the Navier-Stokes equations reduce to

Vp(x) = pV2u(x)
V-u(x)=0

(2.1)

whereu is the velocity of the fluid at a point € R? and y is the dynamic viscosity.
These are th&tokes equatioresnd are the governing equations of fluid mechanics in flow
environments where either the kinematic viscosity of the fluid is very high, or the typical
speed or length scale of the flow is very low. Taking the curl of equafidh) (esults in

V A Vp(x) = uV A V2u(x). (2.2)

As the curl of a gradient field is zero (assuming that the pressure is a continuous function)
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and after invoking the second equation ?1ljj, the right hand side of this becomes
0= uV3i(V Au). (2.3)

Defining thevorticity field w(x), of a fluid as the curl of the velocity field, we arrive at the
alternative form of the Stokes equation

0 = VZw(x). (2.4)

When the flow is purely two-dimensional, with= (u,v) andx = (z,y), the vorticity is
directed out of the plane and given by

w(X) = (0,0, w(x,y)). (2.5)

Next, as the velocity satisfies the second equatior2df),(there exists a scalar function
Y(z,y) such thau = V A (0,0,), or

(o 9
(u,v) = (@"%) : (2.6)

The functiony(z, y) is called thestream functiorand exists for all two-dimensional in-
compressible flows. Taking the curl of the velocity field gives

("J(x? y) = (07 Oa —VQl/}(% y))7 (27)

from which we see that the stream function satisfies

V2z/1(:c,y) = —w(;r,y). (28)

However, equation2.4) revealed that the vorticity satisfies the Laplace equation and so,
after taking the Laplacian of equatio?.8), we deduce that the stream function is governed
by the biharmonic equation

Vi (x,y) = 0. (2.9)
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We will now use a representation of the biharmonic operator using complex variables.

Define the variable = = + iy. Using this, we have that
o 1[0 .0 o 1[0 .0
Y_ (2 ;2 === 2.1
dz 2 (8x I8y> ’ 0z 2 (8x +I0y> (2.10)
and so it is easy to show that the Laplace operator is given by

62
2 — 4
v 020Z

(2.11)

with Z = x — iy being the complex conjugate efand hence the biharmonic equation is

given by
0- v
022072

By integrating this equation four times, it can be shown to have the general solution

(2.12)

U(z,%) = Im[zf(2) + g(2)] (2.13)

The functionsf(z) andg(z) are called thé&oursat functiongnd are analytic everywhere
inside the fluid domain. This was shown by Muskhelish\a&][in the context of elasticity
problems wher@ was an Airy stress function. Richards@38] demonstrated its usefulness

for Stokes flow problems when considering the dynamics of two-dimensional bubbles in
zero Reynolds number regimes. In order to solve a Stokes flow problem in two dimensions
it is sufficient to determing(z) andg(z), and these are usually found from the boundary

conditions.

2.1.1 Representation of field variables using Goursat functions.

From this representation, one can deduce various physical quantities of the fluid such as
the velocity, vorticity, pressure and the surface stress.
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Velocity

From the definition of the stream function, the horizontal and vertical components of the
velocity are given by, and—1, respectively. Therefore, using relatich 10, we have

oy oy Oy Oy O
u+lv = a—y —|% = —i (%—i—la—y) = —2i—. (2.14)

Next, using the definition of (z, Z), we see that the velocity is given by
u+iv=—f(z2)+2f () +7 3 (2.15)

wheref'(z) = df /dz.

Pressure and Vorticity
It can be seen directly from the Stokes equat@i)(that

1 1
QB =V 984—

2Op _ ~9P g2, 2.16
pOx ’ Oy Vi (2.16)

Therefore, forming a complex combination of these gives

L (0p .0p\ oo .
; (% + |a—y) =V (U+ H)). (217)

Again using relationZ.10 together with relationq.15 gives

20p_, ¥
w0z  020%

&)+ @) +73)]. (2.18)

Integrating this and adding the constant functigiy(z) to make the pressure real-valued,
gives

g —2[/()+ 7). (2.19)

Next, using the fact that = —V?¢, we have that

2

020%

w=2i

F ) +9(:) - 2f@-3@)] =2 | -T@]. (220
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Putting this together with2(19 gives
p .
= —iw=4f"(2) (2.21)
o

which we shall refer to throughout the thesis.

Fluid Stress

The fluid stress on a surface is given by
— pnj + 2pue;n; (2.22)

wheren,; denotes the components of the unit normal vector to the boundary, aiscthe
usual fluid rate of strain tensor. Writiny = n, + ins then, upon using the continuity
equation, it can be seen that both components (corresponding:to, 2) are satisfied by
the real and imaginary parts of

- pN + 2/,6(611 + i€12)N (223)

respectively. Noting that;; = du/0z and thak,, = (1/2)(0u/dy+0v/0z) and following
a similar method used to derive.(5), we find that

e + i€12 = Z?”(E) + g”(?) (224)

Furthermore, the complexified normal is givenBy= —ie'’ = —iz, wheres is an element
of arc length along the boundary. Also, fro21), we have that

p = 4uRef(2)]. (2.25)

Putting this together with(24) in (2.23 gives

PN + 2pu(en +ien)N =2z, [[(2) + ()] +2inz, |2]'(2) +7'(2)] . (2.26)
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It is a remarkable fact the right hand side of this is an exact derivative,
. dH
2ipu— (2.27)
ds

where
H(z,2) = f(2)+ 2 (2) + 7() (2.28)

and we shall make use of this relation within a number of different studies later in this
thesis.

2.2 Singularity model for swimmers.

We must take special care when considering two-dimensional Stokes flow problems ana-
lytically due to the well-known Stokes paradox, which states that it is impossible to find
an exact two-dimensional solution for flow past an isolated body in such a way that its ve-
locity decays at infinity. The presence of the non-vanishing far field velocity is due to the
presence of a net force on the body. Therefore, in order to study this area analytically, we
must restrict our attention to Stokes flow problems in which there is no such force exerted
by the fluid on the objects within it.

These are not rare nor difficult to find. A characteristic feature of swimming microorgan-
isms in low Reynolds numbers is that they produce a sequence of changing body shapes,
often referred to as “squirming”. As discussed in the introduction, it does so in such a
way that the body remains force and torque free as, in a Stokes flow, the rate of change of
momentum and angular momentum is zero. Therefore we have that

]{ F(z,Z)ds = j{ F(2,Z2)(z — z4)ds =0 (2.29)
oB oB

where F' is the force of the fluid on a bodyB (with infinitesimal arc lengthis) and

zq¢ @ point insideB. From equation4.28, the condition that the swimmer experiences
no net torque or force is a crucial one as it means fiat, z), which shall be used to
solve various swimming problems, must not include any logarithmic singularities. As these
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are precisely the singularities that are at the heart of the Stokes paradox, avoiding these
means that problems of swimming microorganisms lends itself well to analytic study in

two dimensions.

Any swimmer in a low Reynolds number flow will locally generate a flow which may
equivalently be modelled by a distribution of Stokes flow singularities positioned either
inside, or on the boundary of, the swimmer. In our study we adopt a similar approach
where the swimming micro-organism is represented by a superposition of two-dimensional
point singularities.

2.2.1 Modelling swimmers using Goursat singularities.

A swimming micro-organism will generate a flow around it. In order to determine the
stream function)(z, Z) for that flow, one must find the appropriate Goursat functipns
andg(z) which are associated with it. These functions are analytic everywhere inside the
fluid domain except, possibly, at a set of isolated singularities introduced to model the
swimmer. We begin the search for an appropriate singularity description by supposing that
the swimmer is located at = z, and also that the Goursat functigitz) is allowed to

admit a logarithmic singularity there. Hence, to leading order, this function takes the form

f(2) = Mog(z — =) (2.30)

where\ € C is the strength of the singularity. Upon substitution ir2al§), the velocity
is then

A _ (2.31)
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Therefore, in order to ensure that the velocity is both single valued and, at most, logarith-
mically singular (and does not have a simple pole;atwe must choose
AZa

(z — 2q)

g(z)=— — Mog(z — 2q). (2.32)

Therefore, if locally toz; we have

f(2) = Aog(z — z4) + analytic function
XZd — . . (233)
— Mog(z — z4) + analytic function

g/(2> = _<Z _ Zd)

then we have a stokesl&4] nearz,, which we have seen is the key to the Stokes paradox.
This is also clear by noticing that the velocity here takes the form

u+iv ~—=XAlog |z — z4 (2.34)

and hence grows logarithmically as— co. Also note that enforcing (=) to take certain
singularities forceg’(z) to take singularities too.

If, instead,f(z) is allowed to admit a simple pole singularity:at

f(z) = A (2.35)

z—2zq

then following a similar argument to that aboy&,z) must be chosen as

AZd

(z) = —24 2.36
9(z) =) (2.36)

in order to ensure that the velocity scales¥3 /|2 — z4|) rather tharO(1/|z — z4|?). This
corresponds to an irrotational dipole contribution of strenghz,; (a dipole is represented
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by a simple pole ofj(z)). We say that if the Goursat functions take the local form

f(z) = A + analytic function

: _Aj_;l (2.37)

g (z) = o= + analytic function

then f(z) has astresslet singularityat z, of strength\. Again we see that including a

simple pole intof(z) imposes a double pole intg(z): an “associated” stresslet-dipole.
Said another wayy’(z) may be chosen to admit independent singularities fifgn), but

not conversely. Specifically, allowing(z) to admit a logarithmic singularity
g (2) = clog(z — zq) (2.38)

wherec € R represents a source (or sink) atwhile if ¢ € iR then this is a rotlet at

z4. A double pole ofg’(z) corresponds to an irrotational dipole singularity, a triple pole
corresponds to an irrotational quadrupole and so on. With regard to modelling a swimming
micro-organism, we are free to choose any combination of Stokes flow singularities that is
deemed appropriate for the problem at hand. However, each of these singularities will be a
(potentially complicated) function of the swimmer’s size, shape, its swimming protocol and
its local effect on the fluid around it. The attention is therefore focused on which specific
combination of singularities can be used to accurately model a physical swimmer.

2.2.2 The Crowdy and Or point singularity mod#].|

In order to rationalise the three-dimensional numeri@4] pnd laboratory 25] experi-
ments of Murrayet al. of a three-linked swimmer near a flat solid wall, Crowdy and Or
[1] adopt a singularity model to represent the swimmer by a combination of Stokes flow
singularities. By arguing that the mechanical motion in the above experiments are copla-
nar, they propose that many of the qualitative dynamics recorded within may be retrieved
by modelling the swimmer using an appropriate singularity configuration inside an infinite
two-dimensional fluid. This fluid fills the upper half of a complex plane above a no-slip
wall, on which the fluid’s velocity is zero. Furthermore, changing the actuation rates of



Chapter 2. Application of singularity theory to low Reynolds number swimming. 35

the spheres simply corresponds to tweaking the corresponding choice and strength of the
singularities that will replace them.

Their specific choice of singularity structure is motivated by the swimming protocol of a
treadmilling micro-organism of radiusin an unbounded fluid. This acts as a sensible
first approximation to how a treadmilling swimmer would behave when in the vicinity of a
boundary. The swimmer is assumed to induce a tangential velocity profile of the form

U(6,0,t) = 2V sin(2(¢ — 0(t)) (2.39)

where¢ is the angle measured from the positivelirection andy = 6 is an angle from the
horizontal which is interpreted as the distinguished direction of the swimmer’s head. The
magnitude of the the constavitsets the timescale for the treadmilling motion. Notice that
while an organism may produce a time-dependent tangential velocity profile, the Stokes
equations imply that the fluid reacts instantaneously to it.

The singularity structure that they propose is that of a stresslet of strength
A(t) = exp(2i6(t)). (2.40)

Due to the presence of this stresslet, the associated stresslet-dipole has stegrafth

the swimmer’s image position. In addition to this, the authot$’model also includes

an irrotational quadrupole of streng?h?)\. Interestingly, note that the orientation of the
stresslet singularity is twice the orientation of the swimmer. This differs frb&h ywho
assume that their stresslet direction is in the same as that of the body. In the language of
Goursat functions, this means that neat z,,

Fety = 2D f) 4 A0 — () + O — ()
@~ zall) (2.41)
gty = 2MO) MO0 o ).

(z = 2(t))> (2 = za(t))

From here on, we will suppress any explicit time dependence on the parameters and func-
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tions for convenience (and sQ(¢) will simply be written asz,, f(z,t) as f(z), and so
on).

It should be noted that while this singularity configuration depicts a non-self propagating
treadmilling swimmer in free-space well, it is unlikely to model its behaviour accurately
when effected by another external entity such as a solid boundary or another swimmer. In
order to model this accurately, the effective singularity description of the swimmer would
have to change in response to its surroundings. However, as a first model and in order not
to over-complicate the dynamics, Crowdy and @rdgssume that the swimmer is passive
with respect to its surroundings and thus takes the same singularity structure whether in
free space or in a more complicated surrounding. Previous authors have made similar
assumptionsZ6]. Within the context of this model, this means that their swimmers will
alwaysbe modelled using a stresslet of strengttogether with a superposed quadrupole

of strength2\¢2, no matter what their surroundings are.

Once this singularity model has been chosen, the authors place it at the:goinand
endow the swimmer with an initial head orientati@t()). Due to the simplicity of the
domain, it is clear that an image singularity should be placed at the point of the swimmer’s
reflection in the wall, Z;. Using this, the authors find that in addition to the stresslet singu-
larity at the swimmer’s position, the Goursat functipfr) must admit up to a third order
pole at theimageposition, too. This is an important result which we refer to throughout
the thesis.

Using the method of images, the authors allomandé to evolve as a result of the swim-
mer’s interaction with its image. In doing so, the velocity and rotation of the swimmer
is deduced from the finite part of the fluid velocity and (half of the) fluid vorticity at the
swimmer’s position. The resulting dynamical system is then given in closed form by

dza  2) o (A +3X)

dat (- 7a) (24 — Za)?

(2.42)
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(2.43)
The authors are able to retrieve many of the qualitative swimming dynamic that are recorded
by Murrayet al. [23] [25]. In the limit ¢ — 0 (the zero-area swimmer as considered by
Berke et al. 13]) the model is one of a stresslet only with no superposed quadrupole and
hence 2.42 and Q.43 reduce to

dzg 2\ do  i(A—N)

= —— and

@ ) & Cam (249

Solving these equations numerically (using a Newton solver which marches forward in
time) does not allow any solutions where the swimmer moves parallel to the wall in either
a rectilinear motion (or a more complicated one). Instead, whatever its initial orientation
is, the swimmer eventually reorients itself and finally crashes into the wall, see Ridure
This is consistent with the findings of Berk¢ al. [13] who claim that while a swimmer

will initially either move away or towards the wall (depending on its initial orientation),
the hydrodynamic effects will reorient the swimmer in such a way that it will always swim
towards the wall.

Whene # 0, the swimmer's dynamics reveal interesting trajectories where it takes a wave-
like motion along the wall, a few of which are shown in Fig@e for different initial
conditions. These are interpreted as nonlinear period solutions of the dynamical system
(2.42 and @.43. For all initial orientationg)(0) # 0, the swimmer will always reorient

itself such that it swims towards the wall. It then spends a period of time swimming on an
approximately rectilinear trajectory at a distance of approximatégm the wall. While

it does so, its orientation is still in evolution and, after a while, the swimmer “takes off”
from the wall again only to later be reoriented back towards it, and so on. The swimmer
continues this cycle indefinitely. This motion should be compared with Figures 2(c) and
4(c) of Or and Murray23]. From here on, we shall refer to thesetasincing orbits
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Figure 2.1: Dynamics fo¢ = 0 for different initial orientations [1]. WheA(0) = 0, the
swimmer moves directly down and crashes into the wall.

Finally, we note that Berket al. [13] predicted various qualitative properties of the swim-

mer’s trajectory but did not perform the full dynamic calculations. The above is a complete

model dynamical system that can provide detailed predictions of the swimmer’s evolution.

Interestingly, the dynamical system defined by equati@¥2( and @.43 is integrable
with solution

1 3 1 2 _ ¢
O(y) = 5 arcsin |:Sin(290) exp (5 logi —1 log ‘Zg — ;)] , (2.45)

where (0y, y0) is an initial point on the trajectory. Figur23is a phase space portrait
of the possible swimming trajectories in tki@ y) space fore = 0.2 and in the range
of —90° < # < 90°. When—-90° < 6, the swimmer moves to the right while when
0 < 0 < 90° the swimmer moves to the left. The separating line 0 corresponds to
when the swimmer moves directly away from the wall while thogg-at+90° are for the
cases when the swimmer moves directly towards the wall. The dynamies @godic

and hence this diagram gives a complete description of the phase space for the swimming

motion by a wall. For comparison, note the close similarity to Figure 2(b) present2d in [
for a three-dimensional swimmer propelled by two actuated spheres.
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Figure 2.2: Three examples of bouncing orbit trajectories for a treadmilling swimmer with
e = 0.2. Here,z4(0) = i,0(0) = —27/5 (black, dashed);;(0) = 0.8i,0(0) = —n/3
(black, dotted) and,(0) = 0.6i,60(0) = —= /5 (blue, solid).
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Figure 2.3: Phase space portrait(ih y) space as given by equation (2.45) for a tread-
milling swimmer withe = 0.2 [4].

2.3 A swimmer above an infinite wall in the presence of a background

shear flow.

Using the above solution for a swimmer above an infinite flat wall in an otherwise ambient
background flow, we now explore situations with different background flows. Consider, for
example, the swimmer placed in a background shear flow of the form

="y (u,v) =(2yy,0) (2.46)

whereU is the strength of the shear flow apd= Im[z]. Hence the velocity is given by
u+ v = 2yy = —i2y(z — Z) /2 and, comparing withZ.15 we see that the corresponding
Goursat functions for this are

f="e ) =i (2.47)
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Due to the linearity of the Stokes equations, the resulting dynamics are a superposition
of the above solution for the swimmer in an ambient flow with that of a swimmer in an
unbounded shear flow. In this case, both the image singularity and the background shear
flow drive the swimmer and there is therefore a natural competition between these two
effects. For larger shear rates;, the shear flow effect is more dominant and acts to draw
out the “wavelengths” of the bouncing orbits, see Figids2.5and?2.6.

Interestingly, when the shear rate is low, the swimmer’s interaction with its image dom-
inates its dynamics and undergoes the familiar bouncing orbits. As the shear rate is in-
creased it is possible for the swimmer to undergo a spiralling motion. The trajectories for
larger shear rates should be compared with Figure @JinHowever it should be noted

that Zilmanet al. do not seem to take into account the swimmer’s own hydrodynamic
interaction with the wall (i.e. the interaction with the image singularity). Therefore, the
comparison is only valid for higher shear rates, when the shearing effect dominates the
wall-interaction effect.

2.4 Summary

We have presented the model of Crowdy and Qrused to describe the hydrodynamic
interaction between a two-dimensional (circular) treadmilling swimmer and an infinite flat
surface. While this two-dimensional model was not as realistic as a three-dimensional
one, it afforded the authors the opportunity to tackle these problems with analytic tools.
Furthermore, many of the three-dimensional dynamics of swimming problems are quasi
two-dimensional in that the motion takes place predominantly in some plane. Therefore,
many of the qualitative phenomena are preserved within the two-dimensional description.

An important implication of the above model is the contribution of the quadrupole singu-
larity. Other authors have used a force dipole (stresslet) model to simulate micro-organism
swimming, however we have seen that if the swimmer is modelled with this singularity
alone, it will generically crash into the wall. The inclusion of the superposed quadrupole
singularity appears to prevent this from happening and leads to bouncing orbits. These are
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Figure 2.4: Trajectories of swimmer (with= 0.2, z,(0) = 0.4i,6(0) = 0.77) in the
presence of a background shear flow of varying strength:0 (Black, solid),y = 0.15
(Blue, dashed)y = 0.4 (black, dash-dot) ang = 0.6 (blue, dash-dot).

interpreted as stable, nonlinear, period orbits of the resulting dynamical system.

We have shown that the model presented by Crowdy andlDecdptures the physical
phenomena observed by Murray and @8][and Murrayet al. [25] for similar experiments

within an numerical and laboratory setup, respectively. That Crowdy andl] @aye done

so using an independent method suggests that this model is a useful one and supports the
idea that many qualitative phenomena of two-dimensional low Reynolds number swimming
can be captured by this model. Indeed it can be expected that it may be used to predict the
behaviour of similar swimmers in more complicated geometries: this will be the focus of
the next two chapters.
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Figure 2.5: Trajectories of a swimmer (with= 0.2, z4(0) = 0.55i,60(0) = 4x/5) in

the presence of a background shear flow of varying strength:0.5 (Black, solid) and
alsoy = 0.75 (Red, dash). We see that the combined effect of the shear with the image
singularity interaction gives rise to “spiralling” orbits.

Figure 2.6: Trajectories of the swimmer= 0.05) in the presence of a strong background
shear flow { = 8.5) at different heights (bottom to top): [@(0)] = 0.2,0.4,0.6,0.8, 1.
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Chapter 3

Stokes flows past a gap in a wall.

3.1 Introduction

In chapter 2 we saw that much attention has been recently paid to the study of swimming
dynamics near a solid boundary. Crowdy and Qhfave shown that it is the hydrodynamic
interaction between the swimming micro-organism and the infinite flat boundary that deter-
mines its subsequent motion and allows “bouncing orbits”. It is likely that these dynamics
may be altered by a change in the solid boundary that the swimmer interacts with. Prob-
lems of swimming near more geometrically complicated domains are therefore of interest.
However, this does not appear to have been previously studied in any detail.

As a first step towards doing so, a careful study of how a general Stokes flow behaves in
the presence of such boundaries is necessary. For example, it is straight-forward to write
down the solution for the shear flow of a fluid in the upper half plane above an infinite flat
wall, but it is not immediately clear how the resulting streamlines would be altered when
near a more complicated no-slip surface.

As a natural extension to the simple half plane we consider the case where the flat wall
admits a finite gap, or orifice. In this case the fluid fills the entirety of the complex plane,
above and below this wall which now has a gap in the intdrval 1]. Only the fluid in the
upper half plane will be driven by some far field flow, while the fluid far below the wall in
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the lower half plane is assumed to remain at rest.

In the past, problems of fluid flow past an aperture have been notoriously difficult due
to the fact that no boundary condition can be @edriori in the gap region, except that

the velocities and stresses must be continuous across this region (however, this is a basic
physical requirement across any line in the fluid). For example, Weinbd8hmdicated

that there may not be a separation streamline, defined by a contour on which the stream
function vanishes, emanating from a sharp corner. Dajal. [36] have demonstrated

the difficulty associated with fixing a boundary condition when a net flux across a slit is
present.

We will focus our attention on two cases: one where the fluid is driven by a far field uniform
shear flow and one where it is forced by a stagnation point flow. Analytical solutions to both
of these cases have been previously found, though by rather different methods. We shall
aim to develop a new mathematical approach using conformal mapping theory which will
provide exact solutions to these problems in a unified fashion, so that only minor changes
to the method are required in order to solve both problems. Furthermore, we would like
our method to also accommodate the cases where the flow is driven by other singularities
too, either at a point inside the fluid (such as a Crowdy-Or singularity maged by one

at infinity.

Smith [2] found the solution for a uniform Stokes flow past a wall with a gap, such that the
stream function approached that of a uniform shear flow

» — Uy? (3.1)

or, alternatively,

(3.2)

(. ) (2Uy,0), asz — oo™
u,v) —
(0,0), asz — oo~

in the far field. Here we writec™ to represent the region far above the wall such that
y — +oo, while co™ correspondg — —oo. Herey = Im[z] andU is the strength of
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the shear flow, which Smiti2] takes as unity. Smith?] then wrote the global flow as the
addition of a symmetric and an antisymmetric stream function. The antisymmetric stream
function was an odd function af, and as the velocity was therefore an even function
of y, this represented the behaviour when the direction of the shear flow above the wall
was exactly the same as that beneath the wall. The symmetric part, an even fungtion of
described the shear flow which was in opposite directions on both sides of the boundary and
could be directly written ag?/2. The antisymmetric stream function was found by taking
the Fourier transform (irx) of the biharmonic equation, applying the no-slip boundary
conditions and expressing the solution in terms of the first Bessel function. The solution
was then inverted using a result of Erdel@i7/] and, upon adding both stream function
contributions together, eventually gave the exact solution

L 2 {y2 — 2’4 a® + [(y2 + 23?2 + 2a*(y* — 2%) + a4] %}2 (3.3)

bz y) =gy + 2L\/§
wherea is half the gap width (and hence is equal to one in the geometrical configurations
of this chapter). The first term accounts for the antisymmetric velocity while the second
accounts for the symmetric one. The flows in the lower half plane, which were in opposite
directions, cancelled each other out and the resulting solution was the desired one. This
agrees with the results of O’'NeilBB] and Wakiya B9 who considered slow viscous flows
above a plane with a cylindrical trough, when the limit of infinite cylindrical depression is

taken.

We will also consider the a stagnation point flow of the form

U(z,y) = kay? (3.4)

near the same geometry, wheres a real constant which determines the strength of the
flow. We see that the origin is a natural stagnation point of this flow and that this stream
function is the equivalent of a uniform straining flow, see Figuke

The stagnation point flow3(4) has the associated velocity profile, v) = (2kxy, —ky?)
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Figure 3.1: Streamlines for a stagnation point flow. If the flow was unbounded, there would
be a natural stagnation point at the origin (hence the name of the flow). This is equivalent
to a linear straining flow.

and hence, from the Stokes equatiodd) we see that the pressure is given by

plz,y) = —2ky (3.5)

plus a possible constant. Aside from this linearly decreasing pressure which is associated
with the driving stagnation point flow, the pressure at the upstream infinity can be set higher
than that at the lower infinity by a val@e\ P which may cause a discharge through the gap

in the wall.

The problem of stagnation point flow above a wall with a hole or a gap has been previously
solved by Ko and Jeon@]. The authors approached this problem by expressing the stream

function as a combination of analytic functions

Yy(2,z) = Im {/ Fj(z)dz + /GJ(Z)dZ +(Z—2)Gy(2) (3.6)
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where these analytic functions satisfy
u+iv="TF;Z) + (z—2)F,) — Gy2). (3.7)

Applying this form of the velocity to the boundary conditions on either side of the walls,
they find that

(3.8)

where][-] . evaluates the relevant expression above and below the real line respectively. This
is a Riemann-Hilbert problem for the two analytic functiafigz), G ,(z). To find them,
they assume that these functions take the form

F](Z) + @J(Z) :Ao + Alz + A22’2

— (3.9)
Fy(2) — Gy(z) =(2* = 1)Y3(By + By2)

where they choose the branch cut to lie along the two walls, which is identical to selecting
—m<arg(z+1) <m, 0 <arg(z—1) < 2m. (3.10)

Therefore, the functions remain single-valued across the gap. Consequently, Ko and Jeong
[3] find that

Fy(z) =— I%Z [+ (22 = 1)Y?] + %(z2 —1)12
ikz AP g (3.11)
Gi2) == [+ (=" = 1)"?] + E(f — 1)

Notice that, from 8.7), we see that this solution is valid up to an additive constant, as the
translationst; — F;(z) + candG,; — G,(z) + ¢ leave the velocity unchanged.

Interestingly, while this work is similar in nature to that of Smi2j [who considered
exactly the same geometry only with a driving shear flow, as opposed to stagnation point
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flow), Ko and Jeongd] seem to be unaware of Smith’s work][ An interesting test on

Ko and Jeong’s method would be to use it to solve Smith’s problem. While both of these
problems above were solved using rather different methods, they will serve as a useful
check on the formulation that we will present in this chapter.

Due to the sharp corners at the start and end of the gap, special attention must be drawn to
the structure of the flow there. The approach we take here originates from the description
of the singularity structure at a sharp corner, first proposed by Dean and Montaihon [
They showed that near a sharp corner with interior adgleghe stream function takes the
form

W(r,0) ~r2 (3.12)

wherer is the radial distance from the corner. We use this results to argue the structure of
the Goursat functions around corners.

While we focus our attention on flows which are purely two-dimensional, it should be noted
that by solving a pair of dual integral equations, Davi$] jwas able to find exact solutions

to the axisymmetric analogue of the problem considered by Sigjthif this problem,
Davis considers a uniform shear flow above an infinite wall which admits a circular orifice
(as opposed to a rectilinear slit, as in Smith’s problem). Davi$] \vork was motivated

by the study of fluid skimming and particle entrainment performed byetaal. [42] and

is a generalization of the classical solution of Sampson flow past a circular orifice in a wall
[43].

3.2 Stokes flow near the end of a plate.

Consider two infinite walls conjoined at= z, with internal angle«. When this separa-

tion angle is27, the walls lie along the same line and wedge corner becomes the end of a
plate. Based on the above leading order form of the stream fun@i&8) together with
(2.13, the Goursat functiotf(z) can be shown to take the form

f(z) ~ag(z — 20)1/2 + O(z — 2p) (3.13)
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with aq constant, in the vicinity of this corner. From the no-slip velocity conditi®19),
it follows thatg’(z) takes the form

g'(2) ~ bo(z — 2) "/ (3.14)

with b, constant, near = z, so that the velocity does not diverge there. Knowledge of the
Goursat functions’ singularity structure around the sharp end of a plate will be crucial in
our study of Stokes flows around complex geometries in this, as well as later, chapters.

3.3 Shear flow past a wall with a gap.

Using conformal mapping techniques, we will now attempt to find an exact solution to the
problem considered by Smitl2]f that of a uniform shear flow above an infinite no-slip
wall with a gap.

3.3.1 Mathematical formulation

We want to find a stream functiog, which satisfies the biharmonic equation everywhere
in the fluid,
Vi (2,2) =0 (3.15)

such that the velocity is zero along the wdli$ > 1 and that, as we move far above the
wall, the flow behaves as a regular shear flow with strebgta 1,

U(z,y) — as z— oo, (3.16)
In this case, the far field velocity is given by
u+iv=1, — i, =2y =—i(z — 2). (3.17)
Next, recall that we express the stream function which satisfies the biharmonic equation as

¥(z,2) = Im[zf(2) + g(2)] (3.18)
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wheref(z) andg(z) are analytic functions of with the velocity relation
u+iv=—f(z)+2f (2) +7(2). (3.19)

Equating this to§.17), our functions take the far field form

F(2) ~ { iz/2 asz — oot (3.20)

fo @Sz — o007,

and
—iz as +
J(z) ~ { T (3.21)

Joo ASZ — 00~

wheref,, andg., are constants.

3.3.2 Conformal mapping: a wall with a single gap.

Let us now introduce an analytic function which maps the interior of a disk with unit
radius in a complex plane, whose coordinates are measured by the complex v@riable
to the physical fluid domain, which has the usualoordinates. This is an example of a
conformal mapan angle preserving function at all points where it has non-zero derivative.
We construct this map as a composition of atvis map and a reciprocal map: théblus
map,

MO =5 +0) (3.22)

maps the interior of the unit disk in theplane to the exterior of a slit of length 2 in the
complexn-plane. The reciprocal map

1 2

z(n) =

therefore maps the interior unjtdisk to the exterior of the fluid domain. Chosen in this
way, we ensure that
z(1)=1 and  z(-1)=-1. (3.24)
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Note also that the points = =i both map to infinity. However, it i = +i which
corresponds ta = co™ and hence it will be here that the far field shear flow condition
shall be imposed in thé-plane. Figure3.2 shows a schematic diagram of the mapped

regions.

Figure 3.2: Conformal mapping from the interior of the unit disk (in {hplane) to the
exterior of an infinite horizontal wall with a gap betweenr- 41 (in the fluid z-plane).

It is possible to invert this maB(23 explicitly to give

1= (1222
= - ,

¢(2) (3.25)

The negative square root is taken to ensure that the origin in the fluid domain is the image
of a point inside the unit disk in thé-plane. This map has two branch pointszat +1;

the two ends of the gaps. The branch cuts are taken to lie along the walls and so there will
not be any discontinuities across the gap. Also notice that the Taylor expansigq) of
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reveals that
CF1=0(=F1") (3.26)

near the point = +1. Therefore((z) alsohas square root branch point singularities of
exactly the same type that is required of the Goursat functfgng and ¢’(z). This is

a crucial observation for the analysis as it follows thahay serve as a uniformisation
variable for the problem. Therefore, the problem of determining the multi-valued functions
f(z) and¢'(z), which admit branch cuts in the physical domain, reduces to finding the
single-valued, analytic functions(¢) andG(¢) defined by

F(O =f(=() and  G(Q) =d(2(q)) (3.27)

where( is a point in the unit disk.

As a conformal map is analytic, we may form a Taylor expansion about the eint,
corresponding to one of the corners, as

2(0) = 2(1) + 2 (1)(¢C—1) + %z”(l)(( —1)2+... (3.28)
However, the derivative of a conformal map vanishes at the corners,
Z(£1)=0 (3.29)
as this is a point of non-conformality. Hence we have

po 1= (1) %z”(l) FOWC—1) 4. | = (C—12P©) (3.30)

where P(() is analytic everywhere inside the disk. Substituting this i%d®, we have
that

F(2(Q)) = (¢ = DIPQ)H(2(C)). (3.31)
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As H(z(()) is also analytic, this can be written as

F(¢) = (¢ = 1)Hi(¢) (3.32)

whereH, (¢) is also an analytic function. As we have two cornersat+1 in our problem,
f(2) takes the form
f(z) = (s =1)2H(z) (3.33)

which, by a similar argument to that above, can be written as

F(¢) = (¢* = 1) Ha(¢). (3.34)

Note that as/,(() is an analytic function of, so isF'(¢). By a similar argument we also
have that

G(¢) = 2 (3.35)

(-1

for analytic K, (¢). Keeping this in mind we rewrite the Goursat functions as

(=D -DHQ) _ F(Q)

F(¢) = =) = (3.36)
and .
6() = —2) (3.37)
(C—=1(¢C-1) '

where nowF'(¢) andG/(¢) = K»(¢)(¢ —i) are two functions to be found: they are analytic
and single-valued on the inside, and on the boundary, of the unit disk.

3.3.3 Determininf((’) andG (¢) from the no-slip boundary condition.
We now use the fact that the fluid is stationary on the walls, which correspond to the bound-

ary of the unit disk in th€ -plane, or where

_ 1
= 3.38
C=¢ (3.38)
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Writing the no-slip condition3.19 in the -coordinates gives

z(¢)

u+iv:0:_F(O+E’(1/§)

F'(1/¢) + G(1/¢). (3.39)

Next, we have that

2(¢) _ 1+¢ (3.40)

Z(1/¢) ¢ =1)

and so upon substitution of the ansa&Z3() and the conformal map into this, we have

PO 1+ [CFU/Q iGF'1/9] 6/

e tie-y e T ey | Taroa-a G
Rearranging this, we see that
0=—¢(C -1 — i)F(C)iC (L+)F(1/Q) _ (3.42)
—i(1+ ¢CC — D EF(1/) +i¢ (¢ DG (L/Q).
From this it is clear that
F(¢) = Fy + Fi¢ (3.43)

only, as any term of)((?) cannot be balanced by any other terms and hence is not present.
Furthermore, this implies that

:F0+F1C:F1_|_F0+iF1

F(O == -

(3.44)

and so we can séf; = 0 without loss of generality, as the velocity conditid9 shows
that f(z) has an additive degree of freedom. The constgninay be found from the far
field condition 8.20 which, in{-plane, is that

[ iC i 1

F(Q) = 52(0) = CE R ETED (3.45)

and hence, a§ — -+,

F(¢Q) — <l> L (3.46)
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This implies thatF, = i/2 and so

FO =505 (3.47)
Similarly it can be shown that
GI¢) = =i2(0) = (~i) (3.48)
Next, we rearranges(42 to give
G(¢) =i¢(1 = CYF(1/Q) + C(1+ CF'(C) — (¢ +1)P(Q). (3.49)

But, from (3.46 we know thatﬁ((‘) = i/2, and so relation3.49 reveals that

G(() = % [2¢ —i¢> = ¢7). (3.50)
In summary, we have that
B [ -
F(O_Q(C—i) and G@_Q(C—i)(g‘?—l)' (3.51)
Additionally, note that _ .
4 1 |
G(¢) — Chi—i = s (3.52)

as¢ — i which is consistent with3.49.

Now that we have the Goursat functions everywhere in the unit disk (and hence in the
physical domain, via the conformal map), expressia9 gives the velocity everywhere.
The streamlines for this flow are shown in Fig&.&.

3.3.4 Comparison to Smith’s solutiof][

Smith [2] found that 8.3) is the stream function for the problem of a uniform shear flow
past a wall with a gap. As a check on our solution, we retrieve his from ours. Using our
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1.5 R

0.5r |
-0.5 7
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Figure 3.3: Streamlines of shear flow past a single gap. The fluid in the lower half plane
is only driven by the shear flow in the upper half plane and hence, if there was no gap, it
would remain stationary.

solution in the velocity condition3(19 gives the velocity at any given point in the flow as
a function of¢ and its conjugte,(. Specifically, using3.42 we have

2

i iC(1+C )2 . 20 +ic—¢

u+iv=— ~ + T — —
A T e )A- D)+ 24N —1)
< [ (S [ VR C S 9 [ (S (S
2C=1 20+ -O)C+i2 20+ +O)C - 1)
=r(C, )| 21C3C — 2iC2C +3¢2C + 2 — 2iC + 38 — 2i¢C — 2
+2i¢ - 200 - ¢ -1
where

- 1
U TR Ty

(3.53)
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This describes the velocity anywhere inside the fluid. It has been written in this way for
ease of comparison to Smith’s solutidhd).

Next, we may write Smith’s solutiorB(3) as

1
v =3y +2f( ) (3.54)

where )
az,y) = |y* —2® + 1+ {(¥* +2°)* + 2(y° — 2°) + 1}5} : (3.55)

Introducing the complex variable= x + iy gives
1 _ _
= —g(z —2)° — ——=(z —2)a(z,2). (3.56)

From this, the velocity can be deduced as

u+ v = —QIg—qf (3.57)

and hence is

_ i 1 _ Oa
u+|v|s :§(z—2)+ﬁ{a+(2—2)£}
B _ 3.58
¢ ¢ + 1 a4+ 2 ¢ — ¢ 8_04 ( )
2v/2 C41 GH1) 0z

Cr1 1l
where|s denotes the velocity found by SmitB][ Let us now explore the function(z, 2)

in order to simplify the above expression. Note that

1
Y —a? = —5(22 + 7%) and  y? +2° =27 (3.59)
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Using these in the definition of(z, y) gives

[N

1 1
az,%) = [1 — 5(z2 +2)+ {7 - -2+ 1}2]

1 1 173
:E [2 2=+ 2(2* - 1)2(z* - 1)5] :
Next, using the definition of(¢) we have that
(¢ —1)
Thus, taking the square root of this gives
(22 —1)2 Y (St QR (22— 1): ::Fi<z2_1) (3.61)
(¢2+1) & +1)

Using this in the above expression fegives

R N S i (SRS
=7 [2 <(<2+1>2+(ZQ+1)2)+2(<2+1>(Z2+1)

1
2

1 —2 —2
_ 2((2 2 2 _yr2 2
AT @ C I e
—4C(E )22 - 1 - 1)
_ 1 - [4§4Z4—8c252+4 :
V2(C+1)(C +1)
_/3 (¢C -1

(E+DC+1)
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Next, we can differentiate3(60 with respecto Z to give

60
da 1 Z(z2 — 1)z z 21\
= |z = |1-|5— . 3.62
Iz 204[ o (32_1)§] 204[ (22—1> (3.62)
Using relations 3.61), we have that

oz (-1 +1)

(E+1)(C 1)

z

2a(¢2 +1)(C — 1)

(E+1)E D+ -DC +1)

(S VI
A+ 1) —1)

When we use the above expressiondowe get

da \/§Z
= = Zz T (3.63)
Using this in the expression for Smith’s veloci®.%8 gives
N ¢ (¢ -1
+iv]g = - -
uils = [Z2+1 G+l 2+ +1)

R RS
C-p\T+1 1

— - =2
¢ ¢ <i+_2< )_ T -1
-1

Cy1 Gl 2¢2 + 1)(C2 +1)
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which may be written as

wtivg =x(¢.0) [{2C 41 - @+ 1)} {2 - 1)+ 20}
~ w60 [T - 1@ - )]

=((, Q)| 2170 = 2¢*C +3¢%C" + 21" — 2iC + 3" — 20T — 2T
+20i¢ - 2¢C - ¢%¢' - 1

with x(¢, ¢) given by @.53. This is exactly the same as our solution and hence we have
shown that our solution is identical to that of Smigj,[although both were found using
different techniques.

3.4 Stagnation point flow past a wall with a gap.

We have shown how the use of complex variable techniques greatly simplified the task of
determining the solution for a uniform shear flow past an infinite no-slip wall with a gap,
compared to the method taken by Smih We now use our method to find the stagnation
point flow, defined in 8.4), past the same geometry as above. The fluid in the lower half
plane is driven only by the flow in the upper half plane, and is quiescent far beneath the
wall. Our method offers a new approach to solving the same problem which was previously
solved by Ko and Jeond].

3.4.1 Mathematical formulation

We want to find a stream functiog, which satisfies the biharmonic equation everywhere
in the fluid such that the velocity is zero along the walls> 1 and that, as we move far
above the wall, the flow becomes a regular stagnation point flow with velocity

2kxy — iky?, asz — oo™
u+iUH{ IR, dse T oo (3.64)

asz — oo .
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Furthermore, we require that the pressure takes the form

—2ky + AP, asz — oo"
pa{ Y ah e e (3.65)

—AP, asz — 0o,

Consider first the limiting form of the velocity far above the wall. Here , we have that
u + iv = ky(2x — iy) so upon using the fact that= (z + z)/2 andy = —i(z — 2)/2, we

have
ok, 0k _ 3ik_,
u—+iv = i _EZZ+TZ . (3.66)

From (3.19 we see that the far field forms of the velocity:) andg’(z) are therefore
ikz? 3ik2?

J) == J(x) = —= (3.67)

However, given that there is an additional pressure (which has no velocity contribution) at
the upper and lower infinities, and that= 4uR€[f'(z)] (wherey is the viscosity), we see
that the limiting forms of the Goursat functions are

ikz?/4+ APz/4u+ O(1), asz — oot
f(z) — / / @ ) (3.68)
—APz/4p+ O(1), asz — oo
and
, —3ikz?/4+ O(1), asz — oo™
g'(z) — / (1) - (3.69)
O(1), asz — oo™

We again introduce the conformal mapZ3 and recall thatt — +i as we move away

from the wall towards>o*. Here, f(z) has both a double pole (for the velocity) and a
single pole (for the additional pressure), whjt¢z) only has a double pole. At the lower
infinity, corresponding t@ = —i, f(z) only admits a simple pole whilg(z) is, at most, a
constant there. The only other singularities in the functions arise by virtue of the corners at
the end of the plates at which poifitz(¢)) is analytic whileg’(z(¢)) admits a simple pole.
Putting this together, we again defif&() = f(2(¢)) andG({) = ¢'(2(¢)) and assume

the ansatz
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~ N

© _
ey 97

F(¢) = (3.70)

whereF (¢) andG/(¢) are the two functions to be found: again they are analytic and single-
valued in the closure of the unit disk.

3.4.2 Determining”(¢) andG(¢) from the no-slip boundary condition.

We again refer to the fact that the fluid is stationary on the walls, which correspond to the
boundary of the unit disk in thé-planewhere( = 1/¢. The no-slip velocity condition
reads

z(¢)

0= —F(Q)+ Sy h (010 +60/0) (3.71)
Upon substitution of the ansat2.70 and the conformal map into this, we have
NI 4 (9
(€ —1)*(C+1)
(1+¢%) [ —¢F (1/¢) 20'F(1/Q)  ¢'F(1/Q)
BV G o o R e T B
L aa/g
(=D -1)
Rearranging this, we see that
NP 2 2 7/ 3 N
— (P =DF(Q) —ic* 1+ ¢HF'(1/¢) +2¢3(C + ) F(1/¢) (3.73)

— P —1)E(1/C) + CHC+DE(1/Q).

From this it can be seen that(¢) is at most a cubic as any term 6¥(¢*) cannot be
balanced by any other terms and hence is not present. With this in mind, we may write

B cC D
FO=4+ et (3.74)

whereA, B, C'andD are constants. Again, we may set the- 0 without loss of generality
from the additive degree of freedom. The other constants can be found from the far field
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condition 3.68 and @3.69 as the map takes the form

0 = 75 Lz—fl} (3.75)

which can be expanded arougd-= —i to give

1 [

while around, = +i the map takes the form

1
Hence, the far field forms of(z) are
ik 1 k/ju+ AP 1
Fo—--22 L, |
4 (C+1)

as we move to infinity in the upward and downward directions respectively. Writing these
limiting forms in this way means that we may read off the constant8.ird) as

B:ﬁ, Czl(ﬁ—i—AP), D:—E (3.79)
4 4 \ p 4

and hence we have the full expression for),

ik 1 AP k 1 AP 1
FO=emEt a1 ey e (3:80)
By rearranging3.71), we then have7(() given by
6(Q) = F1/¢) - L ) (3.81)

Z(¢)



Chapter 3. Stokes flows past a gap in a wall. 65

Note that from 8.73 we see that wheq — |, G(C) takes the value

G(i) = ==, (3.82)

ik ,  (3ik) 1
G(() —» -2t = — (—) Tt (3.83)

and so, given3.70 we can expect that(¢) = 3ik/2 as¢ — .

3.4.3 Results: streamlines of stagnation point flow near a wall with a gap.

Now that the Goursat functions are known, we are able to determine the velocity every-
where. We now study the streamlines of this flow for a number of representative values of
k andA P in order to present different qualitative phenomena of this flow. In what follows,
we fix 4 = k = 1 and vary the value oA P. This is equivalent to varying the numbé,

defined by Ko and Jeon@] as
AP

= H
wherey. is the viscosity of the fluid3]. The first case to consider is one where there is no

(3.84)

stagnation point flow and only a pressure difference between the upper and lower infinities
drives the flow. This corresponds to a Sampson flég} with AP = 1,k = 0 (and hence

N = o0). The flow has reflectional symmetry in both the real and imaginary axes, and has
no stagnation points or eddies anywhere within the fluid; see FRydre

The second fundamental case to consider is where there is no added pressure contribution,
so the flow is only driven by the far field stagnation point flow in the upper half plane.
ThereforeAP = N = 0 and in this case a saddle point appears at the origin. In addition

to this, there are a pair of viscous eddies extending to infinity in the lower half plane, both
symmetric about the imaginary axis, see Figsu®

For the general case whetée # {0, oo}, the additional pressure contributi@m P acts in
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Figure 3.4: Streamlines for a flow through a gap driven only by a downwardly directed
pressure gradient. HeteP = 1 andk = 0 so that there is no stagnation point flow. This

corresponds t&v = oo, as defined by Ko and Joengj [

w

N

-

Figure 3.5: Streamlines for a stagnation point flow above a gap with no added pressure
gradient and s&\P = N = 0 with £ = 1. A single saddle stagnation point appears at
the origin while two viscous eddies, both extending to infinity, are formed symmetrically

in the lower half plane below the gap and the wall.
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competition with the strength of the (downwardly directed) stagnation point flokvatfd

AP are of the same sign and magnitude, @ is positive, then both the stagnation point
flow and the added pressure act in the same direction and fluid will be “pushed” downwards
through the gap and no eddies will be formed, see Figusef, on the other hands is

of the same magnitude &sP, but this timeA P is negative, there is an upwards pressure
gradient pushing fluid against the downward stagnation point flow, as in Fiyarélere

there is only one saddle stagnation point in the upper half plane, and one pair of viscous
eddies appearing between the ends of the plates and the streamlines which have separated
from the edges. Finally, ik is larger thanA P, then the flow will be dominated by the
stagnation point flow which acts in “competition” with the pressure, as demonstrated by
Figure3.8.

Figure 3.6: Streamlines when the added pressure gradient is in the same direction as the
stagnation point flow. Heré = AP = 1, and the fluid is pushed through the gap. There
are no viscous eddies formed.

3.4.4 Comparison to Ko and Jeong’s solutih |

Ko and Jeongd] found that @.11) are the appropriate analytic functions which construct
the stream function of this problem. From their definitionff(z) and G (=) from the
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Figure 3.7: Streamlines when the added pressure gradient is in the opposite direction to the
stagnation point flow. Hera P = N = —0.5 with £ = 1. There is one saddle stagnation
point appearing above the gap while two viscous eddies formed underneath the edges of
the plates and above the streamline which separates from the edge.

Figure 3.8: Streamlines far = 1 and AP = 0.07. The effect of the added (slight)
downward directed pressure gradient is to reduce the size of the symmetric viscous eddies,

visualised in Figure.5.



Chapter 3. Stokes flows past a gap in a wall. 69

velocity condition, it can be seen that these functions are relatg@:joandg’(z) via the

relations
Fi2) = () +20'2) = 2 [o+ (= V] + 0 - 1)
1
k2 AP (3.85)
Gs(z)=f(z) = 5 [z + (22 — 1)1/2} + _4N (z2 — 1)1/2.

As a check on our method, we must show that our solutions are identical. Let us examine
(3.80 for f(z) and check that this is the sameGig(z): F;(z) will then necessarily follow
from the no-slip boundary condition. Note that we may write expresf@yas

k¢ iAP

I EATCEa) (550

F(¢) =

Also note that from3.23 we have that = (1+i(2? —1)'/?)/z, and we choose the upper
branch of this so thaf = 0 is mapped ta = 0. Hence
F0.,2  1\1/2
¢ = L+i(z*—1) | (3.87)

z

Consider the first term of3(86. We have that

1 z(C+i) 1 22(C+i)
€K A 459
and so y .
—4(C E i = ZZ (zC + 2iz — g) ) (3.89)
Next, as we have that/¢ = 1 —i(z? — 1)'/?, this becomes
L I (3.90)

which is exactly the first term off;(z) as given in 8.85 by Ko and Jeongd]. Next, the

second term of3.80 is
IAP 1 iIAPz
= 3.91
SRR, (3.91)
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which can be simplified to

AP
c+ E(% —1)? (3.92)

wherec = iAP/4, which is exactly the second term 6f;(z) in (3.85 up to an additive
constant. Note that we have set our additive degree of freedom by sétting in (3.74

while the authors have not, and hence the two solutions can be expected to differ by this
constant. Indeed, a translati6fy (z) — G ;(z) + ¢ will not affect the velocity ifF;(z) —
F;(z)+c. And, asF,(z) = ¢'(z) + zf'(z), we can expect our functioi(z) to differ from

F;(z) by c. In other words, we can expect that

g(2) =Fy(z) —2f'(2) —¢c (3.93)

We have therefore shown that the two solutions are identical, although our approach has
been fundamentally different.

3.5 Summary

We have presented exact solutions for the Stokes flow past an infinite flat wall with a gap.
Using the results of Dean and Montagndi@][we have been able to characterise the flow

at the sharp ends of the walls. Then, by developing a new mathematical approach based on
conformal mappings, we have been able to find the flow that is driven either by a uniform
shear flow or a stagnation point flow at infinity. Both of these cases have been indepen-
dently solved by Smithg] (for the former) and Ko and Jeon@][(for the latter) using
entirely different methods. We have shown that our solutions to both problems are identi-
cal to the results published by these authors.

A significant advantage of the method we have presented in this chapter is that only a slight
change in far field conditions was necessary in order to solve both problems considered
by the above authors. Indeed, the method may readily be modified to handle other forms
of far field flows, too. In particular, Antanovski#fl] studied the Taylor four-roller mill
experiment, where a deformable bubble is placed in a viscous fluid which was driven, in
the far field, by four rotating cylinders. In this cagé;) tends to a cubic polynomial in the
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far field, whileg’(z) approaches a linear functioA4]. The method presented here would
then be amended in such a way that the ansat#'tQ) would be

B C D E

FO=4+ e T oo "o "o

(3.94)

with the constants matched to the far field forms of the Goursat functions. Another example
of a far field velocity would be one that is constructed using a combination of any, or all,
of the above three.

These solutions have been documented as a contribution to the mathematical theory of
Stokes flows. The solutions have been used to study the effects of an occlusion in the wall
and are expected to be useful in a variety of different physical applications, in particular to
the study of low Reynolds number swimming near boundaries with gap. In the following
chapter, we will build on the solutions of this chapter and employ the singularity model of
Crowdy and Or 1] in order to provide insight into the dynamics of such a swimmer in this
complicated geometry.
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Chapter 4

Swimming in low Reynolds numbers

near a wall with a gap.

4.1 Introduction

Chapter 2 presented a study of a two-dimensional swimming micro-organism in the vicinity
of an infinite flat wall. The next natural question to ask is how a low Reynolds number
swimmer behaves in a more complicated confined geometry than that of a simple half
plane above a wall. We do this by allowing the boundary to admit a finite-lengthd&hp [
Studying the swimmer’s interaction with such a domain will provide insight on how such
organisms behave in the presence of an orifice or an opening in their bounding domains.

This will be the focus of the present chapter.

The fluid in this confined region fills the area above and below a no-slip wall, positioned
along the real axis with a gap betweenr= +1. The ends of the wall endow the domain
with two sharp corners - this is an additional complication which will be resolved in this

chapter.

As we have seen in chapter 3, this is not the first study of Stokes flows near such a region.
In particular both SmithZ] and Ko and Jeong3] each considered various Stokes flows
past similar solid boundaries. The work within that chapter expounded a novel conformal
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mapping approach which reappraised the solutions of Si2jtarid Ko and Jeond3] in a
unified fashion. This approach is a useful one as it can be generalised in a natural way to
solve the problem of interest here.

4.1.1 The point swimmer model.

We will use the Crowdy and OAd] point singularity model to study the swimming dynam-

ics of a swimmer near a wall with a gap. Recall that using this description, the swimmer is
represented by a stresslet of strength exp(2i0) together with a superposed irrotational
quadrupole of strengti2\. As described in chapter 2, Crowdy and Qf §lerived their
choice of singularities by assuming their treadmilling swimmer had ragibewever in

this chapter it will enter our analysis only as a parameter. The model’s success in capturing
the qualitative motion of swimmers near an infinite wall (as seen in numerical and labo-
ratory experiments23, 25]) motivates its adoption when considering swimmers in more
complicated confined domains. Therefore, in order to extend this study to the case where
the wall admits a finite-length gap, we focus attention on how the apoie singularity
interacts with its bounding environment. Indeed, we aim to provide a predictive theory
which may be tested in future laboratory and numerical experiments.

In studying the dynamics of a swimmer above an infinite flat wall, Crowdy andlDr [
utilised the familiar method of images to determine how the swimmer interacted with the
boundary. The simplicity of this method was due to the straight forward geometry of the
fluid domain which made itimmediately clear that the swimmer’s image should be placed at
its reflection in the wall. In the case where the boundary admits a gap, it quickly becomes
less clear where an image system should be placed. This, together with the presence of
the sharp corners at the ends of the gap, present additional complications to the model. We
overcome these by using complex variables techniques to model the appropriate singularity
structure of the swimmer and the corners of the wall. By introducing a conformal map to
associate the physical fluid domain with a simpler one, these complications are ameliorated
and an exact representation of the swimming dynamics is found.
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4.2 Swimming near a gap in a wall.

With the singularity structure of the Goursat functions for this problem known, we turn our
attention to finding the equations of the swimmer’s motion explicitly.

4.2.1 Mathematical formulation.

Mathematically, we want to find a stream functiorsuch that
V4(z,2) =0 (4.1)

with u+iv = 0 on|z| > 1. We also require that the velocity has singularities corresponding
to those of a superposed stresslet and irrotational quadrupole at the position of the swimmer,
zq¢- We again use the same solution for the biharmonic equafidiB(as in previous
chapters, wheré(z) andg(z) are the usual Goursat functions which will now be analytic
everywhere in the flow except at the position of the swimmer and corners. Once we have
these functions, we may construct the velocity everywhere inside the fluid domain via the
usual relation

utiv=—f(z)+2f () +7(3). (4.2)

We have shown that in order to attach the correct singularity model to the swimmer, we
must choose

flz) = + fo+ filz —za) + - .. (4.3)

Z — Zq

and also
2€2)\ AZg

(z—zq)®  (2— zq)

where\ = exp(2if). Recall that the double pole gf(z) corresponded to the dipole that

g (z) = 5T g0+ (4.4)

is associated with the stresslet, while the triple pole is that of the quadrupole. Also, the
method of chapter 3 has taught us that near the corner=att1, the Goursat functions
take the local form

Hy(2)

£(2) = (=5 DY), AN e

(4.5)
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with H;(z) being analytic functions of for j = 1, 2.

4.2.2 The Goursat functions for a swimmer near a wall with a gap.

In chapter 3, we studied the structure of the Goursat functions around the sharp corners
within a fluid domain of identical geometry. We did this by introducing a conformal map

of the form

2¢

2(¢) = Zi1 (4.6)

with inverse
B 1 — (1 _ 22)1/2

z

((2) 4.7)

which maps the interior of the unit disk to the region exterior to the walls in the physical
(fluid) domain. With the map defined in this way, the poigts- +-1 were mapped to the
right and left-most corners respectively. Note also that the pqints+i are mapped to

z = oo* respectively. Recall thal(z) has the required square root branch point singular-
ity that is required of the Goursat functions and hegeray be used as a representative
uniformisation variable. The problem then reduces to determining

F(Q) = f(z(0), GO =4(=(c) (4.8)

which are analytic and single-valued functions within the unit disk, except for at the posi-
tion of the isolated singularities which we impose in order to incorporate the Crowdy and
Or singularity structurel]].

With the form of the functions around the corners known, let us deduce what they must be
at the swimmer’s position. Recall that in the infinite wall case, Crowdy andJsed the
method of images to show thétz) requires a third order pole to be present at the image
position of the swimmer. They also demonstrated th@t) requires a fourth order pole at

the same place. With this in mind, it is also reasonable to assume that the Goursat functions
for this problem admit image singularities of the same type as those for the flat wall case.

The method of images used by Crowdy and Ordlaced the image swimmer at its reflec-



4.2 Swimming near a gap in a wall. 76

tion in the wall, i.e at: = z,;. However, when the wall admits a gap, {h@ntz, is inside

the fluid and so it is not immediately clear where the swimmer’s image should be placed.
Instead, recall that the conformal map@) associates the entire two-dimensiogallane

to two sheets of Riemann surface in thglane. The interior of the unit-disk is mapped

to the “physical” fluid domain - the first sheet of the Riemann surface - while the exterior
of the unit{-disk is mapped to the second sheet of the same surface. We therefore choose
the image of the swimmer to be on the second sheet and=a§; is the preimage point of

the swimmer in the unit disk, the point of reflection in the unit circle

(4.9)

Ol -

is the pointoutsidethe unit disk corresponding to the image of the swimmer on the second
sheet. See Figurke1for a diagrammatic representation of the two-sheeted Riemann surface
with the swimmer and its image. Thus, we conclude #igat) will admit a first order pole

at ( = (; (corresponding to a stresslet) together with, at most, a third order pole at the
image point¢ = 1/¢;. MeanwhileG(¢) admits a third order pole &t = ¢, (allowing for

the quadrupole) as well as, at most, a fourth order polgat1/{;. These singularities

will be in addition to those that arise from the cornerg at +1, as discussed above.

Keeping this in mind, we may take the ansatz

G(()
(C =GPl — GO - 1)

F(()

FO=an-aor

(4.10)

G(¢) =

whereF'(¢) andG(¢) are analytic functions af with no poles inside the unit disk.

4.2.3 Determining”(¢) andG(¢) from the no-slip boundary condition.

We now refer to the fact that the fluid is stationary on the walls, which correspond to the
boundary of the unit disk in thé-plane. On here, we have that

- 1
(=2 (4.12)
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swimmer

N

-+~ physical sheet

y
/ non-physical sheet *

image of swimmer
on non-physical sheet

Figure 4.1: The two sheets of the Riemann surface associated with the conformal map
(4.6). The upper sheet corresponds to the “physical” fluid domain, in which the swimmer
resides. The lower sheet is the non-physical sheet, in which swimmer’s image will remain.
In the analysis, the two sheets are glued together along the branch cuts taken as the walls:
here the sheets are shown “unglued” along the walls to indicate that the image singularity
is at the swimmer’s reflection in the wall on the lower sheet.

as well as the relation

2 1-¢

which we define ag:(¢). Next, the no-slip velocity condition on the boundary is

21/Q) _ ¢+ 1) (4.12)

—udiv= — Z(C) —/ —
0=wu-+Ii F(O+E’(l/C)F(l/C)+G(1/O' (4.13)
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Upon substituting the ansatz.(0 and the conformal map into this, we have that

- F(¢)
(€~ )1~ Cac)?
¢C+¢%) B oy
P @I @ gl s
= (¢ = (/) + 3¢ (1 = GO F(1/)|
¢ G/

(1—Ca0)*(¢ = C)*(1 —¢?)

This can be rearranged to give

0=— (2= 1)(C = C)P*F(Q) + (1 + (1 — GO — CF'(1/Q)
— ML+ )¢ = ) (1 =GO F(1/C) +3CaCH (1 + (1 — Ca0)*F(1/¢)  (4.15)
— ¢°G(1/¢).

From here it is clear thaF(C) can not have any terms of the for(h, as it would not be
possible to balance them with another term in the above expression. Hence, we deduce that

A

F(Q)=A+BC+CC+ D¢+ Bt (4.16)
Putting this together with relatiod (10, this means that

A+ B¢+ CC+ DG+ EC

- =E+... 4.17
(¢ —Ca)(1 = ¢aQ)? * ( )

F(C)

Therefore,F acts as an additive constant/ig¢ ), which can be set to zero without loss of
generality. This is because the velocity conditidnl@ admits a natural additive degree
of freedom to one of two function&(¢) or G(¢). With this in mind, we may equivalently
express4.17) in partial fraction form as

A B C D

C—C T c=ar Ccoar o) (4.18)

F(¢) =
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whereA, B, C'andD are constants. Written in this way, the first term of this corresponds to
the stresslet singularity while the other terms account for the singularities generated by the
swimmer’s image. Next, the conjugate of the velocity conditidri®, may be rewritten
in the form ,

60 =F(1/¢) - S PO (4.19)
and so provides a functional relationship betwé&g) andG(¢) which also holds inside
the unit disk. Upon using expressiof18) in this, we have

A¢ BEG | C¢G D¢

e O R (G ER Fon Ll 7o
C(¢?+1) A L 3B 2C N D
1-¢) [(C—C)? " (C—1/C)*  (C—1/C)°  (C—1/¢2]

(4.20)

Notice that this expression has simple poles at +1; these are precisely the Moffatt-type
singularities that we would expe€t(¢) to have due to the two corners at the ends of the
walls. It also has a fourth order pole@t=1/¢,,.

We have therefore reduced the problem to finding the four constasC andD. These

are found by imposing four physical conditions, which come from equating the expansions
of F(¢{) andG(¢) in the z-plane tof(z) andg’(z) as given by equationgt(3) and @.4).
Specifically we find the constants B, C, D such that:

1. f(z) has the correct singularity strength that corresponds to a stresslet at; of
strength).

2. ¢'(z) must not have a simple pole at= z,, as this would correspond to a rotlet.

3. ¢'(z) must have the correct double polezat accounting for the dipole of strength
Az that is associated with the stresslet.

4. ¢'(z) must also have a triple pole at of strength2¢>\, corresponding to the super-
posed irrotational quadrupole that the model requires.
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To do this we must expresd.18 and @.20 in the z-plane and then compare the appropri-
ate singularities. Note that by expanding express#oddj around( = (g,

— 1 _Rso6 1 _aQnsS 4
g [+ 20¢ - DG+ AR () @.21)

+ |G ~BG ~ Deat+ AR ()| +0(C ~ )

_|_

with R(() defined in 4.12). Next, we refer to the expansion

1 & . )
Loy TATIEa i —a) + (4.22)

which is derived in the appendik, with the constants, /3, 4, & known explicitly. Using
this in the expression faf'(¢) given by @.18 and comparing the simple poles correspond-
ing to the stresslet singularity, gives

A A1+
Z(C)  2(0—¢3)

A= (4.23)

and hence is known explicitly. Next, using the same expansions in equét@b and
comparing quadrupole strengths, we have thB(54® = 2)\e? or

e (1+60)°

Ty 2
Similarly, comparing the double and simple poles results in
- 24 201 _ 2/2 215 213
e o (v T« v
and
5 A3+ D | B+ G (L4 56— 11¢) — ¢f)
261 = (1 - 2P ii-ay 426

AL+ 636 +4¢6 — 1)
26;(1 = ¢3)°
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With these constants known explicitly, we have expressiong foy andg’(z) in terms of
the swimmer’s positionz,;, and orientationg, at that instant. We will now use these to
derive the full dynamical system which controls the swimmer’s evolution.

4.2.4 Equations of motion.
Recall that we have shown that the swimmer’s translational velocity is given by

dz —
= —fot i+ (4.27)

This corresponds to the finite part of the fluid velocity at the swimmer’s position. Expressed
another way, the swimmer is convected only with the local fluid velocity which arises in
response to the swimmer’s interaction with the boundaries. The real and imaginary parts
of this constitute two ordinary differential equations that govern the swimmer’s horizontal
and vertical displacements, respectively. To find the numfgrg andg, let us write

A
¢ —Ca

F(¢) = + Fis(C) (4.28)

whereFys(¢) corresponds to the non-singular componentg'@f) given by the last three
terms of @.18. Upon using expansior (22 we find thatf, = SA + Fys((4), or

GG -3A OB e GD 490
h="0=ay "ar-1 (ar-1  (ar-n 4

and

1

fi =34+ e Fhs(@ (4.30)

or

f:_é[@ﬁﬂ)?}_mcz)? 36 B 6'C . GD
P2 1= 20-) | (P -1 " (Gl -12 " (Gl -1)2 |

(4.31)
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ComparingO(1) terms ofg’(z) from (4.21) reveals that

go = —BCS[36%0 + 6435 + %] + [-3B¢ + CCh + AR((y)] [2@@ + BQ}
+ B[-3B¢; +2C¢; — D + AR (G))
e 3B, . 20¢, . De; (4.32)
1 — ¢l (Il =11 ([l =1)%  (|¢al? —1)?

~BG + TG~ Dea + 5 AR'(Ca).

+ + R(Ca)

Recall that the evolution of the swimmer’s head an@eyas taken as half of the finite part
of the local fluid vorticity. Given that the vorticity is given by equati@q1), the evolution
of the head angle is governed by the single real ordinary differential equation

do
= = —2m(f] (4.33)

and so, given the above expression for we also know this explicitly. Notice that the
only free parameters are the swimmer’s initial position, orientationeants subsequent
motion is then determined by three ordinary differential equations: two from the real and
imaginary parts of4.27) and one from4.33.

Deriving the governing dynamical system explicitly, as we have done above, has a signif-
icant advantage over other methods. For example, one may study this (and similar prob-
lems, as in 84]) using numerical boundary integral methods at each time step in order to
compute the flow and hence the subsequent swimming dynamics. However, the analytic
methods presented here obviate this and provide a more direct way to explore the full range
of possible swimming trajectories that may be taken. Indeed, the analytic approach is also
computationally cheaper than a numerical one.

4.3 Dynamics of a swimmer near an orifice.

Recall that the dynamics of the swimmer are fully determined by three ordinary differential
equations; one for the development of the swimmer’s orientation angle and two for its hor-
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izontal and vertical displacement. Therefore the initial orientation, the initial position,
24(0), ande are the only free parameters of this model.

When the swimmer is placed above a wall which doesn’t have a gap, the resultant motion
is given by Crowdy and Orl], where the swimmer follows the periodic “bouncing orbit”
depicted in Figure.2 As a check on the analysis, when the swimmer is initially placed
on one side of the gap, and given an initial orientation such that it travels away from it,
the effect of the gap becomes minimal and the subsequent motion should be in accord with
the bouncing orbits of the flat wall case. Indeed, as shown in Figixethis physically
intuitive result is confirmed.

Placing a gap in the wall breaks the translational symmetry associated with displacements
along the wall. We can expect these to lead to interesting dynamical scenarios, which
we explore next. We set= 0.2 and present possible trajectories which the swimmer may
undertake. These are shown as solid lines with smaller lines added at intervals to present the
angled. While they differ qualitatively, all the possible paths fall into one of the following

few categories.

4.3.1 Deflection from the wall.

When the swimmer is initially pointed directly downwards (which correspond$(tp =

7 /2) above a wall without a gap, Crowdy and Qj flemonstrated that the swimmer will
move directly downwards coming to a halt at a distanaeray from the wall. In the current
study, the gap in the wall provides an asymmetry which acts to repel the swimmer away
from it. This is shown in Figurd.3for two scenarios - one where the organism starts on
the left of the gap, and one where it starts on the right.

4.3.2 Jumping over the gap.

Another interesting possibility is that the swimmer may avoid the gap by jumping over it,
as in Figure4.4. Once it has passed the gap, its subsequent motion is a different bouncing
orbit and so the gap may act as a “switching device” between different nonlinear periodic
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Figure 4.2: A swimmer moving away from a gap (positioned at +1) above a wall,

with z;(0) = —3 + 0.3i, ¢ = 0.2 and has initial orientatiofi(0) = 0.24. The swimmer is
placed away from the gap and is initially oriented away from it. As the effect of the gap is
small, the swimmer’s trajectory is reminiscent of the bouncing orbits exhibited by Crowdy
and Or fL].

orbits. As the figures demonstrate, while the swimmer moves on a nonlinear periodic orbit
before and after the gap, the height of the jump above the gap, as well as its periodic motion
before and after the gap, may vary dramatically according to the swimmer’s initial position
and orientation. In the bottom right of Figu#ed, the swimmer jumps over the gap but
appears to return to a period bouncing orbit afterwards which is almost identical to the

approaching orbit.

4.3.3 Rebounding from the gap.

Another category of motion is shown in Figudes. Here the initial conditions are such

that as the swimmer approaches the gap region, it is reversed at some critical position that
always appears to be close to the first edge of the gap that it encounters. After the swimmer
has been repelled from the gap, it will continue to swim along another bouncing orbit away
from it. The gap affects the height and wavelength of this subsequent periodic motion and
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Figure 4.3: Two swimmers starting at(0) = 45 + i, both initially directed downwards

with 6(0) = 7/2. The presence of the gap “breaks” the symmetry and the swimmer results
in moving away from the gap. It then continues along the a bouncing orbit in the respective
direction.

in Figure4.5the “rebounded” orbit has a larger amplitude than the incoming one.

4.3.4 Trapping near the gap: equilibrium points.

We have seen instances where the swimmer either jumps over the gap or is repelled away
from it. In addition to this, we have recorded some cases the swimmer approaches the gap
in such a way that it becomes trapped inside the gap’s vicinity. In doing so, it enters the
gap and may draw close to an “attracting point”, upon which the swimmer will spiral in
towards it. We have found, at most, four such points. These are positioned at the four
vertices of a rectangle which, by symmetrical arguments, is expected. As we shall see later,



4.3 Dynamics of a swimmer near an orifice. 86

e S N

Figure 4.4: The gap provides a “switching mechanism” from one bouncing periodic orbit
to another. The dynamics near the gap region are shown. Upper right figure: The orbit
switches to a trajectory which is close to the steadily translating state found in [16]. Bottom
right figure: The approaching and departing orbits (before and after the gap, respectively)
are almost identical. Clockwise from top 1éft0) = 0.157,0.257, 0.37, 0.1 with initial
positionsz,(0) = 6.8 + 1,8 + 0.21i,5 + 0.3i, 10.5 + 0.6i.




Chapter 4. Swimming in low Reynolds numbers near a wall with a gap. 87

Figure 4.5: The gap may act to repel the swimmer, sending it back in the direction from
which it came from. Here, we hawg0) = 0.17 with initial condition z,(0) = 3.4 + 0.5i.

the precise geometry of this rectangle depends on the paramdigure4.6 shows four
different choices of initial conditions which result in the swimmer ultimately spiralling in
towards each of these four attracting points.

From a dynamical systems perspective, these are stationary points and, by watching tra-
jectories draw into their basins of attraction, we may infer that these points are stable. To
determine this more rigorously, we may perform a linear stability analysis. In doing so, the
three (real) expressiond.@7) and @.33, which give the equations that define the dynam-

ical system for the swimmer’s evolution, may be linearised and expressed as

| =

X=JX (4.34)

o

t

whereX = (Rez,],Im|z4],0). Points of equilibrium are found numerically by searching
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for the points where the left hand side of this is zero. We then search for solutions about
this equilibrium point with exponential time dependence of the form

exp(ot) (4.35)

whereo are the eigenvalues of the Jacobian matfixThen, the nature of the equilibrium
point’s stability is determined from the values of these eigenvalues. At each of the above
four stationary points, the eigenvalues appeared in a complex conjugate pair with a negative
real parts, and a third negative real eigenvalue. These are therefore categorised as stable
spiral points. A full bifurcation analysis, performed in the next section, reveals that these
are the only stable points in this case.

Vo
_%_ —,—

Figure 4.6: For some choices of initial conditions, the swimmer may become trapped in
the gap region. The swimmers spiral into one of, at most, four attracting points. Clockwise
from top left to bottom left, we havei(0) = 0.3,0.257, 0.057, 0.75 with initial positions

24(0) = 3.6 4 0.8i,10.2 + i, 0.6i, 0.6i.

That swimmers may be brought to a standstill by the strategic placement of a gap in a wall
is an important result from a control theory perspective. It is therefore interesting to ask
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whether there is a systematic way to determine the basins of attraction of each of these
stationary points. We have found that this is not an easy matter and the initial conditions
for the trajectories found in Figuré.6 were found by trial and error. Furthermore, the
ultimate fate of the swimmer’s trajectory is sensitively dependent on the choice of initial

conditions.

4.3.5 Escaping the gap region.

Given the above trapped orbits, it is natural to ask whether all swimmers which enter the
gap region ultimately enter a basin of attraction of one of the four stable points. We have
found that this is not the case. Figute/ shows several examples in which the swimmer
“escapes” the gap region and attaches to a nonlinear bouncing orbit away from the gap,
either above or below the wall.

Do e TS

Figure 4.7: The swimmer may also escape the gap region to take a bouncing orbit on either
side of the gap and wall. The two trajectories on the left correspofiddio= 0.05 with

24(0) = 0.1 + 0.5i,0.5i (above and below the wall, respectively) while the two on the
right correspond t@(0) = +0.05 with z,(0) = —0.1 + 0.5i, 0.5i (also, above and below,
respectively). Note the sensitivity of the swimmer’s ultimate path on its initial conditions;
all starting configurations are very close to each other here.

4.4 Bifurcation analysis in the parametere.

The above trajectories were found for= 0.2 and were qualitatively representative of the
various swimming protocols that the swimmer may undertake. In addition to the four stable
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stationary points we have noted, the system may admit other stationary points which are
unstable in nature, and therefore not attractors in the dynamics. These points were found
by using Newton’s method to locate the zeros of the left hand side of the dynamical system
(4.34). Their linear stability was then determined from the method described in the last
section. We will now study the structure of the stationary points as the parammster
varied.

For0 <e < eff) = 0.3584, five other stationary points have been found: three are on the
real axis in the gap (one at the origin and one at each side of it) and two on the imaginary
axis (one above and one below the origin). All of these are found to be linearly unstable.
At e = eg) = 0.3584, the complex conjugate eigenvalues associated with each of the four
stable points simultaneously become purely imaginary, all approaching from the left hand
side of theo-plane where Re{]< 0. This is therefore a Hopf bifurcatiotf] and, for

€ just greater tharaﬁf), the complex conjugate eigenvalue pair acquire positive real parts.
When this occurs, the dynamical simulations reveal the presence of small closed periodic
orbits around each of the four stationary points, as shown in Fig@&eBased on these
simulations, we find that these periodic orbits are stable and so we conclude that this is
an example of a supercritical Hopf bifurcation. These local bifurcations are interesting
because they lead to bound states meaning that a swimmer may become trapped near the
gap while still engaged in a non-trivial closed period orbit, see FiguBe

As ¢ is increased further, we see the occurrence of a global bifurcation. Specifically, when
€= e_f,l) = 0.36895 we have observed that pairs of periodic orbits growing around two (now
unstable) spirals merge together with the unstable saddle point on the imaginary axis. This
occurs symmetrically in both the upper and lower half planes, see Hg@réhe result

of this is the formation of closed “figure of eight” orbits which, following the descriptive
nomenclature introduced by Coullet al. [47], aregluing bifurcations see Figureg.10

and4.124.13 This orbit is found to persist fory” < ¢ < €’

) = 0.4805 when, upon
reaching the latter value, the gluing bifurcation reverses and the two orbits “unglue”. This
leaves a separate periodic orbit around each of the four (still unstable) stationary points

once again, see Figukell Increasinge further shows the existence of a second Hopf
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Figure 4.8: Stationary point locations before (upper figure) and after (lower figure) the
Hopf bifurcation where = e§}> = 0.3584. As e passes through this value, the two stable
spirals become unstable spirals surrounded by fixed periodic orbits. Only the points in the
upper half plane are displayed.
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1.39i
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0.55 + 0.91i
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Figure 4.9: Growth of the periodic fixed orbits associated with two of the (unstable)
stationary points in the upper half plane. Whereaches the gluing bifurcation value
(ef,l) = 0.36895), the two fixed orbits make contact on the imaginary axis, together with the
saddle point (which was also on the imaginary axis foe afl egl)). The stationary points
are shown foe = €.V

bifurcation ate = 65? = 0.5000 at which the four stationary (previously unstable) points

become stable spirals again and the fixed periodic orbits disappear. Finally these four (now
stable) spiral points merge in pairs on the imaginary axis=ate, = 0.5510. Figure4.14

shows the locus of the eigenvaluessais varied. The complex values efassociated with

the two Hopf and two gluing bifurcations of the stationary point in the first quadrant are
clearly indicated.

4.5 Background shear effects on a swimmer near a wall with a gap.

Zilman, Novak and Benayahd]have studied the hydrodynamic attraction of ocean larvae
(which are also swimmers that reside in a low Reynolds number environment) towards solid
surfaces. They showed that when such a swimmer is placed in a uniform background shear
flow parallel to a wall, the associated local flow vorticity causes the larvae to rotate their
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Figure 4.10: Location of stationary points just after the gluing bifurcation eg1>). This
shows the well defined “figure of eight” fixed orbit formed after the gluing of two separate
periodic orbits.

direction of self-propulsion which leads to their congregation at the surface. However,
while the authors attempt to explain the larvae’s attraction to the wall, they use the wall
only as a reference point of zero shear flow, but do not take into account the larvae’s direct

interaction with the wall itself.

In chapter 2, we found the solution for a swimmer’s interaction with an infinite no-slip wall

as well as that of a uniform shear flow of the fogim= ~y2. By superposing the two, we

were able to properly study the swimmer’s hydrodynamic interaction with the wall in the
presence of the background shear flow. In chapter 3, we considered the same uniform shear
flow past the more complicated geometry of an infinite wall with a gap and found that the

exact solution was given by

(4.36)

v¢ iv¢ {HC?

S e
W-n 2 (1m0
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Figure 4.11: Typical periodic orbits just after the ungluing bifurcatioaatef), when the
single figure of eight periodic orbit has split into two separate orbits, each containing an
unstable spiral around both fixed points.

where¢ = (1 — (1 — 2%)'/2)/z. In a similar fashion, we may now superpose this result
with the solution presented in this chapter to accurately study a swimmer’s evolution near
a wall with a gap in the presence of a background shear flow. Including a this ambient flow
introduces a new parameter, into the model and so a new set of dynamical scenarios is
expected. Here we present only a small sample of the new effects focussing on possible
bound states. The results of this are depicted in Figdres- 4.17. The value ofe was

fixed at 0.2, however the trajectories for different values of this parameter are qualitatively
similar.

When no shear was present and the swimmer starts to the right of the gap such that it
is attracted to one of the four stable spiral points near the gap then, as the shear rate is
increased slightly, the swimmer no longer falls into the basin of attraction. Instead, it jumps
over the gap and continues on a periodic orbit on the other side of the orifice, (though with
a different height and amplitude). As the shear rate increases further, the background flow
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Figure 4.12: Two projections of the periodic orbits tor eél)’ = 0.3689, just before the
gluing bifurcations. These are visualised in three-dimensional space;[R&j[ z4], ).
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Figure 4.13: Two projections of the newly formed figure of eight orbits, just after the gluing

bifurcation [73] where = ef,”* = 0.369. These are also shown in three-dimensional space
(Re[zq], IM[z4], 0).
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Im[o]

Figure 4.14: The stability diagram for one of the complex eigenvaduassociated with
the stationary point in the first quadranteais increased. There is also another complex
conjugate eigenvalue and a negative real eigenvalue, both of which are not shown here.

is eventually strong enough to reverse the direction of the swimmer and send it travelling
to the right. The swimmer’s eventual motion will either be that of a “spiral orbit” (akin to
those reported by Zilmaet al. [4]) if the shear rate is not too high or, for large shear rates,

a bouncing orbit.

Recall that the bifurcation analysis found no periodic solutions whert).2. Interestingly,

we have found that by imposing symmetricshear flow above and beneath the wall, a
symmetric (diamond-shaped) closed periodic orbit exists. This is shown in Fglire

They appear to be attractors in the dynamics and are different from the closed periodic
orbits we have witnessed in the absence of a background shear flow in that they provide a
mechanism for the swimmer to cross over from one side of the wall to the other.

4.6 Summary

We have extended the solutions presented in chapter 3 for a Stokes flows past a wall with
a gap to include the singularity model presented by Crowdy andl OBy studying the
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Figure 4.15: The effect of increasing the strength of a background shear flow above the
wall: without shear the swimmer proceeds along the same bouncing orbit towards one of
the attracting points. Increasing the shear rate further leads to the swimmer eventually

moving away from the gap in another periodic bouncing orbit.
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Figure 4.16: Closed periodic orbit within the gap. Without any background shear, the
swimmer moves towards one of the four stable spiral. As the shear flow is introduced and
increased in strength, there exists a close periodic orbit in the gap’s vicinity. This orbit is
not symmetric about the real axis (which is to be expected, as there is a background shear
flow only in the upper half plane). As the shear rate increases further the swimmer leaves
the gap region and enters into a spiral orbit.
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Figure 4.17: Closed periodic orbit in the gap when a uniform background shear (with
~v = 0.128) flow is introduced symmetrically above and below the wall. The diamond-
shaped orbit is now up-down symmetric.

interaction between the singularities within that model and the boundary, we have been

able to catalogue various dynamics of a low Reynolds number swimmer near an orifice.

The results within this chapter provide a predictive theory of how such a swimmer would
behave near such a boundary. These results could be tested using the laboratory experi-
ments akin to those involving quasi two-dimensional robotic swimmers, as performed by
Murray et al. [25] for a swimmer near a flat wall with no gaps. The singularity model of
Crowdy and Or 1] has proven to provide excellent agreement with these experiments and,
as we have used exactly the same model in conjunction with this more complicated domain,
we have confidence that the results presented in his chapter are verifiable using similar ex-
perimental procedures. Another test of this chapter’s results in a fully three-dimensional
setting would be to extend the numerical experiments of Murray an@8t¢ study the
dynamics of their model swimmer near a wall with a gap. As this model consists of three
rotating spheres attached by rigid rods, the calculation would require the generalisation of
the Swan-Brady mobility tensorg4] for spheres near a wall with a gap, which are yet to
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be computed.

Or and Murray R3] studied the motion of a swimmer near a flat wall (with no gap) within
the framework of control theory. The generic motion of a swimmer near such a boundary
is to travel on nonlinear “bouncing orbits” along B3]. We have noticed that a gap in

the wall could be used as a control device for a low Reynolds number swimmer near an
orifice. In particular, it has the ability to manipulate swimmers between its various orbits.
The gaps may be used to trap swimmers in their locale: dependingtbe swimmers

may either spiral in towards a stationary point, or become trapped in a periodic closed orbit
indefinitely. Alternatively, the gap may serve as a switching mechanism between different
bouncing orbits, affecting the height and amplitude of the oncoming swimmer. It may
also reverse the swimmer away from the wall, sending it back in the direction that it came
from. Finally, the gap may even send the swimmer through the gap to the other side of the
wall. While this is rare, we have seen that the addition of a background shear flow appears
to promote this crossover by allowing closed, diamond-shaped, periodic orbits through
the gap. As an application, the existence of these closed periodic orbits may be a useful

mechanism for self-driven mixing devices in low Reynolds number flows.

The resulting dynamical system for a swimmer near a wall with a gap is an interesting one,
in that it allows a variety of non-trivial bifurcations and possible swimming trajectories.
The conformal mapping presented here may, in principle, be extensible to other planar do-
mains. Together with the singularity description of Crowdy and Xprthe door is opened

to the construction of dynamical system models for low Reynolds number swimmers in
arbitrary confined geometries. In general, however, it will not be possible to find these
dynamical systems in explicit form; this is a fortuitous and rather special feature of the
particular geometry and conformal map we use in this chapter. Nevertheless, the system
of ordinary differential equations for the swimmer’s motion may still be computed numer-
ically within a similar framework.

Despite this, we will now attempt to find other, more complicated, confined domains for
which we are able to express the resulting dynamical system explicitly. The geometry that
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we will attempt to do this in is that of a wall wittwo gaps, as this will highlight the effect

of placing a finite piece of wall inside the single gap we have studied in this chapter. It is
already known that even small occlusions in Stokes flows may lead to dramatic “blocking
effects” 48, 49] and it will be interesting to study the influence this has on the swimmer’s
behaviour. This domain is also a further complication to the single gap case and, as the
length of the added wall segment presents another control parameter, it is likely that the
resulting dynamical system will also produce interesting features.
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Chapter 5

Stokes flows past a wall with two gaps.

5.1 Introduction

In chapter 3 we studied the slow viscous flow of fluid near an infinite no-slip wall with

a gap in it. By using conformal mapping techniques we were able to characterise the
behaviour near the ends of the gap (or, equivalently, the sharp corners of the wall) and
retrieve previous results by SmitB][as well as those by Ko and Jeor§] for the Stokes

flow with far field shear and stagnation point velocity fields respectively. Both of these
authors used entirely different methods to solve their respective problems (the latter authors
seem to have been unaware of the former’s work). A clear benefit of the method that we
presented was that only a slight change to the imposed far field conditions of the Goursat
functions was necessary in order to model the two problems. Furthermore, we have shown
in chapter 4 that our method lends itself much more readily to the study of micro-organism

swimming near such boundaries.

Later, we will want to study the motion of a similar swimming organism near a no-slip
wall with two gaps. As in the study of a swimmer above a wall with a single gap, we
begin by considering a general Stokes flow around this geometrical configuration without
the swimmer. We let a viscous fluid fill the entirety of the two-dimensional plane above
and below an infinite no-slip wall which admits two gaps: one betwWeénr] and another
between[r, 1] where0 < r < 1. The finite length plate, placed symmetrically about
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the origin in[—r, r], will be referred to as theentral plate As in the simply connected
analogue of chapter 3, we will focus on the specific cases where the far field Stokes flow
takes two different forms: those that in the far field above the wall tend to either a uniform
shear flow or a stagnation point flow (with an added pressure gradient across the wall),
while in the fluid far below the wall remains at rest.

By generalising the method presented in chapter 3 to the case where the wall admits two
gaps, we will produce a range of new, exact, solutions to this problem. These results
are of interest as the fluid domain is doubly connected due to the fact that there are two
disconnected boundaries in the fluid. Analytical solutions for Stokes flows in multiply
connected domains are few and far between. Most relevantly, Hasid@ltstiidied a
purely pressure-driven flow (Sampson flow) past precisely the same geometry. By building
on work by Roscoed0], he refers to assumptions about the symmetry of certain field
variables in order to form analogy with flows of ideal fluids. The approach taken here is
more general than this as it does not rely on fore-aft wall symmetry and only a simple
modification of the far field conditions is necessary in order to find both the shear flow and
stagnation point flow solutions past the same geometry.

There have been only a small number of other studies of Stokes flows confined in doubly
connected geometries: JeffeBl] found solutions for the slow viscous flow in the annular
region between two concentric cylinders (where one or both of the cylinders move and
thus drives the flow) using a formulation with bipolar coordinates; Fra&drlater used

ideas based on the method of reflection to find the unbounded Stokes flow around two
cylinders; later again, Jeffery and OnisBBJ used bipolar coordinates again to find closed-
form formulae for the motion of a translating and rotating cylinder above a no-slip wall
(as well as the forces and torques on the cylinder); lastly, D&dsfpund formulae for

the Stokes flow past a cylinder over an infinite flat wall and used these to demonstrate the
formation of viscous eddies when the cylinder is brought close to the plane. These classical
solutions continue to be useful in the study of mixing of viscous fludg &s well as in

the investigation of wall effects in electrophore$§]|
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5.2 The force on a central plate in a Stokes flow.

While exposed to the oncoming flow, the central plate remains in pldee-at] and hence
we must assume that there is a non-zero net force exerted on it (equal and opposite to the
force that keeps it in this position) . In chapter 2 we have seen that the complex form of the
fluid stress,—pn; + 2ue;jn; wheren; are the components of the unit normal to the wall,
can be written as

dH

QiE (5.1)

whereH = f(z) + zf (2) + 7'(Z). As this is a total derivative, the total force around the

central plate is conveniently given by

j{(—pni + 2pue;in;)ds = 2ip[H]r (5.2)

wherel is any contour that encircles the central plate and is positively oriented with respect
to it.

5.3 Conformal mapping: a wall with two gaps.

Similarly to the simply connected case, we introduce a conformal map in order to utilize
a uniformisation variable for this problem. In the case where the wall has a disconnected
central plate, the fluid domain is doubly connected. It is well knowif) fhat there always
exists a univalent conformal map to this domain from an annuki§(| < 1 in a complex
(-plane, with0 < p < 1: the annular region is mapped to the fluid region above and below
the walls. The innep circle in the annulus is mapped to the central plate; ], while

the outer unit circle is mapped to the walls extending to infinity. The (unique) specific
conformal map that is appropriate for this is given by Crowdy and Marsb@lids

B PQ(_C7p) — Pz(QP)
2(¢,p) = P2(—¢, p) + P%(¢, p)

(5.3)
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where we shall suppress the&lependence in the notation for the conformal map from here
on. The special functiof(, p) is defined by

P(¢p)= (1= [ -p*O0—"/0) (5.4)
k=1
which has zeros at the poings= p*" for n € Z. The conformal map.3) depends on the
single real parameter. Different choices of this number correspond to different central
plate lengths (or, equivalently, gap widths). As— 0, the annulus becomes the simply
connected unit disk and the central plate vanishes. A graph of the width of the central plate
against values gf is shown in Figuré. 1

length of central plate (2r)
=
= ol

o
4]

00 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Y

Figure 5.1: Central plate length (2r) in the fluid domain as a functign tfe radius of the
inner circle of the annulus in theplane.

It follows from (5.3) that the derivative of the conformal map is given by

[P%(¢, p)P(—C, p)P'(—C, p) — P(C, p)P*(—C, p)P'(, p)]
(P(—=¢,p) + P2(¢, p))?

Y(Cp) =2 (5.5)

whereP'(¢,p) = 0P((,p)/0¢. As P(1,p) = 0, we see thatg.5) vanishes at the points
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¢ = £1. Next, the parameteris chosen so that the ends of the central plate are-attr.
This is found numerically using Newton's method. Also, for convenience, we shall also
suppress the explicit dependence of the conformal map from here on.

Note that it follows from the definition oP (¢, p) that

o0

P p) o2 10)(1 = p?¢)
<Hle- -’ (5.6)

and also that
P(p*¢,p) = (1= p’Q) [ [(1 = ™ 0°0)(1 = p™*/p*¢)
k=1

(1= 2201 =10 TT( = #5420)(1 = o)
1= 6.7

o0

—OTJa=p*00 - p*/¢)

k=1

= _g—lp(c’ p)

Next, notice that from the definition of the map §) together with the above relations that

the special functiorP((, p) satisfies, we see that

PQ(—pQC,p) — P*(p*C,p

2 )
2(p°C) =
P2(=p?C, p) + P2(pC, p)
(1/C2)P2( ¢, p) — (1/C)P(C, p) (5.8)
—(1/CA)P2(—=C, p) + (1/C2)P2(C, p)
and hence
2(p*¢) = 2(¢),  forall ¢#0. (5.9)

This is an example of bxodromic functior{59]: a function«(() is defined to be loxo-
dromic if itis meromorphic everywhere (i.e. it is analytic except at a discrete set of isolated
singularities) inside, and on the boundary of, thedamental annulug < || < p~! and
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which satisfies the functional relatiar{p*¢) = u(¢). Given the singularity structure of
u(¢) inside the fundamental annulus, the singularity structure in all other annuli in the
complex(-plane follows from this functional relation. This will be a key feature and a
crucial fact for what follows.

Next we may writeP((, p) = (1 — ()Y (¢, p) where

=[] - p* @ - p*/0). (5.10)

k=1

Notice that the denominator of the m&p3) vanishes at = i (and also at-i) as

PQ(—i,p) + P2<I,p) = (1 + i>2Y2(—i,p) + (1 - I) Y (va) (511)
=[(1+)*+ (1 —=D)3Y%i,p) =0
where we have used the fact that
Y (—i, p) ﬁ 1+ p*). (5.12)
k=1

This also follows from relationy.6) and means that({) admits a simple pole &t = =+i.
It is shown in the appendii& that

z(C):CTerJrO(C i)... (5.13)
where , (i) — P20, p)
1 2(—i, p) — P2(i, p
“=3 | Pl AP ) - PE P ) 519
and
_ Pli.p)P'(i.p) + P(~i,p)P'(=i,p)
P(—i,p)Pl(—i7p) - P(I,p)Pl(l,p) (515)

_ P2(—i,p) [P,Q(Lp) +Pl2(—i,p) —i—P(i,p)P”(i,p) + P(—i,p)P”(—i,p)]
Q(P(—i,p)Pl(—i,p) - P(Lp)Pl(i’p))Q ‘
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We will also use the fact that, near= —i, z(({) takes the form

a

2(¢) = -+ 0(1) +... (5.16)

¢+

Next, we introduce the new function

CP'(¢, p)

K¢, p) = . 5.17
(¢, p) PC.p) (5.17)
From this, and using the relatioB.@) we have that
- P'(¢hp)
K p) = — 2
) 519
_P'(¢Chp)
P(Cp)
Differentiating relation .6) gives
P'(¢TYp) = CP'(¢,p) = P(Cop) (5.19)
and so using this in equatiob.(8 gives the result
K((hp)=1-K(¢p) (5.20)
while it can similarly be shown that
K(p*C,p) = K(¢,p) — L. (5.21)

Note that from its definitiorf{ (¢, p) has simple poles at = p*" for n € Z. Notice also
that

log P(Ca p) log 1 - Z log ch + log( Qk/C) (5.22)
and so (g _ e
) p

Using this in the definition oﬂ((g‘,p), we see that neaf = 1, this function takes the
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leading order form
K¢, p) = C—il + analytic function (5.24)
5.4 Shear flows past a wall with two gaps.

We now turn our attention to the problem of Stokes flow above a wall with two gaps, such
that in the far field above the wall, the flow tends to that of a uniform shear flow, while in
the far field below the wall, the fluid is stationary. Recall that in this case we have that

f(z) ~ { '2/2 sz = oot (5.25)

foo @Sz — 00~

and

—iz asz — oo™
g'(z) ~ ~ (5.26)
Jos ASZ — 00

Next, using the conformal map defined above5rB), we define the Goursat functions

F(Q) = f(=(Q),  G(Q) =4'(2(q))- (5.27)

While it is not easy to explicitly invert the conformal map.3), it is known from general
arguments§Q] that z(¢) has square root branch point behaviour at the pairts+1, +p
corresponding to the preimages of the four corner-points in the fluid domain. Because of
this, ¢ will serve as a uniformization variable so that¢) andG(¢) may be expressed as
single-valued functions, and will not admit any branch points.

We have shown that we must allow for a net force to be present on the central plate. From
(5.2 it is clear that the functiorf/ (z,z) must include a multi-valued component in order
for a non-zero contribution to remain present after encircling the central plate. We therefore
let

F(Q) = Flog¢(+ F(¢),  G(¢) = Gilog( +G(Q) (5.28)

whereF; and(; are numbers to be found whilé(¢) andG(¢) are both analytic and single-
valued inside the preimage annujusc |¢| < 1. Note that while we requiré/(z,z) to be
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multi-valued, the velocity must not be. The no-slip velocity condition on the unit circle is

given by

0= —Flog¢ — F(Q) + -<<1§)c> FC+F(1)0)] + Gilog¢ + G/ (5.29)

so, in order for this to be single-valued, we must choose

G, =—F,. (5.30)
With this choice of coefficient, the velocity is given by

uw+iv=—Flog( — Flog + Laurent series
: : (5.31)
= —2F;log |C| + Laurent series

and is therefore single-valued as well. Next, upon substitutiod ©f, z) into the force
equation §.2) gives the force on the central plate as

2ip[H]r = 2ip [Fylog(p*n) — Filog(p®/n) + single-value@jlqu (5.32)

where( = p?n andz(|¢| = p) = T. In order forl" to be positively oriented, we must
traverse the innep circle of the annulus in a positive (counter-clockwise) manner. This
gives the force on the plate as

— 8umk;. (5.33)

Note also that the force on the wall is computed by performing the same calculation whilst
on theouter (unit) circle of the annulus. In this case th@g = 1 circle is traversed in a
negative (clockwise) fashion around the logarithmic singularity (at 0) and hence the

force on the wall is given bgunF;. It is precisely because the force on the wall is equal
and opposite to that on the plate that there is no net force on the fluid and hence we do not
encounter the Stokes paradox. Also, given the choice of const@aB8, (the velocity at a
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general point in the fluid is given by

wtin = —2rilnglc| - F(0)+ 25 RN G| RGN Y

and hence has no logarithmic contribution in the far field{(as +i). Next, the no-slip
condition on the unit circle takes the form

_ A0 10 By
PO+ g F 110+ =0 (5.35)

Upon substitution of ansats 28 into this, we have that

[Fic+ P(1/0)] + Gajo =o. (5.36)

Next, on the inner circle wher¢| = p, we have

z(p*¢)
Z'(p?/C)

and, again after substitution of the same ansatz,

— F(p*Q) + F'(p’/Q) +G(p*/Q) =0 (5.37)

O 2(C) @7/2 _—0272 .
PO+ o [ (0] - Filos? + Gt/ 0. 639

Making the substitutioq — p2¢ into the aboveq.38) gives

— P(p¢) + ;‘,((’jj?) [FiC+ F'(1/Q)| = Filog p* + G(1/¢) = 0. (5.39)
Subtraction of $.39 from (5.36) gives the relation
F(20) — F(Q) + {+(%0) — #(0)} %/S/Q] _ Fle (5.40)

We now invoke the special loxodromic property of this mag®)to reduce this to

F(p*¢) — F(¢) = —Filog p*. (5.41)
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As we shall see, is precisely this condition that will make it possible to find an exact solution
to this problem.

The far field conditions foif (z) andg’(z) are given by %.25 and 6.26). As f(z) tends
to a linear function ot: in the upper far field, corresponding o= i, while tending to a

constant at = —i, we let
F(¢) = AK(¢/i,p) (5.42)

where A is a constant to be determined. This is the analytic function that may satisfy
condition 6.41) given relation $.21) for K (¢, p). Using this in 6.41) together with .21)
reveals that

A = Fylog p*. (5.43)

Notice that, asA is generally of order unity, this means thit ~ 1/log(p) which ap-
proaches zero extremely slowly. As a consequence, even exponentially small central plate
lengths have non-negligiblg;, and hence finite logarithmic contributions. Following the
language of HasimotaiB] we shall refer to this as thiglocking effect

It now just remains to find“;. To do this, recall that the conformal magX) takes the
leading order form aroundl = i (corresponding ta — oot in the fluid domain)

. . 1 . .
2(¢) = - + analytic function or - == + analytic function (5.44)
a

¢—1i ¢ —1i

Therefore, given our solutiorb(42) together with the expression fot in (5.43 and the
leading order expansion &€ (¢, p) in (5.24), we have that

. iA iA
F(()=AK({/i,p)=—+ = —2+...

¢—I a

i ) log p? (5-45)
_ iFilogp®
a
and as, from equatiorb(25), this must tend tozi/2, we see that

¢ (5.46)

' 4logp’
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Using this, we finally arrive at the result

a .

F(O) = Jroa | 08¢ + (2log K (/i) (5.47)
Once we have thig;(¢) follows from the no-slip condition5.36) and thus we have com-
pletely determined the flow everywhere above and below the wall.

As given by equationq.33), the total force on the plate is given by8ux F; and is graphed

in Figure5.2as a function of central plate length. Interestingly, the force is horizontal and
there is no vertical component to it. While this may be surprising, it is consistent with the
observation by Smith?] who, in the case of a single gap in the wall, observed that there is

no mass flux or mixing of fluids through the gap. The fluid beneath the gap is stirred only
by the shear stresses across the gap, generated by the motion of the fluid in the upper half
plane. The force on the central plate is then a result of the differential shear stresses across
it, while the absence of any fluid flux through the gap justifies the lack of vertical forces on
the plate.

5.4.1 Limit of diminishing central plate length: comparison to Sm#h [

In chapter 3 we studied a shear flow past a wall which had only one gap (and no central
plate). It therefore serves as an important check on the above analysis to ensure that in
the limit of zero central plate length (and hence- 0) we retrieve the solution found in
chapter 3, or that

FO = 5 | (5.48)

¢—1i)
plus possibly a constant (as in the double gap analysis we have not necessarily set the same
additive constant of (z) to zero).

To do this, notice that from the definition &f(¢, p) we see that in the limit of — 0,

P(¢,0)=1-¢, P'(¢,0) = —1, P"(¢,0) = 0. (5.49)
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Figure 5.2: Total horizontal force on the central plate for varying plate length, for an on-
coming shear flow. There is no vertical force on this.

Using these in the definition of the doubly connected conformal i& iheans that

A+ -(1-¢?*_ 2

S A G EN N SR e

(5.50)

which is precisely the single gap map, defined in chapter 3. Furthermore, the parameter
defined in 6.14) reduces to 1. Next, usin®(17) we see that

K(C,0) = —°—. (5.51)

(-1
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Putting these together in our functiét(¢) defined by $.47) gives

F(¢)

- 410gp[10gC+(210gp)K(C/i,p)

— gK(C/i, 0) asp—20 (5.52)

+ constant

[

T2

which is the required solution for the single gap case, and we conclude that the doubly
connected solution is consistent with the simply connected case.

5.4.2 Results: shear flow past a wall with two gaps.

Some typical streamlines are shown in Figtrg where the central plate lengths are 0.3,

1 and 1.9, (or 1%, 50% and 954, respectively), of the gap width. When the plate length is
1.9, the gaps are narrow and the resulting streamlines resemble Figure 2 in Znvitihg
considered a shear flow past a wall with an infinite array of equally separated gaps. This
gives a good qualitative verification of our results.

5.5 Stagnation point flow past a wall with two gaps.

As in the case of a single gap in the wall, we next turn our attention to the case where the
same geometry is subjected to an oncoming stagnation point flow of strerwitin an
additional up-down pressure gradient as defined in chapter 3 for the similar flow above a
wall with only one gap. Recall that, in this case, the far field formg(af) and¢’(z) are

given by
ikz?/4 4+ APz /4 O(1), a +
f(z) — | RE/A+ AP2/Au+ O), @sz = oo (5.53)
—APz/4u+ O(1), asz — oo~
and
—3ikz?/4, asz — oo™
J() - / ) (554)
O(1), asz — 0o~

Whenk = 0, the fluid is driven only by a pressure difference across the wall and corre-
sponds to the problem studied by Hasimot8][ We follow the same solution method as
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0.4 b

Figure 5.3: Typical streamlines for shear flow above a wall with two gaps, with varying
central plate length of 0.3 (top), 1 (middle) and 1.9 (bottom). These may be qualitatively
compared to Figures 1 and 2 in Smig.|
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above, so all the details carry over to this case too. In particHlgy) andG(¢) have the
same functional form and relatio&.41) still holds. In order to solve for this flow, introduce
the function

L(¢, p) = CK'(C, p). (5.55)
From this definition we have that

L) = K ) (5.56)

and, upon differentiating relatio 20 we see thak” (¢!, p) = (*K’(¢, p) and hence
L(¢Y p) = L(C p)- (5.57)
Similarly, using the derivative of relatio® 1), it is straight forward to show that

L(p*¢, p) = L(C, p). (5.58)

Due to this relation(¢, p) is example of a loxodromic function. It has simple pole singu-
larities at the isolated points = p*" for n € Z and, as equatiorb(24) gives the leading
order form of K ((, p) near the point = 1, we see that

1 1
L = — — 5.59
N ) (e (5:59)
near the same point.
We now propose that
F(¢) = AL((/i,p) + BK((/i, p) + CK(=(/i,p) + D (5.60)

with constantsA, B, C' and D. Without loss of generality, we choode = 0 due to the
additive degree of freedom in the functigifiz). Next, condition $.41) together with the
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above properties af((, p) and K (¢, p), we see that
B+ C = Fylog p*. (5.61)

We now use the far field conditions to to determine the constants. To do this, notice that

since
z(C)zCCii+b+... (5.62)
we may write
1 z b 1
therefore )
1 z 2bz
K_szg—zg+m (5.64)
and similarly
1 z

Given these expansions, we see thaf as i (corresponding ta — oo™ in the physical
fluid domain) we have that

e e R JTEm o
= [§—<%+%>Z+~J+B{%+HW+”. (5.66)
5;2 Gg—A{§+J})z+Ouy%

ika? iAPa k
A= —— B=— —(ia® + 2ba). 5.67

In the limit { — —i (corresponding ta — oco~) we have

FO— - p (5.68)

a
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which, upon again comparing to the far field form/gt) in the lower plane implies that

o_ AP (5.69)
4p

Finally, relation 6.61) gives the last constat, to be

1 IAPa
e 2log p 2u

+ g(ia2 + 2ab)|. (5.70)

Notice again the inverse relation betwegnandlog p, implying that the blocking effect
will alter this flow too even for exponentially small values

Putting this together, we find that

1 IAPa k. , ika? .
= - - 2ab)| 1 — L
Zbgp[ o Tl T ab)| og p + == L(¢ i, p)

4 E(icﬁ + 2ab) — iiia} K(C/i.p)—

F(¢)

: (5.71)
K (G )

Once we have this, then the no-slip conditidh3@ gives G(¢), and so we have fully
determined the flow everywhere.

Again, we compute the force from equatidn33 and graph this as a function of varying
plate length in Figuré.4 for the case wherd P = y = k = 1. This force is purely
vertical, as can be expected by the left-right symmetry (abouj-eds) of the driving far
field flow, the added pressure gradient and the geometrical configuration.

Hasimoto A8 also included a similar graph for the case of purely pressure-driven (Samp-
son) flow, corresponding tb = 0. Hasimoto also noted the blocking effect for very small

p, Which is also evident in Figurg.4: From Figure5.1, we see that the plate lengthv] is
approximately a linear function gfasp — 0, and hence the force falls off like/ log(2r)

asr — 0. This is a very slow decay.
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vertical force on central plate

1 1
0 0.2 0.4 0.6 0.8 1 1.2 14 1.6 1.8 2
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Figure 5.4: Total vertical force on the central plate as a function of varying plate length,
where the fluid is driven by a far field stagnation point flow of strerigth 1 (with 1 = 1)

as well as an added pressure gradient with = 1 in the downward direction. Due to the
symmetry of the geometry together with that of the forcing flows, there is no horizontal
force on the plate.

5.5.1 Limit of diminishing central plate length: comparison to Ko and

Jeong B].

Again, as a check on the analysis, the solution given here should tend to that of the same
driving flow in the simply connected case when the wall had only gap, as studied in chapter
3. Recall thatF'(¢) was given by

k¢ iAP

S e A IR

(5.72)

Our solution should converge to this in the limit of diminishing central plate length (or as
p — 0). To show this, recall that in this limits' (¢, p) — ¢/(¢ — 1) and so

¢
(=1

L(¢,p) = — (5.73)



5.5 Stagnation point flow past a wall with two gaps. 122

Using this, taking the limit op — 0 of F'(¢) in (5.71) gives

F(e)— 04 FE < +E(ia2+2ab)—iaAP] {#+}

4 (¢—1i)? dp || C—i
iIAPa | (¢
- {ﬁ ¥ ] (5.74)
kC iaAP k(ia* + 2ab)

I ER T (SRS BT r

Next, in this limit, the constantg andb defined by .14 and 6.15 reduce to 1 and O

respectively and hence,
k¢ iaAP

— +
AC—07 " 2u( )
which is precisely the correct functidr(¢) for the simply connected case.

F¢) — (5.75)

5.5.2 Results: stagnation point flow past a wall with two gaps.

We now look at the flow streamlines as the oncoming flow is altered, similar to as was
done in chapter 3, as well as when the geometry of the domain is changed. First we fix the
strength of the stagnation point flow and the viscosity by settirgl andu = 1, and then
vary the pressure difference between the upper infinity and lower infaaity?,. This gives
the number

N=— (5.76)

as defined by Ko and Jeongj[ WhenN is positive, it corresponds to there being a pressure
gradient in the downwards direction. Whén = 0, the flow is driven by the stagnation
point flow only, and finally, whenV is negative, there is an upwards pressure gradient.
The competition between the two drivers, together with the length of the central plate (and
therefore the gaps), determines the nature of the flow above and below the walls.

First, we set the pressure gradient in the downwards direction saatRat N = 1. When

there is no central plate, the streamlines pass downwards through the gap as irBEgure
as well as Figure 5(a) of Ko and Jeor8j.[When the central plate is present, but is small

in length, small (Moffatt-type) eddies are formed underneath it. The size of these eddies
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grow as the central plate length grows and the gap width decreases; seesFgure

When N = 0.07 there is only a slight pressure gradient in the downwards direction and
so the fluid motion is driven predominantly by the stagnation point flow. When there is no
central plate and the gap widthdsthe streamlines are as given by Fig8r8, as well as in
Figure 5(b) of B]. When the central plate is introduced and varied in length, eddies form
once again underneath the wall and appear to be almost vertically oriented, seebFagure

As the gap width is reduced and the central plate is made longer, the eddies “emanate” from
the gap. When the central plate is long (and fill$/98f the gap), the streamlines below

the wall are strongly reminiscent of those depicted in Figure 2 of Srgjtfof the case of
shear flow past an infinite array of very narrow gaps. This is to be expected, as when the
gaps are narrow and sufficiently far from the center of the plate, then in the region above
the gap the oncoming flow locally resembles a shear flow.

Finally when we introduce a negative pressure gradidhis negative and the flow is

forced upwards from below in competition with the stagnation point flow which sends fluid
downwards. In the absence of a central plate, the streamlines are as in Figasewell

as in Figure 5(c) of3]. The flow creates eddies underneath the walls in the vicinity of the
sharp edges. When a central plate is introduced, we see that the same eddies are present,
but vary their position as the central plate length is increased and the gap width becomes
smaller. In particular, the eddies do not form beneath the plate but underneath the sidewalls
instead; see Figure.7.

On comparison of three cases from FiguBe&5.7 for N = 1,0.07, —0.5 respectively,

we see that in all cases viscous eddies are formed beneath the plate or sidewall, and the
presence of the pressure gradient causes these eddies to be inclined at different angles:
when the pressure gradient is almost absé&w (= N = 0.07), the eddies are almost
vertically oriented below the gaps; as the pressure gradient becomes increasingly positive
and hence forces the fluid downwards® = N = 1), the eddies rotate towards the plate;

if the pressure gradient becomes increasingly negative and hence forces the fluid upwards
against the driving stagnation point flow, the eddies rotate to incline themselves away from
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Figure 5.5: Flow streamlines fa¥ = 1 and central plate length &3, 1, 1.9 (top to bot-
tom). This corresponds to an additional (downward directed) pressure gradient. The effect
of this pressure gradient is to incline the viscous eddies inwards beneath the central plate.
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Figure 5.6: Flow streamlines fa¥ = 0.07 and central plate length &3,1,1.9 (top to
bottom). In this case) P = 0.07 and hence there is almost no additional pressure gradient
and the flow is predominantly driven by the far field stagnation point flow. In this case, the
viscous (Moffatt-type) eddies are almost vertically oriented below the gaps.
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Figure 5.7: Flow streamlines fa¥ = —0.5 and central plate length &3,1,1.9 (top to
bottom). In this case, a pressure gradient is introduced in the upward direction, against
the oncoming (downward) stagnation point flow. The effect of this is to orient the viscous
eddies away from the central plate and beneath the sidewalls.
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the plate and settle underneath the sidewall.

5.6 Summary

We have presented exact solutions for Stokes flows past a no-slip wall with two gaps for the
cases where the fluid is driven at the far field either by a uniform shear flow, or a stagnation
point flow together with an added pressure gradient. As the only difference between the
methods of solution for both these cases was a change in far field boundary condition, it
should be clear that this technique is easily amendable to cases where the fluid is driven by
other far field flows.

Following Hasimoto 48], this study has been focussed on the case where the gaps on
either sides of the central plate have been symmetric. In general, one could perform the
same analysis for when the gaps are asymmetric. The appropriate conformal map for this

case would be
PQ(_C7p) - R2P2<Cap)
P2(—¢, p) + R*P2(C, p)

from the annular regiop < |¢| < 1 in the {-plane to the asymmetric double gap plane.

(5.77)

() =

This map is also loxodromic and the case-= 1 corresponds to the symmetric case above.
It is straightforward to generalise the analysis to the asymmetric domain ivbén.

This work is analogous to the motion of a point vortex around geometrically complicated
domains, as was studied by Crowdy and MarsHad].[In this work, the authors considered

the same symmetric double gap domain and find the trajectories that a point vortex takes
around such a boundary. The authors then present explicit formulae for the conformal map
(from an appropriate preimage domain) to the extericaroffinite number of gaps in the

wall. Therefore, by analogy, one should ask whether the above Stokes flow problem may
be similarly extended to the case where therenaoeethan two gaps present in the wall.

We have investigated this and have found the simply and doubly connected cases (where
the wall admits one or two gaps) are rather special, and have been unable to generalise the
above analysis to a triply connected fluid domain. In particular, the loxodromic condition
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(5.9 can not be extended to a triply connected case. It should be noted that numerical
solutions can, of course, be found.

The special function®((, p), K((, p) and L((, p) used in the analysis here have a close
connection to the Weierstrass sigma, zeta Brfdinctions p1]. While the solutions may

be rewritten in the language of elliptic function theory, as Hasimdg) ¢lid, we believe

that for both theoretical and computational purposes, the approach we have taken here is
clearer and, as the analysis is self-contained, we have not had to invoke any results from
special function theory.

These solutions have been documented as a contribution to the mathematical theory of
Stokes flows and the solutions will become useful in a variety of different contexts. In the
following chapter, we will build on these solutions by incorporating the singularity model

of Crowdy and Or 1] in order to study the motion of a swimming micro-organism in the
same geometry.
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Chapter 6

Swimming in low Reynolds numbers

near a wall with two gaps.

6.1 Introduction

In chapter 4 we studied the motion of a swimming micro-organism in the presence of an
infinite flat wall with a gap. We derived exact expressions for the swimmer’s governing dy-
namical equations and from this we were able to find the swimmer’s subsequent evolution.
We also considered the position and stability of the stationary points of those dynamics,
and determined the associated bifurcations as the parametas increased.

In this chapter we extend the study to the case where the wall atimaitgaps. As in the
case of a swimmer by one gap, we aim to derive three ordinary differential equations for
the swimmer’s position,(t), and orientationd(t). These expressions will then be used to

deduce interesting features of the swimmer’s dynamics.

In chapter 5, we considered the slow viscous shear and stagnation point flows in the same
confined domain as we consider here. The far field velocities were represented by appro-
priate singularities at infinity. An advantage of the method is that it may be generalised
in a natural way to the case where the flow is driven by a set of singularities at a finite
position in the fluid, such as those of the Crowdy and Qrsjngularity structure which
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model a swimmer. We will therefore build upon the results found in chapter 5 to construct
the appropriate Goursat functions for a swimming organism within this confined domain.

As in chapter 5, the presence of the central plate means that there is a non-zero net force
on the wall. We account for this force by including appropriate logarithmic singularities in
the relevant Goursat functions.

6.2 Conformal mapping: the symmetric double gap.

Let the central plate occupy the interyalrg, ro] and let the infinite walls lie along the real
axis where|z| > ro + W. Hence, the central plate has a length while each gap has
width W and is af+rq, £(ro + W)]. These are parameters that we are free to specify.

We now introduce a conformal map((), which is a slight variation to that given b$.Q).
The appropriate map is

Y

R ey 61)

—G.p

(_Cv p)Q + P(C? p)2

where, from here on, we suppress thdependence in((, p) for convenience. This map
associates the interior of an annulus< p < || < 1 with the fluid region and the real
numbersk andp are found numerically so that

z(p) = ro and  z(1)=ro+W. (6.2)

In this manner, the image of inner circle of the annulgs,= p, is the central plate. As
z(¢) admits simple poles at the two poings= +i on the boundary of the outer circle of
the annulus, the image of this circle are the walls > r, + W extending out towards
infinity. It is known [60] that z(¢) has the appropriate square root branch point behaviour
at({ = +p, =1 which are the preimages of the corners in physical fluid domain. Therefore,
using this map allows us to treétas a uniformization variable for the Goursat functions
for this problem, which may now be expressed as single-valued functionsTiis will
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simplify the analysis greatly.

Note also that we must assume that there exists a non-zero force on the central plate. The
expression for this force was given in chapter 5 by equata®) s

. H .
24i j{ aH ds = 2yl [H} (6.3)
r ds r

wherel is any closed contour encircling the central plate with positive orientation and the
square bracket denotes the change in the quaHtityz) = f(z) + zf'(z) +7'(2) as this
curve is traversed.

6.3 Swimming near two gaps.

In chapter 4 we were able to find the equations of motion for a low Reynolds number
swimmer in the vicinity of a single gap within the wall. We will now attempt to find the
dynamical system which describes the swimmer’s evolution when around two gaps.

6.3.1 The Goursat functions for swimming near a wall with two gaps.
Once we have introduced the conformal map, we will attempt to construct the Goursat

functions within the preimagé-plane. Define

F(QO) =f(=() and  G(¢) =4'(2(¢)) (6.4)

which must be analytic everywhere inside the annulus, except for at the positions of the
isolated singularities which model the swimmer. We have shown that the presence of the
force on the central plate necessitates a logarithmic singularity in the Goursat functions at
some point within it. They may therefore be decomposed as

F(¢()=FRlog¢+F(C),  G()=—Filog¢+G(Q) (6.5)
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where the coefficients of the logarithmic terms are again chosen so that the velocity is
single-valued everywhere in the fluid. Then, equatiér8)(gives the total force on the

central wall as

)+F«w+40535£3+5w%*> — SmuF. (6.6)

Fylog ( =
Z'(p2C1) e

NN

2ip

Once again the Stokes paradox does not present itself here as the force on the infinite wall
is equal and opposite to the force on the central plate. This crucial observation means that
a solution is not precluded by this paradox.

6.3.2 Determining the Goursat functions from the no-slip boundary con-
dition.

The fluid is stationary on both the infinite walls as well as the central plate. Considering
the walls first, we that on its primagg, = 1, the no-slip condition takes the form

—F(¢) + ;(éol)F "CH+GEH =0 (6.7)

while on the innep-circle of the annulus, we have

z(¢)
Z'(p*CY)

Next, substitution of ansats (5) into (6.7) and 6.8) gives

- F(()+ F'(p*)¢)+G(p*¢h) =0. (6.8)

F 2(Q) = Bt =1 A1
= F(Q+ gy [P+ FIeh] + G =o (6.9)

and

e (o) Fplf +f’(p2€1)} —2Rlogp+G(p*C") =0, (6.10)
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Making the substitutioq — p*¢ in (6.10 gives

z(p*()
Z'(¢7Y)

and so subtracting equatio®.9) from (6.11) gives the relation

—F(p*) +

[P+ F'(¢Y] = 2FRilogp+G(C) =0 (6.11)

EC‘FEI(C_l)

Q) = Fr0) + {2(0°0) — 2O} | =57

= 2F;log p. (6.12)

However,z(() is a loxodromic conformal map and hence satisfies the property

2(¢) = z(p*() forall ¢ #0. (6.13)
Therefore, relationg.12 is reduced to
F(p*¢) — F(¢) = —2Filog p (6.14)

and it is precisely this condition that allows us to find closed form analytic expressions for
the swimmer’s governing equations.

6.3.3 The form off’(¢) andG(¢).

In light of the special function&((, p), L((, p) introduced in chapter 5, the special func-
tion M (¢, p) is defined by

M(¢, p) = CL'(¢, p) (6.15)

and can be shown to satisfy

M(Chp)=M(Cp),  M(p*¢.p) =M, p) (6.16)

in a similar fashion to the equivalent relations 8¢, p) and L((, p), also presented in
that chapter. From the definition 81 ({, p) and from the limiting form ofZ(¢, p), we have
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that

d 1 1

Men =G [Tc=1p ~ -1y
2 3 1 . .

— + + + analytic function

=12 -1?2 (¢-1)

+ analytic functior]
(6.17)

Recall that in order to model a swimmer by this singularity configuration, we must allow
the functionf(z) to admit a simple pole, corresponding to the stresslet, at the swimmer’s
position. In addition to this, we must allow it to admit a third order pole at the swimmer’s
image position, too. As the conformal map preserves singularity structure, we must allow

F(¢) to also admit a simple pole at (wherez((;) = z,) as well as up to a third order pole
at1/(,, the image of the swimmer in the annulus.

We have seen that the special functidhg, p), L(¢, p) andM (¢, p) are analytic functions
everywhere inside the annulps< [(| < 1 and that they also have first, second and third
order simple poles respectively. This means that they may potentially be useful functional
tools to model the swimmer, as they would provide the appropriate singularity structure
that the Goursat functions require. However, due to the condi@ida)together with the
functional relations%.21), (5.58 and 6.16) for K (¢, p), L(¢, p) andM (¢, p) respectively,

we conclude that these are the only analytic functions that may be used here.

With this in mind, we deduce that(¢)

F(¢) = AM(CCy, p) + BL(¢Cyy p) + CK(CCyop) + DK(CCp) +E - (6.18)

where A, B,C, D and E' are constants to be determined. Wfﬂ(ug) written in this way,
the first three terms allow’(¢) to admit a first, second and third order pole at the position
1/¢, while the fourth term is included to ensure th%(tg) has a simple pole at the point
¢ = (4. Finally, the constant tern¥y, may be set to zero without loss of generality due to
the additive degree of freedom fitz).
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6.3.4 Determining the constants B{().

Using this form ofﬁ(g‘) in the condition 6.14) and using the relation

K (0%, p) = —C ' K(C.p) (6.19)

(together with similar relations fok((, p) and M (¢, p) presented in chapter 5) gives the
condition
C+ D = 2F;log p. (6.20)

Next, note that neaf = (;, we may express the may() using its Taylor expansion as

2(Q) =2+ 2 ()= C)+ O — Q) + ... (6.21)
> (Ca)
1 i 2 d

i JOR (6.22)

while using the limiting form of(¢, p) given in chapter 5, we have that

Cd

K(CChp)= =+ 0(1) + ... (6.23)
C—Ca
and so upon use of expansidhZ?) in this,
K¢t p) = —Czi(id) +O1) +... (6.24)
d

Therefore, near the swimmer’s physical position, the function

D !/
(o) ~ 2678 | (6.25)
Z — Zq
As we require this to be stresslet of strengtlwe must choose
A
D = 6.26
Ca?'(Ca) (6.26)

to ensure the stresslet singularity is of the correct strength.
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Next, it follows from equation@.9) that

2(¢)
Z'(¢)

G =F(O) - [P+ Fr¢™). (6.27)

Letting ¢ — 1/¢ and then taking the conjugate gives

co-Fe -T2 r]. (6.28)

Substituting the expressiof.18 for F'(¢) into this results in

G(C) = AM(CaC™, p) + BL(CaC ™, p) + CK (G, p) + DK (S ¢V p)

—(—1
2 B¢ 1 T AM (G p) + CaBL(CCarp) (6.29)

2(0)
+ L O (Cp) + DGR )]

Notice that the first term takes the leading order form

M(C o p) = M(C/Ca) ™ p) = —%M@/@,p)

_ G| 2 ]N_Q_C??’
- c[(c—@“"' C—cp

(6.30)

near the poinf = (. Thereforeé(g) has a third order pole at this point, but this is exactly
the condition that is required of it in order to account for the quadrupole at the swimmer’s
position. Comparing this to the form ¢f(z) near the swimmer’s position= z, gives the

relation _
\e?

GEC)

which ensure@(g) has the correct quadrupole strength at the swimmer’s position.

A=

(6.31)

We see that expressiof.R9 for G*(Q admits simple poles at the poinfs= +1, £p as
these are the zeros of the derivative of the méfy;). However, these are precisely the
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simple pole singularities that(() is expected to admit at the sharp ends of the walls and
plate (i.e. the images af = +1, £p respectively). This is therefore consistent with the
form of the stream function near a sharp corner, as given by Dean and Montatfijon [
in equation 8.12). Furthermore, the function also incorporates “image singularities” at an
infinite set of other points in thé-plane, but as these are outside the annulus, they are
not physically relevant to the problem at hand. As a regiilt)) has exactly the correct
singularity structure needed inside< (| < 1.

Expressions&.26 and 6.31) give two of the five unknowns\, B, C, D, F; while rela-

tion (6.20 provides one additional constraint. Two additional conditions may be found by
equating the coefficient df: — z,)~2 in G/(¢) to \z,, while setting the coefficient of the
simple pole(z —z;)~!, to zero. This ensures that the Goursat functions admit the appropri-
ate (stresslet-associated) dipole at the swimmer’s position while disallowing a simple pole
(a rotlet) to be present. This can be done by using expres%a?i,((6.26) and 6.31) to
substitute forA, C, D and, upon using the residue theorehand F; may be determined
from the two conditions

Mu= o b GO - z@j—gda
C
" . (6.32)
0= 2_7TI a G(Od_CdC

whereCj is a small circle that encircles tljg in the annulus.

6.3.5 The blocking effect.

It can be shown that in the limit of vanishing central plate length, and hgnee 0,

the functionsﬁ(g) and C?(() tend to the Goursat functions for the equivalent single gap
problem, as expected. The only difference between them, therefore, is in the logarithmic
term which is present in the two gap case but not in the single gap case.

Equation 6.20 shows that

F~O ( ! ) (6.33)
log p
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as the constants and D are generally of order unity. Therefore, this term vanishes expo-
nentially slowly as tends to zero. For example, when= 1071 (andr =~ p), F; ~ 1072

and hence is not negligible. As a consequence of this inverse logarithmic dependence, we
expect the convergence of the two-gap solution to the single gap solution to be extremely
slow.

6.4 Dynamical system of a swimmer near a wall with two gaps.

Once the above five constants have been fouf(d) and G({) are then known. These

are then used to update the swimmer’s position, which varies as a result of its own hy-
drodynamic interaction with the boundaries. As this is the only method of propulsion for
the swimmers in question, we do not allow for any self propagation effects and hence the
swimmer’s velocity is taken to be only the finite part of the velocity

— () +2f (2) +7(2) (6.34)

at z = z;. This means that the horizontal and vertical components of the swimmer’s

velocity are given by the real and imaginary part of the ordinary differential equation

dZd

s =—fo+ Zd?1 + 9 (6.35)

with fy, f1 andg, defined by equationgt(3) and @.4). The equation for the evolution of
head angled(t) relates the local solid body rotation to the finite part of the local vorticity
generated by the flow at= z,, or
do , . -
== =AMl E)] =ih - 7). (6.36)
Thus, once the initial conditions,(0), #(0)) for the swimmer and the length of the central
plate have been set, these three ordinary differential equations determine the subsequent

motion of the swimmer. We will now use them to study some interesting features of the

swimmer’s dynamics.
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6.4.1 Stationary points and their linear stability.

In chapter 4 we considered the dynamics of the swimmer in the vicinity of one gap and
found the stationary points together with their associated stability. We found thatevhen

is small enough, there were four stable spiral points at the vertices of a rectangle. When
the swimmer was near such a point, it spiralled in towards it, ultimately remaining in that
position and, as the value efvas increased, we noted some interesting bifurcations to that

stability.

We follow a similar strategy in order to find interesting dynamical features of low Reynolds
number swimming near to a wall with two gaps. However, the presence (and length) of the
central plate adds another parameter, and hence degree of complication, to the dynamical
system. As this widens the parameter space, we restrict our attention to two physically
relevant studies. Firstly, we consider the case where the parameitefixed while the
separation of the two gaps is varied. This will demonstrate how the position and stability
of the stationary points are gradually affected by the presence of the other gap as they get
closer to each other. Furthermore, when the central plate length is very small, the blocking
effect on the dynamics of a swimmer around a single gap will become evident. Secondly,
we fix the plate length at some small value and consider the effect of varyifigis will
demonstrate how the bifurcations which we have seen in the single gap study are affected
by the presence of a small solid boundary.

6.4.2 Varying the parametemwith fixed gap separation.

During the study of a swimmer around a wall with a single gap in chapter 4, we saw how
the stability of the stationary points changedeasvas varied. By increasing its size, we
noticed an interesting sequence of bifurcations which the swimmer underwent, including
instances where the stationary points changed from being stable to unstable in nature, as
well as the gluing of fixed orbits to form figure-of-eight trajectories.

It is interesting to see whether the addition of a small central plate would disturb this se-
guence of bifurcations. To this end, we keep the ends of the walls-at-1 and place a
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central plate of length.1 symmetrically inside the gap, so that its ends are at +0.05.

Note that keeping the plate length small is not a necessary detail for the analysis (indeed,
the conformal map is constructed to allow central plates of any length, as long as it “fits”
within the gap). Keeping the plate short enables it to be used as a small perturbation to the
single gap case, and therefore to isolate its effect on the bifurcations.

As e is increased from 0.1 to 0.5, the structure of the stationary points allows for only four
stable points, (marked as the point C in the figures below), while the others remain unstable.
These stable points are again at the four corners of a rectangle, with their positions near to
the corresponding stable point locations within the single gap case (for the same value of
€). Whene = 0.1, the point C is a stable spiral; see Figér& However, asg is increased,

it ultimately becomes unstable at the first Hopf bifurcation value

el = 0.1722. (6.37)

At this stage, although the swimmer may not be attracted towards a single stagnation point,
it may nevertheless become trapped within an interesting figure-of-eight period orbit, see
Figure6.3. While these look qualitatively similar to the figure-of-eight trajectories which
arose from the dynamics around a single gap, there is a crucial difference between them:
the orbits within the single gap study were generated by the gluing of two fixed orbits
(each associated with an unstable stationary point). However, in this two-gap case there is
a stationary point within only one of the “lobes” of the figure-of-eight. If the governing dy-
namical system was dependent on the swimmer’s position only, then this transition from a
stable spiral to this more complicated orbit (which crosses over itself, without an additional
equilibrium point) as is slightly increased would be impossible. However, recall that in
addition to the swimmer’s position, the governing dynamical system is also a function of the
swimmer’s orientationd. Hence, any fixed orbit of this system is, in fact, a closed curve
within the three-dimensional spa¢Rez,], Im|z4],0). The trajectories we see in Figure

6.3 are simply the projections of this three-dimensional curve onto the two-dimensional
(Refz4], Im[z,4]) plane. This is consistent with the fact that the three-dimensional fixed orbit
near to the stationary point C, drawn in Fig@érd, does not overlap itself.
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Figure 6.1: Here = 0.1. The point C (and its corresponding reflections in the real and
imaginary axes) are the only stable points.
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Figure 6.2: Here = 0.115. The points B and D, both of which are unstable points, are
near to each other. They meet and cancel each other outavbanhes the value 6f1175.

The point C is still the only stable point.

XXX
XXX ™
>
X

Figure 6.3: Two figure-of-eight fixed orbits when= 0.18 > eﬁf). Each one is the projec-

tion on to the (Ref,], Im[z,]) plane of the orbit which lies in the three-dimensional space
(where the third axis corresponds to the swimmer’s orientafiproint F has emerged as

a result of a saddle-node bifurcation.
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Figure 6.4: Fixed orbit around the stagnation point C whea 0.18. It does not cross
itself. Projecting this onto the (Ref],Im[z,]) plane retrieves one of the figure-of-eight
orbits drawn in Figuré.3.



6.4 Dynamical system of a swimmer near a wall with two gaps. 144

As the value ot is increased further, we notice another Hopf bifurcation point when
e'?) = 0.3360, (6.38)

where the stagnation point C becomes stable once again. The eigenvalues of the linear
stability of point C are shown in the dispersion diagréfhase is increased. The point C

is unstable (during which the trajectories follow a figure-of-eight orbit) when the real part
of its eigenvalue is positive and this occurs whéﬁ <e< eﬁf).
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Figure 6.5: Eigenvaluess, for the linear stability of point C as is increased. When
Relr]< 0, it is a stable spiral point while when R[> 0, the points becomes unstable.

Another interesting phenomenon occurs to the stagnation pointsnaseases from 0.1
to 0.5. There are specific values foat which two stagnation points undergo a saddle-
node bifurcation, defined as a local bifurcation in which two equilibria of a dynamical
system collide and annihilate each oth&g][or, alternatively, two equilibrium points are
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created. For example, recall that when= 0.1, the positions of the stationary points

are demonstrated in Figuel However, as is increased, the two points A and, get

closer together and ultimately collide on the real axis. When they do this, their effects
cancel each other out and, from then on, there are no more stagnation points in either of

the two positions. Figuré.6 shows how the saddle-node bifurcation process evolves as

is increased.
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Figure 6.6: A saddle point bifurcation: the points A; And A; all lie on the horizontal
axes inside the gaps. Any swimmer placed inside a gap with initial orientétionr /2

will only swim horizontally. Here we chart the horizontal swimming velocity as a function
of its position ag is increased. Both and Infz,] are zero at all times and so a stagnation
point is attained when the horizontal velocity is zero. We see that wiagproaches the
valuee,, = 0.3183, A and A, cancel each other out. This is an example of a saddle-node
bifurcation.

The points B and D also meet ads increased to the value ef = 0.1175 and again
cancel each other out in the process. This can be seen in FEdinehene = 0.115 and
therefore shows the positions of B and D just before they meet. Shortly after this, the system
undergoes another saddle-node bifurcation on the real axis within the gap, creating two
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more stagnation points: the point F emerges just above the gap (together with its reflection
in the real line) and can be seen in Fig6r8. Finally, whene, = 0.4343, the points C and

F meet and also cancel each other out. Once this has happened, g éathAof which

are unstable) are the only remaining stagnation points left in the fluid, as is seen in Figure
6.7.

Figure 6.7: The positions of the only remaining stationary points whene, = 0.4343
(heree = 0.5), and all points are unstable. There are no more saddle-node bifurcations as
e increases further.

6.4.3 Varying gap separation with fixed

We now fix the value o = 0.1 and begin by keeping the gaps, each of unit width, away
from each other at large distances. We find that the stationary points are in the same position
(relative to the gap’s position) as in the single-gap study: in the case wheres, there

are four stable points &b.5 + 0.82 + 0.24i) each of which are stable spiral points. There

are also two saddle points directly above the center of the gap at the foints0.70i) as

well as at the three unstable stagnation points on the real line between the edges of the gap
at(5.5,5.5+0.41). In addition to these points, which are present around both gaps, there is
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another unstable stagnation point both above and below the origin (the center of the plate),
at the point§+0.1i). These stationary points are depicted in Figéi@where the stable
spiral points are highlighted. Figu&9 shows a magnified view of one of the gaps and
labels the stagnation points for future reference. The point E is the (unstable) stagnation
point that appears directly above the center of the plate.

* * * *

N/ x N N/ x N
N IN N IN

* * * *

Figure 6.8: The stationary points around two widely separated gaps (5) with unit
width. The stars highlight the stationary points which are stable while the crosses corre-
spond to unstable stagnation pointss fixed at 0.1.
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Figure 6.9: A close-up view of the stationary points in Figure 6.8 wjtk= 5. Points C

and D are stable spiral points, B is an unstable saddle point while the others are unstable
points. Point E (not shown) is on the imaginary axis above the center of the plate and is an
unstable point.

An interesting phenomenon occurs as the distance between the gaps is decreased. The un-
stable saddle point, B, and the stable point D move towards each other andpasoaches

the value
ro) = 0.06446, (6.39)

the point D undergoes a Hopf bifurcation and becomes unstable. When the gap is decreased
further, (andry ~ 0.016), they collide (a saddle-node bifurcation) and their effects cancel
each other out. See Figurésl0- 6.12

Whenr is decreased further to the value2of 10~°, two new stationary points are “born”
on the imaginary axis directly above the (small) central plate. Both of these are unstable
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Figure 6.10: Stagnation points as the length of the central plate diminishes. Here we have
ro=0.1> rﬁll) and the stagnation points have the same stability structure as those in Figure
6.8. The presence of the other gap, however, moves them off slightly off the “standard”
positions, as seen in Figuées.
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Figure 6.11: Here, = 0.02 < r,(f), just before points B and D meet and cancel each other
out during a saddle-node bifurcation. Here, the stability of point D has changed from a
stable spiral to that of an unstable spiral.
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Figure 6.12: Here, = 0.01, just after points B and D have met.
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points; one of which, E is a saddle point which moves upwards-gss further decreased

to zero, while the other, £is an unstable point which moves downwards in the same limit.
Whenr is taken to be extremely small (at a valuel6f %), the saddle point £tends to

the position of the saddle point that we have seen on the imaginary axis in the single-gap
study; see Figuré.13- 6.14

It is interesting to note that due to the blocking effect, even an exponentially svailll

give rise to a slight disturbance in the position of the stationary points when compared to
the case where there is no wall at all. Indeed, this phenomenon allows a number of new
stagnation points to appear within the flow, as highlighted in Figuté

E, N
E2
C
% E %
X A2 A A3
X X X « X X X
X
* *
X

Figure 6.13: Asy, is decreased further tbx 10~°, two new points are born on the imag-
inary axis. The upper stagnation point; § an unstable saddle point while the lower
stationary point, Eis an unstable point.
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Figure 6.14: Even when, is exponentially small, the blocking effect (top figure) ensures
that the flow is altered from the single gap counterpart, (bottom figure), whesexactly
zero. The effect of the blocking effect is highlighted by the dotted circle.
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6.5 Summary

We have extended the ideas of chapter 5 to model a swimming micro-organism moving in
the vicinity of an infinite wall with two symmetric gaps. By building on the Crowdy and

Or [1] model for such a swimmer, we have been able to determine the flow and note some
interesting dynamical features of the system. Due to the close agreement which this model
has with experimental findings for a swimmer near a flat wall without gaps, we believe that
the dynamics presented here provide a predictive theory for how a similar swimmer would
evolve near the present confined geometry in three dimensions.

The dynamics presented chapter 4 for a swimmer near an infinite wall with only one gap
experienced some interesting phenomena such as gluing, saddle-node and Hopf bifurca-
tions ase was increased. In this case, however, the addition (and length) of a central plate
introduces an extra variable which widens the parameter space. We have therefore focused
on two limits which have exposed some interesting dynamical features of the system.

By placing a small plate symmetrically inside a gap between +1, we have been able

to see how this introduction affects the bifurcations of the single gap case axreased.

For smalle, we saw four stable-spiral stagnation points which are in similar positions to
their single gap counterparts. Asvas increased te"), these points underwent a Hopf
bifurcation, after which a swimmer may have its trajectory trapped in a figure-of-eight
pattern indefinitely. We have noted that while they may look qualitatively similar to the
figure-of-eight trajectories of the single gap swimmer in chapter 4, they did not form as a
result of a gluing bifurcation of two fixed orbits (like the single gap swimmer did).c As
was made even larger, the dynamics underwent a second Hopf bifurca&i@neé?t), after

which the four points became stable once again. Ultimately, ssproached,, each of

these stable points were annihilated during a saddle-node bifurcation. eAfter,, there

were only four other stagnation points left - one on either side of the central plate on the
real axis, and one above and below the central plate on the imaginary axis - none of which
were stable. Recall that aswas made large in the single-gap case, the two remaining
stagnation points on the imaginary axis (one above and one below the origin) were stable.
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This therefore further illustrated how the stability of the single gap stationary points were
altered by the introduction of a small central plate.

Turning to the other limit, we studied the effect of the two gaps on each other by controlling
their separation and determining the dynamics around each (for a fixed valué\d saw

that when the gaps were sufficiently separated, each had little effect on the other and hence
a swimmer near one of the gaps behaved in much the same way as it did in the single gap
study. As the gaps’ separation was decreased, the system underwent a number of saddle-
node bifurcations, resulting in the annihilation of stable-spiral points and the creation of
new unstable saddle points. In the limit of exponentially small plate length, we saw a
similar stagnation point structure to that of the single gap: there were four stable spiral
points at the four corners of a rectangle; two unstable points near the ends of the gaps on
the real axes and two unstable saddle points above and below the origin, on the imaginary
axis. All of these points were in much the same position as their single gap counterparts.
The key difference was manifested in the stationary points around the origin - there were
eight new stagnation points around the exponentially small wall. This demonstrated the
blocking effect, where an extremely short wall had a non-negligible effect on the flow.
However, all of these points were unstable and no trajectories were found to accumulate at
any of them.
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Chapter 7

Numerical solutions to Stokes flows In

complex geometries.

7.1 Introduction

In previous chapters, we have employed various methods of complex analysis to find exact
solutions to Stokes flows near walls with gaps. A common feature of the fluid domains in
guestion was that they all admitted sharp corners. By building on the form of the stream
function in the vicinity of these corners, as first proposed by Dean and Montagpn [

we deduced the singularities that the Goursat functions were forced to admit there. Con-
formal maps which had the same singularity structure as the Goursat functions were then
introduced which allowed us to utilise a uniformization variable. Doing this meant that
the corresponding Goursat functions in the preimage domain of the conformal map were
single-valued and analytic. The problem was then reduced to determining these analytic
functions and we were able to call upon a variety of complex variable techniques in order
to do this. For example, by virtue of the fact that the conformal map of chapter 5 was
loxodromic, we were able to find the Goursat functions explicitly and find exact solutions
for the uniform shear and stagnation point flow around a wall with two gaps.

A natural question to ask is whether all Stokes flows near domains of double, or even
higher, connectivity are solvable using the same techniques. We have studied this and have



7.2 Slow viscous shear flow past a cylinder above a wall. 156

found that this is not the case: not all conformal maps between annuli and doubly connected
fluid regions with sharp corners are loxodromic and so, for some domains, the techniques
presented in chapter 5 would not necessarily generate exact solutions. While numerical
solutions have been used to solve problems which would otherwise be intractable to solve
analytically 63], the presence of boundary discontinuities at sharp corners often makes it
hard to find solutions even by numerical means. However, the introduction of a conformal
map which has the same singularity structure as the Goursat functions in the fluid domain
means that, even if they can not be found exactly, their counterparts in the preimage domain
will be analytic and free of branch cuts. These problems therefore often lend themselves
well to study using numerical techniques.

In this chapter we will demonstrate how the combination of conformal mapping theory
with numerical methods may be used to solve Stokes flow problems near various doubly
connected fluid regions. By retrieving a result found by Davis and O’N&4] for the
uniform shear flow past a cylinder above a wall, we demonstrate a numerical procedure
which we shall use in other, more complicated, fluid geometries. Then, by combining this
numerical approach with the ideas presented in earlier chapters for the flow around sharp
edges, we find the shear flow around a finite vertical, and inclined, plate above a wall. We
will demonstrate the formation of viscous eddies in such regions and show that this has
an interesting relevance to the problem considered by Mofgit for the viscous flow

in a wedge. Finally, we apply a similar method to find the viscous flow generated by the
Weis-Foghmechanism for lift generatior6p].

7.2 Slow viscous shear flow past a cylinder above a wall.

We begin by presenting a new approach to the problem of an oncoming slow viscous uni-
form shear flow past a cylinder placed above an infinite flat wall. The cylinder is centered
on the imaginary axis at a heightand has radius < «. A viscous fluid fills the upper

half plane above the wall and exterior to the cylinder where, on both, the no-slip condition
holds and so the fluid is stationary. We also assume that the cylinder is held in place and
can oppose any fluid force that is exerted on it.
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This problem has been previously solved by Davis and O’Nefl].[With the use of bipolar
coordinates, they map the fluid domain to the region between two parallel lines and solve
the transformed biharmonic equation there with the use of Fourier transforms. We shall
refer to their solution as a basis of comparison to ours.

As before, we seek the stream function in terms of a complex variabi¢h the general
solution Q.13 where, againf(z) andg(z) are two analytic functions everywhere in the
fluid domain, except perhaps at specified positions where singularities are imposed in order
to model the problem at hand. Assume that in the far field the fluid is driven by a uniform
shear flow with velocity

(u,v) = (2Uy,0) (7.1)

with U' = 1 from here on and s@(z,z) — y*> asz — oo™. We aim to find the flow
structure everywhere in the fluid and study any interesting phenomena that occur as the
cylinder is brought down towards the plane.

7.2.1 Conformal map: a cylinder above a plane.

Next, let us consider the physical fluid domain as the image of an anpufug| < 1 in

a preimage;-plane under a conformal map= z(¢). The form of this will be a Mbius

map, as this maps one circle onto another (the real axis can be thought of an as arc of a
circle of infinite radius). The specific &bius map can be written as

YA
0=4(5) (7.2)
whereA € C and the radius of the annuluyg, are found by imposing the condition that
the unit disk,Cy, is mapped to the infinite (horizontal) no-slip wall while the inpeagircle,
(1, in the annulus is mapped to the boundary of the cylinder. Upon doing so, it is shown in
appendixC that

A=—-iva2—r2,  p= §=——" (7.3)
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Written in this way, the origin is mapped to a point inside the cylinder and the poeint-i
is mapped to infinity. This is the appropriate conformahis map which associates the
preimage annulus to a cylinder of radiusentered at = i« above the plane.

7.2.2 Constructing the Goursat functions.

As the fluid flows past the cylinder, it exerts a force on it. In chapter 5, we showed that the
net force around any object bounded by the cuiwe the fluid is given by

zm[H} ) (7.4)

whereH (z,2z) = f(z) + z?'(z) + ¢'(z). Once we have determined the flow, we will use
this expression to compute the force on the cylinder.
Defining to Goursat functions in thieplane by

F(O) =f(z(0), GO =4d(=(C) (7.5)

then, apart from the singularity at infinity which drives the background shear flow, these
functions are completely analytic inside the annulus and hence admit a Laurent series in
(. As these Laurent series are single-valued and hence give no contribution to the force,
we must also allowH (z, z) to take a multi-valued component. Thus, they also incorporate

a logarithmic contribution, the coefficient of which is proportional to the force on each of
the solid boundaries, as in chapter 5. The force on the cylinder is equal and opposite to the
force on the wall.

Next we know that as we move away from the cylinder and the wall, the velocity tends
to that of a uniform shear flow + iv = 2y, which is equivalent tof(z) — iz/2 and

g'(z) — —iz. As these are linear functions ethen, given the form of the conformal map
(7.2), we see that

2A

FO=F5 and o) = 76)
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as¢ — —i. With this in mind, we may decompose our Goursat functions further as

F(¢) = Filog ¢ + (?Ef?) (7.7)
and R
G«>=—Fmgc+(ffg (7.8)
where A N o ;
F(C)IZFJ'C“FZRJ'Ea (7.9)
=0 J=1

and where(7(¢) admits a similar Laurent series too. Notice that we have scaled the coef-
ficients within the second summation; without doing so, it would be numerically unstable
when evaluated on the inner circle of the annulus wh@re- p. Finally, we may choose

Fy=0 (7.10)

without loss of generality due to the additive degree of freedom in the fungtion

7.2.3 The no-slip boundary conditions.

The velocity of the fluid on any boundary is zero and hence is also zero on the correspond-
ing boundary in the plane. Therefore we have

ut+iv=0 on ey (7.11)

Let us first consider the velocity on the unit cirelg, onwhich ¢ = 1/¢. We have the
relations

HO) = A (%) and Q)= ¢ g2ﬁ)2 (7.12)
and hence _ _
A A = (@) (7.13)

(1)) 24 S
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where we have used the fact thais purely imaginary ando A = —A. Next, using the
chain rule we differentiate expression?) to get

o LR Q) FE)
TEO=3@ [ C Ty Crip (714
and hence _ —_
oL g KEA/Q  CEA/Q
f( )_?’(1/6) [F1C+ &) + T | (7.15)

Putting this into the no-slip boundary condition, we have that

—ICE(1/0) | R/
Ty T csp

iCG(1/¢)
iy (10

Multiplying this expression by¢ + i) results in

1 2\(1 _ i —iCF —i_ i /
0=gc0+ NI =iQF —ICF/¢) = 5-(1+ CICF(C) (7.17)

5 (LHIOF(Q) +G(Q).

We now consider the boundary condition ©f, the inner circle of the annulus on which
we hae ¢ = p?/C. Note that here it is convenient to write

¢=pn (7.18)

and consider the curve wherg = 1. We then have that

2i An?

z = ; 7.19
(p/n) CENPE (7.19)
and therefore arrive at the relation
z(pn) i (pn - i) .
= = — | ¥/ +1ip)~. 7.20
Z(p/n)  2n% \pn+i (n-+1p) (7.20)
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Also on this curve we have that

L [uP nE /) E(p/n) )
&)= 2m) +ip) | (rripp (7.21)
Using these in the no-slip condition @y gives
—i(1 —ipn)log p”Fy + ﬁ </p)J_r—:Z) (1—ipn)’F
g % (Z50) a-topion - 5 (S0) a-ipnpFon @22
. (1—1ipn
—in ( i ) F(p/n) + G(pn).

Equations 7.16) and (.22 constitute two functions relations on thg¢) andG(¢) and
hence provide a linear relation between their Laurent coefficients. Furthermore, the two far
field conditions 7.6) mean that

F(-i)=A and G(—i) = —2A. (7.23)

7.2.4 Numerical procedure

These conditions can be used together to find the coefficierft§@fandG(¢) either by

a spectral analysis or by the method of least squares. For the former, as the system is
linear in the coefficients of the Laurent series, the functions may be found from a direct
comparison of the powers gffrom the no-slip conditions7.16) and (/.22 together with

the far field conditions{.23. In the latter, the method of least squares enforces the no-
slip conditions by attempting to “fit” a set of Laurent coefficients to the right hand side of
equations 7.16 and (7.22), such that they also satisfy the far field conditions, at a set of
collocation points distributed across both boundaries. In doing so, these conditions will not
be satisfied exactly; the method of least squares converges to a solution by minimising the
sum of the squares of the errors encountered at each collocation point.
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z=10.64+0.3I z=1+I

Davis andO’Neill | 0.0449101332 9©.0215225474| 0.1500124809:0884469812
Spectralanalysis | 0.04491013310:0215225474| 0.1500124808-0884469811
Leastsquares 0.04491013310t0215225473| 0.1500124808:0884469810

Table 7.1: Comparison of velocities as worked out by Davis and O'N&dll [ as well as
those computed using a spectral analysis and a least squares analysis. The results are the
same to within an accuracy 61(10~'°) of each other.

Davis and O’Neill p4] have presented a solution to this problem using bipolar coordinates
together with Fourier transform methods. Their solution therefore serves as a useful check
on both of the above numerical methods. Indeed the use of a spectral and least squares
method to determine the Laurent coefficientsfdf) andG(¢) yields extremely similar

results to Davis and O’Neill§4]. This is demonstrated in Tablé1l by comparing the
velocities at a few locations inside the fluid, as computed by a spectral analysis, a least
squares method and finally from the form of the velocity given by Davis and O'Nxil [

Both spectral and least squares methods produce accurate resits=fd4 coefficients

of the Laurent series together with 128 collocation points. These choices of parameters will
also be appropriate when solving similar problems of Stokes flows past multiply connected
fluid regions, including those with sharp corners. As the above results for the shear flow
past a cylinder differ from each other only in their tenth decimal place, we have confidence
that these numerical methods may also be useful in these (more complicated) geometries.

7.2.5 Results: shear flow past a cylinder above a wall.

We now consider the flow in the vicinity of the cylinder for a variety of different configu-
rations. When the cylinder is placed far away from the plane, the streamlines pass above
and below the cylinder as they would if it was placed in free space with an oncoming shear
flow, see Figur&.1l As the cylinder is moved closer to the plane, Figar2 the presence

of the wall attracts streamlines downwards towards it in the fore and aft of the cylinder.

As the cylinder is brought further down towards the plane, we see the same behaviour as
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Figure 7.1: Here the cylinder is far away from the no-slip wall and hence the wall’s effect
on the fluid around the cylinder is minimal. The cylinder is centered above the origin with
heighta = 2.7 andr = 0.4. The streamlines are attracted slightly downwards towards the
plane before and after the cylinder.
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exhibited by Davis and O’Neill34]. The authors find that when the gap width is less than
(approximately) 0.865 times the cylinder radius the streamlines separate and single eddies
are formed. Placing the cylinder just above this critical distance ensures that no eddies
appear, as shown in Figui®3. Lowering the cylinder further to just below the critical
height, we see that a single eddy is formed adjacent to the plane at the base of the cylinder
as shown in Figure$.4and7.5. This is consistent with the results of Davis and O’Neill

[54].

Figure 7.2: As the cylinder is brought downwards, the effect of the wall on the fluid around
the cylinder becomes more evident. Herer 0.8 andr = 0.4.

These results demonstrate that both the spectral analysis and least squares method yield,
to excellent accuracy, the same results as those found by Davis and OBgiliding

the Fourier transform methods. The success of the authors’ method relied on the specific
geometry of the domain which enabled exact solutions to be found. However, it is not
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Figure 7.3: Streamlines for when the ratio of gap width to cylinder radius is 0.935. Eddies
have not formed yet.

immediately clear how their method would be adapted to accommodate, say, a sharp edge
in the fluid domain. Itis this that we turn our attention to now. By using the methods that we
have developed in previous chapters regarding sharp corners together with the numerical
techniques we have demonstrated here, we will attempt to find numerical solutions to the
Stokes flow past a finite length plate above a wall.

7.3 Shear flow past a finite perpendicular plate above a wall.

We now consider a similar problem in which a uniform shear flow is present above an
infinite no-slip wall but, instead of a cylinder, a finite length plate is placed vertically above,
and perpendicular to, the wall. Assume that the lower end of the plate is at height

while the upper end is at = ib = i(a + L), so that it has lengti. Unlike the case of

the cylinder above the wall, the sharp ends of the plate present an additional complication
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Figure 7.4: Eddies begin to form as the cylinder is brought towards the planeaHereb
andr = 0.4.

Figure 7.5: When the ratio of the gap width to cylinder radius is much less than the critical
value of 0.865 (as found by Davis and O’Neill [54]) the eddies become fully formed. Here
a = 0.43 andr = 0.4.
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which must be resolved in order to accurately find the flow. We take the same approach
as we have done in previous chapters, namely that the Goursat functions take the form
f(2) ~ ao(z — 20)"? andg'(z) ~ by(z — 2)~*/? in the vicinity of a2zr-corner atz = z,
(wherea, andb, are constants). Modelling the exact nature of this singularity is essential
in guaranteeing convergence of solution at points near to the ends of the plate. Therefore
the ansatz for the Goursat functions will be chosen in such a way that it exploits the above
behaviour near these points.

7.3.1 Conformal mapping: finite plate above a wall

We shall consider the physical fluid region to be the image of the same annulus as used in
the case of a cylinder above a plane. The appropriate map can be constructed in terms of
special transcendental functiong(, ), which consists of an infinite products depending
only on the inner radius of the annulys,The required map is then represented as

2(¢) = RS (7.24)

whereR is a complex constant scaling parameter andnd-~, are taken to be two distinct
points in the closure of the annulul&). While this map can be extended to any number of
plates (constructing a map to a wall witlplates requires the same connectivity inside the
unit disk and hence will be the image of a ugitlisk withn holes inside), the form of the
map for the current study requires that

w(¢,7) = —C2P(C/7,p) (7.25)

where -
P(c, OJ[a =00 —p*¢ (7.26)

k=1

andC = [[;2,(1 — p*). Full details of this map are discussed by Crowdy and Marshall
in [58, 60]. There are a few notable properties of this function. Firstly, it is clear to see
thatw((, ) has a simple zero @t = v and hence the mag 24 admits a simple zero at

¢ = v and a simple pole at = ~,. Therefore, if we choosey,| = |.| = 1, then since
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the map has a zero and a simple pole on the unit disk, it followstha mapped to a line
that passes through the origin and infinity. Secondly, it will also map the inner difcle,
to a finite length radial plate emanating from the origin in thglane. By choosing

M= 17 Y2 = _17 ReR™ (727)

we have that the point = 1 is mapped to the origin, while the poigt= —1 is mapped

to infinity. Also, the image of the interior of the annulus is the right half plane, except
for a finite plate which lies purely on the real axis. The length of this plateand its
minimum distance away from the wall will be determined by an appropriate choiée of
andp. Indeed, these numbers are found numerically from the two equations

2(p) =a and  z(—p) =0 (7.28)

using Newton’s method, where the numbers: b define the start and end points of the
plate. Lastly, note that this map does not satisfy the loxodromic condBi@hgnd so the
analytic methods presented in chapters 5 and 6 are not applicable to this problem.

OnceR andp have been found, we then rotate the above map by an anglafounter-
clockwise in order to ensure that the unit disk is mapped to the real line. The required
conformal map is then given by

Q) = ia0) = ~iR g (7.29)
Note that we may write this as O
z2(¢) = t1 (7.30)

where we have used the fact that) admits a simple pole & = —1. Herez(() is given
by

o) = —ir D ity 7 ) = T - p%00 - o). (73D)

T(-C,,O) k=1
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It also follows from this that the derivative of the conformal map is given by

2 29
€+1)  (C+1)?

2(¢) = (7.32)

where, using some elementary manipulations, it is readily seen that

| ) -OTC) | (1= QT AT (Cp)
KO =R F e ) T T r
= 2k 1
e PN L2L—2% ) u—w%o]

k=1

These are the expressions that will be useful when defining the equations that need to be
solved in order to find the appropriate Goursat functions.

7.3.2 Constructing the Goursat functions

Using the map we may, again, define the Goursat functions ig-filane by the relation

F(Q) = f(2(0), GO =4g'(=(0). (7.33)

We know that at a far distance from the plate and plane, the fluid motion tends to a uniform
shear flow and hence the stream function for this problem must conveige We have

seen that this is equivalent to requiring that the Goursat functions have simple poles at
infinity and, specifically, they must take the far field formf@t) — iz/2 andg’(z) — —iz.

As a simple pole in the-plane corresponds to a simple pole in {hplane, we allowr’(()
andG(¢) to both admit simple poles @t = —1. Additionally, our choice of parameters
ensured that the two points in the annulug at +p are mapped to the two ends of the
plate. Recall that'(¢) will be regular whileG(¢) will admit simple poles at these points.
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Putting these properties together, we assume that

F(¢)
C+1)

G(¢) = —Flog ¢ +

F(() = Flog¢ +

. 7.34
G(¢) (739

(C+1)(¢2—p?)

where we have ensured that the functions behave appropriately near the three singularity
points corresponding to infinity and the two edges of the plate in the fluid domain. As
F(¢) andG(¢) are analytic everywhere inside the annulus, they admit a Laurent series as
in (7.9). Also, given the far field conditions on the Goursat functions, it follows that

(1-p)T(=1,p)
T(1,p)

T(—l,p)
T(1,p)

(7.35)

F({()— R and G(() — —2R

as¢ — —1.

7.3.3 The no-slip boundary conditions

Next we refer to the no-slip condition on the plate as well as on the plane. Therefore, on
the corresponding curvés andC in the( plane, we have the condition that

2(¢)

ST

F'(Q)+G() (7.36)

First consider the unit disk, where therelation¢ = 1/¢ holds. Differentiating the first
expression of{.34) gives

iCE /(1)) CCE(1/)
C+i) (CHip (7:37)

fl(z) = Fi¢+

b
Z/(1/¢)

and similarly B
¢*G(1/¢)

R N =)

(7.38)
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Putting this together, we see that after some arrangement the boundary condition on the
unit disk in the annulus is

-0 = ~cE/q) + | LIS gy ORI g

¢2'(¢) 2'(¢)
v (7.39)
+ g | FO
(14 ¢)2"(€)
while onC, where( = p?/¢, the velocity condition becomes
_ [, 2 2O+ )1 — 1) =
0= { 2 legptn+p)(1—n )} F+ { T } 7,
A=) 20— P)(on)] =
i { n3(1+ pn) } Fpm) + { 77 (o)1) ] F(p/n) (7.40)

2 2 — —

p*(1—n )Z(pn)] 2 2
- — F +G )
{ n(p+mn)z"(p/n) (e/n) + Glo/n)
Together with the far field condition§ 35, the no-slip conditions7.39 and (.40 are
used to find the coefficients of the Laurent expansion&(@f) andG(¢). Using the same
method that was demonstrated for the shear flow past a cylinder over a plane, we do this
either by a spectral analysis or by a least squares method.

7.3.4 Results: shear flow past a finite plate above a wall.

We will now look at the solutions of the above equations with their generated streamlines.
As the strength of the shear flow is constant, the only parameters we varaadé which
determines the length and position of the plate. We begin by placing the plate far away
from the wall, so that it has little effect. The streamlines pass by the wall in a similar
fashion to if the plate was it a free space shear flow. The effect of the wall, while being
weak, nevertheless provides a slight downwards attraction towards it, as it did in the case of
a cylinder above a wall. This is shown below in Figuré. As the plate is brought nearer

to the wall, the effect of the wall becomes more apparent in its attraction of streamlines;
see Figureg.7and7.8.
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Figure 7.6: When the plate is far away from the wall, the streamlines behave similarly to
when in a free space shear flow past a plate. Here2 andb = 3.

Figure 7.7: When the plate is brought further down, the effect of the wall becomes more
evident and streamlines are pulled downwards towards it. Hetel andb = 2, and so
the plate is unit length.
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Recall that in the case of a cylinder instead of a plate, single eddies are formed when the
cylinder is brought close to the plane. We saw that the closer the cylinder was to the plane,
the larger the eddies became. The same phenomenon occurs in the case of the plate above
a wall. Notice that in the above two examples, while the wall had a slight effect on the
streamlines, they did not separate and thus no eddies were created. However, as the plate
is brought close to the wall, we see a single viscous eddy being formed on each side of the
plate. The eddy increases in size as the gap between the plate and the wall is reduced to
zero. This is illustrated in the Figur@sd-7.11below.

/’_\\
/\

/\
—— U ~—
— T

Figure 7.8: The plate is of unit length and the gap width is 0.7. The effect of wall becomes
even more pronounced as the plate is brought down further. The plate has unit length.

7.3.5 Limiting case: diminishing gap width.

The method of least squares provides the coefficients of the Laurent series of the Goursat
functions which satisfy conditions/ (35, (7.39 and (7.40. When the plate is brought

down towards the wall, the gap width decreases and the fluid domain approaches one that
has a perpendicular corner. The boundaries of such domains are associated with disconti-
nuities and so it is necessary to increase the number of collocation points near the contact
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Figure 7.9: Eddies begin to form as the plate becomes close to the wall. Here, the gap
width is 0.5 and the plate’s length ik.5.

Figure 7.10: Here the gap between the plate and the plang and the plate’s length is
1.8. The eddies become more pronounced as the plate is brought even further down towards
the wall.



Chapter 7. Numerical solutions to Stokes flows in complex geometries. 175

Figure 7.11: The plate length is 1.5 and the gap width is further reduced to 0.1. At this
stage the separation of the streamlines create eddies which prevent the fluid from travelling
through the small gap between the plate and the wall.

points in order to establish an accurate solution in this limit. The case when the plate is
directly in contact with the plane, and so= 0, has been solved by Kind] with use of
Weiner-Hopf techniques. The author computes that the force on the wall by the oncoming
shear flow is

Fl, = 5.81Tau (7.41)

whereq is the strength of the oncoming flow (equal+@ in our case: this is because he
considers a flow of half the strength from the opposite direction).aisdhe coefficient of
viscosity (equal to one here). In our study it was shown that we may compute the force on
the plate by the quantity

F = —-8rF. (7.42)

As a useful check on our method, the force in the doubly connected reg@i#® ¢hould
approach the result of Kinb] as the gap width is reduced to zero. Indeed, this is confirmed
and a graph of the force on the plate as it is brought closer to the wall is shown in Figure
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7.12

It should be noted, however, that when the gap width is exactly zero we can not accurately
solve the problem using the numerical method we have presented above. This is because
whena = 0, the domain becomes simply connected and the vicinity of the contact points
on both sides of the plate forms a perpendicular wedge shaped region. The locale of these
points are precisely the flow regions studied by Moffatt when demonstrating the existence
of eddies in wedge shaped domaifd][ Based on his results, it can be shown that when-
ever the wedge angle is less than roughl§.6°, the Goursat functions necessarily take the
form

f(z) = A2 + B2 (7.43)

with A € C related to the wedge angien(7)\/2) = £A. The positive sign relates to flow
that is symmetric about the lire = 7 /4 while the negative relates to the antisymmetric
flow about the same line. When— 0 the angle between the wall and the plate j& and
hence, in order to correctly solve this problem using the above conformal mapping method,
we would be required to include such singularities into our ansatf (for as well as for
¢'(z). However, any term of the form

2 (7.44)

introduces a branch cut, as well as being divergentjas> oo. This presents significant
difficulties to the method presented here and, as yet, it is not known how to accurately
include these singularities in our model. However, we have shown that we can retrieve
accurate solutions in tHanit of diminishing gap width, while still in the doubly connected
regime. This supports the idea that, by using the numerical method presented here, deter-
mining the flow near two (slightly) disconnected sections of wall may be used to provide a
good approximation to the flow in the wedge-shaped region when the walls touch.

Indeed, this idea is not specific to the perpendicular wedge and hence considering the flow
past an inclined plate provides the equivalent doubly connected approximation to a non-
perpendicular wedge shaped region. This will be the focus of the next section and, later in
the chapter, we will use the same proposition when studying the Weis-Fogh mechanism in
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low Reynolds numbers.

10

Force on
perpendicular plate

Force =5.817p a
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Figure 7.12: Force on the plate as a function of gap width (solid, blue). We see that as the
width is reduced to zero, the force tends to the value of 5.817 (dashed, red) as predicted by
Kim [5].

7.4 Shear flow past a finite inclined plate above a wall.

We now consider the case where the finite plate is not perpendicular to the no-slip wall but
is radially inclined, while still above it. Lep be the inclination angle of the plate relative

to the horizontal and let, be the distance of the near edge to the origin, as depicted in
schematic Figur&.13 In this case, a gap of sizg sin ¢ will be present between the

wall and the plate, allowing a net fluid flux through it. We will again study the formation

of viscous eddies as the plate is brought downwards towards the wall and hence the gap

becomes smaller.

Many of the details of the perpendicular plate carry over to this case, except that the confor-
mal map is changed and, therefore, the preimage points of the plate’s sharp ends may not
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Figure 7.13: Schematic diagram of the shear flow past an inclined plate above a wall. The
on-coming shear flow has strendth= 1.

necessarily be &t = +p. Recall that when; = 1 andy, = —1, expression{.24) mapped
the p-circle of the annulus to a radial plate emanating from the origin along the real axis,
while mapping the unit circle to an infinite vertical line passing through the origin. Now,
we take

P(¢ p)

20(¢) = —Rm (7.45)

where it then remains to find the valuesi®fp and~, € C. This will map the inner circle
of the annulus to a finite line along the real axis, starting @nd ending at, + L, (where
L is the chosen length of plate).

Choosingy; = 1 also means that the poigt= 1 will be mapped to the origin and hence
the image of the unit circle will pass through the origin. Additionally, selecfing = 1

will ensure thatz,(¢) admits a simple pole at = ~, and so will be mapped to infinity.
Therefore, the unit circle will be mapped to an infinite straight line which passes through
the origin. Crowdy and MarshalBp] have shown that the explicit angle made by the
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straight line image of the unit circle to the positive real axis is given by

1
arg[R] — 7 arg o). (7.46)
Therefore, the condition
1
arg[R] — 5 arg[ye] =7 — ¢ (7.47)

together with the requirements that the minimum and maximum real values of the radial
plate are atr = ry, o + L respectively gives a system of three nonlinear equations for
p, R, arg ., which may be solved numerically using a Newton method. Once these are
found, we rotate the domain by an anglso that the infinite line lies along the real axis.
The required conformal map is therefore given by

2(¢) = ei‘bzo((’). (7.48)

Next, in order to account for the singularities at the end of the plate in the “physical”
fluid domain, we must find their preimage points on theircle in the annulus. We again
find these two pointg; and{, numerically from the condition that the derivative of the
conformal mapz’(¢), vanishes there.

With these parameters found, the Goursat functions take the modified form

F(¢) = Flog¢+ (CF—(g’iz) (7.49)
and .
G(¢) = —Flog¢ + G(©) (7.50)

(€ =72)(¢ = )¢ — )
with '(¢) andG/(¢) again admitting Laurent series in the annulus. In this case, the far field
conditions onf(z) are applied ag — . To simplify this, notice that the conformal map

(7.45 takes the form "
2 — R,erl P(C?ﬁ)} 1
= st e (751
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and so we see thdt(¢) tends to

F(¢) = iRvge“’ﬁP(%’;) (7.52)

as¢ — v, while G(¢) tends to

Aoy io P(72, 0) (72 — (1) (72 — (2)
G(¢) = —iRype'? (0. p)

(7.53)

in the same limit. The coefficients of the Laurent series are again found either by a spectral
method or by a least squares algorithm.

Below are some typical streamlines around a plate with varying inclination apgéand

gap width. Kim and Jeong6p] studied the problem of an oncoming shear flow past an
infinite no-slip wall with a protruding fence (attached to the wall) at different angles, using
Wiener-Hopf techniques. This is a limiting case of the present study as the gap width is
reduced to zero, and so the below figures should be compared to Figuré@. of

In the plots of Figurer.14 the inclination angle is kept constant@t= 7 /3 while the

distance of the nearest edge to the origif, is reduced. Similarly to the case of the

perpendicular plate, we see that viscous eddies are formed as the gap width, given by
V3

7 To (7 . 54)

is reduced. The size of these eddies grow as the gap width is reduced and, when the gap
width is very small, eddies also form on the left (or upstream) of the plate. When the
plate is made longer and again brought very close to the no-slip wall, but kept at the same
inclination anglep = /3, a secondary set of eddies appears in the vicinity of the resultant
wedge, see Figuré.15 This is consistent with the theory by Moffa@4] that when the

fluid is driven by some far field flow, viscous eddies appear sequentially in a wedge. The
eddies on the left (upstream) of the plate grow also as the length of the plate is increased.
Note that even a very small gap allows for a small volume of fluid to pass through it and
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distorts the eddies that would be formed if the fluid domain was an exact wedge.

In Figure7.16 we demonstrate the effect of varying inclination angle while keeping the
length of the plate at a constant length. We see that eddies may form on both sides of the
plate, but that upstream eddies will not form wher: 33°, as then the upstream angle will

be greater than 147in agreement with Moffattg4.

7.5 The Weis-Fogh mechanism: the low Reynolds number limit

In the observation and study of the hovering motion of insects, Weis-Fogh proposed a
mechanism5] by which many of these insects, such asiEmearsia formos#wing chord

~ 0.2mm) [67] generate their required lift. This is often referred to asdlap and fling
mechanism: an insect “claps” both its wings together so that they meet along the (say) ver-
tical line of contact. It then rotates both wings around the common point of contact at the
bottom of both wings (the “opening phase”) and in doing so, air quickly fills the gap gener-
ated. It then moves its wings apart horizontally, (the “spreading phase”) by which time the
circulation around each wing is of the correct sign to provide upward lift. The remarkable
feature of this mechanism is that it does not depend on the usual vortex shedding method
of generating lift and hence it is applicable to a hovering insect in a purely inviscid fluid.
Instead, its success relies on the instantaneous circulation that is generated around each
wing as the two wings separate from each other and thus change the flow domain topology.

In the same year, Lighthillg8] provided a mathematical rationalisation of this process by
considering an irrotational, inviscid, two-dimensional model. With the use of a Schwarz-
Christoffel mapping, he produced an explicit mathematical representation for the “opening
out” phase of the motion. However, as the connectivity of the flow domain is changed
(from simply to doubly connected) when the wings begin to separate, the expression for
the lift which Lighthill computed was not extensible to the spreading phase of the mecha-
nism. Using conformal mapping techniques in the doubly connected regime, Cr6@idy [
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Figure 7.14: A plate, inclined at angle af/3 from the horizontal is gradually brought
downwards towards the no-slip wall. Here the gap has widths 0.26, 0.08 and 0.02 (top to
bottom). As the gap becomes narrower, less fluid may pass through it and the resulting
viscous eddies increase in size.
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Figure 7.15: As the plate is made longer= 3 and kept very close to the wall, with gap
width 0.02 (and inclined witlp = 7/3), a secondary set of eddies appear in the immediate
vicinity of the wedge, to the right of the plate.

presented analytical expressions for the lift generated during the spreading phase in the

infinite Reynolds number regime.

The focus of the section is to study the spread out phase of the Weis-Fogh mechanism in the
low Reynolds number regime. The two plates are separated by andngé their lowest
point and move away from each other with spée(so that their total speed of separation

is 2U), as shown in Figuré&.17.

We again aim to find the Goursat functions that satisfy the appropriate boundary conditions
for this problem, i.e that

— e )+ 2f E ) +F(Z ) =+U  for z €Ty, (7.55)

wherel'; , corresponds to the right and left wings respectively. To do this, we introduce
a (time dependent) conformal map from the annul(t$ < || < 1 to the fluid domain
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Figure 7.16: Typical streamlines around a plate with varying inclination angle. In all cases,
ro = 0.2andry + L =2, and¢ = 7/10,7/5, 37 /5,97 /10 (top to bottom, respectively).
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@2 @2

Figure 7.17: Schematic diagram for the spreading out phase of the Weis-Fogh mechanism.
Both wings are separated by an angl(é) at their lowest point and move away from each
other with relative spee2l/.

exterior to the two wings. This map is given by

2(¢) =1A(1)e™™2R(C, p(1)) —id(t) (7.56)
whereA(t) andp(t) are real functions of time. Her& (¢, p(t)) is given by

R(C. plt)) = A(1) (C?’Ep_ Z ]Ij §¢C; (7.57)

with the usualP(¢, p) given by (7.26). This is a doubly connected case of the so called

radial slit mapas discussed irv[]: the unit circle,Cy, where|(| = 1 is mapped onto the

a finite straight line along the rayrg R = ¢(t); the inner circle of the annulus;; where

IC| = p(t), is mapped to another ray of the same length lying along the real axis. The
parameterg(t), A(t) € R are found numerically from the condition

Max [R(p(t)n, p(t))] = 10 + L, Min [R(p(t)n, p(t))] = To, ml =1 (7.58)



7.5 The Weis-Fogh mechanism: the low Reynolds number limit 186

using a Newton solver wherg is the minimum distance from the origin ands the length
of the wings. This functiork((, p(t)) is then multiplied by

e 1?()/2 (7.59)

to ensure that the wings lie symmetrically about the vertical axis, and then translated by a
distance
d(t) = (ro + L/2) sin [(m — ¢(t))/2] (7.60)

downwards so that their centers lie along the real axis. From here on, we suppress the time
dependence in the notation for convenience. Once again the preimages of the sharp ends
of the plates are at = ¢;, with j = 1, ..., 4, and are found numerically from the condition

that the derivative of the conformal map vanishes at these points of non-conformality.

With the conformal map known, we propose that the Goursat functiqgs = f(z(¢))
andG(¢) = ¢'(2(¢)) are given by

P(Q) = Flog¢ + FQ), G(O) = ~FilogC+ =20 z.60)
[ (€= G)
with the logarithmic singularities included to account for the force required to move each
wing, and their coefficients chosen so that the velocity remains single valued along on each
wing. Once again, the function8(¢) and G(¢) are both analytic and single valued in
the closure of the annulus. It should be noted that this condition circumvents the Stokes
paradox and the force on one wing is both equal and opposite to the force on the other.

Using this ansatz in the two no-slip conditior’sg5) gives, on|¢| = 1,

GG
T.(1-3,0)

; z(¢)

U:—F(C)+E,(C_l) Fi¢+F'(¢H] +

(7.62)
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while on the inner circle of the annulug| = p, we have
—U=—-2Flogp—F 2(p6) {l P } Swls 7.63
11og p (p(:) + z/(p/c) P + (p/() + H;L:1(p - C]C) ( )

The conformal map for this fluid domain does not satisfy the loxodromic condition and
hencez(p*¢) # z(¢) for all ¢ in the annulus. The two equation&§2 and (7.63 are linear

in the coefficients of the Laurent series of the Goursat functions and hence this system can
once again be solved by either a spectral analysis or by a least squares method.

Snapshots of typical streamlines associated with the flow around the two wings are shown
in Figure7.18for the “opening” phase and in Figuiel9for the “spreading” phase. As

they open, the lower ends of the wings are kept close together (but not in contact) during
which time their angle of separation increases. When the wings reach an inclination angle
of 7/6 (and hence have a separationyof 7/3) they complete the first part of their motion

and commence the spreading phase. At this point, they maintain this inclination and move
apart at constant speed at which point a pair of viscous eddies are formed in the vicinity
of the lower ends of the two wings only and, as the wings move further apart, these eddies

increase in size.
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Figure 7.18: Typical streamlines around two wings during the “opening” phase of the Weis-
Fogh mechanism. They rotate with angular velo€ityntil reaching a separation angle of

¢ = w/3. Here they are pictured at separation angles 0.2, 7/9,7/6 (top to bottom).

The wings have unit length and their lower corners are at a distance of 0.1 away from each
other (or 105 of the wing’s length).
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Figure 7.19: Typical streamlines around two wings during the “spreading” phase. They are
inclined with separation angle = 7/3 and move with speetd = 1 away from each other.
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7.6 Summary

We have presented a numerical procedure which is useful for determining solutions for
Stokes flows past domains of complicated geometry. By retrieving a previous result by
Davis and O’Neill B4] for the uniform shear flow past a cylinder above a wall, we have
demonstrated the accuracy of this method which motivates its use in problems which have
not been previously considered. In particular, we turned our attention to fluid domains
whose boundaries included sharp corners. These problems could, in theory, be solved us-
ing standard boundary integral metho@d4][ however the discontinuities at these corners
would present severe complications to this. By calling on the results from previous chap-
ters, we have been able to characterise the singularity structure of the Goursat functions
at these sharp corners and, by introducing a conformal map, we have reformulated the
problem in terms of analytic functions that have (well-behaved) Laurent expansions.

Following this procedure has allowed us to find the uniform shear flow past a finite length
plate above a wall, at any angle of inclination, and study the formation of eddies as the plate
is brought down towards the wall. These results are of interest as in the limit of diminishing
gap width (between the wall and the plate’s lowest corner), we retrieve a wedge shaped
fluid domain, similar to those considered by Moffedd]. Moffatt’s analysis was a local

one from which we may infer the local singularity structure of the Goursat functions at the
wedge corner, however these singularities are divergent and a method for including them
in a global expression for the stream function is currently unknown. However, an inclined
plate above a wall provides a good approximation to this and hence the numerical method
presented here could be used as a first approximation for the global solution of fluid flows

near wedge shaped regions.

We have also used this method to find the Stokes flow around two wings during the open-
ing out and spreading phase of the Weis-Fogh mechart&mn While we are unable to
determine the flow while the lower ends of the wings are in contact, separating them by a
small length provides a good approximation to this stage of the mechanism.
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Special care must be taken when considering two-dimensional Stokes flows past solid sur-
faces due to the Stokes paradox. The presence of the fluid’s force on the object necessitates
a logarithmically divergent velocity field. However, the scenarios we have considered here
has been concerned with doubly connected fluid regions and we have shown that the force
exerted on one object is equal and opposite to the force exerted on the other. Because of
this, the forces cancel each other out and therefore these problems are not susceptible to

this paradox.
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Chapter 8
Conclusions and future work.

Problems of low Reynolds number swimming have received a great deal of attention re-
cently. Most of the interest has been devoted to swimmers in an unbounded fluid, while
the studies of swimming in bounded domains has been limited to cases where the fluid is
confined by a simple boundary, such as an infinite flat wall. This thesis has extended the
study to cases where the confining geometries of the swimmer are more complicated.

In order to do so, we have first studied general Stokes flows near complicated boundaries.
By presenting a new approach using conformal mapping theory, we have been able to find
exact solutions for the uniform shear flow and stagnation point flow past a wall with one or
two gaps in such a way that retrieves, in a unified manner, the results previously found by
Smith [2] and Ko and Jeond].

Then, by incorporating the singularity model proposed by Crowdy and]Qwg have been

able to explicitly determine the dynamical system which governs low Reynolds number
swimming in these complicated geometries. Their model, which was based on a non self-
propelling treadmilling swimmer of radiusin free space, is a two-dimensional one and
provides excellent qualitative agreement with numerical and laboratory experiments for the
case of a fully three-dimensional motion of a swimmer near a flat wall. Therefore, we have
confidence that the results presented in this thesis establish a predictive theory for how

similar swimmers will behave around walls with one or two gaps.
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A characteristic feature of the boundaries of the domains we have studied is that they admit
sharp corners at the ends of their boundaries. One can construct many other fluid domains
that have similar corners, however it may not always be possible to find analytical solutions
to Stokes flows in these domains. Nevertheless, the numerical procedures used to solve
these problems are greatly ameliorated by incorporating the ideas introduced within this
thesis and we have presented a number of Stokes flows in doubly connected domains with
sharp corners in order to demonstrate this.

The idea of modelling a swimmer as a two-dimensional point singularity is also currently
being employed within other contexts. For example, a similar model is being used to
provide insights into low Reynolds number swimming beneath a deformable free surface

9.

The singularity model that was proposed by Crowdy and Xpmjas chosen in a passive

way, such that the swimmer is always described by a stresslet together with a superposed
irrotational quadrupole. This model could be extended to a non-passive one where the
swimmer reacts to its surroundings by changing its singularity structure appropriately. One
could, in principle, perform a full matched asymptotic expansion to deduce the dynamics
of the swimmer. In doing so, one would match the “inner” flow generated by a small,
finite-area swimmer of radiuswith the “outer” solution in which the flow generated by

that swimmer interacts with the solid boundary. The implicit assumptions in this method
would be that is small relative to its distance from the boundary. This would result in
corrections to the singularity strengths in powersg @fhile the leading order term of this
would be the Crowdy and OL] singularity model. The solutions found in this thesis would
then serve as the “outer” solution in such a scheme. AntanovHiidsed precisely the

same strategy of matched asymptotic expansions to present a complex variable formulation
of a deformable bubble in Taylor’s four-roller mill. We have not pursued this asymptotic
approach for two reasons: firstly, such a strategy would be necessarily more complicated
than the simpler point model which, as we have shown, already captures key features of low
Reynolds number swimming dynamics near walls. Secondly, in order to do this matching
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accurately, one would need to make assumptions hswdhe treadmiller responds to its
surrounds. As this is dependent on the precise details of the fluid domain the swimmer is

in, these are challenges left for the future.

The results presented here are interesting from the viewpoint of dynamical systems. Gluing
bifurcations have been observed in only a few other fluid dynamical sys#&nsZ, 73

and this study adds to the short list. An intriguing possibility is that the presence of the gaps
provide a route to chaos for the swimmer’s dynamics. The single and symmetric double gap
cases we have considered in this thesis provide one and two parameters for the dynamical
system respectively, and we have not witnessed any chaotic behaviour. However, the two-
gap study may be extended to the case where the gaps are asymmetrically placed about the
origin. In this case, the required conformal map is

(
(

where)\ is real. The positions of a non-symmetric central plate would add a third parameter

9

_C )2 — AP(C?ﬂ)z

N Y
Z(Q_R(P ,p)>+ AP(C, p)?

into the dynamics and it would be interesting to determine whether doing so would result

in a chaotic system.

In presenting the numerical procedure for determining the Stokes flow past stationary sur-
faces, such as cylinders or inclined plates, the flows were driven by a far field uniform shear
flow. Another advantage of the method we have presented here is that it may readily adopt
other forms of far field flow. For example, the stagnation point flow considered in chapters
3 and 5 could equally drive the fluid in these problems. The formulation we have presented
would remain largely unchanged, except for a slight modification of value of the Goursat
functions at one point in the preimage domain; that which corresponds to infinity (in the
fluid domain). Moreover, by incorporating the Crowdy and @rdingularity structure, it
would be interesting to use this numerical approach in order to study the dynamics of a low
Reynolds number swimmer in these complicated geometries.

Finally, there are other physical scenarios where the ideas of this thesis may be useful. Zhao
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and Bau p6] have studied the two-dimensional problem of the induced electro-osmosis on
a cylindrical particle placed near to an infinite no-slip flat wall. The governing equations
are very similar to those of a swimmer confined within the same geometry, except that the
motion of the charged, or dielectric, object is induced by its interaction with an ambient
electric field. In a similar approach that we have taken to low Reynolds number swimming,
it would be interesting to extend Zhao and Bau’s wdsg][to study the dynamics of this
cylinder near to a wall with a gap, using the techniques presented in this thesis.
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Appendix A

Analysis of single gap conformal map.

The conformal map for the single gap studies of chapters 3 and 4 is given by

_ %
This is analytic inside the unit disk in tiieplane and has the Taylor expansion
Q) = 2+ (¢~ ) + 32O~ G
(A.2)

+2G)C — G + 522G~ G

4

Rearranging this, we can writ&(2) as

(=) = (€= G) [0+ 3 O€ -G+ g @ -+ | A

Diving by the square bracket and expanding, we have

z—2z 2"(Ca)
C—G=" g @

Z//(Cd)2 B Z///(Cd)
42'(Ca)*>  62'(Ca)

~—

(A.4)

}(C—w +(9((Z—zd)3)...]
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which can be written as
1 2"(Ca)
(@) —m(z — zq) — W(Z — 24)(¢ = Ca)+
1 2/,// (Cd)Q Z/// (Cd) (A5)
. o o 2
T {4z'<<d>2 62/(Ca) } S
Using this expression in itself again, we get
(¢ —Ca) = a1(z — za) + a2(z — 24)* + as(z — za)” + . .. (A.6)
were ) GF )
B ; _ _Z”—d B Z” d B Z/” d
e 2'(Ca)’ “ 22/(Ca)?’ T22(C)¢ 67(Ca) (A7)
Furthermore, from expansioA(3), we have
1 1 / 1 " 1 n
C—&) G-l (Ca) 52" (Ca) (€ = Ca) + 527 (Ca)(C = Ca)?
(A.8)
1
+ ﬂZW(Cd)(C — G+ |
Upon using A.6) in this, we have
! = a + B4 Az — 2q) + 0(z — 2q)? (A.9)
(€—C) (2—za) '
where
- 5 2"(Ca) - 2"(G)  Z"(G)”
b=z, F= 22/(Ca)’ T 62'(Ca)*>  42'(Ca)?
S: Z”(Cd)g B Z”(Cd)zm(Cd) N ZW/(Cd)
42'(Ca)? 42’ (Ca)* 242'(Ca)®
Note that cubing this, we get the expression
! — T (A.10)
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where

Ww_3 = Z’(Cd)ga W-2 = ;Z/(gd)zﬂ(cd)a W-1= %ZW(C‘D

" :Z////<Cd) B Z/,(Cd)ZW(Cd) N Z”(Cd)g
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Appendix B

Analysis of double gap conformal map.

We have seen that the conformal m&p3( admits a simple pole at the poinfs= +i.
Therefore, we may write

_ A+ A —i)+...
B¢ —i)+B(i)(¢—i)2/2+ ... (B.1)
“BO =BG esqe | TOCTNT

where we have used the fact thati) = 0. From the Taylor expansion of(¢) and B(()
we see that
A(l) = PX(—i, p) — P¥(i, p) = 2P*(—i. ) (B.2)

using property %.6) of the special functior(¢, p). We also have that
The Taylor expansion aB(() reveals thaB3 (i) = 0 while

Bl(') = P(I,p)Pl(l,p) - P(—I,p)Pl(—l’p) (B4)
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and

B//(i) = 2[Pl2(|7p) + P(l,p)P”(l,p) + PQ(_iup) + P(—i,p)P”(—i,p)]. (BS)

Putting these together in expansidh 1) gives the required constanisandb, given by
equations%.14) and 6.15
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Appendix C

Derivation of conformal map for a

cylinder above a plane.

Let us assume that the Mobius map may be written in the form

¢—i
Al >— A
0= 1)
Written in this way, the poinf = —i is mapped to infinity in the-plane. As a point on the
unit disk is also mapped to the origin, this allows us to map the outer circle to a line that

passes through the origin and extends towards infinity. We also ensuré ifhvahosen so
the image of the interior of the unit disk lies only in the upper half complex plane.

We prescribe the radius, of the cylinder and its height above the plane;> 0, so that
its center is at, = ia. In order to determine the map, we must fiAde C andp € R in
terms ofr anda. We have that

2= 12(0) — df? (C.2)

CRERED e

This means that
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Using the facthat(¢ = p?, this can be rearranged to give
2 _ 20 2 2 A 2 3
V" + 1) =AF(p"+1) = (0" —1d A= (p"—1)d A (C.4)

wherey = r? — |d|? = r? — o? < 1. Next, we may compare different orders(ofAt the
order of{ we have
v =dA—dA - |AP = 2iaA, — |AP (C.5)

while the ordeof ¢ gives
v = —2iad, — |A]? (C.6)

from which we can conclude that

A, =0 A=A, A2 = —y =d* —r? (C.7)

V(P +1) = —ad,(p® — 1) (C.8)
which simplifies to
2
p-—1 A
p2+1_oz_5 (C.9)
and hence
1+
P=\1"3 (C.10)

Note that forp < 1, we must take the negative square rootAgrand thus we are left with

2 _ 2
A=—ivar =2, p:,/%g, jo Yo (C.11)

«

These parameters give the required map.
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