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Abstract

In this thesis, we study six different free boundary problems arising in the field of fluid
mechanics, and the mathematical methods used to solve them. The free boundary problems
are all characterised by having more than one boundary and the solution of these problems
requires special mathematical treatment. The challenge in each of these problems is to
determine the shape of the multiple fluid interfaces making up the particular system under
consideration.

In each of the free boundary problems we employ aspects of complex function theory, con-
formal mapping between multiply connected domains, and specialist techniques devised in
recent years by Crowdy and collaborators. At the heart of these techniques lies a special
transcendental function known as the Schottky-Klein prime function. This thesis makes

use of this function in a variety of novel contexts.

We first examine a single row of so-called hollow vortices in free space. This problem
has been solved before but we present a new methodology which is convenient in being
extendible to the case of a double row, or vaarikan vortex street, of hollow vortices. We

find a concise formula for the conformal mapping describing the shapes of the free bound-
aries of two hollow vortices in a typical period window in the vortex street and thereby
solve the free boundary problem.

We next focus on the problem of a pair of hollow vortices in an infinite channel. This
free boundary problem exhibits similar mathematical features to the vortex street problem
but now involves the new ingredient of solid impenetrable walls. Again we solve the free
boundary problem by finding a concise formula for the conformal mapping governing the
hollow vortex shapes. We then extend this analysis to a single row of hollow vortices
occupying the channel.



The problem of a pair of hollow vortices of equal and opposite circulation positioned be-
hind a circular cylinder, superposed with a uniform flow, is then considered. This system
is a desingularisation of the so-called@pl point vortex equilibrium. For this free bound-

ary problem, we employ a hybrid analytical-numerical scheme and we are able to offer a
Fourier-Laurent series expansion for the conformal mapping determining the shape of the
hollow vortex boundaries.

Finally, we investigate an asymmetric assembly of steadily translating bubbles in a Hele-
Shaw channel. This free boundary problem can be formulated as a special Riemann-Hilbert
problem solvable in terms of the Schottky-Klein prime function. Our method of solution
can be used to determine the shapes of any finite number of bubbles in a given assembly.
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Chapter 1
Introduction

This thesis concerns solving variants of a special type of mathematical problem in geome-
tries of multiple connectivity. This special type of problem is known as a free boundary
problem. By associating the term ‘multiple connectivity’ with a particular geometry, we
mean that the geometry in consideration has more than one boundary component. Finding
solutions to boundary value problems involving multiply connected geometries is always
challenging owing to multiple requirements having to be satisfied simultaneously on all the
boundary components and the associated search for suitable mathematical functions which
can capture all necessary detailsee boundary problems in multiply connected geome-
tries possess an even greater level of difficulty: these problems are characterised by the fact
that the boundaries themselves are unknavaniori and must be determined as part of the

solution.

In this thesis, we will consider six different free boundary problems in various multiply
connected geometries which all arise in the field of fluid mechanics. We are motivated
by the desire to understand certain configurations of multiple fluid interfaces and the spe-
cialised mathematical methods which must be summoned so that these free boundary prob-
lems can be successfully tackled. Due to the fact that the governing equation in each of
the free boundary problems to be considered in this thesis is Laplace’s equation in two
dimensions, our problems naturally lend themselves to being solved using the powerful ar-
moury of complex analysis and complex function theory. This is because both the real and
imaginary parts of a complex-valued analytic function satisfy Laplace’s equation.

Indeed, making progress when solving problems in two-dimensional fluid mechanics usu-
ally involves finding an analytic function known as the complex potential which encapsu-
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lates the main characteristics of the physical system in consideration. In certain problems
(such as those considered in this thesis), we can appeal to their conformal invariance: this
important property essentially permits the use of conformal mapping so that the problem
can be posed in a simplified geometrical framework, and thereby solved. To illustrate this
notion, suppose the complex potentiglz) in the physical fluid domain in a-plane is de-

fined through the compositioi (¢) = w(z(¢)), wherez(({) is a conformal mapping from
some simple geometry in@plane (often taken to be a circular domain i.e. a domain whose
boundary is a union of circles) to the physical domain inik@lane. Then, provided we

can construct the functiori’(¢) andz(() in our choserg-plane, the problem is solved.

This idea of ‘pulling-back’ to a simpler domain can be utilised in free streamline theory.
Free streamline theory can originally be attributed to the work of von Helmhbltd pn
discontinuous fluid motion, and was subsequently developed by Kirchhoff and Rayleigh.
The subject of free streamline theory is vast and there are many sources one can turn to in
the literature; for example, Milne-Thomsorg and Sedov]02Z. An accessible discussion

of the development of free streamline theory is given in SoOl&y[ This discussion is
mirrored in the introduction of the work of MichelF[]. In this remarkably detailed paper,
Michell builds on the work of von Helmholtz, Kirchhoff and Rayleigh by using Schwarz-
Christoffel methods (i.e. conformal mappings to simply connected polygonal domains,
see Neharig4]) to give “a general solution of the problem of free non-reentrant stream
lines with plane rigid boundaries” with applications to problems of condensers and hollow
vortices. The content of Chapters 3-5 in this thesis is devoted to free boundary problems
involving hollow vortices and are solved using ideas involving free streamline theory. We
discuss the general properties of hollow vortices later in this chapter.

The monographs by Achesof][and Batchelor §] explain how the techniques of com-
plex analysis can be used to solve several basic problems in fluid mechanics, whilst the
monograph by Saffmar®B] presents a comprehensive overview of various problems, also
using complex analysis techniques, arising specifically in vortex dynamics. Most of these
problems are set in simply connected domains which are relatively simple to analyse and
solutions can be written down in closed analytical form. An example of such a solution
is the complex potential for steady uniform flow past an aerofoil which can be derived
using the well-known Joukowski map (Neha8d]). Saffman & Sheffield §7], with the
intention of understanding lift enhancement by trapped vortices, used the Joukowski map
in their model of an attached free point vortex above a flat plate. Some problems involving
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two boundaries are able to be tackled provided one is proficient in the use of elliptic func-
tions (Akhiezer B]). For example, Lagallyg8] constructed the complex potential for the
so-called ‘bi-plane’ problem of uniform flow past two circular aerofoils in terms of elliptic
functions, and Johnson & McDonal@]] were able to determine the trajectories of a point
vortex in motion around two circular obstacles also by employing elliptic function theory.
However, there appears to have been a distinct lack of analytical solutions for uniform flow
around multiple obstacles until relatively recently. Crowdy,[22] has built what can be
regarded as a ‘new calculus’ for solving inviscid fluid flow problems in multiply connected
geometries. The success of his approach comes from employing a special transcenden-
tal function called the Schottky-Klein prime function and its associated function theory
(the subject of Chapter 2), alongside sophisticated conformal mapping techniques, to de-
rive general analytical expressions for the complex potentials describing particular flows.
A remarkable feature of this work is that each complex potential takes exactly the same
functional form regardless of the connectivity of the problem. By exploiting his new cal-
culus, Crowdy 15] has also been able to generalise the ‘bi-plane’ solution of Laga8ly [

to the case of an arbitrary finite number of aerofoils in a uniform stream. We will employ
Crowdy'’s new calculus in our work in Chapter 5. Now, although the aforementioned works
of this paragraph do not pertain to free boundary problems, they collectively imply that in
order to find analytical solutions to problems in multiply connected geometries, the devel-
opment of new analytical techniques and the use of specialised mathematics is essential.

Indeed, until relatively recently, problems arising in general multiply connected domains
usually evaded being solved analytically. Over the past decade, Crowdy and collaborators
have been able to formalise novel constructive techniques for solving various problems in
multiply connected domains. Their approach centres around the usage of the Schottky-
Klein prime function and its associated function theory, and we advocate their approach
throughout this thesis. Crowdy and collaborators have pointed out on a number of occa-
sions that this special function plays a central role in problems involving multiply con-
nected geometries and can be used to great advantage in many applications (even though
it has scarcely made an appearance in the applied mathematical literature until relatively
recently). In addition to the new calculus proposed by Crovidy22], the Schottky-Klein

prime function can claim to have had a profound impact on the field of conformal mapping
between multiply connected domains. Crowdy,[16] used the Schottky-Klein prime
function in his construction of generalised Schwarz-Christoffel formulae for the confor-
mal mappings to the interior and exterior of multiply connected polygonal regions, whilst
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Crowdy, Fokas & Greer3p] used the Schottky-Klein prime function in combination with
automorphic function theory (FordT]) to show that the conformal mappings to multiply
connected polycircular arc domains are the solutions of a third order non-linear differential
equation involving Schwarzian derivatives. Furthermore, Crowdy & MarsRf]ltjave
constructed analytical formulae, expressed in terms of the Schottky-Klein prime function,
for the special conformal mappings from bounded multiply connected circular domains to
various multiply connected slit domains. The use of these conformal slit mappings is cen-
tral to solving the free boundary problems of Chapters 3, 4 and 6, and we will introduce
the ones we shall use in Chapter 2.

Free boundary problems arise in many areas of the applied sciences and manifest them-
selves in a variety of different forms. The review by Friedmé8j furveys some recent free
boundary problems occurring in different scientific fields by outlining two broad types of
free boundary problem known as obstacle problems and Stefan problems. For free bound-
ary problems set in multiply connected domains, very few analytical solutions exist in the
literature. We will now survey some free boundary problems set in various multiply con-
nected domains which have been successfully tackled using complex analysis techniques.
Our intention is to give a flavour of the nature of these problems, in addition to the general
types of mathematical methods which have been used to solve them, as a prelude to the
free boundary problems we shall address in this thesis.

A free boundary problem which exploits conformal mapping ideas in a doubly connected
setting is explored in the interesting study of Milton & Serk&@][ They consider a thin
material plate with a hole taken to be surrounded by an isotropic coating of some con-
ductivity. Their free boundary problem, which consists of finding all admissible doubly
connected coating regions (and hence the shapes of the simply connected hole), is solved
by constructing a conformal map, in terms of a Fourier-Laurent series expansion, from a
concentric annulus to the doubly connected region of the coating. When it is not possi-
ble to find explicit analytical solutions to a particular problem, choosing to adopt these
Fourier-Laurent series expansions is a very convenient way of still enabling solutions to be
constructed. We have to resort to using such representations in Chapter 5. Another exam-
ple of a free boundary problem over a doubly connected domain is the problem of slow
viscous flow of an annular viscous drop driven by surface tension. This time-dependent
biharmonic problem was solved exactly by Crowdy & Tanvel psing elements of au-
tomorphic function theory.
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Many free boundary problems naturally arise from the consideration of different types of
Hele-Shaw system. We will focus on one such system in Chapter 6. A Hele-Shaw system is
where two fluids (one viscous and one inviscid) which are sandwiched between two close-
to-touching parallel plates produces a flow which is essentially two-dimensional for mod-
elling purposes. Hele-Shaw flows in various geometries have been extensively studied over
the years and evidently, many processes in physics involving the evolution of interfacial
boundaries, such as dendritic crystal growth, direct solidification, and fluid displacement,
can be modelled mathematically (under certain assumptions) as a free boundary problem
of the Hele-Shaw type. This diverse array of free boundary problems has a plethora of
analytical solutions, many of which are exact, and a wide scope of mathematical methods
can be used to solve them. The models defining these free boundary problems also go by
the name of ‘Laplacian growth processes’ because the governing field equation in the fluid
is Laplace’s equation and the evolution of the fluid interfaces is governed through surface
derivatives of this field. In the case of Hele-Shaw bubbles, the flow is governed by Darcy’s
law and the bubble interfaces evolve with a velocity proportional to the local gradient of
the fluid pressure.

A free boundary problem solved over a general multiply connected fluid domain in a Hele-
Shaw system is presented by Richard<@il}.[He considered the problem of fluid injection

into an empty Hele-Shaw cell and developed analytical solutions describing growing circu-
lar regions of the injected fluid which merge together in the ensuing motion to form some
multiply connected region. This free boundary problem is time-dependent, and extends an
earlier work of his (Richardsor®()]). In this earlier work 0], Richardson laid down the
mathematical formalism for both problems i@0[ 91], but only considered in detail the
fluid motion in a particular doubly connected configuration. This required the use of ellip-
tic function theory. In both works90, 91], Richardson ingeniously employed the Cauchy
transform alongside various complex analysis technique<Q1n the multiply connected
region occupied by the fluid at some point in time is determined by a conformal map from
some bounded multiply connected circular domain. This conformal map is found to be an
automorphic function with respect to the Schottky group of the preimage circular domain
(we define Schottky groups in Chapter 2), and is constructed as a ratio of Rotheta
series. This work by Richardsof1]] is important because it demonstrates the key role of
the theory of Schottky groups and automorphic functions when solving problems in multi-
ply connected geometries, and motivates our decision to employ the Schottky-Klein prime
function and its associated function theory when solving the problems of this thesis. Itis
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important to point out that Richardso@(, 91] did not make use of, or even mention, the

Schottky-Klein prime function. His work was later reappraised by Crowdy & Marshall

[27].

The results in 91] are also significant in the following sense: they can be interpreted in
terms of quadrature domains (Gustafsson & Shapifp) | Quadrature domains are essen-
tially special planar domains which are characterised by quadrature rules, and they turn out
to be useful mathematical objects in a number of different physical problems (often be-
cause they are preserved by the dynamics of the problem). In fact, there are several strong
connections between the theory of quadrature domains and various free boundary problems
arising in fluid mechanics (see Crowdy). Motivated by these numerous applications,
Crowdy & Marshall 7, 33] have devised ways to reconstruct multiply connected quadra-
ture domains using conformal mappings written in terms of Schottky-Klein prime func-
tions. The theory of quadrature domains is also exploited in the work by Crowdy & Kang
[26]. By using the fact that the boundaries of quadrature domains are algebraic curves,
Crowdy & Kang 6] were able to solve the time-dependent free boundary problem of the
so-called ‘squeezing flow’ of multiply connected fluid domains in a Hele-Shaw cell. They
constructed exact analytical solutions by tracking a finite set of time-dependent parameters
governing the evolution of a multiply connected fluid domain under the squeeze flow.

A free boundary problem which has been solved recently and which employs conformal
mapping methods involving the function theory of the Schottky-Klein prime function is
presented by Marshalfp]. Marshall has constructed a special class of solutions describing
steady flows in multiply connected regions of uniform vorticity surrounding an assembly
of multiple finite-length flat plates. His sophisticated construction relies upon the use of
the Schwarz function (Davis3B]) and the proceeding through an intermediate multiply
connected parallel slit domain (Crowdy & Marsh&b]). He ends up solving a modified
Schwarz problem for the conformal map determining the shapes of the free boundaries of
the uniform vorticity region for a given assembly of plates: such a problem when posed in a
multiply connected circular domain has a concise integral formula solution whose kernels
are expressed in terms of the Schottky-Klein prime function (Crovid)[ In doing so,

he was able to extend the two works of Johnson & McDonéRj $4] who considered
separately the cases of steady vortical flows around a single plate and a periodic array of
plates. For four of the free boundary problems we shall treat in this thesis, the reader will
detect several analogies with the approach and ideas of Margbali{deed, when solving
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these problems, we shall also employ conformal slit mappings and will construct analytical
formulae, expressed in terms of Schottky-Klein prime functions, for the conformal maps
describing the shapes of the free boundaries we seek.

Hollow vortices are the principal fluid dynamical objects of focus motivating the majority
of the free boundary problems of this thesis and so it is only appropriate that in the re-
mainder of this chapter, we elucidate their main characteristics and discuss existing works
involving them. As we shall see in this thesis, modelling hollow vortices requires solv-
ing complicated free boundary problems. A hollow vortex is defined to be a finite-area
region containing vacuum at constant pressure which is bounded by a vortex sheet of uni-
form strength; that is, the vorticity associated with it is confined to be on its free boundary
whose shape will need to be determined. In two dimensions, this free boundary is a simple
closed curve and if it is in steady equilibrium, is necessarily a streamline of the flow. If
the fluid in which the hollow vortex is immersed is at constant pressure, then in order that
there is continuity of pressure across the vortex sheet, Bernoulli’s theorem implies that the
fluid speed on the vortex sheet must be constant. The hollow vortex model is an example of
a classical distributed vorticity model. Distributed vorticity models are desingularisations
of point vortex models in the following sense: the fluid velocity field induced by a point
vortex is singular at the location of the point vortex whilst for a vortex with distributed
vorticity, the fluid velocity field is non-singular at all points in the flow. Another example

of a distributed vorticity model is that of the vortex patch which is a finite-area region of
constant vorticity (Saffmardf]).

Even though the hollow vortex model is a classical model dating back to the late nineteenth
century, many analytical solutions describing hollow vortices have remained undiscovered
until relatively recently, and there are likely still many more to be found. This thesis will
present many new such analytical solutions for hollow vortices in some typical physical
configurations. Our new solutions are valuable: exact solutions of the two-dimensional
Euler equations in vortical flow problems are hard to attain and few exist. The 1884 work
of Hicks [60Q] is one of the first papers in which the hollow vortex model features. Hicks
used so-called toroidal functions to derive some approximation formulae for the steady
motion of a single hollow vortex. Michell7[7] studied a single hollow vortex in an in-
finite channel by employing Schwarz-Christoffel methods and elliptic function theory to
derive an analytical formula for its free boundary shape. Pocklingddhfpcused on a
co-travelling hollow vortex pair in unbounded fluid. Like Michel7], Pocklington also
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utilised Schwarz-Christoffel methods and elliptic functions to derive an analytical solution
for the free boundaries of the hollow vortices. In Chapter 4, we will generalise both the
works of Michell [77] and Pocklington §5].

Around eighty years after the work of Pocklingt@b], Baker, Saffman & Sheffieldq] un-
dertook a study into a single row of hollow vortices in unbounded fluid. By employing free
streamline theory alongside Schwarz-Christoffel methods, and appreciating the intrinsic
periodicity structure of the row, they found an exact solution for the conformal map deter-
mining the shape of a typical hollow vortex member in the row. Our work in Chapter 3 can
be viewed as the generalisation of this solution due to Baker, Saffman & Sheffjetdd

von Karman street of hollow vortices (two rows of hollow vortices). Recently, Llewellyn
Smith & Crowdy [72] analysed the effect of placing a single hollow vortex in an ambient
irrotational straining flow and employed free streamline theory to establish an exact analyt-
ical solution for the shape of the hollow vortex boundary. Also, Crowdy, Llewellyn Smith
& Freilich [37] have presented a new derivation and representation of Pocklington’s solu-
tion [85] for a co-travelling hollow vortex pair. Appealing to free streamline theory, they
were able to derive an explicit indefinite integral for the conformal mapping, expressed in
terms of Schottky-Klein prime functions, determining the hollow vortex boundary shapes.

This thesis will showcase six free boundary problems defined over different multiply con-
nected domains. Each of the problems considered in this thesis is amenable to techniques
of conformal mapping and complex variable theory. Throughout, we shall focus on devis-
ing novel and sophisticated constructive methods of solution to each of our free boundary
problems and exploit the rich function theory associated with the Schottky-Klein prime
function. This thesis is structured as follows. In Chapter 2, we present an overview of
the Schottky-Klein prime function and its associated function theory. In Chapters 3-5, hol-
low vortices in different configurations are studied, while in Chapter 6, a particular type
of Hele-Shaw system is examined. In Chapter 3, we study a row and a street of hollow
vortices in unbounded fluid; much of the material in Chapter 3 forms the content of the
paper by Crowdy & Green2f]. In Chapter 4, we consider a pair and a row of hollow
vortices in an infinite channel. In Chapter 5, we concentrate on a hollow vortex pair in the
wake of a circular obstacle within a uniform flow. Finally in Chapter 6, we consider a finite
asymmetric configuration of multiple bubbles moving steadily along a Hele-Shaw channel.
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Chapter 2

The Schottky-Klein prime function

Since the Schottky-Klein prime function lies at the heart of the mathematical techniques of
this thesis, it is instructive to give a brief overview of it and to survey a number of its key
properties which we shall employ at various stages. The function theory associated with
the Schottky-Klein prime function is both beautiful and powerful, and can be exploited
to solve the free boundary problems of this thesis. The Schottky-Klein prime function
turns out to be a relatively straightforward mathematical object to compute (we outline a
possible method of computation in this chapter) and encapsulates neatly into its very def-
inition certain geometrical properties of the multiply connected domain over which it is
defined, regardless of the connectivity; consequently, many formulae written in terms of
the Schottky-Klein prime function are concise and mathematically elegant. Further infor-
mation about the nature of the Schottky-Klein prime function can be found, for example,
in the accessible overviews by Crowd3[ 17], whilst a more detailed treatment is given

by Marshall [74].

2.1 The Schottky-Klein prime function

To any bounded multiply connected circular domaip, we can define a Schottky-Klein
prime function which we shall denote by

w(¢,7) (2.1)

for arbitrary points¢,y € D.. For us, a bounded)/ + 1) connected circular domain
D¢ in a parametric-plane will be taken to be the intersection of the interior of the unit
(-disc and the exterior af/ smaller discs lying strictly inside the unjtdisc with centres
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Figure 2.1: Schematic of a typical multiply connected circular dom&im the case where
M = 5. The unit¢-circle is denoted by’y. The j-th interior circle is denoted bg’; and
has centr@; and radiusy;.

{6 e C|j=1,.,M}andradi{qg;, € R|j = 1,..., M}; these two sets are together
known as the conformal moduli db, (see Figure2.1). Let C, label the unit(-circle and
let C; label thej-th interior circle,; = 1,..., M. Strictly speaking, we should denote the
Schottky-Klein prime function by

W(C>7;51>---,5M,C]17--->CJM) (22)

to indicate its dependence on the particular circular doni&irover which it is defined;
however, we will drop this lengthy notation and proceed with the understandingthat

is known. It should be noted that the Schottky-Klein prime function has deep connections
with Riemann surface theory (Fag4d]). For the purposes of this thesis, the Schottky-Klein
prime function should be thought of as a special computable function in the following
sense: a Schottky-Klein prime function can be defined over any given bounded multiply
connected circular domaifl, and is uniquely defined at any given pair of poigts € D..

The Schottky-Klein prime function was originally written down independently by both
Schottky L0]] and Klein [67] in the nineteenth century. Baker’s classical monograph on
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Abelian functions §] records the Schottky-Klein prime function; it therein appears in the

form of an infinite product:

7 €= 00D - 6Q)
w6 == 1 =50 a0y 23

Here,f is a Mobius map belonging to the gro@py’, which we now define. Introduce the
M Mobius maps
2
4; .
0,(¢) = 6; + —=—, =1,... M. 2.4
;(C) ity 5.C J (2.4)
Let '} label the circle which is the reflection of ciralg in Cy. The image undef;(¢) of a

point¢ € ¢ lies on the circle”; (see Figure?.2). We let®© denote the so-called Schottky
group of all compositions of these Mobius mapdg);(¢) and their inverseéj‘l(g). The
subgroup®” C O is defined to be the group of all compositionséof() andej‘l(g‘) but
with the inverse composition maps and the identity element excluded; thai&;f (¢))

is included in the grou®”, thend, (6;*(¢)) must be excluded.

Label by D¢ the region which is the reflection @ in Cy,. Let I’ be the union of the regions

D, andD¢; thenF is known as the fundamental region associated with the Schottky group
O (see Figure2.2). F' can be viewed as a model of the two ‘sides’ of a symmetric genus-
M compact Riemann surface called the Schottky double. By géhug-is understood

that the Riemann surface has ‘holes’. Note that the choice of fundamental region is not
unique (one could choose to refldet in the circleC, say, instead of).

Associated with a symmetric compact Riemann surface of génusthe set ofA/ func-
tions

{vi(Q)[i=1,...,M} (2.5)

known as thelV! integrals of the first kind. These are analytic but not single-valued func-
tions everywhere irf". They satisfy the relations

vj(0k(C)) —vi(C) =Tk, S k=1,..., M, (2.6)

wherer;;, € C are constants, and the relations

75; dlon(O)] = S Gk = 1,00 M. 2.7)

J
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Figure 2.2: Schematic of a typical bounded triply connected circular domaijhe area
indicated by lines). The action of thedius map#; ({) andf,(¢) is shown by the arrows.
The two ‘halves’ of the fundamental regidnare labelled byD, and D¢, respectively. The
unit circle Cy is shown by a dashed line.

Here,d,, denotes the Kronecker delta function. Henceforth, we shall refer to these rela-
tions .7) as the ‘a-cycle’ properties of the(¢) functions (following the terminology in
Riemann surface theory). The(¢) functions are also such that

Im[UJ(C)] = 07 g € 007 (28)
and
Im{v;({)] =k, C(€Ck k=1,..,M (2.9
Here,y;, € R are constants. Thg(() functions are thus uniquely defined up to an additive

real constant.

Let
X(¢y) =w*(¢,7) (2.10)

denote the square of the Schottky-Klein prime functidq, ~) for a given bounded circular
domainD.. Hejhal B9] established four defining properties of functigf(¢,~) in his
monograph:



Chapter 2. The Schottky-Klein prime function 23

1. X(¢,~) is a single-valued analytic function everywhere in the fundamental region
associated with the Schottky group of;

2. X(¢,) has second order zeroes at the set of pdifitgy) | © € ©"};
3. lime—, X(C,7)/(C—7)* =1,

4. X ((,) satisfies the! relations:

where
B . .  d05(¢)
Hj(Cv "}/) = exXp (—47TIU](C) + 471'1’(]]'(’}/) — 271'17']']') d—é_, (212)
and{7;; | j =1,..., M} is a set of imaginary constants.
The Schottky-Klein prime functiow((, 7) is then defined to be
w(¢,7) = (X () (2.13)
where the branch of the square root is chosen so that
w(,V)~ (=7 (=7 (2.14)

It is natural to ask why ‘prime’ appears in the name of the Schottky-Klein prime function.
By the Fundamental Theorem of Algebra, we can uniquely factorise a monic d&gree
complex polynomia;(¢) into a product ofV monomials:

N

Q) =TI =) (2.15)

j=1
Here,y; € C are theN roots of¢(¢) lying in the complex plane. By analogy with factoris-
ing integers into a product of prime numbers, we call

w(C,75) =C = (2.16)

a (Schottky-Klein) prime function. We can say this Schottky-Klein prime functibhg
is associated with the Riemann sphere; indeed, the complex plane is ‘equivalent’ to the
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Riemann sphere via stereographic projection. Moreover, we can also say this Schottky-
Klein prime function 2.16) is associated with the unit disc because the fundamental region
associated with the unit disc is the complex plane. Rational functions are the simplest kinds
of meromorphic function on the Riemann sphere, and these can easily be factorised into a
product of ratios of Schottky-Klein prime functions of the foreh16).

But what about factorising meromorphic functions on higher genus compact Riemann sur-
faces? With a genudf compact Riemann surface, we can associate a boupided 1)
connected circular domaib,; this is analogous to the association made between the Rie-
mann sphere (a genus-0 compact Riemann surface) and the unit disc. Thus, the Schottky-
Klein prime functionw(-,-) associated withD. is the generalisation of2(16 to these

higher genus compact Riemann surfaces. It is through the Schottky-Klein prime function
that we can represent meromorphic function¢) on higher genus compact Riemann
surfaces; these functions can also be factorised into a product of ratios of Schottky-Klein
prime functions:

(C>aj>
(Ca b]) .

S

MO =]]

7j=1
Here,{a; € C|j =1,..., N} are the zeroes oM(¢) and{b; €« C | j =1,..., N} are the
poles of M (). Cartoon illustrations of how to construct higher genus compact Riemann

(2.17)

S

surfaces from their fundamental regions are presented in Mumford, Series & W8gjht [

The Schottky-Klein prime function can be shown to satisfy several functional relations; we
present three important examples of these here, valid fgralE F'. It can be shown from
the infinite productZ.3) that

w((,7) = —w(7,Q). (2.18)

Crowdy & Marshall 8] established that, for the particular class of Schottky-Klein prime
functions associated with multiply connected planar domains as relevant for our purposes,

the relation
1

w
¢y
holds. From2.11) and @.12), it is clear that another relation is

w(¢hh (¢,7) (2.19)

w(¢, )
w(¢,72)’

Om) _ 4
w(0:(C), ) Bi(71,72) (2.20)
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Figure 2.3: The fundamental region associated with a concentric annulus is another con-
centric annulus (left). The fundamental region associated with an eccentric annulus is an
unbounded doubly connected circular domain (right). The fundamental regions are indi-
cated by lines.

where
Bi(71,72) = exp (271 (vi(11) — vj(72))) - (2.21)

2.2 The Schottky-Klein prime function for doubly connected circular

domains

In the case of doubly connected circular domains, the Schottky-Klein prime function can
either be defined over a concentric annulus or an eccentric annulus. Note that the funda-
mental regions associated with these two types of doubly connected circular domain are
very different. For the concentric annulps< || < 1, the fundamental region is another
concentric annulusy < [¢| < p~! (say). For the eccentric annulus, the fundamental region

is an unbounded doubly connected domain with two circular boundaries. Ad@skows
schematics of these two different types of fundamental region.

Let us first consider the Schottky-Klein prime function defined over a concentric annulus.
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The Schottky-Klein prime function associated witk< (| < 1 is

w(67) = =gz P(¢/7.0) (2.22)

where we define the special function

(1= p¥¢)(1—p¢h), (2.23)

—;

Il
—

P(¢p) = (1=()

J

and the constart' is given by
c=]Ja-e. (2.24)

<
—

(2.22 follows directly from the infinite product2(3) owing to the fact that the Schottky
group associated with < [(| < 1is© = {p*( | j € Z}. FunctionP((, p) is analytic
everywhere irp < |¢| < 1 and has simple zeroes at the poifitg’ | j € Z}. Function
P((, p) turns out to be related to the first Jacobi theta function (Marsid]).[

There is one integral of the first kind associated with the concentric anpuug(| < 1.
Itis
v1(¢) = — log (. (2.25)

Let us verify thatv;(¢) in (2.25 satisfies the defining propertie®.§)-(2.9). It is obvious
that on|¢| = 1,

Im[v1(Q)] = 0, (2.26)
and that on|¢| = p,
tmfur (¢)] = - log . (2.27)
It is also obvious that
% lc‘:pd[log (] =1. (2.28)

Forp < |¢| < 1, we have from 2.4) that

0.(¢) = p¢, (2.29)

and so from 2.6), we obtain

1
i = 0(61(Q)) ~ 1(Q) = i (PC) ~ 11(Q) = 5~ low(p*) — 5~ lo ¢ = — log . (2.30)
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The functionP((, p) satisfies the following two functional relations:

P p)=—=CP(Cp), P(p*Cp)=—CP(C,p). (2.31)

The first of these relations follows immediately fro&143 and can also be derived from
the identity €.19. Define the Schwarz conjatg f(¢) of a given functionf(¢) to be

f(¢) = £ (2.32)
We have
G(¢ ) = =gz P ) 233)
and
g w(¢,7) = CCQ Py p). (2.34)
Equating 2.33 and @.34) implies
P(Cp) = = PO p). (2.35)

We recover the first relation ir2(31) upon settingy = 1 in (2.35. To show the second of
the relations inZ.31), note that

P(p*C.p) =1 —p’Q)(1— ¢ H ][ =p¥O) 1= p¥¢T
7=1
— O] =p7Q0 = p¥¢) = =CTPC ). (2.36)
7=1
Alternatively, note that
w(0:(0).7) = — g P(0°¢/7.0) (2.37)

Using .25 and .30, we obtain

exp (—2mivy (¢) + 2mivy (v) — wiTy1) (d%ég)) w(¢,v) = (02 P((/v,p), (2.38)

where the negative branch of the square root has been taken. Thus,218i@id .38
in (2.11), we obtain

P(p*C/7,p) = —%P(C/% p). (2.39)
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We recover the second relation i8.81) upon settingy = 1 in (2.39. It also follows
immediately from 2.39), on taking a ratio, that

P(p*¢/v.p) _ 1 P(C/1,p)
P(p*C/v2,p) 72 P(C/72,p) (2:40)

which recovers the relatior2(20). Finally, note that the relatior2(18 can easily be veri-
fied using the first relation ir2(31):

wl1,0) = = 5P/ p) = 25 PG/ ) = —w(G, ). (241)

Using P(¢, p), itis possible to define another special function:

K(C.p) = c];(f /f)) (2.42)

Here, P'((, p) means differentiation of’(¢, p) with respect to the first argument. The
function K (¢, p) satisfies the following two functional relations:

K((hp) =1-K(p), K(p*¢p)=K((p)—1. (2.43)

These are easily derived fror2.81). Indeed, taking logarithmic derivatives on the first
relation in .31) yields

1P p)
¢ P(Chp)

K p) =24 2 (2.44)

¢ P(Gp)

1
¢
which, after multiplication by-(, recovers the first relation ir2(43. The second relation
in (2.43 can be derived in a similar fashion.

Let us now consider the Schottky-Klein prime function defined over an eccentric annulus.
Consider the eccentric annular region, in a paramétgtane, defined to be intersection of
the interior of|(| = 1 and the exterior of — d| = ¢ (where, without loss of generality, we
chooses € R). Call this eccentric annulud,.

An interesting question to pose is: what is the integral of the first kjl(l@) associated with
the eccentric annular regiaR,? Let us map the eccentric annulds to the concentric
annulusp < |¢| < 1, wherep will need to be determined. Introduce a speciaVus
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Figure 2.4: The eccentric annulus (right) is mapped to the concentric annulus (left) by the
automorphism defined in (2.45).

mapping known as an automorphism of the unit disc:

~

~ Q—Oé
o) = ———— 2.45
n(¢; @) ol —1/a) (2.45)

wherea € R. The image of(| = 1 undern(C; a) is |n| = 1 and the image off — 6| = ¢
undern(C; @) is |n| = p, where

Y 2 Y 2\2 _ 4.2)1/2 _ 1/2
po Lo (10 +¢) —dg) a:< (p q )) C (2.49)
p

2q 1 —qp
(Crowdy [private communication]). See Figuzel. In (2.46), the positive branches of the

square roots are chosen.

We claim that the integral of the first kind associated with the eccentric annular rBgion
is

~ ~

01(¢) = vi(n(¢; ), (2.47)

wherewv;(¢) is the integral of the first kind associated with the concentric annular region
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p < |C] < 1asgivenin2.25, andn(é; «) is the automorphism ir2(45. Thus

o i-a
IH(C)'_ 2ﬂi1 g <|Oﬂ<é<— 1/@)) ) (2“48)

wherea € R is given in .46. It should be noted that always lies in the interior

of ]f — 0| = ¢. This function is analytic but not single-valued everywherelﬁ(’n It is
straightforward to demonstrate that the necessary properties required of an integral of the
first kind are satisfied by functioty (¢) given in .48 over D.; that is, these necessary

properties are conformally invariant under the automorphi8my, and hencey, (¢) is
related tov; (¢) through the relation2.47).

It is shown in Baker §] that the M integrals of the first kind have an infinite product
representation:

v;(C) = L g (H %ﬁg) +ic;. (2.49)
0cOy

Here,c; € R are constants chosen so tha2g is satisfied A, and B, are the fixed points
of 0.(¢) (with |Ax| > 1and|By| < 1), and®; C © is a special subgroup éf consisting of
all members o but excluding the compositions endingépandd, *; that is,0, (65 (¢))

is contained inO; but 8, (05 '(¢)) andd, ' (63(¢)) are not. Thus, for all doubly connected
circular domains, the only member 64, is the identity element. Hence, for the eccentric

1 (— B
2_7r110g (C — A1) . (2.50)

Here,A; and B; are the two solutions of the equation

annulusD¢, (2.49 reduces to

01(¢) = ¢, (2.51)
where, for the eccentric annulmii, we have from2.4) that

q*C
1—oC

0.(¢) =6+ (2.52)

After lengthy algebraic manipulations (which we neglect for brevity), it can be verified that
(2.50 is indeed equivalent t®2(48).
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2.3 Conformal slit mappings

We will now introduce some important ‘building block’ functions which will be used
throughout the thesis. These building block functions are in fact classes of conformal
mappings to multiply connected slit domains. These special functions are building block
functions in the following sense: they facilitate incorporating a desired structure of zeroes
and poles into the definition of a particular function whilst maintaining properties such as
constant modulus or constant argument on each of the boundary circles. In this thesis, we
will give evidence that conformal slit mappings are natural candidate functions to consider
when dealing with multiple boundary conditions in free boundary problems. The review
article of Crowdy P4] elucidates the central role of the conformal slit mappings when
solving certain applied mathematical problems set in multiply connected geometries. It is
also worth noting here that DeLillo & Kropf3P] and DelLillo et al 0] have formulated
numerically efficient infinite product representations for conformal mappings to multiply
connected slit domains; however, we advocate using the Schottky-Klein prime function
owing to the fact that the functional forms of the maps are mathematically elegant when
written in terms of this function, and their defining properties can be both understood and
demonstrated in a straightforward manner by using aspects of the function theory presented
in this chapter.

Introduce the bounded circular slit mapping (Crowdy & Marsh2d]]:

w(¢,7)

n(¢y) = ) (2.53)
Here,( = ~ is an arbitrary point in the interior aD.. Functionn(¢;~) has constant
modulus on all the boundary circl€$,, C1, ..., Cy,. It has a simple zero & = ~ and a
simple pole att = 1/7. Under the map)({;~), Co is mapped to the unig-circle while
1, ...,Cy are mapped onto finite-length concentric circular arcs lying in the interior of
In| = 1. Figure2.5shows the image undex(;~) of some quadruply connected circular
domainD.. Note that whenv((,v) = ¢ — v, the mapn(¢;~) in (2.53 reduces to an
automorphism of the unit disc (recal.45)).

To illustrate the usefulness of the functional relatiord9 and .20, let us now prove
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0.5¢

-0.5¢

-1 -0.5 0 0.5 1

Figure 2.5: Image oD, with the conformal moduld; = 0, ¢; = 0.1, 9, = 0.3+ 0.1i, g2 =
0.05, 03 = —0.35 — 0.275i, g3 = 0.08 under the bounded circular slit map¢; 0.2 + 0.1i)
of (2.53). The origin is indicated by a dot.

explicitly that|n({; )| = constant fox € Cy, C4, ..., Cyy. Consider; € Cy. Then
C=(" (2.54)

Taking the complex conjugate d2.63 and using 2.19 reveals:

R R () ()

(C7177) _ |7|w(<a771) _ 1 (255)

Thus
n(GMI =1, ¢e€Co. (2.56)

Now consider € C, j = 1, ..., M. Note that

C=0;(¢C). (2.57)
Taking the complex conjugate d2.63), and using 2.20 followed by .19, reveals:

G X R—
= hE@ ),y )

n(¢;v) Y@y n(Gy)
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Figure 2.6: Image oD, with the conformal moduld;, = 0, ¢; = 0.1, 62 = 0.3 + 0.1i,
¢2 = 0.05, 03 = —0.35 — 0.2751, g3 = 0.08 under the radial slit mag({; 0.8, —0.1 + 0.5i)
of (2.60).

Thus

— \V
In(C;y)| = (@ (7, 1/7))1 ’ =constant ¢e€C;, j=1,...M. (2.59)

Let us now introduce the radial slit mapping (Crowdy & Marshaf)):

w(C, 2w (¢, 1/¢2)

X (¢ ¢, G2)

Here,( = ¢; and¢ = (; are any two distinct points in the closure 6f. Function
x(¢; (1, ¢2) has constant argument on each of Miet 1 boundary circle€’y, C4, ..., Cy of
D.. This can be proved by showing that

X (€5 ¢, C2)

———=— =constant ( € Cy,C},....,Cyy, (2.61)
X(C% ClaCQ)

using the functional relation®2(19 and @.20. Functionx((; (i, ¢2) has a simple zero
at¢ = ¢; and a simple pole ai = (;. Functionx(¢; ¢, ¢2) maps each of the boundary
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Figure 2.7: Image oD, with the conformal moduld; = 0, ¢; = 0.1, 9, = 0.3+ 0.1i, g2 =
0.05, 03 = —0.35—0.275i, g5 = 0.08 under the radial slit ma((; 5+q2e*™/3, 554-qoe>™/3)
of (2.62). The origin is indicated by a star.

circles in the(-plane onto finite-length slits emanating from origin in thglane. Figure
2.6shows the image under((; ¢;; ¢2) of some quadruply connected circular doméain

Crowdy [13] showed that, for any two distinct poinfs= (3 and{ = {4 lying on one of the
boundary circles;, j = 0,1, ..., M, function

w(¢,C3)
w(¢, Ca)

£(C;¢3,Ga) = (2.62)

has constant argument on each of the boundary ci€¢jes,, ..., Cy,. Functions(¢; s, ¢4)
has a simple zero dt= (3 and a simple pole &t = (,. Function{({; (3, (4) is a particular
type of radial slit mapping: it maps;, ..., C;_1, Cj1, ..., Cyy onto finite-length slits ema-
nating from the origin in thg¢-plane and”; onto an infinite line througl = 0. Figure2.7
shows the image undé(¢; (s; (4) of some quadruply connected circular domain

For further detail on the aforementioned conformal slit mappings, the reader is referred to
Crowdy & Marshall R9]. There are three other types of conformal slit mappings which
will not feature in this thesis: namely, the unbounded circular slit map, the parallel slit
map, and the map to an annular region with concentric circular slits. For further detail on
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these, the reader is again directed26][

2.4 Computing the Schottky-Klein prime function

To conclude this chapter, we will present details of a numerical method we have devised
to compute the Schottky-Klein prime function. The infinite prod&8)is a numerically
inefficient mathematical object to compute and it is not always convergent for some choices
of bounded multiply connected circular domain. However, the Schottky-Klein prime func-
tion itself is a well-defined function ovenybounded multiply connected circular domain.

It is therefore important to have at hand a reliable, accurate and fast numerical scheme to
compute the Schottky-Klein prime function if it is to be employed in applications.

Our numerical scheme improves on the numerical scheme presented by Crowdy & Marshall
[31]. Crowdy & Marshall B1] formulated their method around the four defining properties

of the square of the Schottky-Klein prime functioh((, ) presented by HejhabP] and

used a method of least squares to solve for the coefficients in a Fourier-Laurent series rep-
resentation ofX (¢, ). Our method also seeks the coefficients in a Fourier-Laurent series
representation ok (¢, v) and is centred around the four defining propertie¥ ¢f, ) from

Hejhal [B9]; the main difference is that our numerical scheme proceeds using a method
called ‘successive iteration’ (explained in due course) and adopts the fast Fourier trans-
form. One main advantage of our numerical scheme is that any level of truncation in the
Fourier-Laurent series may be chosen; with a least squares method, there is an optimum
level of truncation so that minimal numerical error is induced. There are two main steps to
our method, and these are the same as in Crowdy & Mars3iilfjrstly, the computation

of the integrals of the first kind;(¢), and secondly, the computation &f(¢, 7).

2.4.1 Computation of the;(¢) functions
Consider the following ansatz:
1 by _
v;(C) = 5~ log(¢ = ) Z“k Ck+2k 1 j=1,..M.  (2.63)
p=

Observe that this representatidhg3 is analytic everywhere i, i.e. analytic in one
‘half’ of F. However, we can exploit analytic continuation acré%sto evaluate each
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v;(¢) at points on the other ‘half’ of", if required (recall 2.8)):

vi(Q)=7(¢TY), J=1 M. (2.64)

Eachw;(¢),j = 1, ..., M, must satisfy the condition2(8) and @.9). The constants;;, € R
in (2.9) are not knowra priori and must be solved for as part of the solution.

The numerical procedure can be outlined by the following three steps:

1. Truncate 2.63 at O(N). Take4N equi-spaced collocation points around each
{C;}1L, (allowing for ‘padding’).

2. On each{C; }] ~»» enforce the condition2(8) and .9 and determine the set of
constantg v,y }.

3. Use the fast Fourier transform on ed¢ly } I to solve for the coefﬁment&zk ,b(“’ }
by a method known as successive iteration.

Let us now outline what we mean by ‘successive iteration’. We initially make suitable
initial guesses of the coefficien{sL,(j)7 b,(j"p)} (we find it is sufficient to take them all as
zero) so thav;(() is a fully determined function. Upon substitution of ans&®68) into

the boundary condition2(8) and @.9), we use fast Fourier transforms on each of the
circles{C;}}., to determine a set of ‘improved’ values of the coefficients. We use these
up-dated values of the coefficients as initial guesses in the next iteration. The iterations
continue to be performed until a desired level of accuracy is attained and convergence can
be considered to have been achieved. It should be noted that Wegaizdrs¢lves a

special type of Riemann-Hilbert problem using similar ideas.

2.4.2 Computation oKX (¢, v)

To find a representation fo¥ ((, ), we need a Fourier-Laurent expansion which is analytic
and single-valued everywhere in the fundamental regiolVrite

X(¢,7) = (€= 72X (¢, ) (2.65)

and let

o) ]) k o0 ij)%k
X(¢v) = (1+ZZ< 5 kZC G ) (2.66)

7j=1 k=1 7=1 k=1
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where A € C is a constant to be determined.

The numerical procedure can be outlined as follows:

1. Truncate2.66) atO(NV) (and ignore complex constadtfor the moment). TakéN
equi-spaced collocation points on each of € circles{C}, C; jf‘il (allowing for
‘padding’).

2. On eachC7}L,, enforce the condition

j:11

A

X(0;(¢),7) = Ri(¢,7)X(¢.7) (2.67)

where we have defined function

R;(C,7v) = exp(—4miv;(C) + 4mivj () — 2mir;) <9%<) j’y) decjlég) (2.68)

3. OneachC;}}L,, enforce the condition

X(67) = Ri0;1(Q). M X(6;(0). ). (2.69)
4. Use the fast Fourier transform on eapfi;, Cj}}., to solve for the coefficients
{67, Y} via successive iteration.

5. Finally, enforce the normalisation

X(v,7) = (2.70)

to determine the complex constat

For some choice of circular domaid,, the square of the Schottky-Klein prime function
can now readily be computed. We should now think of the Schottky-Klein prime func-
tion as a special but perfectly computable function (like trigopnometric functions, Bessel
functions etc).

2.4.3 Special classes of circular pre-image doniain

As it stands, our numerical scheme will fail for domains when either one af;tke0, or
when one of theg; = |§;|. We discuss the required modifications below.
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Figure 2.8: Schematic of the fundamental region (shown by lines) associated with a
bounded triply connected circular domain with an interior citClewhich is centred at
the origin. The unit circle is shown by a dashed line.

The case; =0

Consider a circular domaif, with one interior circleC’; of radiusg; such thaty; = 0.
See Figure2.8 for a schematic of the fundamental region in this case. For these circular
domains, let

The casey; = |J;]

Consider a circular domaif). with an interior circleC’; such that; = |6;|. Note that the
reflection ofC; in the unit disc is an infinite straight line. See Fig@® for a schematic
of the fundamental region in this case. This explains why our previous Fourier-Laurent
expansion2.66) is now rendered inappropriate for this class of circular domain. For these
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Figure 2.9: Schematic of the fundamental region (shown by lines) associated with a
bounded triply connected circular domain with an interior cir€lesuch thatd,| = ¢,

i.e. the magnitude of the centfig is equal to the radiug,. The unit circle is shown by a
dashed line.

circular domains, let

i k

A B agp = k L J o —d(j’k)q;k
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wherer(() is a Mobius map (we neglect details for brevity).

2.4.4 The case wheplies on a boundary circle

The way in which functionR;(¢,~) in (2.68 is defined leads to a potential problem:
namely, whenu(C, ) is such thaty lies on one of the boundary circl¢€’;, C7}1Z,. This

is because there could be a collocation pajnte € (say), such that;(¢*) = v and the
denominator of boundary conditio®.67) vanishes. Similarly, there could beCac C;

such thatt = ~, leading to the denominator of boundary conditi@6@ vanishing. We

were able to devise a resolution to this problem, but we will not present these modifications
here for brevity (it is similar to the foregoing analysis).
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Chapter 3

Von Karman streets of hollow vortices

3.1 Introduction

In this chapter, we shall examine the fascinating and well-studied phenomena of vortex
rows and vortex streets. By a vortex row, we mean an infinite array of equally separated
vortices of equal circulation. By a vortex street, we mean two parallel vortex rows of equal
and opposite circulation. The vortex street usually goes by the name of a &wmaiK

vortex street owing to the fact that vorakran pioneered the first theoretical studies into
them by using point vortices (see vorakknan [120 and von Karman & Rubach 121)).
Unfortunately, using point vortices to model vortex streets is a somewhat approximate ap-
proach and presents several limitations: there is an infinite kinetic energy associated with
the structure, and it is difficult to fit the model to flow past a body. Thus, to offer a more
realistic physical interpretation, we have chosen to model these structures using the dis-
tributed vorticity model of the hollow vortex. Recall that a hollow vortex is a finite-area
vacuum at constant pressure whose free boundary is a vortex sheet of constant strength.
The free boundary problems we shall solve in this chapter will consist of determining the
shapes of the hollow vortex boundaries in these structures.

We shall first develop a new mathematical approach to model a single row of hollow vor-
tices in unbounded fluid. This configuration has already been studied by Baker, Saffman
& Sheffield [7] and they were able to find an exact solution for the shape of a typical
hollow vortex member of the row by appealing to symmetry and by the application of
Schwarz-Christoffel methods. We will present an equivalent exact solution describing this
free boundary but with a different (and arguably more concise) mathematical form. Al-
though this free boundary problem for the single row has already been solved, our pre-
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liminary study into establishing a different mathematical approach will pave the way to
finding analytical solutions for a von&tman street of hollow vortices. We shall show how

to construct a concise formula for the conformal mapping determining the relative equilib-
rium shapes of the hollow vortices in both staggered and unstaggered street configurations.
Central to the solutions of both free boundary problems in this chapter will be the use of
conformal circular slit mappings.

Both the hollow vortex row and the hollow vortex street are periodic structures: a regu-
lar pattern of hollow vortices which replicates itself to infinity. Their intrinsic periodicity
immediately implies that the original free boundary problem over free space can be refor-
mulated over a simpler, ‘reduced’ domain. For us, these simplified domains will take the
form of so-called ‘period windows’ or ‘period cells’: these are finite-width vertical slices
through the structure, extending to infinity, containing either one or two hollow vortices
whose boundary shapes will need to be determined. We will incorporate the periodicity
into our models by introducing branch cuts in the preimage domains. This is a novel idea
but one which nevertheless makes the free boundary problems to be considered analytically
tractable. Similar ideas have been employed by Tanved,[in simply and doubly con-
nected cases, in relation to the free boundary problem of determining the shapes of inviscid
planar finite-amplitude water waves. We will employ this branch cut technique again in
Chapter 4.

The fundamental approach of the present chapter (and also the proceeding two chapters)
is to exploit ideas from free streamline theory and conformal mapping theory in order to
produce analytical solutions to our free boundary problems: knowledge of the complex ve-
locity functiondw /dz and the complex potenti&’ (¢) will allow us to construct an integral

for the conformal map(() determining the shapes of the hollow vortex free boundaries:

¢ /
0 = /< (AV/dO)(C) s 5.1)

o (dw/dz)(¢')

In the case of the row of hollow vortices, this integrall) can be evaluated analytically

to produce an exact solution for the conformal map. For the vam#&n street of hollow
vortices, we obtain an explicit indefinite integral for the conformal map whose integrand
is expressed in terms of the Schottky-Klein prime function associated with a concentric
annulus, and which can be readily evaluated numerically. The solutions we present in this
chapter for the von Erman street of hollow vortices appear to be the first of their kind.
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3.2 Background

There is a very wide literature on the subject of voarkan vortex streets and they arise
throughout nature. There are some photographs of typical @omdh vortex streets in Van

Dyke [114]. They are commonly formed in the wakes behind obstacles in uniform flow, as
discussed by both Williamsord 25 and Saffman 93]; they are also commonly formed in

the oceans and in the atmosphere. In the atmosphere, turbulence caused by wind interact-
ing with a land mass produces eddies which swirl clouds into a v&nmm&n vortex street.
Heinze, Raasch & Etlingdg] studied von Karman vortex streets generated in the wake of

an idealised island using large eddy simulation, and Chopra & Hubgrtletermined the
properties of mesoscale eddies in the wake of islands due to their resemblance with von
Karman vortex streets. Chopra & Hubett(] have also studied vonatman vortex streets

in the atmosphere of the Earth. Li et &0 have analysed the sea surface imprint of two
atmospheric von Erman vortex streets observed in satellite imagery. V@mrin vortex
streets have also been studied on curved surfaces. Chamoun, Kanso & Nejwttam{

tified the complete family of streamline patterns associated with \émm&n point vortex
streets on the surface of a non-rotating sphere whilst Alobaidi & MaHieh&ve recently
derived some new expressions for vortex streets on a spheroidal surface SHgtigg also
considered streets of vortices on surfaces of revolution from a more abstract perspective.
Vortex streets can now, in principle, be studied on a ring torus using the function theory
recently proposed by Green & Marshaiy].

More realistic theoretical models of voralkman vortex streets have emerged over the years
since the initial investigations of vondman. Saffman & Schatzma®4] desingularised

the point vortex model of a von &man street by using finite-area vortex patches. They
determined the relative equilibrium shapes of the vortex patches in a steadily translating
staggered street configuration, in ideal unbounded fluid, by finding numerical solutions to
an integro-differential equation. We shall be making several intriguing connections with the
results of Saffman & Schatzma®4] later in this chapter. In a subsequent work, Saffman &
Schatzman96] analysed the stability of their street of vortex patches. Kar@sh$tudied

a street of vortex patches by using an approach based on Schwarz functions whilst Saffman
& Szeto P8] found a one-parameter family of shapes for a linear array of vortex patches
by numerically solving an integro-differential equation.

Von Karman vortex streets continually arise in new applications. Recently, Liao il [
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found that rainbow trout interacting with vonakman streets voluntarily adjust their body
kinematics and adopt a pattern of movement to aide their swimming, a phenomenon dubbed
the ‘Karman gait’. Such studies into fish schooling were the inspiration for Whittlesey,
Liska & Dabiri [124 who have proposed that wind farm efficiency can be enhanced by
placing vertical axis turbines in the form of staggered vaarnén vortex streets. Von
Karman vortex streets can also be made to form in the laboratory. Sasaki, Suzuki & Saito
[100 investigated vortex shedding from an obstacle potential moving in a Bose-Einstein
condensate and discovered a voarian vortex street can establish in the wake. Saito,
Aioi & Kadokura [99] showed that a von Erman vortex street can emerge in an exciton-
polariton superfluid resonantly injected into a semiconductor microcavity. Shaol®3l [
used von Karman vortex streets with ethanol flowing around a cylinder to deposit tin cata-
lyst in such a way as to grow a pattern of nanoscale silicon disks.

3.3 Asingle row of hollow vortices

Baker, Saffman & Sheffield7] found analytical expressions describing the shapes of hol-
low vortices aligned in a single row. They used hodograph plane techniques and exploited
symmetry. By a row of hollow vortices, we mean an infinite line of equally separated
hollow vortices of equal circulation. In this section, we re-derive the solution of Baker,
Saffman & Sheffield 7] using a different and novel mathematical approach.

3.3.1 Formulation of problem

In a physicalz = (z + iy)-plane, let the centroids of the hollow vortices berat nL,

n € Z, whereL is the period (i.e. the horizontal distance between two neighbouring
centroids). Given this periodic structure, it suffices to consider a single period cell: this
cell contains one hollow vortex of finite-area with circulatibphas widthZ, and extends

to co™. Here,co™ denotes the region of the period cellias+ +oo while co~ denotes the
region agy — —oo. Figure3.lillustrates this arrangement.

Let z(¢) be the conformal mapping taking the ugidisc to a single period cell of the
hollow vortex row. Our task is to determine the shape of the boundary of the hollow vortex
by constructing a suitable functional form fef(). The boundary of the hollow vortex will
be taken to be the image of the unit cirgdé = 1 under the map(¢). Note that traversing
|C| = 1in an anticlockwise sense corresponds to traversing the hollow vortex boundary in
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Figure 3.1: Schematic showing three periods of lengtsf a row of hollow vortices, each
of circulationI'. The shapes of the hollow vortex boundaries are to be determined.

a clockwise sense (keeping the fluid region on the left). There are two points in the interior
of the unit disc{ = « and¢ = 3, which will map respectively teo™ andoo™. We require
z(¢) to behave in the following manner neae= «:

iL

2(¢) = ~5- log(¢ — «) + locally analytic function (3.2)

In other words, encircling = « by 27 corresponds to a jump ir(¢) by the real amount
L. Similarly, near = 3, we requirez(() to behave in the following manner:
iL

2(¢) = o log(¢ — ) + locally analytic function (3.3)

That is, encircling, = ( by 27 corresponds to a jump if(¢) by the real amount-L. A
choice of branch cut joining the logarithmic branch pointg at « and( = f is required
to be made in order to uniquely define the ma&g). We give further details in due course.

The fluid region in a typical period cell of the hollow vortex row is doubly connected: the
two boundaries are that of the hollow vortex and the edges of the cell. Introducing a branch
cut betweent = « and( = (8 has a dual purpose: the two sides of this branch cut will
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Figure 3.2: The preimage unjtdisc with a branch cut, shown as a dashed line, joining
a = ia = —[f (the preimages ofo* andoo™) chosen along the imaginacyaxis [left],

and a typical period window of the hollow vortex row [right]. Under the conformal map
z((), the circle|¢| = 1 is taken to map to the hollow vortex boundary. The two sides of the
branch cut map, under((), to the two edges of the period window.
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be taken to map to the two edges of the period cell und€r and this branch cut neatly
encodes the intrinsic periodicity structure of the hollow vortex row into our mathematical
model. This branch cut could be interpreted as a second boundary (rdlame, but

the key point is that we only require periodicity across it. Alternatively, the periodicity
structure can be viewed from a Riemann surface perspective. Moving through the branch
cut corresponds to moving onto a different sheet of some infinite-sheeted Riemann surface,
where each sheet of this surface is a copypf= 1 corresponding to a particular period

cell in the hollow vortex row.

In our analysis, we shall make use of the bounded circular slit mapgia@( Since,
for the present problem, we are mapping between two conformally equivalent simply con-
nected domains2(53 reduces to

D
16 = pre= 1Ay G4

wherey € C, |y| < 1. Itis easy to see that((;~) has a simple zero g@t= ~. Straightfor-
ward algebra can be used to show thgt;v)| = 1 on|(| = 1; thus,n({;~y) maps the unit
(-circle onto the unit circle in the complexplane.

3.3.2  Functiori¥V (¢)

Let the complex potential for the potential flow associated with the hollow vortex row be
denoted byw(z). Owing to the symmetry of the hollow vortex row, the hollow vortices
are expected to be in equilibrium, and 80z) will be defined in a stationary frame of
reference. The complex potential z) in the z-plane is related to the complex potential
W () in the(-plane through the composition

W(¢) = w(z(()). (3.5)
Let the circulation around the hollow vortex bethis means that
7{ RUCES: (3.6)
¢|=1

where|(| = 1 is positively oriented in the anticlockwise direction. Notice the appearance
of the minus sign on the right-hand-side 8t®); recall that traversing(| = 1 in an an-
ticlockwise direction corresponds to traversing the hollow vortex boundary in a clockwise



Chapter 3. Von Karman streets of hollow vortices a7

direction. The circulation around the hollow vortex induces the following uniform flow
type behaviour of the complex potential:

+

w(z) = FUz + locally analytic function z — oo™. (3.7)

The value ofU will be determined shortly. The boundary of the hollow vortex must be a
streamline of the flow. Thus, dg| = 1, we require

Im[W(¢)] = constant (3.8)

It follows from (3.2), (3.3) and @.7) that we must have

W(¢) = 1§_U log(¢ — a) + locally analytic function ¢ — «, (3.9)
™
and .
W(() = 1§_U log(¢ — ) + locally analytic function ¢ — §. (3.10)
™

We shall now build the complex potential functi@ii(¢). Consider the function

L1(¢;a) = logn((;a), (3.11)

wheren((; «) is the bounded circular slit mapping &.4). Sincen(¢; «) has a simple zero
at( = «, function£,((; o) must have the following behaviour:

L1(¢; ) =log(¢ — ) + locally analytic function ¢ — «. (3.12)
Also, sinceln(¢; )| = 1 on|¢| = 1, we must have that
Re[£:(¢; )] = log[n(¢; )| =0 (3.13)
on|¢| = 1. Let us consider the integral

$ e 314)

where|(| = 1 is positively oriented in the anticlockwise direction. Since this integral is
of the logarithmic type, we can invoke the Argument Principle (Ablowitz & FoKgk [
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Functionn(¢; «) has one simple zero at= « inside|(| = 1 and no poles anywhere inside
|| = 1. Thus, by the Argument Principle, we have

L dnca)=2 ]{Ud[logn@;a)]:l. (3.15)

271 Jie1= ~ 2mi

Next, consider the function

Lo(Ga, B) = L1(G ) + L1(¢ ) = logn(¢; a)n(C; B). (3.16)
Using (.12, it is clear to see that
Lo(C;a, B) = log(C — a) + locally analytic function ¢ — a, (3.17)
and

L5(¢; o, ) = log(¢ — ) + locally analytic function ¢ — 3. (3.18)

Using 3.13), it is also clear to see that 9q| = 1,

Re[L2(¢; @, B)] = log [n(C; a)| + log |n(¢; B)| = log [n(¢; a)n(C; B)] = 0. (3.19)

From 3.15), it is immediate that

L dsca.g) = 2 j%zl(d[logn(é;a)]+d[10gn(4;5)])=2, (3.20)

2mi I¢]=1 N %

where|(| = 1 is positively oriented in the anticlockwise direction.

Consider, thus, the following function:

iLU

iLU
W(¢) = ?103;77(@ a)n(C; B). (3.22)
From (3.19, we see that this function has constant imaginary patfps- 1. It has the
required behaviours3(9) and @3.10 owing to 3.17) and @.18. It also changes by-I" as

|C| = 1is traversed in an anticlockwise sense thereby producing the required circulation
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(3.6) around the hollow vortex, provided

T
=—. 3.23
U=o7 (3.23)

Indeed, using3.58, we have that
7{ dW(¢)] = —2LU, (3.24)
[¢]=1

where|(| = 1 is positively oriented in the anticlockwise direction. But frohg), it is
required that

?{d:l dw ()] =-T, (3.25)

and hence we must chooBeas in 3.23.

Given the symmetry of the arrangement, we take
a=ia = —0, (3.26)

wherea € R, |a| < 1. See Figure.2 We shall take the branch cut linking the logarithmic
branch points at = +ia to lie along the segment of the imaginary axis between these
points with the two sides of the branch cut mapping to the two edges of the period cell. By
the symmetry, the centre of the branch cug at 0 will map to the two real points on the
edges of the period cell and we expect these two points to be stagnation points of the flow.
With the choices3.26) in (3.22, we obtain

: 2 2
W(C) = %log (ﬁ) . (3.27)

3.3.3 Functionlw/dz

One of the defining properties of the complex velocity functian'dz stems from Bernoulli's
theorem. The boundary of the hollow vortex is a vortex sheet and the pressure is constant
inside it. Thus, Bernoulli's theorem implies that the fluid speed is constant on the hollow
vortex boundary. Consequently, @jj = 1:

M1 — constant (3.28)
z
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dw /dz must also incorporate the stagnation points lying on the real axis on the edges of the

period cell:
dw

(0 =0. (3.29)

Finally, dw/dz must beL-periodic.

It turns out that the complex velocity function takes a particularly simple form:

Z—Z = RC, (3.30)
whereR € Cis a constant. This functior83(30 is clearly analytic and single-valued every-
where in|¢| < 1; in particular, it is invariant as eithér= +ia are encircled. Hencew/dz

is L-periodic across the period cell. Functidh30 also clearly has constant modulus on
|| = 1, and a simple zero gt= 0, as required. In light of3.7), we must have that

dw

= —U + locally analytic function ( — ia, (3.31)
z

and so it follows at once that

R=—. (3.32)
a
It is then apparent that
dw . . .
i U + locally analytic function ( — —ia, (3.33)
z

as required by3.7).

3.3.4 Conformal map(¢)

Free streamline theory allows us to derive an expression for the derivative of the conformal
map using the chain rule, given separate expressiorig’fan anddw/dz:

dz  dW/dC
¢ dw/dz

(3.34)

Using 3.30 and the derivative of3.27) with respect ta in (3.34), it follows that

dz alL 1 1
d_g:7(c2+a2_c2+1/a2)' (3.35)
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On integration, the conformal map is found to be

2(¢) = = (tan""(¢/a) — a® tan""(a()) + 2o, (3.36)

S

wherez, € Cis a constant. Given the peridd (3.36) represents a one-parameter family of
conformal maps governing the shape of the boundary of the hollow vortex. The dependency
on the single real parameteican be viewed as a measure of the area of the hollow vortex.
Our solution 8.36 is different (and, arguably, in a more concise form) to that of Baker,
Saffman & SheffieldT], but it can be shown to be equivalent (see Apper)ix

3.4 Hollow vortex streets

Using the ideas developed in the preceding section, we can now shift attention to finding
solutions describing the shapes of hollow vortices in a street configuration. By a street of
hollow vortices, we mean two parallel rows of hollow vortices where the hollow vortices in
one row have an equal and opposite circulation to those in the other row, and these streets
can be either staggered or unstaggered. We will focus specifically on solutions where the
hollow vortices in each row have identical shapes and are of equal area. In principle,
our method should be able to be modified to cater for more general classes of solution
describing, perhaps, configurations where the areas of the hollow vortices are different in
each row.

3.4.1 Formulation of problem

In a physicak = (z+1iy)-plane, consider a vondman street of hollow vortices consisting

of two rows of equal area hollow vortices moving in unbounded fluid. Let the centroids of
the hollow vortices in both rows be separated by a horizontal distanktet the circulation
around the hollow vortices in the top row bgwherel” > 0) and let the circulation around
the hollow vortices in the bottom row bel’. We will seek solutions for which the street is
expected to translate steadily parallel to thaxis towards the right with spedd. Figure
3.3shows a schematic of this configuration for a typical staggered hollow vortex street.

Consider a conformal mapping() from the concentric annulys < || < 1 to a single
period cell of the hollow vortex street in theplane. The circle| = 1 and|(| = p will

be mapped onto the boundaries of the two hollow vortices in the period cell. Note that
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Figure 3.3: Schematic showing three periods of a pefiogin Karman street of hollow
vortices. The hollow vortices will be taken to have circulatiom the top row and-T"in

the bottom row. The hollow vortex street is expected to translate with dpeedards the
right. The shape of the vortex sheets bounding the hollow regions are to be determined.

traversing|¢| = 1 in an anticlockwise sense corresponds to traversing the boundary of its
image in a clockwise sense, but traversjgg= p in an anticlockwise sense corresponds
to traversing the boundary of its image in an anticlockwise sense. As before, two interior
points of the annulus; = o and{ = 3, will map to cot andoo™, respectively. Near
¢ = a, we must have

iL

2(¢) = ~5- log(¢ — «) + locally analytic function (3.37)

and near = 3, we must have

2(¢) = % log(¢ — /) + locally analytic function (3.38)

Like before, we must of course also make a choice of branch cut in the interior of the
annulusp < |¢| < 1 joining the two points = « and( = (3 in order to uniquely define
2(¢). The two sides of this branch cut will map to the two edges of the period cell. By a
rotational degree of freedom in the Riemann-Koebe mapping theorem (Gobi&jne

can takex € R and lying on the positive real axis. See Figaré
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Figure 3.4: The preimage annulus< |¢| < 1 [left] and a typical period window of a von
Karman hollow vortex street [right]. The two sides of the branch cut, shown as a dashed
line, joining { = « and¢ = S (the preimages ofo™ andoo™) are mapped by (¢) onto

the two edges of the period window. The two circles= 1 and|(| = p each map to one

of the hollow vortex boundaries.
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The fluid region in a typical period cell of the hollow vortex street is triply connected: the
three boundaries are those of the two hollow vortices and the edges of the period cell. To
proceed, we will use the same technique as we did for the single row: introduce a branch
cut linking ¢ = o and( = . As before, this serves two main purposes: the two sides of
the branch cut will be taken to map to the two edges of the period cell uideand this

branch cut neatly encapsulates the intrinsic periodicity structure of the hollow vortex street
into our mathematical model. Moving through the branch cut corresponds to moving onto

a different sheet of some infinite-sheeted Riemann surface, where each sheet of this surface
is a copy of the concentric annulps< |¢| < 1 corresponding to a particular period cell in

the hollow vortex street.

Also like before, we shall again employ the bounded circular slit map@rg( We are
now mapping between two conformally equivalent doubly connected domains. In this case,

(2.53 becomes

.y P/ p)
n(C,v)——P(@m : (3.39)

Here,y € C is an arbitrary point in the interior of the annulps< |¢| < 1. Note that
n(¢;~) has a simple zero at = ~. Straightforward manipulations using the relations
(2.31) can be used to show that¢; v) has constant modulus on bdtj = 1 and|(| = p.

It can be shown thaj(¢; v) maps|(| = 1 onto the unit circle in the complex-plane with

|C| = p mapping onto a finite-length concentric circular slit in the interiopof= 1.

3.4.2 FunctionV (¢)

We expect the hollow vortex street to translate uniformly, without change of form, in the
positive z-direction with speed/. Let the complex potential for the potential flow asso-
ciated with the hollow vortex street in a co-travelling frame with the street be denoted by
w(z); in this co-travelling frame, the hollow vortices will be in a state of relative equilib-
rium. Introduce the composition

W () = w(z(()). (3.40)

Let the circulations around the two hollow vorticesbE; this means that

§oawoI=-¢ awE)--r. 3.4)
I¢l=1 ICl=p
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where both¢(| = 1 and|(| = p are positively oriented in the anticlockwise direction. As

z — oo*, we require
w(z) = —Uz + locally analytic function (3.42)

The hollow vortices are stationary in the co-travelling frame and their boundaries will be
streamlines. Thus, on bot| = 1 and|¢| = p, we require

Im[W(¢)] = constant (3.43)

It follows from (3.37), (3.38 and @.42) that we need to ensure that

W(¢) = 1§_U log(¢ — «) + locally analytic function ¢ — a, (3.44)
m
and .
W(¢) = _1§_U log(¢ — ) + locally analytic function ¢ — . (3.45)
m

We shall now build the complex potential functi@ii(¢). Consider the function

L1(¢;a) = logn((;a), (3.46)

wheren((; «) is the bounded circular slit mapping &.89. Sincen(¢; «) has a simple
zero at¢ = a, function £ (¢; «) must have the following behaviour:

L1(¢; ) =log(¢ — «) + locally analytic function ¢ — «. (3.47)
Also, sinceln(¢; «)| = constant on both;| = 1 and|(| = p, we must have that
Re[L£1(¢; )] = log |n(¢; )| = constant (3.48)
on|¢| = 1 and|(| = p. Let us consider the integral

$ e (349)

where|(| = 1 is positively oriented in the anticlockwise direction. Since this integral is of
the logarithmic type, we can invoke the Argument Principle. The simple zerogg of)
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inside|¢| =1 are
a, {ap”|jeN}, (3.50)

and the simple poles of((; «) inside|(| = 1 are
{p”/a|jeN}. (3.51)

Note that the cardinality of the sefs* | j € N} and{p¥ /a | j € N}isequal. LetN—P
denote the difference between the number of simple zeroes and the number of simple poles
of functionn((; «) lying inside|¢| = 1. Thus, by the Argument Principle, we have

L o= = 7{( | dloznGol) =N =P=1 @52)

271 Ji¢1=1  2mi

Next, consider the function

oG 8) = £a(Gie) — (G ) = 1o (25 ). (359
Using 3.47), itis clear to see that
L5(¢; o, B) = log(¢ — «) + locally analytic function ¢ — «, (3.54)
and
Ly(¢; o, B) = —log(¢ — B) + locally analytic function ¢ — 3. (3.55)

Using (3.498), it is also clear to see that

Re[La(G: 1 )] = g (G: )] — 10 (63 9) = 1o | -5 | — constant~ (3.56)
From (3.52), it is immediate that

o §diLa(GaB) =5 § (dlogn(a)) - diogn(GA) =0 @57)

27Ti |C|:1 2 s Lby 27“ |C‘:1 g77 9 g77 ) . .

The preceding analysis is very similar in order to show that

1

2mi [Cl=p

d[L2(C; a, B)] = 0. (3.58)



Chapter 3. Von Karman streets of hollow vortices 57

Consider, thus, the function

ir’ iLU

W) = —5-logC + 2 LalG 0, B), (3:59)
- ir iLU (¢ a)
W(¢) = —5-log¢ + - - log (n(Cﬁ)) . (3.60)

From (3.56), we see that this function has constant imaginary part on lioth- 1 and

|| = p. It has the required behavioui3.44) and 3.45, owing to 3.54) and @3.59. It also
changes by as eitheri(| = 1 or || = p is traversed in an anticlockwise sense thereby
producing the required circulation8.41) around the hollow vortices (to see this, recall

(3.57) and B.59).

3.4.3 FunctiortWV,(¢)

In order to derive the most convenient analytical expression for the conformat (@gapt

is necessary to make some further analytical observations.

From the boundary condition8.43), it is straightforward to deduce that of] = 1, we
have
W(¢) —W(¢ ™) = constant (3.61)

whilst on|¢| = p, we have
W(¢) — W(p*¢") = constant (3.62)

These relations3(61) and 3.62 can be analytically continued off their respective circles
to deduce the following functional relation for functidi(():

W (p*¢) = W(¢) + constant (3.63)
Taking a derivative of.63 with respect ta yields

PWe(p*C) = We(C), (3.64)

where we denotéV, = dW/d¢ (and similarly for other functions). Let us define the
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function

S(¢) = CWe(Q). (3.65)

It follows immediately on multiplication 0f3.64) by ¢ that we have

S(p*¢) = S(¢)- (3.66)

In other words, the functio§(¢) is invariant if its argument undergoes the transformation
¢ — p*C. Meromorphic functions satisfying this proper8.66) are known as loxodromic
functions (Valiron [L13).

Let us deduce another important property of functifg). After analytic continuation off
|| = 1, taking a derivative 0f3.61) with respect tq] yields

We(C) + ¢ W (¢ =0, (3.67)

from which it follows that

S(¢) = 5. (3.68)

From 3.44 and @.45, we requirelV,(¢) to have simple poles &t = « and( = f,
implying thatS(¢) must also have simple poles@t « and( = 5. It follows from (3.69
that if S({) has simple poles gt= « and{ = j3, then it will necessarily have simple poles
at¢ = 1/aand¢ = 1/3.

From an analysis of the von&@méan point vortex street (see Appendd), in both the
unstaggered and staggered cases, we expect two stagnation points in a typical period cell.
For the von Karman hollow vortex street, let the preimages in the annglys || < 1 of

the two stagnation points in a typical period cell be labelled +; and{ = ~,. Then the
complex velocity function must have two simple zeroes at these points:

dw dw
a(%) = 5(72) =0. (3.69)
By the chain rule:
dw dz
We(Q) = & dC (3.70)

Now, dz/d¢ must be non-zero everywhere pn< |¢| < 1 (ensuring that((¢) is indeed a
conformal map). Thus, any zeroesdb/dz in p < |¢| < 1 must also be zeroes oF(()
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inp<|C| <1.

It follows that we also requiré = ~; and{ = 7, to be simple zeroes d¥/;(¢) implying
that,S(¢) must also have simple zeroes(at v, and( = ». It follows from (3.68 that if
S(¢) has simple zeroes gt= ~, and( = 2, then it will necessarily have simple zeroes
at¢ = 1/47 and¢ = 1/73. In light of property 8.66), it suffices to build the singularity
structure of functionS(¢) in the fundamental regiop < || < 1/p; this is because the
singularity structure of(¢) in all other concentric annuli in thé-plane can be deduced
using relation 8.66).

Consider the function

P(¢ /1, p) P(C1, p) P(C /72, p) P(CT2, ) (3.71)
P(¢/a, p)P(Ca, p)P(C/B, p)P(CB, p) '

This function 8.71) can be shown to be loxodromic by using the proper@e31), provided
the product of its zeroes is equal to the product of its poles:

me _ b (3.72)
MY2 af

Function @.71) has only simple zeroes and simple poles in the fundamental regidn

IC| < 1/p. Moreover, it has precisely the same simple zerpes ~,,1/77,72,1/72 and

simple polest = «a,1/@,3,1/3 as required of functior5(¢). Appealing to a special

version of Liouville’s theorem for loxodromic functions (Valiroa13), functions.S(¢)

and @.71) are in fact proportional:

_ gE/, ) P(CTL p) P(C/ 72, ) P(CT2: ) (3.73)

CWe(€) P(C/a, p)P(Ca, p)P(C/B,p)P((B,p)

Here,B € C is a constant.

3.4.4 Functionlw/dz

We will now construct the complex velocity functialw /dz. Bernoulli's theorem implies
that on|¢| = 1 and|(| = p,

1 — constant (3.74)
z
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Recall from (.69 that we require

dw dw

E(%) = E(%) = 0. (3.75)

We also requirelw/dz to be L-periodic.

Consider the function

dw  Rn(¢y)n(¢ )
dz ¢

This function has constant modulus [dh= 1 and|¢| = p, and two simple zeroes at= v,

. (3.76)

and( = ~,. Itis analytic and single-valued everywheregsin< || < 1; in particular, it

is invariant as eithef = « or { = (3 is encircled, and henck-periodic across the period
window. The factor of¢ in the denominator can be explained as follows. Recall, from
either 3.60 or (3.73), thatWW,(¢) has a simple pole &t = 0. In order that:;(¢) does not
have a simple pole at = 0, and thereby be appropriately single-valued upon traversing
either|¢| = 1 or |¢| = p (for particular values of = v; and( = +, to be determined), it is
required thatiw/dz must indeed have a simple poledat 0.

3.4.5 Conformal map(()

Given the functions in3.73 and @3.76), it follows from the chain rule that

dz _ P2(C7__17 PP p) | (3.77)
¢ P(¢/a, p)P(Ca, p)P(C/B. p)P(CB, p)
whereA € C is a constant. The final form of the conformal mag) is
‘ P*(¢'71, p) P*(¢'72. p) ,
=A —d(’. 3.78
(0= | e P R T A 579

We have found that this conformal m&p 18 encapsulates both unstaggered and staggered
street configurations. Herg; € C is an arbitrary point in the annulys < || < 1. It
reflects a translational degree of freedom and determines the position of the origin in the
z-plane; this can be set arbitrarily and the mapping shifted by an appropriate caamstant
posteriori The value ofA is founda posterioriby insisting that the residue @t /d¢ at

¢ = ais —iL/2m as required by3.37). We thus obtain the following expression for the
constant4:

_iL [ P(1,p)P(laf*, p)P(a/B, p) P(aB, p)
A‘%( o P07, ) P2 (o, ) ) 579
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where
. P(¢,
Plc.) = T8, (3.80)
Recall that = ~; and{ = ~, are two solutions ip < || < 1 of the equation
dw
d—C(O =0, (3.81)
which, on use 0fZ.42 and @.60, can be expressed as
— r
where we recall that €.
P'(¢,p
K(( p) = 3.83
(¢ p) CP(C’/)) (3.83)
Since
dw — —U, z— oo¥, (3.84)
dz
we must have
Ru(asy)n(asye) _ Bo(Biyn(Bine) _ (3.85)

o p
One of the equations irB(85 can be used to determine the valueiyfthe velocity field
then follows from B8.76). If the velocity field in a typical period cell is required, a particular
choice of branch cut betweeén= o« and({ = 3 needs to be made in order to guarantee
that the edges of the period cell are straight and vertical. To find such a branch cut, it is
necessary to solve an ordinary differential equation{fas a function of: obtained by
differentiating the equation

Re[z(¢)] = constant (3.86)

and then making use of the expressi8tv{) for dz/d(. It should be noted that the shapes

of the two edges of the period cell (i.e. the images of the two sides of the branch cut under
z(Q)) are irrelevant if one is interested solely in determining the shapes of the hollow vortex

boundaries. As mentioned before, the key point of introducing the branch cut between
¢ = aand( = [ is to capture the periodicity structure of the hollow vortex street.
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3.4.6 Characterisation of the solutions

We fix
L=T=1 (3.87)

which sets the length scale and the time scale, respectively. Both unstaggered and staggered
von Karman streets of point vortices admit one-parameter families of equilibrium solutions
(see AppendiXA): we shall take this parameter to be For a hollow vortex street, we
expect an additional freedom associated with the area of the hollow vortices: the parameter
p is a natural choice for this.

We will now examine the solution spaces for both unstaggered and staggered hollow vortex
streets. For both street configurations, we find two-parameter families of solutions param-
eterised by andU. We choose a value @f a priori and proceed in tracing out a solution
branch corresponding to this valueldfby a continuation procedure i that is, gradually
increasingp to obtain hollow vortices of gradually increasing area. For small values of

the hollow vortices are always found to be small and close-to-circular in shape.

Unstaggered streets

It has been found that unstaggered hollow vortex streets exist fg10.5; this is consistent
with the result for point vortex streets as indicated in ApperdiXVe have found that the
parametersy, (3, v; and~, are either all real and such that

=L =L (3.88)
a 4!
or are such that
B=L == pe®, (3.89)

with o, 3, ¢ € R. Figure3.5shows two schematics of the preimage domain in(tipéane
illustrating the locations of the parameterss, +; and~, according to 8.88 and 3.89.

With the choices3.88 and (.89, it turns out that the images of the circlgs = p and

|C| = 1 under the map:(¢) are reflections of each other through a horizontal midline
between them. Recall that we are restricting attention to hollow vortices whose shapes and
areas are the same in both rows, and thus, given the symmetry, it is not necessary to enforce
an equation requiring the hollow vortex areas, or perimeters, be equal.



Chapter 3. Von Karman streets of hollow vortices 63

GivenU andp, we solve two real equations farand~, ; 5 and~; then follow immediately
from either 8.88 or (3.89. The first equation to enforce is

Im 2-(CNHdC | =0 3.90
le <<§)¢] (3.90)

so that the conformal map be appropriately single-valued. By the symmetry, imposing
(3.90 is sufficient to ensure that also

Im z-(CNdC'| = 0. 3.91
Mgzp <<c>¢} (3.91)

With the choice of parameter8.88 and @3.89), it turns out to be automatic that

Re [ ﬁ{ . zC(C’)dC’] = Re [ 7{< » ZC(C’)dQ’] — 0. (3.92)

The second equation to enforce is

r

K(n /o, p) — K(ma, p) — K(m/B,p) + KB, p) = Vi (3.93)

so that functioni¥(¢) has the correct zero structure: by the symmetry, impos3@s(
is sufficient to ensure that’;(¢) will also have a zero af = ~,, as required. Equations
(3.90 and @3.93 can be readily solved using Newton’s method.

For each fixed value di.5 < U < 0.5773502693, there is a critical value gf = p* (say)
below which all parameters are real and satisfy the relation3.88( Whenp = p*, 11

and~, coincide at{ = ,/p. Then, forp > p*, 7, and~, become a complex conjugate pair

on the circle|¢| = /p. Figure3.6 shows a graph of the critical value pfas a function

of U. This transition ofy; and~, off the real axis onto the circlg| = ,/p has a physical
significance: the two stagnation points lying on the edge of each period cell move off the
edges onto the reataxis. ForU > 0.5773502693, the parameters, 3, v, and~y, are such

that they obey the relations i8.89 and, therefore, the stagnation points for these solutions
are always on the realaxis.

In Figure3.7, three periods of unstaggered hollow vortex streets are shown for #/hen

0.6 andU = 0.8. It appears from these figures that the maximum area of the hollow
vortices decreases &sincreases (the graph in FiguB12 vindicates this observation).

These unstaggered street solutions can be considered as a generalisation of the classical
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Figure 3.5: The distribution of parameteis (3, v; and~; in the two cases (3.88) [left]
and (3.89) [right] for the unstaggered street solutions. For fixedS U < 0.5773502693,
there is a criticalp for which v, = v, = /p represents a transition between the two
situations shown.
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Figure 3.6: A graph showing the critical valuegffor eachl/, at which the parameters for
unstaggered vortex streets transition from satisfying (3.88) to satisfying (3.89).
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hollow vortex pair solutions due to Pocklingtd8g] to the case of a singly periodic array of
such hollow vortex pairs moving steadily and uni-directionally. Indeed, the hollow vortex
shapes we present look qualitatively similar to those found by Pockling&nA feature
characterising the maximum area configurations is the long flattened part of the hollow
vortex boundaries which are closest together.

Staggered streets

We find that solutions for staggered hollow vortex streets exist fer U < 0.5; this is
again consistent with the staggered point vortex street solutions (see Appente find
that the parameters, 3, 7, and~, are all real and such that

g=-L ==L (3.94)
o g

For given values op andU, we solve for and~; by enforcing

Im 2-(CNHdC | =0 3.95
Mgzl <<§><] (3.95)

and

K(n/a,p) — K(ma,p) — K(n/B.p) + KB, p) (3.96)

As for unstaggered streets, due to the symmedg is sufficient to ensure that

Im 2-(CNdC' | =0 3.97
MCZP g<c>c] (3.97)

for staggered streets. With the choice of parame@)) it is automatic that

Re [ ﬁ[c B zc(g’)dg’] = Re [ fc » zc(g')dg'] = 0. (3.98)

By the symmetry, imposing3(96) is sufficient to ensure that’-(¢) will also have a zero
at ( = 9, as required. Equation8.05 and (3.96 can be readily solved using New-
ton’s method. The solution branch for the fixed valud/oik traced out by a continuation
procedure irp.

Figure 3.8 shows three periods of staggered hollow vortex streets for when 0.2 and
U = 0.4. As the areas increase, the hollow vortices assume quasi-triangular shapes with
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Figure 3.7: Three periods of unstaggered hollow vortex streets, showing hollow vortices of
different areas, with speeds = 0.6 [top] andU = 0.8 [bottom]. The different solutions
have been superposed. The maximum possible area of the hollow vortices in the street

decreases d$ increases.
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two flattened regions of their boundary which are nearest to the neighbouring hollow vor-
tices in the adjacent row. It is interesting that these quasi-triangular shapes are reminiscent
of the shapes of the vortices appearing in photographs of certain staggered vortex streets
shown, for example, in Van Dykd 4. For a fixedU, we find thatp can be increased up

to some limiting value with no apparent singularity in the hollow vortex shapes and without
the conformal map becoming multi-valued.

Our staggered street solutions are the hollow vortex analogues of the staggered streets of
vortex patches found by Saffman & Schatzm@#]] It is instructive to compare our solu-

tions with those of Saffman & Schatzma®]. We reparametrise our solutions to emulate
their presentation for means of effective comparison. Figure 2 of Saffman & Schatzman
[94] shows the speed’ against the area of the vortex patches making up the street for
several fixed aspect ratias defined to be

h
= — 3.99
h= (3.99)

whereh is the vertical separation of the vortex centroids in the two rows. Figure 3 of
Saffman & Schatzmardg] shows the quantityD) against vortex patch area for the same
set of aspect ratios. The quantiyis a measure of the streamwise momentum flux of the
fluid (with the contribution from the vortices neglected):

1 ico
D= —§Im {/ (u—U —iv)’dz| . (3.100)

ioco

The contour of integration can be taken to be any path frano to ico which does not
intersect the hollow vortices. Note that the integral 31100 is defined in a stationary
frame of reference (and not in the co-travelling frame with the hollow vortices).

The perimeter of the hollow vortex which is the image@f= p underz(() is given by

ds = 2-(CNdC'| . 3.101
fqu 7{|:p|<<c><| (3.101)

Here,ds denotes an element of arc length |[gh= p. To enforce the desired aspect ratio
of the street:, we must compute the imaginary part of the centroid of the hollow vortex



3.4 Hollow vortex streets

68

0.8

0.6

0.4~

0.2

-0.2-

-0.4r

-0.6

-0.8

0.8

0.6

0.4~

0.2

-0.2-

041

-0.6-

-0.8

-15

15

Figure 3.8: Three periods of typical staggered hollow vortex streets, showing hollow vor-
tices of different areas, withh = 0.2 [top] andU = 0.4 [bottom]. The different solutions
have been superposed.
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Figure 3.9: Graphs af/ against area for several fixed aspect ratioS his figure should
be compared with Figure 2 of Saffman & Schatzman [94].
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Figure 3.10: Graphs ab against area for different aspect ratiasThis figure should be
compared with Figure 3 of Saffman & Schatzman [94].
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Figure 3.11: Non-uniqueness of solutions: two different hollow vortex streets are super-
posed, each comprising hollow vortices of area 0.175 and with aspeckratio.4. The

street with hollow vortices that are more extended in the streamwise direction travels faster
(U = 4817, compared td/ = 0.4437) but has a lower value of the momentum fli¥x

which is the image of¢| = p underz(¢), and set this equal te/2:

| }{_ |:pz<g'>|z<<g'>dc|] /( ]{C y )i ) =2 (3202

(3.102 follows from the general formula for the centroid of a planar shépe

(L) /(L) 109

Here,dA denotes an element of area®f However, since we do not have aaypriori
knowledge of the area of the hollow vortices, the formula3ri03 reduces to

(7)) () (3.104)

Here,0S denotes the boundary of planar sh&@ndds is an element of arc length a@is.
Figure3.9 shows graphs of/ against the area of the hollow vortices for various values of
k. The area of the hollow vortex which is the imagd@f= p underz(() is given by

. (3.105)

5§ @
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(3.109 can be derived using Stokes’ theorem. The speed of translation of the hollow

vortices, whose centroids have been fixed, is retrieved uSudg)(

U= (K(n/a,p) — K(ma,p) = K(n/B,p) + K(nmB,p) " . (3.106)

We find that there is a critical value af betweensx = 0.33 andx = 0.35 signalling a
dramatic change in the qualitative behaviour of these graphs: Fob.33, the speed’ of

the street for a given hollow vortex area is unique butxfor 0.35, the graphs turn around

on themselves implying non-uniqueness of the street solutions for a given aspeciadio

a given hollow vortex area. FiguB11shows two different hollow vortex streets, of aspect
ratio x = 0.4, with area equal to 0.175. The street in which the hollow vortices are more
extended in the streamwise direction travels with the greater speed4817 compared to

U = 0.4437) but has a lower value of the momentum flix Saffman & Schatzmarby]

find exactly the same qualitative behaviour for their streets of vortex patches: they report
the critical aspect ratio to be~ 0.36 which is very close to the value we have found. This

is quite remarkable given that these two inviscid vortex models are so different. There could
be special physical significance of this given that these similar aspect ratios have arisen in
two different distributed vorticity models of staggered vortex streets; however at present,
it is unknown what this significance could be. One interpretation could be a qualitative
classification of two types of hollow vortex equilibria: one where as the hollow vortices
grow, the shapes encroach on the neighbouring row, and the other where two continuous
vortex ‘layers’ of equal and opposite circulation form (perhaps in a similar manner to the
special limit of lens shaped touching vortices mentioned by Saffman & S@8téof their

street of vortex patches).

Figure3.10shows graphs of the quantify against hollow vortex area for various values

of k. We observe qualitatively similar behaviour to the graphs in Figure 3 of Saffman &
Schatzman94] and again notice that for > 0.35, the graphs turn around on themselves,
reflecting the non-uniqueness of the solutions. It is worth mentioning that Saffman &
Schatzman94] also presented graphs of excess energy against vortex area for their streets
of vortex patches; we have not computed such graphs but they would be expected to share
a resemblance with those shown in Figure 48f [

Each solution branch terminates owing to the Newton iteration no longer being able to
converge. The solution branches of Saffman & Schatzr@dhwere also terminated for
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Figure 3.12: A graph of the maximum area of the hollow vortices in a street as a function of
the speed of the stre&t, including both unstaggered and staggered varieties. It is difficult
to find parameters fav’ ~ 0.5, but the graph appears to be a near-continuous function.

similar numerical reasons. We note that the hollow vortex shapes corresponding to the end
of the solution branches do not possess any singularities and they remain univalent. Recall
that we found solutions where the hollow vortices in each row had identical shapes and
equal areas; in light of this, it could be possible that the solution branches continue into a
different class of solution where, for example, the hollow vortices in each row do not have
the same shape.

Finally, we found that there exists a maximum admissible area of the hollow vortices in a
given staggered or unstaggered street for a fixed valté ¢figure3.12shows a graph of

the maximum admissible area of the hollow vortices as a functidn, ébr both staggered

and unstaggered streets. The graph appears to be a near-continuous and monotonically
decreasing function. It was difficult to find solutions in the vicinity6f= 0.5; hence

the small ‘gap’ in the graph. Saffman & Schatzm&d][also found similar regions of
parameter space where convergence of their numerical scheme was hard to achieve.
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3.5 Summary

After re-deriving the solution, in a different but equivalent form, for a single row of hollow
vortices in unbounded fluid due to Baker, Saffman & Sheffié&ldising new mathematical
techniques, we presented new classes of analytical solutions describing steadily translating
von Karman streets of hollow vortices, in staggered and unstaggered configurations. We
solved this free boundary problem by generalising the approach we used to resolve the
single row: we took a single period window of the configuration and, by using free stream-
line and conformal mapping theory, determined the relative equilibrium shapes of the two
hollow vortex boundaries. The periodicity of the street structure was incorporated into our
model by the introduction of a branch cut in the preimage domain whose two sides map
to the two edges of the period window (and whose precise shapes are irrelevant). The use
of conformal circular slit mappings was essential to constructing the functions we needed.
We found a concise formula for our conformal map as an explicit indefinite integral whose
integrand is expressed in terms of the Schottky-Klein prime function associated with the
preimage concentric annulus, and is fully determined with the knowledge of just two geo-
metrical parameters to be found as part of the solution. The solutions we have presented in
this chapter are believed to be the first analytical solutions for vamr&n vortex streets

with distributed vorticity; consequently, we expect them to arise in many future modelling
applications.

We were able to reveal an array of features about hollow vortex streets from our solutions.
From the plots illustrating the shapes of the free boundaries, we observed remarkable sim-
ilarities between our staggered hollow vortex street solutions and experimentally-observed
staggered vortex streets such as those shown in photographs in Van Dyke’s monograph
[114]. For the unstaggered configurations, we observed an increased flattening of the free
boundaries in the regions where the hollow vortices are closest together. This was a char-
acteristic found by Pocklingtor8p] for a co-travelling hollow vortex pair and indeed, the
unstaggered hollow vortex street is a precisely a singly periodic array of Pocklington pairs.
We then undertook a comparison of our staggered hollow vortex street solutions with the
staggered vortex patch street solutions found by Saffman & SchatZdhbyf plotting

graphs of streamwise fluid momentum flux and speed of translation against area. We found
that there is a critical aspect ratio of the street, in both our model and the model of Saffman
& Schatzman 4], of approximately 0.34-0.36, which has special significance for the equi-
libria and also determines whether or not there is non-uniqueness in the solutions.
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Chapter 4

Hollow vortices in an infinite channel

4.1 Introduction

This chapter is devoted to the analysis of two different hollow vortex configurations in
an infinite channel with straight, parallel-sided, impenetrable walls. We examine first the
situation of a co-travelling hollow vortex pair in a channel. This free boundary problem
turns out to exhibit similar mathematical features to the va@mréan hollow vortex street
problem. We then extend our analysis to investigate a single row of hollow vortices in a
channel. This problem requires the use of special conformal mappings known as polycir-
cular arc mappings. As in Chapter 3, we will employ free streamline theory in combination
with conformal mapping ideas in order to find analytical solutions which will reveal the
shapes of the hollow vortex boundaries in our two chosen configurations set in the infinite
channel. Given that these two free boundary problems are both set in infinite channels,
the fluid flows to which they pertain are examples of so called ‘wall-bounded flows’ and
as such, are expected to exhibit interesting physical features as well as requiring a special
mathematical treatment.

In Chapter 3, our approach was to find separate expressions for the complex poitégiial

and the complex velocity functiofw/dz, and from these, apply the chain rule to determine
the conformal mapping(¢). This approach proved to be particularly expedient given that
formulae forWW(¢) anddw/dz were constructed in a straightforward manner using con-
formal slit mappings. We shall adopt the same approach in this chapter in order to solve
our two free boundary problems. Also central to our approach in Chapter 3 was the intro-
duction of a branch cut in the preimage circular domain. This served the primary purpose
of incorporating the intrinsic periodicity of the configuration into our model, and also af-



Chapter 4. Hollow vortices in an infinite channel 75

forded us some analytical simplifications; for the same reasons, we shall again employ this
mathematical technique of using branch cuts in this chapter. The solutions we present in
this chapter for the single row of hollow vortices in the channel appear to be the first of
their kind.

4.2 Background

To construct the complex potential for ideal fluid flows involving point vortices in infinite
channels, the so-called ‘method of images’ (Achesgjhif usually adopted to produce

an image system in free space through a series of successive reflections of the original
system in the two channel walls; consequently, the two channel walls are guaranteed to
be streamlines of the flow. Glauef1] used the method of images in this way to derive

an estimate for the reduction in the velocity of point vortices in a vamian street in an
infinite channel due to the effects of the channel walls. The method of images was also the
cornerstone of the approach by Rosenhé&l He analysed the von&tman point vortex

street in a channel, in both staggered and unstaggered configurations, and found analytical
expressions for the complex potentials for both these systems, determined the speed of
translation of the streets, and found explicit equations for the streamlines, using elliptic
function theory. Greengar®$| has devised a fast numerical algorithm to calculate planar
potential flows in infinite channels. He used the method of images to deduce an expression
for the velocity field induced by a point vortex in an infinite channel and consequently,
the associated streamfunction. Knowledge of these allowed him to develop the algorithm,
based on recursive subdivisions of space and multipole expansions, in which the method of
images also plays a central role.

The methods we will use to solve the free boundary problems of this chapter are not associ-
ated in any way with the method of images. Unlike point vortices, vortices with distributed
vorticity intrinsically have an area and a boundary shape. In point vortex problems set in an
infinite channel, there is of course no notion of size associated with the point vortices (point
vortices have no area): the two length scales in these problems are the channel width and
the distance of the point vortex to a channel wall. By considering the hollow vortex ana-
logues of these point vortex problems in infinite channels, we see that there are now three
length scales which feature: the channel width, the distance of the hollow vortex centroid
to a channel wall and the area of the hollow vortex. The tantalising question fuelling our
study into the free boundary problems of this chapter is how introducing a distributed vor-
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ticity structure into a confined geometry has an effect on the shape of its free boundary. By
considering the pair of hollow vortices in a channel, we are also motivated in devising an

idealised mathematical model of a vortex ring travelling along a tube: the two-dimensional

analogue of this problem is precisely our free boundary problem for a co-travelling pair of

hollow vortices in a channel.

Two of the earliest works on hollow vortices are directly relevant to the free boundary
problems we shall tackle in this chapter. Michélll] used Schwarz-Christoffel methods

and elliptic functions to derive an expression for the conformal map determining the shape
of the free boundary of a single hollow vortex in an infinite channel. An interesting fea-
ture of this hollow vortex configuration is that it is stationary for all time and does not
propagate along the channel. Pocklingt8h] [also used Schwarz-Christoffel methods and
elliptic function theory to derive the conformal map for a steadily translating pair of hollow
vortices in free space. Crowdy, Llewellyn Smith & FreilicBi7] have recently re-derived

this solution due to Pocklington using mathematical methods analogous to those that we
shall use in this chapter. For this configuration, the pair of hollow vortices translates at
constant speed parallel to their axis of symmetry, without change of form. We will make
connections with both these classical solutions of Mich&fl pnd Pocklington 85]. A

very recent study by Zannetti & LasagnB2B replaces the stagnation points associated
with hollow vortex pairs by so-called ‘Chaplygin cusps’ or finite-area regions of stagnant
fluid. They have been able to determine the shapes of a pair of hollow vortices in a channel
but their approach is different to ours. (This paper appeared in the literature after the work
in this chapter was completed).

Other studies pertaining to vortex dynamics in channel geometries include the following.
Giannakidis $0] has undertaken a numerical study into the effects of placing a SadovskKii
vortex, which is a vortex patch bounded by a vortex sheet, in a channel containing ideal
fluid. This type of steady planar flow also goes by the name of Prandtl-Batchelor flow,
and the hollow vortex is a special type of Sadovskii vortex. Govorukhin, Morgulis &
Vladimirov [53] have studied in detail the dynamics of planar inviscid incompressible flows
in a straight channel of finite-length, focusing on the effects of boundary conditions on
the vorticity dynamics. Yu et allRq have studied vortices in superconducting channels
with periodic constrictions, and Suzuki & Coloniud)g have devised an inverse-imaging
method using a least-squares algorithm for the detection of a point vortex in ideal fluid in a
channel.
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Finally, it is worth highlighting some studies involving point vortices and vortex patches
evolving around gaps in walls. Johnson & McDonab®][have looked into point vortex

and vortex patch dynamics near an infinitely long barrier with multiple gaps. Crowdy &
Marshall B0] employed Kirchhoff-Routh theory to analyse the dynamics of a point vortex
in fluid domains bounded by straight walls with multiple gaps. Elcrat, Hu & Mill&] [
determined the equilibrium configurations of point vortices for flow past objects, such as
an inclined flat plate, in an infinite channel.

4.3 Hollow vortex pair in an infinite channel

We first consider the case of a pair of hollow vortices in an infinite channel. We shall
present a method of solution to this free boundary problem which is conceptually different
to that of Zannetti & Lasagnd.p§.

4.3.1 Formulation of problem

In a physicak = (z +iy)-plane, consider an infinite channel of widthwith impenetrable
walls atz = +L/2. We will seek solutions for which a hollow vortex pair is steadily
translating along the channel in thedirection parallel to the walls of the channel with
speedU. In a co-travelling frame of reference, one hollow vortex is assumed to have its
centroid atz = ¢ and to have circulatior-I" (wherel" > 0) with the other hollow vortex
assumed to have its centroidaat= —c with circulationI'. Figure4.1shows a schematic

of this configuration.

Consider a conformal mapping¢) from a concentric annulus < |¢| < 1 to the fluid
region occupying the infinite channel exterior to the two hollow vortices. Let the circles
|| = 1 and|¢| = p map to the two hollow vortex boundaries in the channel. Let the two
points¢ = o and( = ( lying inside this concentric annulus map to the two ends of the
channel at infinity which we shall label by*. This means that we require

2(¢) = —;L log(¢ — «) + locally analytic function ¢ — «, (4.1)
m
and '
2(¢) = ——;L log(¢ — ) + locally analytic function ¢ — . (4.2)
m

It will be necessary to make some choice of branch cut between the two logarithmic branch
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Figure 4.1: Schematic, in a co-travelling frame moving with the hollow vortices4n a
plane, of an infinite channel containing a pair of hollow vortices of equal and opposite
circulation. The hollow vortex on the left has circulatibrand the hollow vortex on the
right has circulation—I". The centroids of the hollow vortices are taken to be such that
Re[z] = ¢ € R. The two ends of the channel at infinity are denotesdy. The shapes

of the hollow vortex boundaries are to be determined.
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points at{ = « and¢ = 3, and it is natural to choose this so that the images un@grof
the two sides of the branch cut map to the channel walls. The choice of this branch cut will
be made later. Figuré.2 shows a schematic of the preimage domain in(tpdane.

It may seem surprising why we have chosen to map the two sides of the branch cut onto
the channel walls. The reason for this becomes apparent if we consider an equivalent prob-
lem. If, instead of considering an infinite channel containing a pair of hollow vortices, we
consider a singly periodic array of period windows (extendingté and each contain-

ing a pair of hollow vortices), the problem now has an in-built periodicity structure and is
analogous to the mathematical framework introduced in Chapter 3. The two problems are
equivalent because, in the infinite channel case, the channel walls are streamlines, whilst in
the singly periodic case, the straight vertical edges of a typical period window are precisely
the same streamlines. For the case of the pair of hollow vortices in a channel, there is no
periodicity in the problem, but when interpreted as a singly periodic array of hollow vor-
tex pairs in free space, we can view the two sides of the branch cut mapping to the edges
of a typical period window (moving through the branch cut corresponds to moving into a
neighbouring period window) or, equivalently, the two channel walls.

4.3.2 FunctionV ()

We shall work in the co-travelling frame with the hollow vortex pair in which the configura-
tion is steady and the hollow vortices assume a state of relative equilibrium with no change
of form. Let complex potential associated with the flow in the co-travelling frame(bég
Introduce the composition

W(¢) = w(z(C))- (4.3)

The circulations around the two hollow vortices &®€; this means that

$awer=-¢ awor=-r. (@4
I¢l=1 I<l=p

where both¢| = 1 and|(| = p are positively oriented in the anticlockwise direction. As

2z — oo, we require

w(z) = iUz + locally analytic function (4.5)
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Figure 4.2: Schematic of the preimage circular domain in(tidane. The circle&| = 1
and|¢| = p map to the two hollow vortex boundaries under the mgp. The branch cut
joining ¢ = /p and¢ = §3 (the preimages afo™) on [¢| = ,/p is shown by a dashed line.
The preimages of the two stagnation point§@n= ,/p are labelled by = ~; and¢ = 7.
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Apart from this simple pole at infinityp(z) is an analytic function everywhere in the fluid
region exterior to the two hollow vortices. In light ¢f.0), (4.2) and @.5), we require

LU

W(() = 5 log(¢ — ) + locally analytic function ¢ — «, (4.6)
T
and
W(¢) = —gU log(¢ — /3) + locally analytic function ¢ — . (4.7)
T

FunctionW (¢) must also satisfy
Im[IV ()] = constant (4.8)

on both circle§¢| = p and|(| = 1, as well as on the two sides of the branch cut, thereby
ensuring that the two hollow vortex boundaries and the two channel walls are streamlines
of the flow.

By using similar arguments to those presented in Chapter 3 to construct furg&o) (ve
claim that functioniV(¢) is
il’

W(Q) = 5 logC — = logx(Ga 0) (@.9)

where the conformal radial slit mappind(; «, 3) of (2.60, in the present case, is given

by
_ P(¢/a,p)P((a, p)

~ P(¢/B.p)P(CB,p)

Note thaty((; «, 3) has a simple zero gt = «. Straightforward manipulations using the

X(G e, B) (4.10)

relations 2.31) can be used to show thaig|x((; a, 3)] = constant on both(| = 1 and
|C| = p. It can be shown that(¢; «, 5) maps|(| = 1 and|(| = p onto two finite-length
radial slits emanating from the origin in the compleyplane.

Due to the presence of the radial slit mappidglQ) in (4.9), (4.8) is clearly satisfied on

|C| = 1 and|(| = p. It also has the required behavioudsq) and @.7) near( = « and

¢ = (. It changes byl" as either|¢(| = 1 or || = p is traversed in an anticlockwise
sense thereby producing the required circulatighg) (around the hollow vortices. We
may choose = « to be on the positive real axis by the remaining rotational freedom
of the Riemann-Koebe mapping theorem and, in order to enforce the required left-right
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symmetry about the vertical channel centreline, we take

a=./p. (4.11)

Then
B = /pe" (4.12)

wheref € R will need to be determined.

4.3.3 Functioniw/dz

The complex velocity function needs to be analytic and single-valued in the fluid region ex-
terior to the two hollow vortices. Based on the problem of a co-travelling point vortex pair
in an infinite channel (see Appendd), we expect two stagnation pointsiat= +d lying

on the channel centreline = 0; this implies that the preimages of this pair of stagnation
points will lie on|¢| = \/p. Thusdw/dz will have two simple zeroes:

dw dw
E(%) = E(%) = 0. (4.13)

Here, the preimages of the two stagnation points have been labellee-by and( = ,.
As before, Bernoulli's theorem implies that

1 — constant (4.14)
z

on both|¢| = 1 and|{| = p. We also requir@w/dz to be L-periodic across the channel.

Consider the function
dw _ Ry(¢G7)n(¢ )
dz ¢

which has been derived using similar arguments to those presented in Chapter 3. Here,

(4.15)

R € Cis a constant, ang(¢; ) is the bounded circular slit map as i8.89. Note that
this complex velocity functior4.15 has the same functional form as the complex velocity
function (.76 for the hollow vortex street. This function has constant moduluig pa: 1
and|¢| = p, and two simple zeroes gt= ~; and({ = 7», as required. It is analytic and
single-valued irp < [¢| < 1 and so it is invariant as eithér= ,/p or ¢ = (3 is encircled,
and hencd.-periodic across the channel. The reason for the factgimmthe denominator

is the same as that given in Chapter 3 for vaari&an hollow vortex streets.
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The parameter§ = v, and( = v, are two solutions ip < |¢| < 1 of the equation

aw
d_C(O =0, (4.16)
which, on use 0fZ.42 and @.9), can be expressed as

K03/Vp.0) + K(u/5.0) = K(3/5.0) = K(uBp) = 75 j=12 (417)

Since
— — iU, 2z — o0, (4.18)

we must have

Rn(o;yi)n(a;v2) — Rn(B;71)n(5;72)
a B 5]

One of the equations iM(19 can be used to determine the valuelfthe velocity field

= iU. (4.19)

then follows from ¢.19 once a particular choice of branch cut betwegen ,/p and( = 3
is made. This choice of branch cut is discussed later.

4.3.4 Conformal map(¢)

Using similar arguments to those presented in Chapter 3, it is straightforward to show that
the function(1V,(¢) is a loxodromic function. It can be argued that another representation
of (W¢(() is given by

o P(/71,0)P(C1, p) P(C/ 2, p) P((T2: )

B N Y T M

whereB € C is a constant. By free streamline theory, it follows on useldf® and @.20
that

d _ PP (Cp) @.21)
d¢  P(C/\/p, p)P(C\/p, p)P(C/ B, p)P(CB, p)
whereA € C is a constant. Thus, an integral for the conformal mappiidg is
¢ P(¢'1, p)P* (¢, p) :
- A —d(’. 4.22
ORI vy vy

Here,(, € C is an arbitrary point inside the annulys< |¢| < 1. Remarkably, 4.22
shares the same functional form as the conformal 3af8( governing the shapes of the
hollow vortices in a von rman street. The value of the pre-multiplicative constdrih
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(4.22) is founda posterioriby insisting that the residue ot /d¢ at{ = |/p isiL/2m as
required by 4.1). An explicit expression for it is given by

_ i (P(Lp)P(p.p)P(\/p/B. p)P(\/PB, p) (4.23)
2 VPP (/o7 p) P(\/p7a; p) ’ '
where functionP (¢, p) is as in 8.80).
4.3.5 Characterisation of the solutions
We fix
L=T=1. (4.24)

This corresponds to setting one of the length scales of the problem (i.e. the width of the
channel) and the time scale of the motion, respectively. The analogous problem of a pair of
point vortices in an infinite channel admits a one-parameter family of equilibrium solutions
(see AppendiXC); we shall take this parameter to be R, where the centroids of the two
hollow vortices are

T = +e. (4.25)

This corresponds to setting the second length scale of the problem. We additionally expect
to be able to dictate the area of the hollow vortices; this then sets the third length scale of
the problem. As in Chapter 3, a natural way to do this is to specify the valpe@fce all

these parameters have been determined, the translation@pddle hollow vortices will

follow from (4.17):

U= (G(KM/vpp)+ K(ivep) — K(1/8,p) — K(1B.p) " (4.26)

The constant), in the conformal map4.22 reflects a translational degree of freedom
which can be set arbitrarily and the mapping shifted by an appropriate coagtasteriori
We shall now proceed to examine the solution class witmd p as our two free real

parameters.

Our general strategy in finding solutions is to choose a valioe the hollow vortex cen-

troids and then gradually increase the valug ffom zero in a standard continuation pro-
cedure. As in Chapter 3, we will focus on solutions where the hollow vortex pair have
identical shapes and equal areas. Note that this is already intrinsic in our model due to the
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symmetry in the preimagg-plane through the circlg| = /p.

We have found that solutions for two hollow vortices of equal area and identical shape are
given by the special parameter choices:

i i pﬁ (60—
R R ) (4.27)

Figure 4.2 shows the location of these parametet7) in the preimage -plane. With

these parameter choicek27), the images of the circldg| = 1 and|¢| = p under the map
(4.22 are reflections of each other through the vertical channel centreline between them.
For a givernp andc, the two real parameters

0= arg[ﬁ]a ¢ = arg[72]> (428)

remain to be determined. Knowledge of these two real parameters will reveal the shapes of
the hollow vortex boundaries. One condition to determine these parameters is

Re Ml:l 2 (¢ )dg] =0 (4.29)

which is a necessary condition for the image @f= 1 underz(¢) to be a closed curve.
Once @.29 has been satisfied, the symmetry is such that the imagg ef p is also a

closed curve:

Re [ fc » zc(g/)dg/] = 0. (4.30)

With the choice of parameterd.g7), it turns out to be automatic that

i [f s = [ o] -0 (4.:31)

The other condition to be enforced is:

Re MC :pz<<’>|z<<<’>d<’|} / ( 7{( :p|z<<<’>d<'|) e (4.32)

This sets the real part of one of the hollow vortex centroids. Equat®2§)(and @.32
can be readily solved using Newton’s method.

It should be noted that thus far, we have not enforced the streamline conditiénar( the
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Figure 4.3: Superposition of co-travelling hollow vortex pairs in an infinite channel with
centroidsRe[z] = ¢ = 1/16.

channel walls; indeed, we have not even determined the preimages of the channel walls in
the(-plane. We will now show that the channel walls correspond to the image of an arc of
the circle|¢| = /p under the conformal mapping(). It can be shown using the relations
(2.3) that

Im[W(()] = constant (4.33)

on|¢| = \/p. Recall thaty = ,/p and{ = 5 map to the two ends of the channel at infinity.
In light of the left-right symmetry of the configuration in theplane, one arc of the circle
I¢| = /p between( = ,/p and( = (3 will map onto the channel centreline= 0 joining
oo*. (4.33 then immediately implies that the channel centreline- 0 will indeed be a
streamline of the flow, as required. The preimages of the stagnation pQirtsy; and

¢ = 72, will lie on this arc. The second arc of| = /p joining ¢ = \/p and¢ = 3 will be
taken to be our branch cut whose two sides will map to the channel walls (see &igure

It is then automatic from4.33 that the two channel walls will indeed be streamlines of the

flow, as required.

Figures4.3-4.6 show infinite channels of unit width containing co-travelling hollow vortex
pairs of varying areas. In each channel, the hollow vortex centroids are fiketkat= +c,
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Figure 4.4 Superposition of co-travelling hollow vortex pairs in an infinite channel with
centroidsRe[z] = ¢ = 1/8.
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Figure 4.5: Superposition of co-travelling hollow vortex pairs in an infinite channel with
centroidsRe[z] = +¢ = 3/16.
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Figure 4.6: Superposition of co-travelling hollow vortex pairs in an infinite channel with
centroidsRe|z] = +¢ = 1/4. These solutions for = 1/4 correspond to the solutions due
to Michell [77].

for some specified value of We have established that there exist solutions, corresponding
to a distinct shape of hollow vortex, with a unique value of area, for each valye of
One interesting observation to make is that our solutions do not exhibit maximum area
configurations; rather, the area of the hollow vortices appears to increase without bound
asp — 1. This is consistent with the results shown in Figdr8 which shows graphs of
hollow vortex area as a function pf the area of the hollow vortices, for a given value:pf

is a monotonically increasing function pf We also observe that the hollow vortex areas
are smallest when the centroids are closest together, and are largest when the centroids are
equi-distant to the channel centreline and to a channel wall. For small valyestto#
hollow vortices are always found to be small and almost circular. We also remark that the
hollow vortices in Figures 2 and 6 of Zannetti & Lasaghadd look qualitatively the same

as our solutions for similar hollow vortex areas and centroid locations; this is reassuring
given that our mathematical approaches are different.

Pocklington B5] makes the observation that when a pair of co-travelling hollow vortices
in free space are very close together, their boundary shapes are much flatter on their near
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rather than on their remote sides. We observe this phenomenonwheépl6 andc = 1/8

in Figures4.3, when the centroids are close together. These hollow vortex shapes indeed
closely resemble those found by Pocklingt88|[ this is to be expected when the centroids

are close together because the hollow vortices are never close to the channel walls and
should therefore appear qualitatively similar to their free space counterparts. Indeed, our
solutions can be viewed as generalisations of the co-travelling hollow vortex pair due to
Pocklington B5] to the infinite channel geometry.

The case whem = 1/4 is special (Figuret.5). Here, each of the two centroids of the
hollow vortices is equi-distant to both the channel centreline and to one of the channel
walls. Since both the channel centreline and the channel walls are streamlines of the flow,
the hollow vortex shapes in the case when 1/4 are precisely those obtainable from the
solution due to Michell 7] for a single hollow vortex in an infinite channel. It should be
possible to exactly superpose a solution of given area, obtained from the conformal map
in [77], onto one of our solutions with the same area; however, due to a lack of notational
explanation in his paper, we have been unable to do this.

We have also established that both the area and the hollow vortex centroids have an effect
on the speed of translation of the hollow vortex pair along the channel. Fgushows
graphs forc = 1/16,1/8, 3/16 of the ratioU /U, as a function op, whereU,, is the speed

of translation of a pair of point vortices in an infinite channel positiondRicét] = +c:

1
U, = 5 cot(2mc). (4.34)

The graph fore = 1/4 does not feature because the hollow vortex pair is stationary for all
time, in the same way that the single hollow vortex considered by MicFdli$. For each
value ofc, it is clear that

, (4.35)

as expected. For a fixed value af we observe that/ is a monotonically decreasing
function with hollow vortex area; hollow vortex pairs with large areas will translate with

a smaller speed. We also observe that the hollow vortex pairs whose centroids are closest
together move along the channel faster than those whose centroids are spaced further apart.
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Figure 4.7: Graphs, for three different hollow vortex centrolflsz] = +c¢ =

1/16,1/8,3/16, of the ratio of the speed of translation of the hollow vortex paito the
corresponding point vortex spe%dot(%rc) as a function op. As expected, each graph is
tending to unity in the limit ap — 0. WhenRe[z] = £¢ = 1/4, the hollow vortices are
stationary.
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Figure 4.8: Graphs, for four different hollow vortex centroi®e[z] = +c¢ =
1/16,1/8,3/16,1/4, of the area of the hollow vortices as a functionof As p — 1,
the area of the hollow vortices grows without bound.
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>

hollow vortices

Figure 4.9: Schematic showing three periods of lengtsf a row of hollow vortices, each
of circulationI’, in an infinite channel of width in a z-plane. The horizontal channel walls
arelm[z] = +y = A/2. Each of the hollow vortex centroids in this row lie on the channel
centrelinelm|z] = 0. The shapes of the hollow vortex boundaries are to be determined.

4.4 Row of hollow vortices in an infinite channel

We shall now consider the case of a single row of hollow vortices, whose centroids are
aligned along the channel centreline, in an infinite channel. In doing so, we will be con-
sidering generalisations of the works of both Mich&If[and Baker, Saffman & Sheffield

[7]. The reader is referred to Appendixfor an overview of how the mathematical model

we shall develop in the remainder of this chapter can be modified when the centroids of the
hollow vortices are moved off the channel centreline.

4.4.1 Formulation of problem

In a physicalz: = (x + iy)-plane, consider a horizontal parallel-sided channel whose two
ends extend to infinity in both directions® and which has a width. Let the impenetrable
walls of the channel be the horizontal lings= £\ /2 so that the channel centreline is

y = 0. Let the centroids of the hollow vortices be located:at nL, n € 7Z, so thatL be

the period of the configuration i.e. the horizontal length between two neighbouring hollow
vortex centroids on the channel centreline. Let the circulation of each of the hollow vortices
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Figure 4.10: Schematic showing the preimage triply connected bounded circular domain
D, in the ¢-plane. Under the conformal mayi(¢), the unit circleCy is taken to map to

the hollow vortex boundary and the two interior circlésandC, are taken respectively to
map to the top and bottom horizontal channel walls of the period window. The branch cut
joining the centres of’; andC’, is shown as a dashed line. The two sides of this branch cut
lying in the interior of D, map to the two vertical edges of the period cell.

in the row bel’. These hollow vortices in the row are expected to remain in equilibrium.
Given this periodic structure, it suffices to consider a single period cell of the configuration:
this cell contains one hollow vortex of finite-area with circulatigrand has the dimensions

L x \. Figure4.9illustrates this arrangement.

Let D, be the following triply connected bounded circular domain in a paramg{plene.

Let the unit¢-circle be labelled’y. Take the unit-disc and from it excise two smaller discs
whose boundaries are the circlés andCs,. Let the centre of’;, be —§ and let the centre

of C; be+49, wherej € R. Owing to the up-down symmetry of the period cell about the
channel centreline, let the radius of bath andC, be ¢q. Figure4.10shows a schematic
of D.. In choosing this preimage domain., we have used up the three real degrees
of freedom associated with the Riemann-Koebe mapping theoremw(Le} denote the
Schottky-Klein prime function associated withy.

Consider a conformal mapping() taking the interior ofD, to a single period cell of the
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hollow vortex row in the channel. Our task is to determine the shape of the boundary of the
hollow vortex in this period cell. Let the unit circtg, be mapped onto the boundary of the
hollow vortex in the period cell, and let the interior circlés andC, be mapped onto the

top and bottom channel walls of the period cell. Note that traverSinig an anticlockwise
sense corresponds to traversing the boundary of the hollow vortex in a clockwise sense.

In order to capture the periodic structure of the row of hollow vortices in the channel, and
uniquely define the conformal mag(), we must make a choice of branch cutiiy. Since

C; and(C; map to the two channel walls of the period cell, the branch cut must link these
two circles. The two sides of this branch cut, lying in the interiofpf will map to the

two straight vertical edges of the period cell of heightA 27 traversal of eithe€’; or Cs
corresponds to moving a distanEelong a channel wall; encircling,; or C; by more than

27 corresponds to moving a distanéealong the wall and into the neighbouring period
cell. In light of this, it is natural to take the branch cut along the real axis through the
origin, joining the centres af;, andC; between{ = —§ and{ = 6.

Rosenheadd2] has analysed von &man point vortex streets in an infinite channel. From
Rosenhead’s work, we are led to expect two stagnation points lying on the vertical edges
of each of our period cells. Moreover, we expect both these stagnation points to lie on the
channel centreline. In light of this, we expect the same pointinlying on the branch cut,

to map to both stagnation points. Let the preimag®irof these two stagnation points be
labelled¢ = v € R. For hollow vortices whose centroids lie on the channel centreline, it is
clear from the symmetry that= 0 (see Figuret.10).

4.4.2 FunctionV (¢)

Let the complex potential for the flow associated with the hollow vortex row in the channel
be denoted byv(z). We need the total circulation in the period cell tolhe

j{ dw(z)] =T. (4.36)
oD

Here, we denotéD by the boundary of the period cell, i.e. the two horizontal walls and
the two vertical edges, and is positively oriented in the anticlockwise direction. Introducing
the composition

W(¢) = w(z(¢)), (4.37)
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we see that in thé-plane, the integral4(.36) is

¢ AW ()] =T. (4.38)
01UB+UCQUB_

Here,B* denotes the top-side of the branch cut lying in the interiaDgind B~ denotes
the under-side. There is a net zero contribution to this integral as both sides of the branch
cut are traversed: this is due to cancellation owing to the opposite directions of integration.
This is reflected by the fact that the fluid velocity is equal on the two vertical edges of the
period cell; indeed, the fluid velocity i5-periodic in thez-direction. Consequently, the
non-zero contribution to the integral iA.38 must come from integrating arourdd and
Cs: recall the ‘a-cycle’ properties of the(¢) functions @.7) which allow us to fulfil this
requirement. We also require the two channel walls and the hollow vortex boundary to be
streamlines:

Im[W(¢)] = constant (4.39)

forC c C(),Cl, Cs.

We propose the following function for the complex potential:

W(C) = & () + va(0)). (4.40)

Given the up-down symmetry of the period cell about the channel centreline, we would
expect an equal contribution to the total circulation in the period cell along the two channel
walls; this explains the pre-multiplying constdnt2. It follows from the ‘a-cycle’ proper-

ties of thev; (¢) functions @.7) that @.40 indeed satisfiesi(38). From the propertie2(8)

and .9, (4.40 is easily seen to have constant imaginary part on each of the boundary
circles of D.. Taking a derivative 0f4.40 with respect ta yields

aw r

O =5 010 +15(0). (4.41)

Here, v}(¢) means the derivative of;(¢) with respect ta]. (4.41) is required to have a
simple zero at = 0. Let us show that this is in fact the case. The ‘a-cycle’ properties of
thev;(¢) functions @.7) imply that

1

v;(C) = 5 log(¢ — 0,) + locally analytic function j =1,..., M. (4.42)
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Differentiating @.42 with respect ta; implies

/

1 1
Uj(C) = %C_éj

+ ¢; + locally analytic function j =1,..., M, (4.43)

wherec; € C are constants. In the present case, we ldave — andd, = . Note that as
¢ — 0, it follows from (4.43 that

1 . .
v1(¢) = 5 T ¢ + locally analytic function (4.44)
et
and
1 . .
vy(¢) = 55 + 2 + locally analytic function (4.45)
Tl
wherec;, ¢, € C are constants. But, given the symmetry/af, it turns out that; = —c;.

Thus, the simple zero @fiV’/d( at{ = 0 is intrinsic in @.41).

4.4.3 Functionlw/dz

Bernoulli's theorem implies that the fluid speed must be constant on the boundary of the

hollow vortex:

dw

@(C)’ =Qo, ¢ €y (4.46)

Here,y € R is a positive constant. The fluid velocity— iv on the two channel walls
must be purely tangential to the walls; that is, the fluid velocity is purely real on the two
channel walls:

dw

b= —Tm [5@] 0, Ce0Ch (4.47)

We neediw/dz to have a simple zero gt= 0 in order to include the two stagnation points:

dw
E(O) =0. (4.48)

We also requirelw/dz to be L-periodic in thex-direction.

In order to construct the complex velocity function, we appeal to a special class of confor-
mal mappings known as polycircular arc mappings. The target domains of these maps are
multiply connected regions whose boundaries consist of a union of circular arc segments.
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Consider the following polycircular arc mapping:

UJ(C, _1) — RW(C, 1)
w(¢,—1)+ Rw(¢, 1)’

S(GR) = (4.49)

whereR € Cis aconstant to be determined shortly. This conformal map can be constructed
through the following composition:

S(G R) = S:(Si1(¢ R)), (4.50)
where
SUGR) = REGL 1), S0 = ¢, (451)
and¢(¢; 1, —1) is the radial slit mapping of(62):
¢, -1) = we) (4.52)

FunctionS((; R) mapsCy to the unitS-circle with C; andCs; mapping to two finite-length
horizontal slits lying on the real axis. Figu4el1shows a schematic of this triply connected
polycircular domain. Figurd.12shows a schematic of the sequence of conformal maps
(4.51) required to map,, as in Figure4.1Q, to the polycircular arc domain as in Figure
4.11

We claim that the complex velocity function is

dw

= QuS(GR) (4.53)
with functionS(¢; R) as in @.49. Note that the conditiong}(47) are automatically satis-
fied by this function 4.53 given the nature of the image @f. under the polycircular arc
mapping 4.49, i.e. the triply connected polycircular arc domain shown in Figdel
The condition 4.46 is clearly satisfied. Notice that this mappirgg3 has a simple zero

at¢ = 0 if we choose
~ w(0,-1)

R=2>2> "7
w(0,1) ’
thus satisfying4.48. Function @.53 is also analytic and single-valued everywhere in the

(4.54)

interior of D, and hencelw/dz is L-periodic across the period cell.
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Figure 4.11: Schematic showing the imageaf under the polycircular arc mapping
S(¢; R) given in (4.49). Under this mag}, is mapped onto the unit-circle whilst;
andC, are mapped onto two finite-length horizontal slits on the real axis. The nature of
this polycircular arc domain is vital to the constructiondaf/d=.

5,0

Sl(Cz) Sl(C 1)

S,(C)

5,0)

S,(S,(CY)

Figure 4.12: Schematic showing the sequence of conformal mappings (4.51) for the con-
struction of an analytical expression for the triply connected polycircular arc domain shown

in Figure4.11
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4.4.4 Conformal map(¢)

By free streamline theory, the conformal map determining the shape of the boundary of the
hollow vortex in a typical period window, with centroid on the channel centreline, is given

T () +va(¢)

where(, € C is an arbitrary point in the interior ab..

through the integral

4.4.5 Characterisation of the solutions

Let us set one of the length scales of the problem, and the time scale of the motion, by
fixing

L=T=1. (4.56)
Let us define the aspect ratio of the period cell tofbe= \/L so that, with, = 1, the

aspect ratio of the period cell is
R =\ (4.57)

We expect to be able to fix this aspect ratio of the period cell; this sets the second length
scale of the problem. As usual, the constgnin the conformal map4.55 reflects a
translational degree of freedom which can be set arbitrarily and the mapping shifted by an
appropriate constamtposteriori The complex potential of Rosenhe&a2] for the unstag-
gered von Karman point vortex street in a channel is determined by two parameters related
to the horizontal distance between consecutive point vortices and their vertical spacing,
once the channel width has been fixed. For us, this is equivalent to specifyamgl ).

The area associated with the hollow vortex can be assigned through the pargntiaiter

sets the third length scale of the problem. We shall now proceed to examine the solution
class withg as our only free parameter. This leaves just one real parameter, nanely

be found in order to determine the shape of the hollow vortex boundary in a typical period
cell of the row.

Our general strategy in finding solutions is to choose a value of the aspect eattbthen
gradually vary the value af in a standard continuation procedure, solving for the value
of ¢ in each case. Recall the preimage circular doniairin the ¢-plane. The centres of

C; andC, are+6 € R, and their radii are both. We can choose this value g@fa priori;

this is analogous to fixing the area of the hollow vortex. We are then left with just the real
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parametep to determine. This is done by enforcing the single real condition prescribing
the aspect ratio of the period cell:

R=<[LMﬂwﬂ%/(amwmﬂ. (4.58)

Owing to the up-down symmetry of the period cell about the channel centreline, the con-
formal map turns out to automatically be single-valued. It was checked that the image of
Cy underz(() is indeed a closed curve:

f zc(¢")d¢ = 0. (4.59)
Co

From the value of found by solving 4.58, we can calculate the length,(say), of one of
the channel walls:

Lzﬁﬁq@mm. (4.60)

Then we can find the value of the pre-multiplicative constandifg) a posteriori this can
be thought of as a rescaling parameter in order to fulfil our requiremenit that:

r 1
— = . 4.61
2Q0 L (4.61)
For a given area of the hollow vortex, we find that for any given channel wigdthere are
two different sets of values éfandq defining the preimage domain.. Both of these two
sets of conformal moduli correspond to hollow vortices exhibiting two different shapes, but

with the same area.

Figure4.13shows three period cells making up infinite channels with widths 0.28,

0.375 and0.5. In each period cell is a superposition of typical hollow vortex members,
of different areas, forming part of the row in the channel. For each channel width, we
observe that the hollow vortices vary in shape between one which is almost circular to one
with long flattened faces along the two regions of their boundary which are closest to the
channel walls. It is reassuring to observe that the hollow vortex shapes closely resemble
those in free space (obtained either using the conformal B\.&p)(presented in Chapter

3, or using the solution in7]) when the width of the channel becomes large; such hollow
vortices are shown in Figure15for A = 1. All of these aforementioned observations are
consistent with the behaviour of the graphs shown in Figuté (to be discussed shortly).
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Figure 4.13: Superposition of typical members of the hollow vortex row in an infinite
channel, of varying area, for three different channel widths= 0.28 [top], A = 0.375
[centre] and\ = 0.5 [bottom]. Three periods (of unit length = 1) of the row are shown.
For each), there is a hollow vortex with some maximum area.
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A=0.5
A=0.375

- O O

Figure 4.14: Three plots, for channel widths= 0.25 (left), A = 0.375 (centre) and

A = 0.5 (right), of typical hollow vortex members in a row, of area 0.027. Superposed for
comparison is a Baker, Saffman & Sheffield [7] hollow vortex in free space also of area
0.027; these are shown as dashed lines. As the channel widens, our solutions tend towards
the free space shapes.

Although not immediately apparent in Figu#43and4.15 the graphs in Figuré.16also

confirm that there exists a unique hollow vortex shape of some maximum area for a given
channel width. Figurd.14compares one shape of hollow vortex, all of the same area, in
three different channels with widths= 0.25,0.375,0.5. The free space hollow vortex is
superposed on each. Itis seen that there is a noticeable difference in shape compared with
the free space hollow vortex for small channel widths; 0.375, but when\ ~ 0.5, the

hollow vortex shapes assume essentially the same shapes as in free space. Our solutions
can be viewed as the generalisation of the free space hollow vortex row solutions due to
Baker, Saffman & Sheffield7] to the case of an infinite channel of finite width, and are also

the singly periodic generalisations of the Michél] hollow vortex in an infinite channel.

Figure4.16shows graphs, each corresponding to a different channel wjdththe hollow
vortex perimeterP as a function of inverse separation between the hollow vortex cen-
troids, each rescalled by the square root of the hollow vortex are@oth of these quan-
tities P/A'/? and A'/? /L (with L = 1) are dimensionless. Figure 3 in Baker, Saffman &
Sheffield [7] shows a graph of the same quantities for the single row of hollow vortices in
free space: this is shown in Figu4el6by a dashed line. One observation to make is that
for each channel width, there is a maximum value of'/? that can be attained, and this
occurs at a unique value @f/A'/2. As \ is reduced, this maximum value df'/? is also
reduced, but the unique value Bf A'/? for which this is attained increases. Por= 1, the
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Figure 4.15: Superposition of typical members of the hollow vortex row, of varying areas,

in an infinite channel of widthh = 1. Three periods (of unit length = 1) of the row are
shown. These hollow vortices essentially share the same shapes as hollow vortices in a row
in free space.

maximumA'/? ~ 0.375 and this is very close to value for a single row of hollow vortices
in free space which ist!/? ~ 0.38 as reported by Baker, Saffman & Sheffield:| this
was expected sinck = 1 corresponds to a wide channel. Por= 0.375, the maximum
A2 2 0.33, and for\ = 0.28, the maximumA'/2 ~ 0.3.

We observe that each of the graphs turn around on themselves implying non-uniqueness
of the solutions for a given value of the ardaand channel width\; that is to say, for a

given aread and channel width\, there will be two possible hollow vortex shapes with

the same area. There will exist two possible shapes provided the vallié?a§ less than

the maximum possible value; there do not exist any solutions for a given channelbwidth

if one specifies an area greater than this permissible maximum. For a fixed area not close
to the maximum, it appears that the hollow vortex with the higher value/af'/? exhibits

a boundary shape with two elongated faces, whilst the hollow vortex with the lower value
of P/A'/? appears to exhibit a quasi-elliptical or quasi-circular shape. For each channel
width )\, the graphs each tend towards the free space graph whén— 0 and when
P/AY? — co. WhenA'/2 — 0, the hollow vortices are tending towards their point vortex
counterparts by assuming near circular shapes of small area. QuAntity? has the
minimum value2,/7 for circles and each graph tends precisely to this valué'as — 0.
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Figure 4.16: Graphs, for seven different channel width®f the quantityP/A'/? as a
function of A'/2/L (with L = 1 fixed). Here,A and P denote the perimeter and area of the
hollow vortex, respectively, anfl denotes the separation between hollow vortex centroids.
The corresponding graph for a single row of hollow vortices in free space is shown by the
dashed line.
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As P/A'Y? — oo, the graphs will eventually intersect the vertical axis at infinity; this again
corresponds to zero area solutions. The nature of these limiting shapes is of particular
interest. As reported in Baker, Saffman & Sheffiefd, [as P/A'/? — oo in free space,

the result is a vortex sheet of constant strength. Our results seem to suggest that the same
phenomenon occurs in channels; that is, for any channel widtls expected that a vortex

sheet of constant strength will form along the channel centreline as the hollow vortex area
shrinks to zero from its maximum value (i.e. a hollow vortex, in each period cell, of zero
area).

It is important to note that the vertical axis in Figutd.6 has been deliberately truncated

at P/A'/? = 6.5 since beyond this point, for all the solution branches, accurate computa-
tion of the Schottky-Klein prime function becomes very difficult; this is because the inner
circlesC; and(, of the preimage circular domain become close to the unit ctrgleand

such domains pertain to the hollow vortices which are very close to one another at an edge
between two neighbouring period windows. Also, for channel widths 0.28, the radii

of C, andC, become rather large, and again, accurate computation of the Schottky-Klein
prime function is known to become more challenging. Consequently, we stopped reducing
the size of the channel widths at= 0.28. All the solution branches in Figue16were
terminated when convergence of the Newton iteration became hard to achieve. The shapes
of all our computed hollow vortices do not exhibit any singularities, and all are univalent.

Finally, it is worth describing how the preimage circular dom&inchanges as the hollow
vortex shapes vary in qualitative appearance, for a given channel idthe inner circles
C, and(Cs are initially centred in the vicinity of the origin with small radii; these domains
correspond to small circular hollow vortices; andC’, then gradually increase in radii and
move apart until a maximum radigss reached at some valuedfthis domain corresponds
to the quasi-elliptical hollow vortices (note that this maximum ragidees not correspond
to the maximum area hollow vortex);; andC, continue moving apart, but with their radii
now decreasing, until they get very close to the unit cif¢jethese domains correspond to
the hollow vortices impinging on their neighbours.

4.5 Summary

We have found closed-form analytical solutions for two types of free boundary problem
involving hollow vortex configurations, and sharing the common feature that they are both
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set is an infinite channel with straight, parallel-sided, impenetrable walls. We determined
the free boundary shapes for a hollow vortex pair and for a single row of hollow vortices
in an infinite channel. Incorporating the channel walls into the mathematical model (which
are not themselves free boundaries) in addition to the free boundaries of the hollow vor-
tices, required a delicate consideration of how the boundary conditions were to be enforced.
As in Chapter 3, we used ideas from free streamline and conformal mapping theory which
again proved to be advantageous. We also used our branch cut technigue to assist in con-
structing the desired conformal mappings. Our analytical solutions for the single row of
hollow vortices in an infinite channel appear to be the first of their kind whilst our analytical
solutions for the co-travelling hollow vortex pair in an infinite channel complement those
analytical solutions found recently by Zannetti & Lasagh2{.

In the case of the hollow vortex pair in an infinite channel, we constructed a conformal
mapping from the interior of a concentric annulus to the fluid region exterior of the hollow
vortex pair with some choice of branch cut mapping to the two channel walls. We found
that the integral 4.55 for this conformal map shares an integrand with the same func-
tional form as that found in the integrd.78 governing the hollow vortex shapes in a von
Karman street. The use of both radial and circular conformal slit maps proved to be crucial.
We determined that there exist solutions, each corresponding to a distinct shape of hollow
vortex, with an infinite continuum of possible areas; that is to say, the hollow vortices can
have their areas ‘grown’ without bound. We established that both the area and the relative
position of the pair to the channel side walls has an effect on the speed of translation in
the channel. Connections with two classical works were also made. Our solutions can be
considered as generalisations to the infinite channel geometry of the solutions due to Pock-
lington [85]. When the centroids of the hollow vortex pair were equi-distant to themselves
and the channel walls, we obtained the stationary solutions due to Micfigll |

To determine the boundary shapes for hollow vortices arranged in a single row in an infinite
channel, we restricted attention to a period cell containing a typical member of the row, with
centroid on the channel centreline, and incorporated the periodic nature of the problem by
introducing a branch cut in the preimage circular domain whose two sides were required
to map to the vertical edges of the cell. We found a concise formula for the conformal
map as an explicit indefinite integral to the interior of this period cell from a particular
triply connected bounded circular domain. In devising this conformal map, we made use
of the integrals of the first kina,(¢) associated with the preimage circular domain and
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a special choice of polycircular arc map. Our solutions are natural generalisations to an
infinite channel of the hollow vortex row solutions in free space due to Baker, Saffman &
Sheffield [7]; our solutions are also the singly periodic generalisations of the single hollow
vortex in an infinite channel due to MichellT]. Three interesting discoveries were made

for a given channel width: there exist two possible hollow vortex shapes for a given value
of area, there exists a boundary shape with a maximum obtainable area, and the formation
of a vortex sheet of constant strength is theoretically possible as the maximum area shape
is deformed to zero area in a particular limit. Our approach to the single row in an infinite
channel can be readily generalised to the case where the centroids of the hollow vortices
are not aligned on the channel centreline (see AppeDylix
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Chapter 5

Foppl hollow vortex pair behind a

circular cylinder

5.1 Introduction and background

In this chapter, we will desingularise another point vortex equilibrium: tiyepFvortex

pair behind a circular cylinder. We will consider a pair of up-down symmetric hollow vor-
tices, of equal and opposite circulation, positioned behind a circular cylinder of unit radius
superposed with a steady uniform flow. As in Chapters 3 and 4, our aim is to solve for the
free boundary shapes of the hollow vortices. Rather than find explicit analytical solutions,
we will instead devise a hybrid analytical-numerical method to solve this free boundary
problem. More specifically, by employing the ‘new calculus’ of Crowiil¥, [22] for ideal

fluid mechanics in multiply connected geometries, we can write down an analytical for-
mula for the complex potential; if we then express the conformal mapping determining
the hollow vortex boundary shapes in terms of a Fourier-Laurent series expansion, the free
boundary problem is reduced to a finite-set of non-linear equations to be solved numeri-

cally.

The topic of flow around a circular cylinder is a classical one and a problem of fundamental
importance in fluid dynamics owing to the fact that, at a moderate Reynolds number, sta-
tionary counter-rotating vortical eddies form in the wake of the cylinder which, when the
symmetry about the flow centreline is lost at a higher Reynolds number, can evolve into a
von Karman vortex street. To gain insight into this vortex shedding phenomenon behind
a cylinder, it is expedient to first study a simplified model of this system using a pair of
point vortices of equal and opposite circulation placed behind the circular cylinder within
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a uniform stream of ideal fluid with an up-down symmetry about the flow centreline: this
flow is a potential flow and the configuration is known as @gpl system’ or ‘©ppl equi-
librium’ owing to the first study of this system byoppl in 1913 A6]. He found that the
point vortices lie on particular curves when in equilibrium with the cylinder (these curves
now go by the name of ‘&ppl curves’), and that the position and circulation of the point
vortices are related by two simple algebraic expressions (see AppEhdis indicated

by Foppl [4€], this simplified point vortex model agrees with observations of the locations
of the centroids of the vortical eddies as seen in experiments. The review by R&@tas [
makes further references to thégpl system in a variety of different contexts.

In this chapter, we will solely focus on desingularisingpipl equilibria with the two vor-

tices positioned strictly behind the circular cylinder. One reason for this choice is that this
configuration is likely to be the most physically relevant scenario in applications and is
also most likely to occur in nature. A second reason for this choice is related to the is-
sue of stability. Bppl [46] found that this class of point vortex equilibria is stable against
symmetric perturbations with respect to the flow centreline. Moreover, Elcrat, Fornberg &
Miller [42] found that when the &ppl equilibrium is desingularised by finite-area vortex
patches of constant vorticity that the system shares the same stability properties as the as-
sociated point vortex system. In light of this, it seems reasonable to hypothesise that our
hollow vortex desingularisations, when positioned strictly behind the cylinder, should also
be stable with respect to such symmetric perturbations about the flow centreline.

Recently, Vasconcelos, Moura & Schak&lLB have reappraised thedppl point vortex
system from the point of view of Hamiltonian dynamics and have discovered some novel
and interesting dynamical features of the configuration. They have presented the phase por-
trait of the governing Hamiltonian for a pair of point vortices moving symmetrically with
respect to the flow centreline, and discovered the existence of a nilpotent saddle point at
infinity whose homoclinic orbits throw further light on the non-linear stability of the b
equilibria. The Bppl point vortex model has also fuelled various other studies, including
the investigation of the control of vortex shedding (Pro&s; 88]), the modelling of sym-
metrical wakes behind slender bodies using equilibria consisting of multiple point vortices
(Weihs & Boasson23), and the determination of point vortex equilibrium conditions in
flows past bluff bodies with arbitrary shapes (Zanndt#{]).

The Foppl point vortex system has already been desingularised using vortex patches. In-
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deed, Elcrat et al44] have undertaken a comprehensive numerical investigation into the
desingularised &ppl system using the vortex patch model. They demonstrated the exis-
tence of continuous families of finite-area vortex patches of constant vorticity in equilib-
rium behind a circular cylinder. Furthermore, they were able to show that solutions exist
for vortex patches which are close-to-touching with the circular cylinder; in particular, they
found that as the area of the vortex patch is increased, it eventually attains a maximum
area shape which is bounded by the cylinder. Subsequently, P&83dsafs constructed a
two-parameter family of ‘higher-orderdppl systems’; Protas has described these as gener-
alisations of the Bppl point vortex system which approximate the velocity field for a given
flow of the type considered by Elcrat et d#].

There have been two recent studies involving hollow vortices in the wakes of obstacles.
Elcrat & Zannetti 1] have very recently examined hollow vortices in the wake of a plate
normal to an oncoming uniform flow. Of most interest to us is the study by Telib & Zannetti
[117. They have presented solutions, obtained using a combination of conformal mapping
techniques and elliptic function theory, describing hollow vortex equilibria in the wakes
behind ‘bumps’ of various shapes on an infinite horizontal wall; in particular, they found a
continuous family of hollow vortex solutions in the wake of a semi-circular bump i.e. hol-
low vortex desingularisations of theéppl system in the upper-half plane. Like ours, the
approach of Telib & Zannettil[lZ] can also be described as a hybrid analytical-numerical
method and, even though our mathematical approaches are different, several similar theo-
retical threads appear to run through both our work and theirs. Owing to the solutions of
Telib & Zannetti [L12], the solutions we present in this chapter are therefore not the first
desingularisations of thedppl point vortex pair using the hollow vortex model. Never-
theless, our approach is valuable since it has a large analytical component, is conceptually
straightforward to understand, and pertains entirely to hollow vortex equilibria behind a
circular cylinder. It is also fair to say that Telib & Zannetfi]]Z did not devote much

of their study to the Bppl desingularisation, presenting only one family of hollow vortex
solutions (for some circulation value) in this particular case. We will recover this family

of solutions featuring in]12), and present three other families, and therefore build on the
contribution of Telib & Zannetti117].

When devising the complex potential for the pair of hollow vortices in a uniform flow be-
hind a circular cylinder, we will adhere to the work of Crowdy] 22] who has found gen-
eralised analytical expressions for the complex potentials, in terms of the Schottky-Klein
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prime function, describing various inviscid flows in multiply connected geometries. In-
deed, the hollow vortex configuration of interest in this chapter can equivalently be viewed
as a uniform flow past three arbitrary obstacles with circulation, and thus naturally lends
itself to the analytical treatment of Crowd$4, 22]. This new calculus due to Crowdy is
expected to arise in the modelling of many exciting future applications. One such example
is the recent interesting study by Subhash Reddy, Muddada & Pati@ik [They have
examined the uniform flow past a circular cylinder in the presence of two small counter-
rotating circular control cylinders. By employing the analytical results of Crowdy, they
used a Bppl model to establish the optimum position and circulation strength of the two
counter-rotating control cylinders in order to suppress vortex formation behind the cylinder.

5.2 Formulation of problem

Consider a circular cylinder of unit radius, centred at the origindrpéane, surrounded by
inviscid, incompressible, irrotational fluid. The boundary of the circular cylinder 1

is assumed to be solid and impenetrable. Suppose there is a uniform flow of (peed
translating left-to-right, parallel to the real axis. Suppose there are two hollow vortices,
positioned strictly behind the circular cylinder, of equal and opposite circulation; let the
hollow vortex in the upper-half plane have circulatiei’ (I' > 0) and let the hollow
vortex in the lower-half plane have circulatibnh We assume that the hollow vortices are

in equilibrium, and are up-down symmetric about the flow centreline. Figurshows a
schematic of this configuration.

Let D, be the following triply connected circular domain in a parametrlane. Take the

unit {-disc and from it excise two smaller discs whose boundaries are the cifcieslCs.

Let the unit(-circle be labelled”,, let C; label the circlé(| = p and letC, label the circle

with centred € R, 6 > 0, and radius;. In choosing this preimage domain., we have

used up the three real degrees of freedom associated with the Riemann-Koebe mapping
theorem. Letu(-, -) denote the Schottky-Klein prime function associated viith

Consider a conformal mapping() taking the interior ofD, to the exterior of the circular
cylinder|z| = 1 and the pair of hollow vortices. We wish to determine the shape of the
boundaries of the two hollow vortices. L&t andC; map to the two hollow vortices, with

Cy mapping to the hollow vortex in the upper-half plane a&\dmapping to the hollow
vortex in the lower-half plane. L&t; map to the boundary of the circular cylinder. In light
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uniform flow of speed U hollow vortex
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Figure 5.1: Schematic of the physical configuration in th@ane. A pair of hollow vor-

tices, whose free boundary shapes are to be determined, are positioned behind the circular
cylinder|z| = 1 within a uniform flow of speed’. The hollow vortices are in equilibrium

with the cylinder, and are up-down symmetric about the flow centreline (the real axis).
The hollow vortex in the upper-half plane has circulatiehi and the hollow vortex in the
lower-half plane has circulation.
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of the up-down symmetry in the-plane, the arc of the circlg| = /p lying in the interior

of D, will map to the real line through the point at infinity. Note that the interiopf
such that,/p < |[¢| < 1 maps into the upper-half-plane whilst the interior oD, such
thatp < [(| < /p maps into the lower-half-plane; thus, the up-down symmetry of the
configuration is intrinsic in the definition af (). There will be some poinf = 3 = \/ﬁeia
mapping to infinity. This implies that

2(¢) = ﬁ + locally analytic function (¢ — £, (5.1)
wherea € C. At all other points inD, the mapz(¢) is analytic. Figures.2 shows a
schematic of the preimage domdin.

We will now devise a hybrid analytical-numerical method, in a similar spirit to Telib &
Zannetti 117, to solve our free boundary problem. We will first construct an analytical
expression for the complex potenti&l(¢) using the work of Crowdy14, 22]. We will then

write a Fourier-Laurent expansion for the conformal mappif@ governing the hollow
vortex boundary shapes whose coefficients, in addition to some other parameters, will need
to be determined numerically.

5.3 FunctionWW ()

Let us first construct an analytical expression for the complex potential fungtigf).
The complex potentiab(z) in the z-plane is related to the complex potenti#l(() in the
(-plane through the composition

W(¢) = w(z(¢))- (5.2)
We opt to formiV (() as the sum of two auxiliary functions, i.e.
W(¢) = Wi(¢) + Wa(C), (5.3)

whereW;(¢) is the complex potential for the uniform flow at infinity, amih(¢) is the
complex potential associated with the pair of hollow vortices. Owing to the fact that the
circular cylinder and the hollow vortex boundaries are streamlines, we require

Im[W(¢)] = constant ¢ € Cy, Cy, Cs. (5.4)
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Figure 5.2: The preimage bounded triply connected circular dofmain the(-plane. Let
Cy denote¢| = 1, let C, denote|¢| = p, and letC, denote|¢ — | = ¢. The circle’;, and

(', are mapped by(¢) onto the two hollow vortices. The interior ciral@, is mapped onto
the circular cylinder. The arc of the circlg| = ,/p lying in the interior of D, is mapped
onto the real axis. The poigt= 3 lying on (| = /p is mapped to infinity.
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To ensure that the hollow vortices have the correct circulations around them, and that there

is zero circulation around the circular cylinder, we must also have

§AWEQI=-T. § AWOI=T, § dWOI=0. (5.5)

where all three boundary circles are positively oriented in the anticlockwise direction.

5.3.1 FunctiorG(¢; «)

An important function to be used in the proceeding analysis is

e (s
G0 = =38 (e ) 50

wherea = o, +ia, € Cis some point lying in the interior ab.. FunctionG, (¢, «) is
the complex potential for a point vortex of circulaties1 in a multiply connected domain
(Crowdy [14, 22]). FunctionGy (¢, «) is also the analytic extension of the modified Green’s
function for Laplace’s equation iV, (Crowdy & Marshall B2]). FunctionGy((, o) is
analytic everywhere i), except for a logarithmic singularity gt = «. It has constant
imaginary part on each of the boundary circled®f this is easily realised on noting that

i
Go(G ) = —5—logn(G a), (5.7)
m
wheren((; «) is the bounded circular slit mapping &.63.

Crowdy [14] used the functiort,((; «) to derive the complex potential for a uniform flow
past multiple obstacles by taking parametric derivative&¢f(; ) i.e. derivatives with
respect to its second argument. Note that

0Go(Ga) _ (0 0\
o,  \Oa Oa Gol6;e) 58
and (¢ a)
0Go(Ga) (O D .
We have '
0Go _ 1 1 + locally analytic function ¢ — a, (5.10)

87_%(—&



5.3 Function W () 116

and so it follows from %.8) and 6.9) that

27T0G0 - + locally analytic function (¢ — «a, (5.11)
oa, (—«
and
1 . .
— 27T6G0 = —— + locally analytic function ( — «a, (5.12)
ooy (—a

i.e. both these quantities have simple pole singularitigs-atv. Since bottbG/da, and
0G,/0ay, are partial derivatives taken with respect to real quantities, we have that

Im gGO = constant ( € Cy, (4, Cy, (5.13)
Qg |
and -
0Gy
Im = constant (¢ € Cy, (4, Ch. (5.14)
| Oay |

We are now in a position to construct, in turn, the two auxiliary functiéfi&l) andiVs(¢).
Recall thati?/; (¢) is the complex potential for the uniform flow at infinity, afid,(¢) is the
complex potential associated with the pair of hollow vortices.

5.3.2 Functiori?;(¢)

We have a uniform flow parallel to the real axis. This means that
w(z) = Uz + locally analytic function z — oc. (5.15)
It follows from (5.1) that we require

W(¢) = gU_—aﬁ + locally analytic function ¢ — g. (5.16)

Consider, thus, the function

0G

Qy

Wi(() = UA, <—27T

)WAy (% ) 517)
a=p 00z |omp

or, equivalently,

Wi(¢) = —2miU (a%

a=p3

) , (5.18)
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where
a= A, +i4A,. (5.19)

Note thati¥;(¢) in (5.18 has the correct behavious.(L6) as¢ — (3, and is such that
Im[W;(¢)] = constant ¢ € Cy, Cy, Cs, (5.20)

as required. Note also thélt; (¢) in (5.18 is single-valued when &r traversal is made
around each of the boundary circles (as can be seen from the behatiddya(d 6.12);
this immediately implies

;{J Q) - 72 W) - 74 AWA(C)] = 0, (5.21)

Co

That is, functioni?; (¢) puts zero circulation around the hollow vortices and zero circula-
tion around the circular cylinder.

5.3.3 Functiori?,(()

We need to add circulation around the hollow vortices and ensure that their boundaries are
streamlines of the flow. The hollow vortex whose preimag€jsas circulation-I" and

the hollow vortex whose preimage @, has circulation” (with I' > 0). Consider the
function

Wy (¢) = T'wi(C). (5.22)

It is immediate that
Im[W,(¢)] = constant ¢ € Cy, Cy, Cs, (5.23)

owing to the propertie2(8) and @.9). From the &-cycle’ properties of the,;(¢) functions
(2.7), we have

$ daml=1. § awaor-o. (5.24)

as required, wher€’; and (5 are positively oriented in the anticlockwise direction. We
also have

;{J AW(Q) = T, (5.25)

where the integral is positively oriented in the anticlockwise direction arduds re-
quired. To evaluate this integrab.5), consider integrating along the contour shown in
Figure5.3. We makev,({) a single-valued function itD. by introducing a branch cut
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Figure 5.3: Contour to evaluate the integral (5.25) aratind

along the negative real axis joinifigandoo. It is then apparent, using 24), that
$ w0l == (§ +§ ) dwol=-r. (5.26)
Co Ca 1

5.3.4 Function¥V (¢)

Adding (6.18 and 6.22), we conclude that the complex potential function is

0G

“ oo

_0Gy
_ =20

W(() = —2miU ( 5o

) +Tu(0). (5.27)

a=p a=3

5.4 FunctionW,(¢)

In taking the derivative ofV/ () with respect ta(, it is required to evaluate the following
mixed second-order derivatives of functiof(¢; «):

2 2
Go g ¢ Gﬂ.
0C0x 0Coa

(5.28)
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To evaluate these, we must use the infinite product form of the Schottky-Klein prime func-
tion (2.3). From 6.6), we have

oGy iI' (1 Ow((,a)/0a
Ba 2r (% T uGa) ) 5:29)
e e 0, 1/)/
0__.E: ;L. W ,1 a [®
da  2m (2@ T ) ) ' (5-30)

By taking logarithmic derivative of2.3) with respect tax, and then taking a derivative
with respect ta, we obtain from $.29 that:

0%Gy(C;) il 9 <8w(§,a)/8a)

9Coa — 2maC \ w(C a)

__ry t o' (a) A
K [(C —ap " 2 C— 0P 2 (o — 9(0)2] : (5.31)

0o
Similarly, taking a logarithmic derivative o2(3) with respecto @, followed by a derivative
with respect ta, we obtain from $.30 that:

oCoa 2w IC

?Go(¢;a) i D <8w(§,1/@)/86)
w(¢,1/a@)

__ 1 _oaja) AN
“mdmww*zmmww+zwmwwl (632

0ce” 0ce”

Written out in full, the derivative of/({) with respect tq is:

_9%Gy
—a
acoa

) 4 TW(C) (5.33)
a=0 a=0

with the mixed derivative§?G,/9(0a andd*G/d¢da given in (6.31) and 6.32), respec-

tively.

5.5 Conformal map z(()

Let us now consider the conformal mapping ) from the interior ofD, to the exterior of
the unit radius circular cylinder and the two hollow vortices in thglane. Consider the
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following ansatz:

CjCj

A0 = 2

(5.34)

This Fourier-Laurent series expansion is a very convenient representation for the confor-
mal mapping. It is obviously single-valued and analytic everywhetB irexcept for the
required simple pole singularity gt= (3. The coefficientsc;, d;,e; € C}, in addition

to the numbers € C andg = /pc” € C, are to be determined; once found, the free
boundary shapes of the two hollow vortices will be revealed. Obviously, for numerical
implementation, it is required to truncate the infinite sums.

5.6 Functionz(()

The derivative of the conformal mag¢) with respect ta, can easily be obtained once all
the parameters irb(34) have been determined. Itis

+chjgg | Zygﬁj Z gj_ejaq)]:iﬂ' (5.35)

z(¢) =

5.7 Characterisation of the solutions

Upon consideration of thedppl point vortex system, we note that the solution family can
be described by four real parameterst, xq, yo, Wherez, = z( + iy is the equilibrium
position of the point vortex in the upper-half plane. By the symmetry, there is a correspond-
ing equilibrium positioratz,. Without loss of generality, we can gét= 1. If we then fix

the value off’, then the position of the point vortex equilibriumis determined from two
simple algebraic equations (see Appen)x

Consider the parametel’5 I' andp. These parameters correspond to the length scale of the
problem, the time scale of the problem, and the area of the hollow vortices, respectively.
In a similar fashion to our work in Chapters 3 and 4, we will assume that small hollow
vortices are close-to-circular, and trace out a family of solutions for fixed valuEsanofl

U by a standard continuation procedure in the free parametnalogously to the &ppl
system, fixing the values of bothandU will fix the centroids of our two hollow vortices

for a particular value op. Note however that these centroid positions will change &s
varied (keeping' andU fixed).
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It is required to truncate the Fourier-Laurent seriesbii34). Let us truncate each series in
(5.34 atO(N). We must solve for the following N + 2 real parameters

Imfa], Imfc], {Im[e;], Im[d,}, Imfe,] | j = 1,.... N}, (5.36)
and the following3 N + 6 real parameters
¢, 0, ¢, arglf], Rela], Rel[c], {Re[g],Re[d;],Rele;][j=1,..,N}, (5.37)

wherec is the speed of the fluid on both of the hollow vortex boundaries:

dw

E(C)' =c, (€0 (. (5.38)

Thus, it is apparent that we have a totabof + 8 real parameters to determine.

To obtain good initial estimates for these parameter$i8g and 6.37), and hence lock

onto a family of hollow vortex solutions, with the valuesiondU fixed, it is possible to
construct a Mbius map from the interior ab, to the exterior of z| = 1 and two small
circular hollow vortices whose centroids are located at thppF equilibrium positions

zo andz, corresponding to the chosen fixed valued’dindU. When these two circular
hollow vortices are small, the parameters we seek should be very close to those obtained via
this Mobius map (see Appendk for details). As mentioned previously, we shall restrict
attention to finding hollow vortex equilibria which lie strictly behind the circular cylinder
since these are likely to be of most physical interest.

We require that the image @f, underz(¢) is |z|] = 1. We take2N + 2 equi-spaced
collocation points around’,, and enforce at each of these points the real equation

12(¢)] = 1. (5.39)

We further require that Bernoulli's theorem be satisfied on the hollow vortex boundaries.
We take2 N + 3 equi-spaced collocation points around b6éthandC', and enforce at each
of these points the real equation

d_w
dz
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Figure 5.4: Schematic of the preimage circular domainllustrating the locations of the
preimages of the five stagnation poifts | j = 1,...,5} (these are shown as stars).

where we recall from&.38 thatc is the speed of the fluid on both of the hollow vortex
boundaries (to be determined as part of the solutidn)() is given by 6.33, andz(¢)

is given by 6.35. Since we have explicit forms for both functioig: (¢) andz.(¢), the
complex velocity functioniw /dz does not need to be constructed separately (like it was in
Chapters 3 and 4) and is given by the chain rule. Togetae9(and 6.40 then comprise

a set of6 N + 8 real equations it N + 8 real unknowns. We proceed using Newton’s
method to find solutions to our free boundary problem, and thus determine the shapes of
the hollow vortex boundaries.

From consideration of thedppl system, we expect five stagnation points in the flow field.
We expect a stagnation point at the front and back of the circular cylinder, two on the
circular cylinder surface, and one on the real axis. It was verified numerically, for the
solutions we have found, that functidt. (¢) does indeed have five such zeroe®in and

in the locations where they would be expected. Let us label these zerdes ByC | j =
1,...,5}. Figure5.4shows a schematic of the preimage locations of these stagnation points.
¢ = v and( = , = 77 are the preimages of the two stagnation points at the front and
back of the circular cylinder; = v3 and¢ = v, = p/73 are the preimages of the two
stagnation points on the circular cylinder surface, and v; = /pe'” is the preimage of
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Figure 5.5: Superposition ofdppl hollow vortex pairs of different areas behind a unit
radius circular cylinder fot/ = 1 andl’ = 2. The Foppl equilibria corresponding @ = 1
andl’ = 2 arel.258 £ 0.252i.

the stagnation point on the real axis.

For the remainder of this section, we shall fix= 1 and find solution families for four

fixed values of the circulatioft. Figures5.5-5.8 show superpositions of hollow vortices

of different areas located behind| = 1 for I' = 2,4, 8,16.61, respectively. The value

I' = 16.61 was chosen by Telib & ZannettlL ] Z]; the family of solutions in Figure 4 of their
paper correspond to this value. In each of the Figbre$.8, the hollow vortices have been
‘grown’ in area from the correspondingppl point vortex equilibrium locations. Figures
5.5-5.8 collectively show the existence of continuous families of hollow vortex equilibria
taking a finite range of area values, up to some maximum admissible value, dependent
on the choice of". ForI' = 2,4, 8, the hollow vortices essentially exhibit quasi-circular
shapes. FolI' = 16.61, the hollow vortices develop increasingly flattened faces along the

sides of their boundaries which are closest together.

We terminated the solution branches when we noticed that the image of Ciralader
z(¢) was no longefz| = 1 to within an acceptable numerical accuracy. This phenomenon
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Figure 5.6: Superposition ofdppl hollow vortex pairs of different areas behind a unit
radius circular cylinder fot/ = 1 andl’ = 4. The Foppl equilibria corresponding @ = 1
andI’ = 4 are1.424 4+ 0.402i.
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Figure 5.7: Superposition ofdppl hollow vortex pairs of different areas behind a unit
radius circular cylinder fot/ = 1 andl’ = 8. The Foppl equilibria corresponding @ = 1
andl’ = 8 arel.774 + 0.689i.
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always occurred at the same point in the solution branch for any number of mbded
regardless of the choice of collocation points on the boundary circlés ¢suggesting it

is not the manifestation of a numerical ‘crowding’ problem). The Newton iterations we
performed did not encounter any difficulties with convergence, and the values of the co-
efficients in the Fourier-Laurent series also appeared to continue naturally between two
consecutive solutions. For each solution, the boundary circlé efere sufficiently sep-
arated thus ruling out any possible numerical error associated with the computation of the
Schottky-Klein prime function. It is worth noting that Elcrat & Zanne#il] also experi-
enced “peculiar accuracy issues” in their hollow vortex wake models.

It therefore seems reasonable to conclude that hollow vortex solutions do not exist beyond
a particular point in the solution branch, at which point some maximum area configuration
has been attained. This conclusion is supported by a qualitative comparison of our hollow
vortex solutions fol" = 16.61 in Figure5.8 with those obtained in Figure 4 of Telib &
Zannetti [L17). For this value ofi", we find a maximum area configuration which appears
identical to the one found by Telib & Zannetfi1Z (although they do not state explicitly if

they actually attained a maximum area configuration), and we observe excellent qualitative
agreement between all our hollow vortex boundary shapes and theirs in this particular fam-
ily, implying that we have traced out precisely the same solutions. This gives us confidence
in our analytical-numerical method and the hollow vortex solutions we have computed in
Figures5.55.8 The maximum area configurations observed in Figiréss.8 are not
close-to-touching with the circular cylinder; such hollow vortex configurations would ap-
pear not to exist. This is in contrast to the findings of Elcrat e#4d] ih the case of vortex
patches where the maximum area configurations are special limiting cases bounded by the
circular cylinder. Until the nature of the existence of our solutions is properly understood,
it will remain a matter for future investigation to determine the limiting behaviour of our
hollow vortex solutions as their area is increased (if such solutions exist at all).

5.8 Summary

Through a combination of numerical and analytical techniques, we have been able to solve
the free boundary problem for a pair of hollow vortices of equal and opposite circulation in
equilibrium behind a circular cylinder in a uniform stream. We first wrote down a closed-
form analytical expression for the complex potential of the system using the specialist
techniques of Crowdyl[4, 22] and proceeded to solve a non-linear system of equations



5.8 Summary 126

2.5

1.5

0.5

25 ! ! ! ! ! !
-2 -1 0 1 2 3 4 5

Figure 5.8: Superposition ofdppl hollow vortex pairs of different areas behind a unit
radius circular cylinder fot/ = 1 andI’ = 16.61. The hollow vortices shown here look
qualitatively very similar to those shown in Figure 4 of Telib & Zannetti [112]. Thet
equilibria corresponding t&/ = 1 andI’ = 16.61 are2.695 + 1.338i.
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determining a finite set of conformal mapping parameters governing the shapes of the free
boundaries of the hollow vortices. Our new solutions are valuable contributions to the
expanding body of work on hollow vortex wakes behind bluff bodies.

For four fixed values of the circulation, we were able to determine the hollow vortex free
boundary shapes over a finite range of areas, up to some maximum admissible area value. A
better understanding regarding the existence of these solutions would throw some light on
the limiting behaviour of the hollow vortex shapes as the area is increased. We obtained a
particular family of solutions (Figurg.8) which were found to be qualitatively very similar

to those obtained by Telib & Zannettl]12 whose mathematical approach is different to
ours. The three solution families we have presented in FighfeS.7 appear to be new

and do not feature infL2].
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Chapter 6

Multiple steadily translating bubbles in
a Hele-Shaw channel

6.1 Introduction

For the final free boundary problem we shall solve in this thesis, we will determine the
shapes of multiple bubble interfaces as they steadily translate along a Hele-Shaw channel
with straight, parallel-sided walls. Of particular interest are the analytical methods that we
have chosen to employ to tackle this problem. Crowt] jnade an attempt at solving

this free boundary problem, but it was subsequently found that part of his argument con-
tained erroneous reasoning (Crowdy [private communication]). This chapter presents an
alternative, successful approach for solving this free boundary problem.

As discussed in Chapter 1, Hele-Shaw flows are paradigmatic free boundary problems tak-
ing a wide variety of forms, and have a rich array of solutions. We shall resolve our free
boundary problem using methods related to a special class of scalar Riemann-Hilbert prob-
lem (Gakhov £9]). Crowdy [20] recently solved the following special Riemann-Hilbert
problem: find functionu(¢), which is analytic and single-valued I, satisfying

Re[\jw(¢)] =d;, ¢(€C; j=0,1,..., M. (6.1)

Here,\; € C are constants such thgt;| = 1, andd; € R are constants. Such a prob-
lem is intimately related to the classical Schwarz problem in multiply connected domains
(Crowdy [18]); indeed, such a problem is retrieved on takihg= 1 for all j in (6.1).

Just like a standard Riemann-Hilbert problem which has an ‘inner’ and ‘outer’ region, so
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does this special type of Riemann-Hilbert problem: this is encapsulated through the identity
Re[f(Q)] = 3 (f(() + @) and the analytic continuation ¢f () off each boundary com-
ponent. Crowdy found the solution to this special Riemann-Hilbert problem in the form of
a concise integral formula in terms of Schottky-Klein prime functions, the construction of
which is related to the method of formulating his generalised Schwarz-Christoffel formu-
lae to multiply connected polygonal domains (Crowd$,[16]). We will see that the free
boundary problem in consideration in this chapter can be couched in the form of this spe-
cial Riemann-Hilbert problem solved by Crowd®(. We will solve this free boundary
problem in its most generality, for any finite number of bubbles in a given assembly, using
similar ideas to those in2D]. The final expression for the conformal map revealing the
bubble boundary shapes is given as an explicit indefinite integral whose integrand consists
of a product of Schottky-Klein prime functions.

6.2 Background

There are some relevant prior results pertaining to steady multiple bubbles in Hele-Shaw
systems which we will now survey to motivate the free boundary problem of this chapter.
An important assumption that is made in each of these works is the exclusion of surface ten-
sion effects on the bubble boundaries: from a theoretical standpoint, this makes the problem
analytically tractable and allows for exact solutions to be found. Taylor & Saffrbaf |

found an exact solution for a single bubble in a channel with reflectional symmetry about
the channel centreline. TanvediOf] was able to generalise this solution using elliptic
function theory to describe a single asymmetric bubble in the channel. VascortElps |
reported exact solutions for a finite number of steadily translating bubbles in a Hele-Shaw
channel. He considered two symmetrical classes of solution pertaining to bubbles which
are either symmetrical about the channel centreline or which possess fore-and-aft symme-
try. He derived Schwarz-Christoffel type formulae for the conformal mappings determining
the bubble interfaces. Adopting the same bubble symmetry assumptionslas]irSilva

& Vasconcelos 104 have recently found exact solutions for a doubly periodic array of
multiple symmetrical bubbles, with Schwarz-Christoffel methods again proving to be fruit-
ful. Vasconcelos has also found families of exact solutions for various infinite streams of
bubbles in the Hele-Shaw systefrilp, 116.

Most relevant to our present free boundary problem is the work of Cro2@yho found
analytical solutions determining the shapes of any finite number of steadily translating
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bubbles, with n@a priori symmetry assumptions concerning the geometrical arrangement
of the bubbles, in an unbounded Hele-Shaw cell. He derived analytical expressions for
both the complex potential and the conformal map from a bounded multiply connected
circular domain to the exterior of the bubble assembly by using conformal mappings to
multiply connected slit domains and the Schottky-Klein prime function. The solutions we
will present in this chapter can be viewed as the generalisation of the solutions due to
Crowdy [2]] in the case of the Hele-Shaw channel: our solutions account for the effect
of the two channel walls which greatly influence the nature of the free boundary problem
(otherwise, the boundary conditions in the two problems are the same). We also shall not
make any assumptions about the geometrical arrangements of the bubbles.

6.3 Formulation of problem

In this section, we discuss the details of the problem to be solved. We then establish the
functional form of several auxiliary functions, before writing down an explicit indefinite
integral for the conformal mapping () which will determine the shapes of the free bound-
aries we seek.

Without loss of generality, we will consider a Hele-Shaw channel of width 2 containing
incompressible viscous fluid, extending to infinity™ in both horizontal directions. In this
fluid, we suppose there ard finite-area bubbles. We choose to neglect surface tension
effects on their boundaries. Let us label the viscous fluid regio®bwnd let us label

the boundary of thg-th bubbledD;. In order to have a steady configuration of bubbles,
we suppose that each of tiAé bubbles translates uniformly left-to-right in the horizontal
direction with speed/ > 1, and that the viscous fluid has uniform spééd- 1 in the far
field. See Figuré.1for a schematic.

Our model will be centred around some simplifying assumptions in order to render the
problem analytically tractable. We shall assume that the fluid inside the bubbles has negli-
gible viscosity so that the pressure inside each bubble is constant. We shall assume that the
Hele-Shaw channel is horizontally placed so that the effects of gravity can be neglected. As
mentioned before, for all the bubbles, we neglect any surface tension effects; this implies
that the viscous fluid pressure will have a constant value on each bubble boundary. Finally,
we shall also neglect any three-dimensional thin film effects. With these assumptions, we
shall first formulate the free boundary problem to be solved in the physiealx + iy)-
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bubbles
) Hele-Shaw .
0 channel dD 00
width 2 3
oD

fluid D
z

Figure 6.1: Schematic of a Hele-Shaw channel of width 2 containing an assembly of
steadily translating bubbles. In the case illustrated, the assembly contains 3 bubbles. The
shapes of the bubble boundaries, in a co-travelling frame with the bubbles, are to be deter-
mined.

plane.

In a laboratory frame of reference (not co-travelling with the bubble assembly), let

F(z,t) = ¢(x,y,t) +ih(z,y,t) (6.2)

be the complex potential describing the flow. Hetes the velocity potential ang is the
streamfunction. In this laboratory frame, we shall assume that the motion of the incom-
pressible viscous fluid in our Hele-Shaw channel is governed by Darcy'’s law:

b2

Here,v is the averaged fluid velocity across the chanpés, the viscous fluid pressurg,
is the channel width, and is the viscosity. On taking the divergence 6t3), we obtain
Laplace’s equation

62
V.v=Vi%H=——-Vp=0 (6.4)
12p

implying that our free boundary problem is amenable to techniques of complex analysis.
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From 6.3), it is immediate that
b2

¢ = —mp + constant (6.5)

The bubble assembly is assumed to be steadily translating along the channel witl/ speed
hence the complex potential(z, ¢) in (6.2 must be of the form
F(z,t) = 7(2) (6.6)
for some functionr(z'), where
2 =2— Ut (6.7)
Letw(z’) be the complex potential describing the flow in a co-travelling frame of reference
with the bubbles. Then(z) is related tor(z) by

w(z) =7(z) — Uz, (6.8)

where we have dropped the prime notation with the understanding that we will be hence-
forth working in the co-travelling frame with the bubbles. The viscous fluid is assumed to
have unit speed in the far-field. Thus,zas+ co™, we require

w(z) = (1 — U)z + locally analytic function (6.9)

Apart from this simple pole at infinity, the complex potential functiofz) is analytic
everywhere in the viscous fluid region.

Taking the real part ofg.8) evaluated on the bubble boundaries, i.e. o 0D;, j =
1,..., M, yields

2

Re[7(2)] = Re[w(z) + Uz] = —@p + constant (6.10)

Recall that, in the laboratory frame, the viscous fluid presguseonstant on each bubble
boundary. Thus:
Re[7(2)] = Re[w(z) + Uz] = constant (6.11)

In the co-travelling frame with the bubble assembly, the bubble boundaries are necessarily
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streamlines of the flow; thus
Im[w(z)] = constant (6.12)

forz € 0D;, 7 =1,..., M. Inlight of (6.9), the channel wallg = +1 are also streamlines
of the flow since
Im[w(z)] = £(1 = U) (6.13)

fory = +1.

In order to determine the shapes of the bubbles (which are in equilibrium in the co-travelling
frame), we shall construct the conformal m&g) from some bounded/ + 1 connected
circular domainD, in a parametrig-plane to thel/ + 1 connected fluid regio®,, exterior

to M bubbles in &-plane. Label the unit circle b§/, and label the\/ inner circular bound-
aries ag’, ..., Cy. Let the centre and radius 6f; bed; andg; respectively. A schematic

of D, is shown in Figuré.2in the case wheré/ = 3 (quadruply connected). Lél, map

to the channel walls: this implies thaf() will necessarily have two logarithmic singulari-
ties onCy. By a rotational freedom afforded by the Riemann-Koebe mapping theorem, we
can place one of these logarithmic singularitieg at 1; the other will be at some point

¢ = aon(j to be found as part of the solution. Let the interior cirdgs..., C,; map to

the bubble boundariesD;, ..., 0D,,.

6.4 FunctionWW (()

First, we construct an explicit expression for the complex potefiti&]) in the {-plane.
FunctionWV(() is related to the complex potential(z) in the z-plane co-travelling with
the bubble assembly through the composition

W(¢) = w(z(C)). (6.14)
From conditions§.12 and 6.13), this function!V(¢) must be such that
Im[W (¢)] = piecewise constant ¢ € Cy, (6.15)

and
ImW()|=~;, ¢€C;, j=1..,M. (6.16)
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Figure 6.2: The preimage bounded multiply connected circular domainThe case of

a quadruply connected domain is illustrated, to be conformally equivalent to the physical
domain in Figure 6.1. The unit circle| = 1 maps to the channel walls with= 1 and

¢ = « being the preimages eb™ andoo™ (the ends of the channel). The cirele maps,
underz((), to the boundary of bubbleD; (for j = 1,2, 3).

Here,; € R are constants. This ensures that the bubble boundaries and the channel walls
are streamlines. We note that functidi(¢) can be interpreted as the conformal mapping
from D, to an infinite horizontal channel of wid&{U — 1) with M finite-length horizontal

slits. See Figur®.3. W (() is required to be a single-valued analytic function everywhere

in the interior of D.

From 6.15 and 6.16), we notice that the function
exp W(C) (6.17)

must have constant argument on each of e 1 boundary circles ofD.. Recall the
conformal radial slit mapping o2(60):

(¢ Cw(¢ 1/G) (6.18)

X6 ) = e 1)

Recall from Chapter 2 that this functiof(¢; (1, ¢») has constant argument on each of the
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boundary circles oD, a simple zero af = ¢; and a simple pole &t = ¢,. Now consider

expW(¢) = a(x(¢;1,0))", (6.19)

wherea € C andb € R are constants, and= 1 and{ = « are the two points lying o,
which map to the two ends of the channel at infinity". Since¢ = 1 and¢ = « are two
points onCy, (6.18 becomes

w?(¢,1)

X(G1a) = FCa) (6.20)

Hence, it follows from 6.19), on taking a logarithm, that

W(C) = ¢+ dlog (Z((E;))) , (6.21)

wherec is an inconsequential complex constant @l R is another constant. Notice that
this function 6.21) satisfies the requirements.15 and 6.16. This function 6.21) also
has logarithmic singularities gt= 1 and{ = «. Passing through eithér=1or{ = «
results in ari jump in the logarithm. Hence, in order that the channel width 18e require

2(¢) = %bg(( — 1) + locally analytic function ¢ — 1, (6.22)

and
2(¢) = 2 log(¢ — «) + locally analytic function ¢ — «. (6.23)
™

Recall that, in the co-travelling frame with the bubbles, the fluid far-field looks like a uni-
form flow of speed — U (translating right-to-left), i.e.

w(z) = (1 — U)z + locally analytic function z — oo™, (6.24)

Thus

W(¢) = 201 ; U) 1og (5((5 1)> . (6.25)
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(

T(&)
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Figure 6.3: Schematic showing the conformally equivalent image domain% ¢és in
Figure 6.2) under the conformal mappinds () [left] and 7°(¢) [right]. Both are infinite
channels with three finite-length slits which are either horizontally or vertically aligned.
The infinite channel in thé/-plane has widtl2(U — 1) whilst the infinite channel in the
T-plane has width 2. The slit end-points are labelled accordingly.

6.5 FunctionW,(¢)

The derivative of functioV (¢) in (6.25 with respect ta is given by

WC(C) _ 2(1 — U) <wC(<v 1) _ WC(C,O./)) 7 (626)

m w(G 1) w(ca)

wherew, (¢, -) denotes the derivative with respecttof the Schottky-Klein prime function.
Let {8 65 € C; | j = 1,.., M} be the set of preimages of th&/ horizontal slit
end-points in théV-plane (see Figuré.3). FunctionWW (¢) has2M simple zeroes at
{bgj), béj) € C;|j=1,.., M}; these are simple zeroes because the argumeRtsQfJ3)—
W(bgj); B) andW (¢; ) — W(béj); () change by as¢ passes through these points. These
points {6 ) € C; | j = 1,..., M} are also the preimages of thé/ stagnation points

in the z-plane (there are two stagnation points lying on each oflthdéubbles); these
preimages can in principle be computed frd@@®2@), but this is not necessary for our present

purposes.
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6.6 FunctionT'(()

We now construct an explicit expression for the functiog) which we will now define.
FunctionT'(¢) is related to the complex potentialz) through the composition

T(¢) = 7(2(¢))- (6.27)

T(¢) = W(C) + U=(Q). (6.28)
From the conditionsq.11), we require
Re[W(()+Uz()]=v;, ¢€C; j=1,.., M. (6.29)
Here,v; € R are constants. Noting that, due to channel walls, we must have
Im[z(¢)] = piecewise constant ¢ € Cy, (6.30)

we can now see that our free boundary problem is the following special type of Riemann-
Hilbert problem: find functior¥’(¢), analytic and single-valued inside;, satisfying

Im[T'(¢)] = piecewise constant ¢ € Cy, (6.31)
owing to the conditionsgq.15, (6.16 and 6.30), and
Re[T'(¢)] =constant (e C;, j=1,...M, (6.32)

owing to the conditionsd.29. This type of Riemann-Hilbert problem is of the same type
solved by Crowdy in20]. The success of his approach came from introducing the auxiliary
conformal mapping(¢; 3) taking D, to a bounded multiply connected circular slit domain
in ann-plane; recall these maps are of the functional form give2i&83j:

w(¢, P)

1B = G, 1/B)

(6.33)

Let( = %j) and( = yéj) be the preimages of the two slit end-points on fkté circular
slit; these will lie on the interior circl€’;, 7 = 1, ..., M. Note that if one specifieB, and a
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value of( = f3, the set of pOIntS{% ,72 ) € C;|j=1,.., M} is completely determined.
The derivative ofj({; 5) with respect ta; has simple zeroes at these points:

e 8) = ()5 8) =0, j=1,.., M. (6.34)

These2M zeroes ofj.(¢; §) are simple zeroes since the arguments(af 5) — n(fyfj); B)
andn(¢; B) — n(yéj); () change by as¢ passes through these points.

From the requirement$(31) and ©.32), and then following the same arguments in Crowdy
[20], it can be shown that function

nTy(n) (6.35)

must have constant argument on each boundary component in the auypkaye, where

T(n(¢; B)) = T(Q), (6.36)

andTn(n) denotes the derivative with respecttof T'(n). In light of the conditions§.22)
and 6.23, we need

T() = %bg(g — 1) + locally analytic function ¢ — 1, (6.37)

and
T() = —zlog(g — «a) + locally analytic function ¢ — a. (6.38)
m

We note that functiorY’(¢) can be interpreted as the conformal mapping frbmto an
infinite horizontal channel of width 2 with/ finite-length vertical slitsC, mapping to the
channel walls, and’,, ..., C,; mapping to the\/ vertical slits. See Figuré.3. Let( = al
and¢ = a(j) be the preimages of the two slit end- pomts on tka vertical slit; these will
lie on the interior circlel;. The set of pointgal’’, af’) € C;j|j=1,..,M}isunknowna
priori, and must be found as part of the solution. The derivativé(@f) with respect ta;
has simple zeroes at these points:

To(a)) = To(a¥) =0, j=1,.., M. (6.39)

These2)M zeroes ofl;(¢) are simple zeroes since the argument§'af; ) — T(aﬁj); B)
and7'(¢; 8) — (agj), ) change by2r as( passes through these points. The construction
of this mappindl’(¢) is the vital cornerstone upon which our solution scheme is based.
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6.7 FunctionT(()

FunctionnTn(n) must have constant argument on each of the boundary components in the
n-plane. We now construct a functional form fwgiiﬁ,(n) and use it to deduce an expression
for T, (¢) .

Our strategy is to specify som@ + 1 connected circular domaif; and find the con-
formal mapz(¢) determining the bubble shapes. It is advantageous to spBgitypriori

since the conformal moduli defining the Schottky-Klein prime function will not have to be
re-computed on each iterative step in our solution scheme. Furthermore, choosing these
conformal moduli is analogous to prescribing the bubble areas and the bubble centroids.

We shall now build the functionTn(n). Note that

- T (<)
nTy(n) = (¢ ) (G A (6.40)

From (6.40), we see that we require functi@;ﬁ,( ) to have a simple zero gt= g (func-
tion n(¢; 5) has a simple zero gt= 3) and simple poles za[ty1 ,72 eCjlj=1,..,M}
(recall 6.34). In light of the required behaviour$.837) and €.39), 77Tn(77) needs to
have simple poles at = 1 and{ = a. We also need;Tn(n) to have simple zeroes at
{a},a}) € C;lj=1,.., M} (recall 6.39). Recall the conformal radial slit mapping of

(2.62:
W(Cv C3)

w(¢,G)

Function((; (s, ¢4) has constant argument on each of the boundary circlé oft also

£(¢5¢s. ) = (6.41)

has a simple zero gt= (3 and a simple pole at = (.

Consider the following function:

Hé (¢ af”, 1)E(¢sa 7)), (6.42)

Being a product o2 M radial slit mappings of the forn6(41), function 6.42 has constant

argument on each of the boundary circledf It also has simple zeroes {artgj), aéj) €

C;lj=1,..,M} and simple poles a{t%]),fy2 € C;j|lj=1,..,M}, as can easily be
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seen from §.41). Next consider the function:

w(¢, B)w((,1/5) (6.43)

(G L a)x(¢8,1) = o€ Dwle.a)

where functiony(¢; 5, 1) is the radial slit mapping o5 18. This function has two simple
zeroes at =  and¢ = 1/, and two simple poles @t = 1 and¢ = a. Being a product
of two radial slit maps (albeit of different type), functiod.43 has constant argument on
each of the boundary circles of.

Consider, thus, the product of functior&s42 and 6.43. Let

M

nTy(n) = Bx(C; 8, DE(C 1, a) [T (¢ at”, 47)e(¢ af”, 457, (6.44)

j=1

whereB € C is a constant, an@agj),% € C;|j=1,..,M}is the set of preimages of
the slit end-points in th&-plane, to be determined. Being a product of radial slit maps,
this function has constant argument@m Cl, ...,Chy, as required. It has simple poles at
(=1 andg = «, simple poles a{fy1 ,72 € C;|j=1,..,M}, and simple zeroes at
{a1 ,a2 € Cj|j=1,..., M}, asrequired. The simple ze¢o= (3 of the mapn(¢; 5) can

be chosen arbitrarily; this is demonstrated in an appendix of Cro@dy Written out in

full, (6.44) is

S T w(¢ AW 1/B) T w(¢ e )w (¢, a))
) =060 5 = B et W ooy €

It then follows that

Te(¢) =

wC(C: ﬁ)w(C7 1/3) - WC(C, 1/3)&)((, ﬂ) M W(g, agj))w(C’ agj)>
B ( w((, Dw((, a) ) E AP (C AT (6.46)

The constans3 is calculateda posterioriby enforcing the condition®(37) and 6.39. It
is found to be:

- 1.0 17 P159)
B = T (deﬂ)‘ﬂ(l, 1/3) — WC(l, 1/3)@(175)) E W(l,agj))w(l,agj)) . (6.47)

Our construction of§.46) is reminiscent of two methodologies of Crowdy using confor-

mal slit mappings as ‘building block’ functions in order to construct some desired function
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solving a particular problem: i, 16], this desired function was a Schwarz-Christoffel
mapping to a multiply connected polygonal domain, while 20]] this desired function

was the general solution of the special Riemann-Hilbert problem of the type we are solv-
ing. Note that the special type of Riemann-Hilbert problem we are solving in this chapter
(i.e. finding single-valued analytic functidh(¢) solving 6.31) and 6.32) has boundary
conditions of precisely the Schwarz-Christoffel type: it is therefore not surprising that our
construction of §.46 bears some resemblance to the two methodologies in the works of
[13, 16, 20].

6.8 Conformal mapz(¢)

In light of definition 6.28), the conformal map(¢) we seek will then follow from the

integral
1 C / ! !/
A0 = A+ 3 [T = W (6.48)
o
where A € C is a constant{, € C is an arbitrary point insidé&,, and expressions for

T:(¢) andW,(¢) are given in 6.46) and ©.26), respectively.

6.9 Characterisation of the solutions

Let us fix the value ot/. The number of free real parameters 4@ is 3M + 4: the3M
conformal moduli ofD,, the complex constand, and the complex numbet. The value

of 5 (the simple zero ofy((; 5)) can be selected arbitrarily. There are three real degrees of
freedom associated with the Riemann-Koebe mapping theorem and we used up one of these
freedoms by insisting that= 1 maps to infinity at one end of the channel. The remaining

two real degrees of freedom can be used to fix the value of the complex cadstahis

leaves a total 03/ free parameters; these correspond to3theconformal moduli ofD,.

If we specify the3M conformal moduli ofD,, the values of v\ 7§ | j = 1,..M} are

set. We are then left to determine the following parameters:

aeCy {9 ecc;lj=1,., M} (6.49)

We will now present the equations to be solved in order to determine the parameters of the
conformal mapping(¢). Once we have a solution to these equations, functio(s) and
We(¢) will be fully determined, and the conformal may() found through the integral
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(6.48.

First, we must ensure that thd finite-length slits in the/-plane are vertical and perpen-
dicular to the channel walls. As one traces out an interior cit¢li the preimagé-plane,
on which¢ = 4, + ¢;¢, the corresponding image under the m&g) in the 7-plane must
be a vertical slit. We require:

Re[TC(5J~ + iq]')] = 0, j = 1, cery M. (650)

To see why, consider the Taylor expansion of functiof) = 7'(5; + g¢;e?) about an
arbitrary point¢!/) = 0 + qje“’ﬁj) € C; as a function ob:
T(0) = T(09) + (0 — 09)T(0) + O(0 — 69)2. (6.51)

*

Here,6Y is close tod (and the higher order terms can be neglected). For the slits to be
vertical, the difference between any two points on the slit must have zero real part:

Re[T(0) — TV =0, j=1,..,M, (6.52)

Re[T4(09)] = Re[T,(¢V)ig;e™ ] =0, j=1,.., M. (6.53)

As a matter of convenience, we piéﬁé) = m/2in (6.53 so that it suffices to enforce the
following M real equations:

In order to ensure thaf'(¢) is everywhere single-valued iR, there are)! further real
equations to enforce. 2r traversal ofC; should correspond to returning to the same point

f,

J

on thej-th vertical slit, i.e.

Im

TC(C’)dC’] =0, j=1,.., M. (6.55)

The conditions §.55 will then, in turn, imply that the conformal mag() is everywhere
single-valued inD, (recall thati¥’ () is single-valued by construction).
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We have one further real equation to enforce in order to ensure that the channel walls in the
T-plane are horizontal. It is
Im[T:(1)] =0 (6.56)

and can be derived in a similar fashion &©34).

Newton’s method was used to solve the se2df + 1 real equationsg.54), (6.55 and
(6.56 for the following2M + 1 real parameters:

a, {arg[agj) — ;] arg[agj) -6l |j=1,..,M}. (6.57)

We will now illustrate the foregoing theory by considering some specific examples of var-
ious bubble configurations. Henceforth, we shalliet 2; it is demonstrated in Vascon-

celos [L17] that all other bubble assemblies corresponding to different valuésaain be
obtained from thé/ = 2 solutions by a simple re-scaling. Taylor & Saffmdri ] consid-

ered the case of a reflectionally symmetric bubble about the channel centreline, and Tanveer
[109 considered the case of a single bubble with fore-and-aft symmetry with no symme-
try about the channel centreline: both the solutionsl®9 and [111] should be able to

be retrieved using our solution scheme. We shall present examples of steadily translating
assemblies of two, three and five bubbles.

Figure6.4shows an example of two bubbles whose centroids are aligned along the channel
centreline and which are reflectionally symmetric about the channel centreline. Given their
up-down symmetry about the channel centreline, this pair of bubbles in Figieould

have been generated using the solution scheme presented by Vascohtdlosn fact,

we were able to successfully recover the same bubbles shapes as in@#yusang the
analytical solutions of VasconceloEkl[7]. Figure6.5shows an example of two asymmetric
bubbles. Three streamlines in the local flow field of the bubbles have also been plotted:
these streamlines provide a qualitative check on the solutions. FegisBows an example

of the bubble shapes for a particular asymmetric assembly of three bubbles.

The versatility and generality of our method can be demonstrated through solving for pa-
rameters yielding more than three bubbles in some asymmetric configuration. We chose
M = 5 bubbles by way of example (a higher number of bubbles can be treated in a similar
manner). It appears that this is the first time these most general bubble solutions have been
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Figure 6.4: An example of two bubbles whose centroids lie on the channel centreline and
which are reflectionally symmetry about it. To obtain these bubbles, we chose the following
conformal moduli ofD,: 6; = 0, d2 = 0.185, ¢; = 0.075, g2 = 0.05.

===

Figure 6.5: An example of two bubbles in a general asymmetric configuration with three
typical streamlines superposed. To obtain these bubbles, the following conformal moduli
of D, were chosend; = 0, d; = 0.185 + 0.071, ¢; = 0.075, g2 = 0.05.
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Q"

Figure 6.6: An example of three bubbles in a general asymmetric configuration. For this
bubble assembly, the following conformal moduli bf were picked:9; = 0.1, 6, =
0.175e™/4, 65 = 0.19e"™/5, q; = 0.045, go = 0.05, g3 = 0.04.

retrieved. Figuré.7 reveals the shape of the five bubble boundaries in a particular assem-
bly. The assembly is not symmetric about any axis and the areas of the bubbles are each
different (corresponding to the different choicesjptialues).

It is worth pointing out that we were unable to produce bubbles with areas much larger
than those shown in Figur&s4-6.7, or bubble assemblies with bubbles close to the chan-
nel walls. This is because computing the Schottky-Klein prime function in these cases
becomes difficult: in these special cases, in the preimage daaithere will either be
multiple close-to-touching boundary circles, or interior circles with large radii, or both. As
mentioned in Chapter 4, computing the Schottky-Klein prime function becomes numeri-
cally challenging in these circumstances. With improved methods of computation of the
Schottky-Klein prime function, obtaining such bubble assemblies should be a straightfor-
ward matter.
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Figure 6.7: An example of five bubbles in a general asymmetric configuration. We chose
the following conformal moduli ofD.: §; = 0, J, = 0.185, §3 = —0.185, d, = 0.185i,
05 = —0.185i, ¢; = 0.075, g2 = 0.05, g3 = 0.06, q4 = 0.04, g5 = 0.045.
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6.10 Summary

In this chapter, we have presented analytical solutions to the free boundary problem of
determining the interface shapes of a finite numbdeof bubbles, without surface tension,
steadily translating along a Hele-Shaw channel. To do this, we found a concise formula
for the conformal map in the form of an explicit indefinite integral from a bountded 1
connected circular domain to the fluid region in the channel exterior ta/fheubbles,

with the unit circle mapping to the channel walls. The integrand of our indefinite integral
is neatly expressed in terms of products of Schottky-Klein prime functions and is known
up to a finite set of accessory parameters to be found as part of the solution.

Our formula for the conformal map determining the bubble shapes is very general. An
important characteristic of the derivation of this conformal map is that we maderiori
symmetry assumptions concerning the geometrical arrangement of the bubbles: indeed, all
the geometrical information about the physical domain is encapsulated in the prescription
of the preimage domai®), over which each of the Schottky-Klein prime functions ap-
pearing in 6.48 is defined. In previous works on bubbles in Hele-Shaw channels, such
symmetries had to be enforced in order to make progress; for example, in the works of
Taylor & Saffman [L11] and Vasconceloslfl7]. Our solution scheme now readily incor-
porates the solutions found in these works and these solutions can be viewed as special
cases of ours. It also generalises the work of Tanvegd [on a single asymmetric bubble

in a channel to more than one bubble, and the free space solutions of Cra%ydy fhe
Hele-Shaw channel geometry. On the latter, it should be possible to retrieve the solutions
of Crowdy [21] from those obtained using the methods of this chapter by taking the limit
as the channel width becomes infinite, although we have not done this.

We have devised a constructive method for finding solutions to the free boundary problem
based on ideas presented by Crowl$, [L6, 20]. The free boundary problem determining

the bubble shapes turns out to be equivalent to a special scalar Riemann-Hilbert problem
solved in RQ] and this Riemann-Hilbert problem, in turn, is related to the construction of
generalised Schwarz-Christoffel formulae 8] 16]. We made liberal use of conformal

slit mappings as building block functions to incorporate the desired properties into the
functions we were constructing. Consequently, just as in the other free boundary problems
of this thesis, the Schottky-Klein prime function is the central mathematical object and the
key to the success of our solution scheme.
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We considered examples of various bubble assemblies, demonstrating that our solution
scheme is capable of modelling any finite number of bubbles in a particular assembly.
In each of the Figure§.4-6.7 for the bubble assemblies we considered, the interaction
between the bubbles is clearly visible from the shapes of their boundaries. We made choices
of the conformal moduli defining. in order to find the finite set of accessory parameters in
our conformal map determining the bubble shapes. Alternatively, we could have specified
the areas and the centroids of each of the individual bubbles and solved for the conformal
moduli of D.. However, this would have been a rather challenging undertaking, owing to
the fact that the paramete{séj), yéj) | j =1,..., M} (the set of preimages of the ends of
the M circular slits in then-plane) would need to be calculated in each iterative step.
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Chapter 7

Discussion

In this thesis, we have solved six different free boundary problems arising in fluid mechan-
ics, in various multiply connected geometries. Each of the six free boundary problems we
have solved has required individual and special mathematical treatments. The overriding
challenge in each of these problems was to determine the shape of the multiple fluid inter-
faces defining the physical system: namely, in this thesis, hollow vortices and Hele-Shaw
bubbles. The solutions we have presented are essentially special solutions of Laplace’s
equation in geometries with multiple boundaries. Constructing these solutions required
employing the Schottky-Klein prime function in combination with elements of complex
function theory, conformal mapping between multiply connected domains, and specialist
techniques developed in recent years by Crowdy and collaborators. The solutions to each
of the problems in this thesis also clearly illustrate the fundamental role of conformal slit
mappings when solving free boundary problems with multiple boundaries. Further evi-
dence of this is elucidated in a recent review by Crow2¥] [vhere a survey of usages of

conformal slit mappings in applied mathematics is presented.

When analysing von Krman streets of hollow vortices, we introduced the idea of capturing
the periodicity of the street structure by restricting attention to a single period window
containing two hollow vortex members of the street, and introducing a particular choice
of branch cut in the preimage domain. We found a concise formula for the conformal
mapping as an explicit indefinite integral describing the shapes of the free boundaries of
the pair of hollow vortices in the period window; this formula captures both staggered and
unstaggered street configurations. We then made an interesting qualitative comparison of
our staggered street solutions with the solutions of Saffman & SchatAdhwlifo studied

von Karman streets of finite-area vortex patches. By compiling analogues of Figures 2 and



Chapter 7. Discussion 150

3 in Saffman & Schatzmar®fl], we highlighted that approximately the same street aspect
ratio in both inviscid vortex models is found to have a special significance; that is, there
exists a critical aspect ratio determining whether or not we have unique solutions.

When studying the hollow vortex pair and a single row of hollow vortices in an infinite
channel, we again incorporated the periodicity into our models by introducing appropriate
branch cuts in the preimage circular domains. For both problems, we found concise formu-
lae for the conformal mappings as explicit indefinite integrals determining the shapes of the
hollow vortex boundaries. For the hollow vortex pair, we were able to make connections
with the classical Michell 7] and Pocklington 5] solutions. With an eye on a recent
experimental study by Stewart et al0g, where particle image velocimetry was used to
study the evolution of vortex ring circulation in a channel, we note that our solutions could
be used as a two-dimensional model of a vortex ring in a pipe. Since the study of Zannetti
& Lasagna 28 only recently appeared after our work in Chapter 4 was complete, it is of
great interest to undertake a direct numerical comparison of our solutions with theirs and
to confirm that our two different methods of solution give identical free boundary shapes.
The solutions pertaining to a single row of hollow vortices in a channel are generalisations
of the Baker, Saffman & Sheffield’] solutions to a confined environment, and also the
singly periodic generalisations of the Michellq solution. We were able to verify that as

the channel width becomes large, the hollow vortex shapes tend to the free space solutions
due to [/]. We then compiled an intriguing analogue of Figure 34nfpr different channel
widths and found that for a given hollow vortex area, two possible hollow vortex shapes
can exist and which appear qualitatively very different in two particular limiting cases.

Saffman & Schatzmarbp] used the vortex patch street solutions they foun®#j fo de-

vise an inviscid model of the vortex street wake behind a cylinder. It would be of great phys-
ical interest, and important for applications, to mimic this work of Saffman & Schatzman
[95] for von Karman hollow vortex streets and formulate an analogous model involving the
solutions we constructed in Chapter 3. A natural extension of the work in both Chapter 3
and 4 would be to find analytical solutions for a voangan street of hollow vortices in

an infinite channel. Analytical solutions of this particular free boundary problem will offer
an inviscid wake structure model in a confined environment, and will be couched in a rich
mathematical structure. This problem presents several mathematical challenges, not least
because of the intrinsic periodicity structure and a typical period window being quadru-
ply connected, but also because the analysis is expected to involve inverse conformal slit
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mappings.

The new hollow vortex solutions of this thesis should facilitate studies into the effects of
compressibility on the various hollow vortex structures we have considered. These studies
are usually accomplished by performing low Mach number weakly compressible analyses
using so-called Rayleigh-Jansen expansions; indeed, our new hollow vortex solutions are
expected to be the leading order terms in these Rayleigh-Jansen expansions when such
studies are undertaken. These analyses would be particularly valuable in the investigation
of the compressibility effects in trailing vondtman vortex streets in the wakes of aircraft.
Ardalan, Meiron & Pullin p] have examined the effects of compressibility on the structure

of the single hollow vortex row by taking the Baker, Saffman & SheffiélfJolution

as the leading order term in their Rayleigh-Jansen expansion. Moore & Pa@jimfhd
Leppington B9 have also studied the effects of compressibility on types of vortex pairs.

Determining the stability properties of the new hollow vortex solutions presented in this
thesis also remains as a task for the future. Recently, some stability analyses of certain
classes of hollow vortex solution have appeared in the literature, and it should be possi-
ble to adapt the ideas in these works to our new hollow vortex solutions in order to make
progress in this direction. Llewellyn Smith & CrowdyJ] have carried out a linear stabil-

ity analysis of the equilibrium solutions they found for a single hollow vortex in both linear
and non-linear straining flows. This paper also features a linear stability analysis, using
ideas from Floquet theory, for the hollow vortex row due to Baker, Saffman & Sheffield
[7]. In addition, Crowdy, Llewellyn Smith & Freilich37] have examined the linear sta-
bility properties of their co-travelling hollow vortex pair solutions, whilst Luzzatto-Fegiz

& Williamson [73] have presented a fascinating and detailed investigation using energy-
based stability arguments into the possible equilibrium flows, and their associated stability
properties, for von Krman streets of finite-area vortex patches. Ki@é] [and Meiron,
Saffman & Schatzman7p] have also conducted investigations into the stability of von
Karman streets of vortex patches.

In Chapter 5, we derived a hybrid analytical-numerical scheme determining the shapes of
the free boundaries of a pair of hollow vortices in the wake of a circular obstacle. The
‘new calculus’ proposed by Crowdyl4, 22] was a key ingredient in our work. We were
able to trace out continuous families of hollow vortices and found that solutions exist for a
finite range of area values. We saw that we were able to obtain qualitatively similar hollow
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vortex shapes to Telib & Zannetti]12 for a particular value of the circulation. It is of
pressing importance to make a closer comparison of our solutions with those of Telib &
Zannetti [L17], not least to understand the issue regarding existence of our solutions. The
important question of stability of our solutions naturally arises. Elcrat, Fornberg & Miller
[42] carried out a stability analysis of their solutions for a pair of vortex patches behind a
circular cylinder. It would be interesting to make a similar line of enquiry with our hollow
vortex solutions. This may shed light on why we were only able to determine classes of
solution having a finite range of area values and without ever becoming close to the circular
obstacle, unlike in the case of vortex patches (Elcrat et4).[ It would also be interesting

to desingularise other point vortex equilibria around a circular cylinder using our solution
scheme of Chapter 5: there exists another equilibrium configuration when the two point
vortices lie directly above and below the cylinder (documented in Pr8idshd Elcrat et

al [44)), and Miller [78] has shown that there exists another class of point vortex equilibria
consisting of two up-down symmetric point vortex pairs lying on either side of the cylinder.

In determining the shapes of any finite number of bubbles in a Hele-Shaw channel, we
have generalised the work of Crowd®1] who found the shapes of any finite humber of
bubbles in an unbounded Hele-Shaw cell. We have solved another version of a classical
Laplacian growth free boundary problem and added to the vast body of prior work on bub-
bles in Hele-Shaw channels and cells. This particular free boundary problem turned out
to be a special type of scalar Riemann-Hilbert problem. Consequently, we emulated the
constructive methods of Crowdy 3, 20] and built the relevant formulae using conformal
mappings to multiply connected slit domains. Our solution scheme is very general: all
our formulae are applicable to any finite number of bubbles in a Hele-Shaw channel and
the configuration of bubbles can be completely devoid of any symmetries. An interesting
extension of our work would be to consider a doubly periodic array of asymmetric bubble
assemblies. This, in turn, would generalise the solutions of Silva & Vasconcddk |
Another interesting line of enquiry would be to investigate the effects of surface tension on
the bubble boundaries in the assemblies we have considered. This gives rise to so-called
selection problems: for non-zero surface tensions, there is no longer a continuum of bubble
speeds for which solutions can exist. It is also important to point out that obtaining exact
analytical solutions for steady Hele-Shaw systems naturally paves the way to finding time-
dependent solutions which are of great physical interest. An example of an extension to
the steady theory is the very recent study by Mineev-Weinstein & Vascon&lpwho

have been able to determine an exact solution for the time evolution of a bubble of arbi-
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trary initial shape using elliptic functions. Our new solutions will be the starting point for
any future endeavours looking into constructing time-dependent solutions for asymmetric
configurations of multiple bubbles in a Hele-Shaw channel.

If more important problems in applied mathematics involving geometries in multiply con-
nected domains are to be tackled successfully (which perhaps proved too computationally
impenetrable in the past), having robust and volatile software at our disposal to rapidly
and accurately compute the Schottky-Klein prime function given any multiply connected
geometry, however complicated, would be highly desirable: for example, when resolving
complicated parameter problems associated with the computation of Schwarz-Christoffel
or polycircular arc mappings, or further improving the accuracy of certain solutions pre-
sented in this thesis. Computing the Schottky-Klein prime function becomes a challenging
numerical undertaking if the circular domain over which it is defined becomes highly mul-
tiply connected, or when there are some boundary circles which are close-to-touching.
Conformal mappings are usually susceptible to numerical problems such as ‘crowding’ if
the preimage domain is of this type. One way to overcome the effects of crowding is to use
a very high number of collocation points and compute with very high accuracy; however,
this is computationally expensive. On this issue, it has been proposed recently by Crowdy,
DelLillo & Marshall [35] that the use of so-called ‘hybrid methods’ can dramatically reduce
computational time and can actually increase the overall accuracy of the solution being
computed when boundary circles become closer and closer together. Further investigation
into the (as yet unknown) special properties of these ‘hybrid methods’ would no doubt
shed light on devising an efficient and accurate way to compute the Schottky-Klein prime
function over a complicated circular domain. Work on developing an optimum method to
compute the Schottky-Klein prime function is already in progress.
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Appendix A
Von Karman streets of point vortices

In this appendix, we outline some details of the analysis for constructing steadyavoai

point vortex streets. We will focus here on staggered streets, but the unstaggered case in-
volves only minor changes in detail. Such details can also be found, for example, in the
monographs of AchesoR]and Saffman$3).

Consider a staggered vorakman street of point vortices. Suppose the point vortices in the
top row are all of circulatiort’, and the point vortices in the lower row are all of circulation
—I'. Suppose the configuration moves, without change of form, with spjeetthe point
vortices in both rows are assumed to be separated by a distaridge complex potential

in co-travelling frame of speed is

B ir’ . (7m(z=c¢) ir’ . [(m(z+40¢)
w(z)=-Uz 5 log sin ( 7 > + o log sin ( 7 , (A1)

™

where—L/2 < Re[£c] < L/2. The complex velocity is

d_w:_U_EcotC(z_C)) +%cot(ﬂ(z+c)>. (A.2)

L L

The condition that the vortex at= c is stationary (and, hence, by periodicity, all the other
vortices in this row) is

2L L

By the symmetry, the same condition ensures that the point vortices in the lower row are

2me i’
/7)) = . A4
tan( 7 ) 5LU ( )

- U+ i cot (ﬁ) =0. (A.3)

also stationary. Thus
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On use of the well-known identity

tan Xsech?Y itanhY sec? X
tan (X +1iY) = + , A5
n( ) 1+ tan? X tanh?Y 1+ tan? X tanh®Y (A-5)
we see that we require
2rc 0w
— = — 4 1Y, A.6
=5 Y, (A.6)
with
thY = 2 (A.7)
CO = 2LU .
Hence:
L iL r
="+ —coth™' [ — ). A8
IR (2LU> (A8)
If L =T =1, solutions for staggered point vortex streets exist provided
1
0<U< —. (A.9)

2
It can be shown in a similar fashion that solutions exist for unstaggered streets provided

U > % (A.10)
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Appendix B

Re-derivation of the Baker, Saffman &
Sheffield [7] solution

In this appendix, we will show that the conformal map we derived in Chapter 3 describing
the shape of a typical hollow vortex in a row is equivalent to the solution presented by
Baker, Saffman & Sheffield7].

Recall from @.36) that the conformal map from the interior of the ugitlisc to a period
cell containing a typical hollow vortex in a row is

2(¢) = = (tan""(¢/a) — a® tan""(a()) (B.1)

3

(ignoring the additive constant). This map takes the grutrcle to the boundary of the
hollow vortex. Baker, Saffman & Sheffield] have given parametric equatiod§(\)
andY () for the same hollow vortex in terms of a perimeter paramgteaking values
0 < X\ < 27. Motivated by this, put = e'¢, with 0 < ¢ < 2, so that

2(¢) = z(8) +iy(¢) = = (tan™"'(e'/a) — a® tan™" (ae'?)) . (B.2)

Sl

At some point on the hollow vortex boundany) andy(¢) (for some value o) must be
equal toX (\) andY () (for some value of\). Thus, our aim is to show thatis related to
A at an arbitrary point on the boundary of the hollow vortex, i.e. when

z(d) +iy(o) = X(N\) +1Y (N). (B.3)
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On use of the well-known identity
1+ Z
1(Z) = ~log | : B.4
ton4(2) = 51og (17 ). (B.4)
(B.2) becomes
. L (i ai + e'¢ a’i i+ ae'?
z(¢) +iy(¢) = — (51 g(a1—ei¢>> —5 g<1—ae1¢>> (B.5)
or y p
ai + ¢ i—ae?\ "’
2(9) +1y(¢) = — log ((a - eid,) ( n ae@) ) (8.6)
Let " "
ai+ e' © 1— ae ©
— = ! — = 2 B.7
ai — ei¢ o " i+ ael? T2, (B.7)
whereR;, Ry, 01,0, € R can be found. Then
. L i i© a’i i0
z(¢) +iy(¢) = ;bg exp élog(Rle ')+ 5 log(R2e™?) ) |, (B.8)
i.e.
L
2(6) +iy(9) = 5 (i(log Ry + a*log Fa) — (01 + a%6)) (B.9)
Thus, upon equating real and imaginary parts,
L 2 L 2
2(6) = ~5-(O1+ ), y(9) = 3~ (log Ry +a’log Ry),  (B.10)

(e

a first correspondence betwedh ) and the parametric equations of Baker, Saffman &

Sheffield [7] is made. Recall from3.30) and @.32 that our complex velocity function is

do _iv¢
dz  a

Baker, Saffman & Sheffield7] define the quantity

Uso
R=—.
qo0

In our notationl/,, = U, and

(B.11)

(B.12)

(B.13)
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Hence
R =a. (B.14)
After some algebra, it can be shown that
1+ 2Rsin ¢ + R? 1 1 (2Rcos ¢
R, = =—, 0=t — ] =06 B.15
1 ((1 + R2)2 o 4R2 Sin2 ¢)1/2 RQ’ 1 an 1_ R2 2 ( )
and so B.10) becomes
L 9 1 (2Rcos¢
x(p) = 27T(1+R)tan (1—R2>’
L 1+ 2Rsin¢ + R?
= —(1-R%1 B.16
y(¢) 27'('( ) 0og <((1 + R2>2 - 4R2 sin2 (b)l/Q) ( )
The parametric equations of Baker, Saffman & Sheffié|dafe
L 2R sin A
X —— 2\ 1. —1
) = 1+ Rt (2R,
L . _1 [ 2Rcos A
Y(A) = %(1 — R?)sinh ( T ) (B.17)
For (B.3) to hold true, it is clear that we require
1 (2Rcos ¢ . 1 [2Rsin A
. 1 _ 1
tan ( [~ 12 ) sin ( T ) (B.18)
and ,
1+2Rsing+ R . 1 {2Rcos A
1 = sinh : B.19
o8 <((1 + R2)? — AR? sin? ¢)1/2) S ( 1 - R? > (8.19)
On use of the well-known identities
. _ A _ 1 1
sm(tan ! Z) = m, SlIlh(lOg Z) = 5 (Z — E) s (BZO)
and after some algebra, we find that
(1 — R*)sin ¢ . (1+ R?)cos ¢
A= A=— . (B.21
AT T R _aREsinZ )2 (7 R —amsnt gz B2

Thus, we indeed have a consistent correspondence betwesgh).



159

Appendix C

Co-travelling pair of point vortices in an

Infinite channel

In this appendix, we outline the analysis for a pair of point vortices steadily translating

along an infinite channel with vertically-aligned walls.

The complex potential for two point vortices with circulatiofi§' inside the unit circle in

a parametri¢-plane is

P (Cem \ LT, [
W) = 5z o8 (c—1/71)+2w1°g(c—1/%)' (1)

The conformal mapping from an infinite vertical channel of unit width in@lane to the

interior of the unit(-disc is given by

w4
¢(2) = tanh (E) . (C.2)
Suppose the point vortices are located at

x = *c. (C.3)

Their corresponding images in tgeplane are

¢ = +tanh(mwc/2i). (C.4)



Appendix C. Co-travelling pair of point vortices in an infinite channel 160

It follows that the complex potential in theplane is

w(z) = iFlg<tanh(7rz/2i)+tanh(7rc/21)) ir (tanh(m/Qi)—tanh(m/zi))

or tanh(rz/2i) — coth(me/2i) ) 27 tanh(mz/21) + coth(mc/2i)
(C5

or, after some algebra:

w(z) =

i | (tanh(iﬂz) + tanh(iwc)) (C.6)

Tor 8 tanh(irz) — tanh(imc)

By some further algebra, it can be verified that the vortex pair travels vertically down the

channel with velocity
dw il’

W _y_iv=—cot2 7
7 U—iVv ) cot(2mc) (C.7)
(with U = 0) so that
dw r
27 = = cot(2me). .
7 5 cot(2mc) (C.8)

Whenc < 1/4, the stagnation points are complex conjugate pairs lying on the channel
centreline. As: — 1/4, the stagnation points move off towards infinity in opposite direc-
tions. The point vortex pair is stationary when= 1/4. Whenc > 1/4, these stagnation
points move onto one of the channel walls, still as a complex conjugate pair. There is an ac-
companying pair of stagnation points, with the same imaginary parts, on the other channel
wall.
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Appendix D

Row of hollow vortices in an infinite

channel with centroids not on the

channel centreline

In this appendix, we briefly outline how our approach presented in Chapter 4 can be gen-
eralised to the case where the centroids of the hollow vortices in the row configuration are
moved off the channel centreline, withcoordinatey, # 0. This row of hollow vortices is
expected to translate steadily in thalirection along the channel with some constant speed

U to be determined posteriori

It is expected that a formula fd¥ should be able to be derived using information about
the flux of the fluid through the period cell, but we have so far been unable to do this. We
were also not contented by several aspects of our numerical work at the time of writing.
Resolving these issues remains a matter for the future.

D.1 Function W (()

To perform the analysis, we move to a co-travelling frame of reference with the hollow
vortex row. A typical period window of this row does not have any up-down symmetry
about the channel centreline; consequently)inwe expect; # ¢.. See Figuréd.1l. As
before, we expect two stagnation points to lie on the edges of the period window with the
samey-coordinate.

We propose the following function for the complex potential, in a co-travelling frame with
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Figure D.1: Schematic showing the preimage triply connected bounded circular domain
D, inthe(-plane, corresponding to solutions for a hollow vortex row with centroids not on
the channel centreline.

the hollow vortices:
W(C) = I'ui(¢) + Tava(C). (D.1)

Here,I' = I'y 4+ I'y is the total circulation in the period cell. Since the period cell is
not up-down symmetric, we expect an unequal contribution to the total circulation in the
period cell along the two channel walls. It follows from the ‘a-cycle’ properties ob}f®©
functions @.7) that (D.1) satisfies 4.39. Being a sum ob,;(¢) functions, D.1) also has
constant imaginary part on all the boundary circledpf as required.

D.2 Functiondw/dz

We claim that the complex velocity function is again

dw

- = QuS(GR) (B-2)

with functionS((; R) as in @.49. The preimage of the two stagnation poigts- v # 0
will lie on the branch cut joining; andé,, wherey € R will need to be found as part of
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the solution. The value ak will now be

W('Y, _1)
R=—"—"- D.3
w(7,1) ©-9
thus ensuring that
dw
—(v) = 0. D.4
5, (1) =0 (D.4)

D.3 Conformal map z(¢)

The conformal map is given through the integral

z(¢)

1 T + (T =T wy(¢)
- = /C SO dc’ (D.5)

Here,(, € Cis an arbitrary point in the interior dp,.

D.4 Proposed solution scheme

As in Chapter 4, we can fix
L=T=1. (D.6)

The centres of; andC; can again be taken to lbg = —d, = 6 € R (see Figurd.1). For
convenience, introduce a continuation parameters < 1 such that

1
Hence

There are then the following four real parameters to determine:

57 q1, q2, - (Dg)

These parameters can be found by solving the following four real equations. We expect to
be able to specify the aspect ratio of the period cell

A - ( / ;q;\zmdc’l) / ( ¢ | |z<<c’>dc’|>, (D.10)
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and the imaginary pag of the centroid of the hollow vortex

I []40 Oz(<’>|z<<<’>d<’|} / ( 3 |z<<¢'>d<’|) —c (D.11)

We require the length of the top and bottom channel walls of the period cell to be equal:

74 2(¢)de| = 74 12(¢)dc] (D.12)
C1

Ca
This condition D.12) implicitly enforces that the conformal magi() be single-valued
everywhere inD.. Finally, the derivative of/'(¢) with respect ta; should have a simple
zero at¢ = ~. Itis sufficient to enforce

Im {Cil—vg(y)} =0, (D.13)

since the choice ab, guarantees that

Re [C;—Iz/(y)] = 0. (D.14)
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Appendix E

Initial estimates of the solutions in
Chapter 5

In this appendix, we briefly outline the procedure we employed to generate initial estimates
for the values of the conformal mapping parameters in Chapter 5. Our procedure is centred
around knowledge of thedppl point vortex system.

E.1 FOppl point vortex equilibria

Inaz = (z + iy)-plane, let two point vortices of strengthd” andI" be placed behind
|z| = 1 in a uniform streant/ at positions: = zy = x( + iy, andz = z; (Where|zy| > 1),
respectively. The complex potential for thisgpl point vortex system is

we) =0 (s 1)+ o (S EZ T E.1)

For fixed values of" andU, it can be shown that the two point vortices are in equilibrium
providedz, andy, satisfy the two non-linear equations

g +yg — 1= 2ryo, (E.2)

and

I = 4xUy, (1 —~ (E.3)

1
(3 + y8)2) '

There are five stagnation points in the system, and these are the solutions to

dw
— =0. E.4
5 =0 (E.4)
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E.2 MaOobius mappings

We will construct a Mbius map((z) from the exterior of two small circles of radius
aroundz, andz, in the z-plane to the interior of a concentric annulpis< (| < 1 in

a (-plane (wherep will be determined). The image 9t| = 1 in the {-plane is easily
determined once the may() is known; this provides the initial estimates for the ceitre
and radiug; of circle C; (recall Figures.2).

Consider the following sequence of conformal mappings taking the exteriorofy| = ¢
and|z — Z| = ¢ to the interior of an eccentric annulii& with inner circle having centre

0" and radiug;’ (say):

Z— 20

) =220 Gy =L, (@) = it (E.5)

€ G

Next, consider mapping this eccentric annufu§to a concentric annulus < |§| <1
which we will label D,

g _ (3 —«
= a6 1) (=0)

This map E.6) is an automorphism of the unit disc which we introduced in Chapter 2
(recall .49). Recall also from Chapter 2 the valu&s46):

162 +¢% — (1= 8%+ ¢ —1¢%)"° a:( p—d \""
) ) *

(E.7)
2q' p(l—dp

p =
Note that the image df:| = 1 under({ o (3 0 (; 0 ¢;)(2) is a circle lying in the interior of
the concentric annuluB, having centrey = |¢§'|el?™=9) (with 0 < ¢ < 7/2) and radius
q (say). Explicit formulae can be written down determining the valueé ahd g (see
Marshall [74]). A final rotation off)g through

(({) =€ (E.8)

yields another concentric annulys< [{| < 1 which we labelD.. Now the image of
|z = 1under(CoCos0(0()(2) is acircle lying in the interior of the concentric annulus
D, having centre = |¢’| and radius;.

Written out in full, the map from the exterior ¢f — 29| = ¢ and|z — Z;| = ¢ to the interior
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of D, is

el? (ie — a(zg — 2z
() = Soliz—ateo )

ol (ie = (20 = 2) /)
The inverse map((¢) taking the interior ofD, to the exterior ofz—zy| = e and|z—%| = ¢
can now be written down:

(E.9)

e (ie — az) + |a|C (20/a — ig)
la|C /e — el ‘

2(C) =

(E.10)

All the conformal mapping parameters that we require to begin the Newton iterations of
Chapter 5 can now be deduced. We can initially take all the coefficients in the Fourier-
Laurent series expansion of¢) in (5.34 to be zero (say). The initial estimate for the

value of the fluid speedon the hollow vortex boundaries is given by

c=—. (E.11)
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