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Abstract

In this thesis, we study six different free boundary problems arising in the field of fluid

mechanics, and the mathematical methods used to solve them. The free boundary problems

are all characterised by having more than one boundary and the solution of these problems

requires special mathematical treatment. The challenge in each of these problems is to

determine the shape of the multiple fluid interfaces making up the particular system under

consideration.

In each of the free boundary problems we employ aspects of complex function theory, con-

formal mapping between multiply connected domains, and specialist techniques devised in

recent years by Crowdy and collaborators. At the heart of these techniques lies a special

transcendental function known as the Schottky-Klein prime function. This thesis makes

use of this function in a variety of novel contexts.

We first examine a single row of so-called hollow vortices in free space. This problem

has been solved before but we present a new methodology which is convenient in being

extendible to the case of a double row, or von Kármán vortex street, of hollow vortices. We

find a concise formula for the conformal mapping describing the shapes of the free bound-

aries of two hollow vortices in a typical period window in the vortex street and thereby

solve the free boundary problem.

We next focus on the problem of a pair of hollow vortices in an infinite channel. This

free boundary problem exhibits similar mathematical features to the vortex street problem

but now involves the new ingredient of solid impenetrable walls. Again we solve the free

boundary problem by finding a concise formula for the conformal mapping governing the

hollow vortex shapes. We then extend this analysis to a single row of hollow vortices

occupying the channel.
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The problem of a pair of hollow vortices of equal and opposite circulation positioned be-

hind a circular cylinder, superposed with a uniform flow, is then considered. This system

is a desingularisation of the so-called Föppl point vortex equilibrium. For this free bound-

ary problem, we employ a hybrid analytical-numerical scheme and we are able to offer a

Fourier-Laurent series expansion for the conformal mapping determining the shape of the

hollow vortex boundaries.

Finally, we investigate an asymmetric assembly of steadily translating bubbles in a Hele-

Shaw channel. This free boundary problem can be formulated as a special Riemann-Hilbert

problem solvable in terms of the Schottky-Klein prime function. Our method of solution

can be used to determine the shapes of any finite number of bubbles in a given assembly.
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Chapter 1

Introduction

This thesis concerns solving variants of a special type of mathematical problem in geome-

tries of multiple connectivity. This special type of problem is known as a free boundary

problem. By associating the term ‘multiple connectivity’ with a particular geometry, we

mean that the geometry in consideration has more than one boundary component. Finding

solutions to boundary value problems involving multiply connected geometries is always

challenging owing to multiple requirements having to be satisfied simultaneously on all the

boundary components and the associated search for suitable mathematical functions which

can capture all necessary details.Freeboundary problems in multiply connected geome-

tries possess an even greater level of difficulty: these problems are characterised by the fact

that the boundaries themselves are unknowna priori and must be determined as part of the

solution.

In this thesis, we will consider six different free boundary problems in various multiply

connected geometries which all arise in the field of fluid mechanics. We are motivated

by the desire to understand certain configurations of multiple fluid interfaces and the spe-

cialised mathematical methods which must be summoned so that these free boundary prob-

lems can be successfully tackled. Due to the fact that the governing equation in each of

the free boundary problems to be considered in this thesis is Laplace’s equation in two

dimensions, our problems naturally lend themselves to being solved using the powerful ar-

moury of complex analysis and complex function theory. This is because both the real and

imaginary parts of a complex-valued analytic function satisfy Laplace’s equation.

Indeed, making progress when solving problems in two-dimensional fluid mechanics usu-

ally involves finding an analytic function known as the complex potential which encapsu-
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lates the main characteristics of the physical system in consideration. In certain problems

(such as those considered in this thesis), we can appeal to their conformal invariance: this

important property essentially permits the use of conformal mapping so that the problem

can be posed in a simplified geometrical framework, and thereby solved. To illustrate this

notion, suppose the complex potentialw(z) in the physical fluid domain in az-plane is de-

fined through the compositionW (ζ) = w(z(ζ)), wherez(ζ) is a conformal mapping from

some simple geometry in aζ-plane (often taken to be a circular domain i.e. a domain whose

boundary is a union of circles) to the physical domain in thez-plane. Then, provided we

can construct the functionsW (ζ) andz(ζ) in our chosenζ-plane, the problem is solved.

This idea of ‘pulling-back’ to a simpler domain can be utilised in free streamline theory.

Free streamline theory can originally be attributed to the work of von Helmholtz [119] on

discontinuous fluid motion, and was subsequently developed by Kirchhoff and Rayleigh.

The subject of free streamline theory is vast and there are many sources one can turn to in

the literature; for example, Milne-Thomson [79] and Sedov [102]. An accessible discussion

of the development of free streamline theory is given in Sobey [105]. This discussion is

mirrored in the introduction of the work of Michell [77]. In this remarkably detailed paper,

Michell builds on the work of von Helmholtz, Kirchhoff and Rayleigh by using Schwarz-

Christoffel methods (i.e. conformal mappings to simply connected polygonal domains,

see Nehari [84]) to give “a general solution of the problem of free non-reentrant stream

lines with plane rigid boundaries” with applications to problems of condensers and hollow

vortices. The content of Chapters 3-5 in this thesis is devoted to free boundary problems

involving hollow vortices and are solved using ideas involving free streamline theory. We

discuss the general properties of hollow vortices later in this chapter.

The monographs by Acheson [2] and Batchelor [8] explain how the techniques of com-

plex analysis can be used to solve several basic problems in fluid mechanics, whilst the

monograph by Saffman [93] presents a comprehensive overview of various problems, also

using complex analysis techniques, arising specifically in vortex dynamics. Most of these

problems are set in simply connected domains which are relatively simple to analyse and

solutions can be written down in closed analytical form. An example of such a solution

is the complex potential for steady uniform flow past an aerofoil which can be derived

using the well-known Joukowski map (Nehari [84]). Saffman & Sheffield [97], with the

intention of understanding lift enhancement by trapped vortices, used the Joukowski map

in their model of an attached free point vortex above a flat plate. Some problems involving
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two boundaries are able to be tackled provided one is proficient in the use of elliptic func-

tions (Akhiezer [3]). For example, Lagally [68] constructed the complex potential for the

so-called ‘bi-plane’ problem of uniform flow past two circular aerofoils in terms of elliptic

functions, and Johnson & McDonald [61] were able to determine the trajectories of a point

vortex in motion around two circular obstacles also by employing elliptic function theory.

However, there appears to have been a distinct lack of analytical solutions for uniform flow

around multiple obstacles until relatively recently. Crowdy [14, 22] has built what can be

regarded as a ‘new calculus’ for solving inviscid fluid flow problems in multiply connected

geometries. The success of his approach comes from employing a special transcenden-

tal function called the Schottky-Klein prime function and its associated function theory

(the subject of Chapter 2), alongside sophisticated conformal mapping techniques, to de-

rive general analytical expressions for the complex potentials describing particular flows.

A remarkable feature of this work is that each complex potential takes exactly the same

functional form regardless of the connectivity of the problem. By exploiting his new cal-

culus, Crowdy [15] has also been able to generalise the ‘bi-plane’ solution of Lagally [68]

to the case of an arbitrary finite number of aerofoils in a uniform stream. We will employ

Crowdy’s new calculus in our work in Chapter 5. Now, although the aforementioned works

of this paragraph do not pertain to free boundary problems, they collectively imply that in

order to find analytical solutions to problems in multiply connected geometries, the devel-

opment of new analytical techniques and the use of specialised mathematics is essential.

Indeed, until relatively recently, problems arising in general multiply connected domains

usually evaded being solved analytically. Over the past decade, Crowdy and collaborators

have been able to formalise novel constructive techniques for solving various problems in

multiply connected domains. Their approach centres around the usage of the Schottky-

Klein prime function and its associated function theory, and we advocate their approach

throughout this thesis. Crowdy and collaborators have pointed out on a number of occa-

sions that this special function plays a central role in problems involving multiply con-

nected geometries and can be used to great advantage in many applications (even though

it has scarcely made an appearance in the applied mathematical literature until relatively

recently). In addition to the new calculus proposed by Crowdy [14, 22], the Schottky-Klein

prime function can claim to have had a profound impact on the field of conformal mapping

between multiply connected domains. Crowdy [13, 16] used the Schottky-Klein prime

function in his construction of generalised Schwarz-Christoffel formulae for the confor-

mal mappings to the interior and exterior of multiply connected polygonal regions, whilst
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Crowdy, Fokas & Green [36] used the Schottky-Klein prime function in combination with

automorphic function theory (Ford [47]) to show that the conformal mappings to multiply

connected polycircular arc domains are the solutions of a third order non-linear differential

equation involving Schwarzian derivatives. Furthermore, Crowdy & Marshall [29] have

constructed analytical formulae, expressed in terms of the Schottky-Klein prime function,

for the special conformal mappings from bounded multiply connected circular domains to

various multiply connected slit domains. The use of these conformal slit mappings is cen-

tral to solving the free boundary problems of Chapters 3, 4 and 6, and we will introduce

the ones we shall use in Chapter 2.

Free boundary problems arise in many areas of the applied sciences and manifest them-

selves in a variety of different forms. The review by Friedman [48] surveys some recent free

boundary problems occurring in different scientific fields by outlining two broad types of

free boundary problem known as obstacle problems and Stefan problems. For free bound-

ary problems set in multiply connected domains, very few analytical solutions exist in the

literature. We will now survey some free boundary problems set in various multiply con-

nected domains which have been successfully tackled using complex analysis techniques.

Our intention is to give a flavour of the nature of these problems, in addition to the general

types of mathematical methods which have been used to solve them, as a prelude to the

free boundary problems we shall address in this thesis.

A free boundary problem which exploits conformal mapping ideas in a doubly connected

setting is explored in the interesting study of Milton & Serkov [80]. They consider a thin

material plate with a hole taken to be surrounded by an isotropic coating of some con-

ductivity. Their free boundary problem, which consists of finding all admissible doubly

connected coating regions (and hence the shapes of the simply connected hole), is solved

by constructing a conformal map, in terms of a Fourier-Laurent series expansion, from a

concentric annulus to the doubly connected region of the coating. When it is not possi-

ble to find explicit analytical solutions to a particular problem, choosing to adopt these

Fourier-Laurent series expansions is a very convenient way of still enabling solutions to be

constructed. We have to resort to using such representations in Chapter 5. Another exam-

ple of a free boundary problem over a doubly connected domain is the problem of slow

viscous flow of an annular viscous drop driven by surface tension. This time-dependent

biharmonic problem was solved exactly by Crowdy & Tanveer [34] using elements of au-

tomorphic function theory.
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Many free boundary problems naturally arise from the consideration of different types of

Hele-Shaw system. We will focus on one such system in Chapter 6. A Hele-Shaw system is

where two fluids (one viscous and one inviscid) which are sandwiched between two close-

to-touching parallel plates produces a flow which is essentially two-dimensional for mod-

elling purposes. Hele-Shaw flows in various geometries have been extensively studied over

the years and evidently, many processes in physics involving the evolution of interfacial

boundaries, such as dendritic crystal growth, direct solidification, and fluid displacement,

can be modelled mathematically (under certain assumptions) as a free boundary problem

of the Hele-Shaw type. This diverse array of free boundary problems has a plethora of

analytical solutions, many of which are exact, and a wide scope of mathematical methods

can be used to solve them. The models defining these free boundary problems also go by

the name of ‘Laplacian growth processes’ because the governing field equation in the fluid

is Laplace’s equation and the evolution of the fluid interfaces is governed through surface

derivatives of this field. In the case of Hele-Shaw bubbles, the flow is governed by Darcy’s

law and the bubble interfaces evolve with a velocity proportional to the local gradient of

the fluid pressure.

A free boundary problem solved over a general multiply connected fluid domain in a Hele-

Shaw system is presented by Richardson [91]. He considered the problem of fluid injection

into an empty Hele-Shaw cell and developed analytical solutions describing growing circu-

lar regions of the injected fluid which merge together in the ensuing motion to form some

multiply connected region. This free boundary problem is time-dependent, and extends an

earlier work of his (Richardson [90]). In this earlier work [90], Richardson laid down the

mathematical formalism for both problems in [90, 91], but only considered in detail the

fluid motion in a particular doubly connected configuration. This required the use of ellip-

tic function theory. In both works [90, 91], Richardson ingeniously employed the Cauchy

transform alongside various complex analysis techniques. In [91], the multiply connected

region occupied by the fluid at some point in time is determined by a conformal map from

some bounded multiply connected circular domain. This conformal map is found to be an

automorphic function with respect to the Schottky group of the preimage circular domain

(we define Schottky groups in Chapter 2), and is constructed as a ratio of Poincaré theta

series. This work by Richardson [91] is important because it demonstrates the key role of

the theory of Schottky groups and automorphic functions when solving problems in multi-

ply connected geometries, and motivates our decision to employ the Schottky-Klein prime

function and its associated function theory when solving the problems of this thesis. It is
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important to point out that Richardson [90, 91] did not make use of, or even mention, the

Schottky-Klein prime function. His work was later reappraised by Crowdy & Marshall

[27].

The results in [91] are also significant in the following sense: they can be interpreted in

terms of quadrature domains (Gustafsson & Shapiro [56]). Quadrature domains are essen-

tially special planar domains which are characterised by quadrature rules, and they turn out

to be useful mathematical objects in a number of different physical problems (often be-

cause they are preserved by the dynamics of the problem). In fact, there are several strong

connections between the theory of quadrature domains and various free boundary problems

arising in fluid mechanics (see Crowdy [12]). Motivated by these numerous applications,

Crowdy & Marshall [27, 33] have devised ways to reconstruct multiply connected quadra-

ture domains using conformal mappings written in terms of Schottky-Klein prime func-

tions. The theory of quadrature domains is also exploited in the work by Crowdy & Kang

[26]. By using the fact that the boundaries of quadrature domains are algebraic curves,

Crowdy & Kang [26] were able to solve the time-dependent free boundary problem of the

so-called ‘squeezing flow’ of multiply connected fluid domains in a Hele-Shaw cell. They

constructed exact analytical solutions by tracking a finite set of time-dependent parameters

governing the evolution of a multiply connected fluid domain under the squeeze flow.

A free boundary problem which has been solved recently and which employs conformal

mapping methods involving the function theory of the Schottky-Klein prime function is

presented by Marshall [75]. Marshall has constructed a special class of solutions describing

steady flows in multiply connected regions of uniform vorticity surrounding an assembly

of multiple finite-length flat plates. His sophisticated construction relies upon the use of

the Schwarz function (Davis [38]) and the proceeding through an intermediate multiply

connected parallel slit domain (Crowdy & Marshall [29]). He ends up solving a modified

Schwarz problem for the conformal map determining the shapes of the free boundaries of

the uniform vorticity region for a given assembly of plates: such a problem when posed in a

multiply connected circular domain has a concise integral formula solution whose kernels

are expressed in terms of the Schottky-Klein prime function (Crowdy [18]). In doing so,

he was able to extend the two works of Johnson & McDonald [63, 64] who considered

separately the cases of steady vortical flows around a single plate and a periodic array of

plates. For four of the free boundary problems we shall treat in this thesis, the reader will

detect several analogies with the approach and ideas of Marshall [75]; indeed, when solving
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these problems, we shall also employ conformal slit mappings and will construct analytical

formulae, expressed in terms of Schottky-Klein prime functions, for the conformal maps

describing the shapes of the free boundaries we seek.

Hollow vortices are the principal fluid dynamical objects of focus motivating the majority

of the free boundary problems of this thesis and so it is only appropriate that in the re-

mainder of this chapter, we elucidate their main characteristics and discuss existing works

involving them. As we shall see in this thesis, modelling hollow vortices requires solv-

ing complicated free boundary problems. A hollow vortex is defined to be a finite-area

region containing vacuum at constant pressure which is bounded by a vortex sheet of uni-

form strength; that is, the vorticity associated with it is confined to be on its free boundary

whose shape will need to be determined. In two dimensions, this free boundary is a simple

closed curve and if it is in steady equilibrium, is necessarily a streamline of the flow. If

the fluid in which the hollow vortex is immersed is at constant pressure, then in order that

there is continuity of pressure across the vortex sheet, Bernoulli’s theorem implies that the

fluid speed on the vortex sheet must be constant. The hollow vortex model is an example of

a classical distributed vorticity model. Distributed vorticity models are desingularisations

of point vortex models in the following sense: the fluid velocity field induced by a point

vortex is singular at the location of the point vortex whilst for a vortex with distributed

vorticity, the fluid velocity field is non-singular at all points in the flow. Another example

of a distributed vorticity model is that of the vortex patch which is a finite-area region of

constant vorticity (Saffman [93]).

Even though the hollow vortex model is a classical model dating back to the late nineteenth

century, many analytical solutions describing hollow vortices have remained undiscovered

until relatively recently, and there are likely still many more to be found. This thesis will

present many new such analytical solutions for hollow vortices in some typical physical

configurations. Our new solutions are valuable: exact solutions of the two-dimensional

Euler equations in vortical flow problems are hard to attain and few exist. The 1884 work

of Hicks [60] is one of the first papers in which the hollow vortex model features. Hicks

used so-called toroidal functions to derive some approximation formulae for the steady

motion of a single hollow vortex. Michell [77] studied a single hollow vortex in an in-

finite channel by employing Schwarz-Christoffel methods and elliptic function theory to

derive an analytical formula for its free boundary shape. Pocklington [85] focused on a

co-travelling hollow vortex pair in unbounded fluid. Like Michell [77], Pocklington also
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utilised Schwarz-Christoffel methods and elliptic functions to derive an analytical solution

for the free boundaries of the hollow vortices. In Chapter 4, we will generalise both the

works of Michell [77] and Pocklington [85].

Around eighty years after the work of Pocklington [85], Baker, Saffman & Sheffield [7] un-

dertook a study into a single row of hollow vortices in unbounded fluid. By employing free

streamline theory alongside Schwarz-Christoffel methods, and appreciating the intrinsic

periodicity structure of the row, they found an exact solution for the conformal map deter-

mining the shape of a typical hollow vortex member in the row. Our work in Chapter 3 can

be viewed as the generalisation of this solution due to Baker, Saffman & Sheffield [7] to a

von Kármán street of hollow vortices (two rows of hollow vortices). Recently, Llewellyn

Smith & Crowdy [72] analysed the effect of placing a single hollow vortex in an ambient

irrotational straining flow and employed free streamline theory to establish an exact analyt-

ical solution for the shape of the hollow vortex boundary. Also, Crowdy, Llewellyn Smith

& Freilich [37] have presented a new derivation and representation of Pocklington’s solu-

tion [85] for a co-travelling hollow vortex pair. Appealing to free streamline theory, they

were able to derive an explicit indefinite integral for the conformal mapping, expressed in

terms of Schottky-Klein prime functions, determining the hollow vortex boundary shapes.

This thesis will showcase six free boundary problems defined over different multiply con-

nected domains. Each of the problems considered in this thesis is amenable to techniques

of conformal mapping and complex variable theory. Throughout, we shall focus on devis-

ing novel and sophisticated constructive methods of solution to each of our free boundary

problems and exploit the rich function theory associated with the Schottky-Klein prime

function. This thesis is structured as follows. In Chapter 2, we present an overview of

the Schottky-Klein prime function and its associated function theory. In Chapters 3-5, hol-

low vortices in different configurations are studied, while in Chapter 6, a particular type

of Hele-Shaw system is examined. In Chapter 3, we study a row and a street of hollow

vortices in unbounded fluid; much of the material in Chapter 3 forms the content of the

paper by Crowdy & Green [25]. In Chapter 4, we consider a pair and a row of hollow

vortices in an infinite channel. In Chapter 5, we concentrate on a hollow vortex pair in the

wake of a circular obstacle within a uniform flow. Finally in Chapter 6, we consider a finite

asymmetric configuration of multiple bubbles moving steadily along a Hele-Shaw channel.
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Chapter 2

The Schottky-Klein prime function

Since the Schottky-Klein prime function lies at the heart of the mathematical techniques of

this thesis, it is instructive to give a brief overview of it and to survey a number of its key

properties which we shall employ at various stages. The function theory associated with

the Schottky-Klein prime function is both beautiful and powerful, and can be exploited

to solve the free boundary problems of this thesis. The Schottky-Klein prime function

turns out to be a relatively straightforward mathematical object to compute (we outline a

possible method of computation in this chapter) and encapsulates neatly into its very def-

inition certain geometrical properties of the multiply connected domain over which it is

defined, regardless of the connectivity; consequently, many formulae written in terms of

the Schottky-Klein prime function are concise and mathematically elegant. Further infor-

mation about the nature of the Schottky-Klein prime function can be found, for example,

in the accessible overviews by Crowdy [23, 17], whilst a more detailed treatment is given

by Marshall [74].

2.1 The Schottky-Klein prime function

To any bounded multiply connected circular domainDζ , we can define a Schottky-Klein

prime function which we shall denote by

ω(ζ, γ) (2.1)

for arbitrary pointsζ, γ ∈ Dζ . For us, a bounded(M + 1) connected circular domain

Dζ in a parametricζ-plane will be taken to be the intersection of the interior of the unit

ζ-disc and the exterior ofM smaller discs lying strictly inside the unitζ-disc with centres
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Figure 2.1: Schematic of a typical multiply connected circular domainDζ in the case where
M = 5. The unitζ-circle is denoted byC0. Thej-th interior circle is denoted byCj and
has centreδj and radiusqj.

{δj ∈ C | j = 1, ..., M} and radii{qj ∈ R | j = 1, ..., M}; these two sets are together

known as the conformal moduli ofDζ (see Figure2.1). Let C0 label the unitζ-circle and

let Cj label thej-th interior circle,j = 1, ..., M . Strictly speaking, we should denote the

Schottky-Klein prime function by

ω(ζ, γ; δ1, ..., δM , q1, ..., qM) (2.2)

to indicate its dependence on the particular circular domainDζ over which it is defined;

however, we will drop this lengthy notation and proceed with the understanding thatDζ

is known. It should be noted that the Schottky-Klein prime function has deep connections

with Riemann surface theory (Fay [45]). For the purposes of this thesis, the Schottky-Klein

prime function should be thought of as a special computable function in the following

sense: a Schottky-Klein prime function can be defined over any given bounded multiply

connected circular domainDζ and is uniquely defined at any given pair of pointsζ, γ ∈ Dζ .

The Schottky-Klein prime function was originally written down independently by both

Schottky [101] and Klein [67] in the nineteenth century. Baker’s classical monograph on
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Abelian functions [6] records the Schottky-Klein prime function; it therein appears in the

form of an infinite product:

ω(ζ, γ) = (ζ − γ)
∏

θ∈Θ′′

(ζ − θ(γ))(γ − θ(ζ))

(ζ − θ(ζ))(γ − θ(γ))
. (2.3)

Here,θ is a Möbius map belonging to the groupΘ′′, which we now define. Introduce the

M Möbius maps

θj(ζ) = δj +
q2
j ζ

1 − δjζ
, j = 1, ..., M. (2.4)

Let C ′
j label the circle which is the reflection of circleCj in C0. The image underθj(ζ) of a

point ζ ∈ C ′
j lies on the circleCj (see Figure2.2). We letΘ denote the so-called Schottky

group of all compositions of theseM Möbius mapsθj(ζ) and their inversesθ−1
j (ζ). The

subgroupΘ′′ ⊂ Θ is defined to be the group of all compositions ofθj(ζ) andθ−1
j (ζ) but

with the inverse composition maps and the identity element excluded; that is, ifθ1(θ
−1
2 (ζ))

is included in the groupΘ′′, thenθ2(θ
−1
1 (ζ)) must be excluded.

Label byD′
ζ the region which is the reflection ofDζ in C0. LetF be the union of the regions

Dζ andD′
ζ ; thenF is known as the fundamental region associated with the Schottky group

Θ (see Figure2.2). F can be viewed as a model of the two ‘sides’ of a symmetric genus-

M compact Riemann surface called the Schottky double. By genus-M , it is understood

that the Riemann surface hasM ‘holes’. Note that the choice of fundamental region is not

unique (one could choose to reflectDζ in the circleCj, say, instead ofC0).

Associated with a symmetric compact Riemann surface of genus-M is the set ofM func-

tions

{vj(ζ) | j = 1, ..., M} (2.5)

known as theM integrals of the first kind. These are analytic but not single-valued func-

tions everywhere inF . They satisfy the relations

vj(θk(ζ)) − vj(ζ) = τjk, j, k = 1, ..., M, (2.6)

whereτjk ∈ C are constants, and the relations

∮

Cj

d[vk(ζ)] = δjk, j, k = 1, ..., M. (2.7)
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Figure 2.2: Schematic of a typical bounded triply connected circular domainDζ (the area
indicated by lines). The action of the M̈obius mapsθ1(ζ) andθ2(ζ) is shown by the arrows.
The two ‘halves’ of the fundamental regionF are labelled byDζ andD′

ζ , respectively. The
unit circleC0 is shown by a dashed line.

Here,δjk denotes the Kronecker delta function. Henceforth, we shall refer to these rela-

tions (2.7) as the ‘a-cycle’ properties of thevj(ζ) functions (following the terminology in

Riemann surface theory). Thevj(ζ) functions are also such that

Im[vj(ζ)] = 0, ζ ∈ C0, (2.8)

and

Im[vj(ζ)] = γjk, ζ ∈ Ck, k = 1, ..., M. (2.9)

Here,γjk ∈ R are constants. Thevj(ζ) functions are thus uniquely defined up to an additive

real constant.

Let

X(ζ, γ) = ω2(ζ, γ) (2.10)

denote the square of the Schottky-Klein prime functionω(ζ, γ) for a given bounded circular

domainDζ . Hejhal [59] established four defining properties of functionX(ζ, γ) in his

monograph:
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1. X(ζ, γ) is a single-valued analytic function everywhere in the fundamental regionF

associated with the Schottky group ofDζ ;

2. X(ζ, γ) has second order zeroes at the set of points{Θ(γ) | Θ ∈ Θ′′};

3. limζ→γ X(ζ, γ)/(ζ − γ)2 = 1;

4. X(ζ, γ) satisfies theM relations:

X(θj(ζ), γ) = Hj(ζ, γ)X(ζ, γ), j = 1, ..., M, (2.11)

where

Hj(ζ, γ) = exp (−4πivj(ζ) + 4πivj(γ) − 2πiτjj)
dθj(ζ)

dζ
, (2.12)

and{τjj | j = 1, ..., M} is a set of imaginary constants.

The Schottky-Klein prime functionω(ζ, γ) is then defined to be

ω(ζ, γ) = (X(ζ, γ))1/2 (2.13)

where the branch of the square root is chosen so that

ω(ζ, γ) ∼ ζ − γ, ζ → γ. (2.14)

It is natural to ask why ‘prime’ appears in the name of the Schottky-Klein prime function.

By the Fundamental Theorem of Algebra, we can uniquely factorise a monic degreeN

complex polynomialq(ζ) into a product ofN monomials:

q(ζ) =
N∏

j=1

(ζ − γj). (2.15)

Here,γj ∈ C are theN roots ofq(ζ) lying in the complex plane. By analogy with factoris-

ing integers into a product of prime numbers, we call

ω(ζ, γj) = ζ − γj (2.16)

a (Schottky-Klein) prime function. We can say this Schottky-Klein prime function (2.16)

is associated with the Riemann sphere; indeed, the complex plane is ‘equivalent’ to the
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Riemann sphere via stereographic projection. Moreover, we can also say this Schottky-

Klein prime function (2.16) is associated with the unit disc because the fundamental region

associated with the unit disc is the complex plane. Rational functions are the simplest kinds

of meromorphic function on the Riemann sphere, and these can easily be factorised into a

product of ratios of Schottky-Klein prime functions of the form (2.16).

But what about factorising meromorphic functions on higher genus compact Riemann sur-

faces? With a genus-M compact Riemann surface, we can associate a bounded(M + 1)

connected circular domainDζ ; this is analogous to the association made between the Rie-

mann sphere (a genus-0 compact Riemann surface) and the unit disc. Thus, the Schottky-

Klein prime functionω(∙, ∙) associated withDζ is the generalisation of (2.16) to these

higher genus compact Riemann surfaces. It is through the Schottky-Klein prime function

that we can represent meromorphic functionsM(ζ) on higher genus compact Riemann

surfaces; these functions can also be factorised into a product of ratios of Schottky-Klein

prime functions:

M(ζ) =
N∏

j=1

ω(ζ, aj)

ω(ζ, bj)
. (2.17)

Here,{aj ∈ C | j = 1, ..., N} are the zeroes ofM(ζ) and{bj ∈ C | j = 1, ..., N} are the

poles ofM(ζ). Cartoon illustrations of how to construct higher genus compact Riemann

surfaces from their fundamental regions are presented in Mumford, Series & Wright [83].

The Schottky-Klein prime function can be shown to satisfy several functional relations; we

present three important examples of these here, valid for allζ, γ ∈ F . It can be shown from

the infinite product (2.3) that

ω(ζ, γ) = −ω(γ, ζ). (2.18)

Crowdy & Marshall [28] established that, for the particular class of Schottky-Klein prime

functions associated with multiply connected planar domains as relevant for our purposes,

the relation

ω(ζ−1, γ−1) = −
1

ζγ
ω(ζ, γ) (2.19)

holds. From (2.11) and (2.12), it is clear that another relation is

ω(θj(ζ), γ1)

ω(θj(ζ), γ2)
= βj(γ1, γ2)

ω(ζ, γ1)

ω(ζ, γ2)
, (2.20)



Chapter 2. The Schottky-Klein prime function 25

ρ ρ-1

C
1 C'

1

Figure 2.3: The fundamental region associated with a concentric annulus is another con-
centric annulus (left). The fundamental region associated with an eccentric annulus is an
unbounded doubly connected circular domain (right). The fundamental regions are indi-
cated by lines.

where

βj(γ1, γ2) = exp (2πi (vj(γ1) − vj(γ2))) . (2.21)

2.2 The Schottky-Klein prime function for doubly connected circular

domains

In the case of doubly connected circular domains, the Schottky-Klein prime function can

either be defined over a concentric annulus or an eccentric annulus. Note that the funda-

mental regions associated with these two types of doubly connected circular domain are

very different. For the concentric annulusρ < |ζ| < 1, the fundamental region is another

concentric annulus:ρ ≤ |ζ| < ρ−1 (say). For the eccentric annulus, the fundamental region

is an unbounded doubly connected domain with two circular boundaries. Figure2.3shows

schematics of these two different types of fundamental region.

Let us first consider the Schottky-Klein prime function defined over a concentric annulus.
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The Schottky-Klein prime function associated withρ < |ζ| < 1 is

ω(ζ, γ) = −
γ

C2
P (ζ/γ, ρ) (2.22)

where we define the special function

P (ζ, ρ) = (1 − ζ)
∞∏

j=1

(1 − ρ2jζ)(1 − ρ2jζ−1), (2.23)

and the constantC is given by

C =
∞∏

j=1

(1 − ρ2j). (2.24)

(2.22) follows directly from the infinite product (2.3) owing to the fact that the Schottky

group associated withρ < |ζ| < 1 is Θ = {ρ2jζ | j ∈ Z}. FunctionP (ζ, ρ) is analytic

everywhere inρ < |ζ| < 1 and has simple zeroes at the points{ρ2j | j ∈ Z}. Function

P (ζ, ρ) turns out to be related to the first Jacobi theta function (Marshall [74]).

There is one integral of the first kind associated with the concentric annulusρ < |ζ| < 1.

It is

v1(ζ) =
1

2πi
log ζ. (2.25)

Let us verify thatv1(ζ) in (2.25) satisfies the defining properties (2.6)-(2.9). It is obvious

that on|ζ| = 1,

Im[v1(ζ)] = 0, (2.26)

and that on|ζ| = ρ,

Im[v1(ζ)] = −
1

2π
log ρ. (2.27)

It is also obvious that
1

2πi

∮

|ζ|=ρ

d[log ζ] = 1. (2.28)

Forρ < |ζ| < 1, we have from (2.4) that

θ1(ζ) = ρ2ζ, (2.29)

and so from (2.6), we obtain

τ11 = v1(θ1(ζ))−v1(ζ) = v1(ρ
2ζ)−v1(ζ) =

1

2πi
log(ρ2ζ)−

1

2πi
log ζ =

1

πi
log ρ. (2.30)
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The functionP (ζ, ρ) satisfies the following two functional relations:

P (ζ−1, ρ) = −ζ−1P (ζ, ρ), P (ρ2ζ, ρ) = −ζ−1P (ζ, ρ). (2.31)

The first of these relations follows immediately from (2.23) and can also be derived from

the identity (2.19). Define the Schwarz conjugatef(ζ) of a given functionf(ζ) to be

f(ζ) = f(ζ). (2.32)

We have

ω(ζ−1, γ−1) = −
1

γC2
P (γζ−1, ρ) (2.33)

and

−
1

ζγ
ω(ζ, γ) =

1

ζC2
P (ζγ−1, ρ). (2.34)

Equating (2.33) and (2.34) implies

P (γζ−1, ρ) = −
γ

ζ
P (ζγ−1, ρ). (2.35)

We recover the first relation in (2.31) upon settingγ = 1 in (2.35). To show the second of

the relations in (2.31), note that

P (ρ2ζ, ρ) = (1 − ρ2ζ)(1 − ζ−1)
∞∏

j=1

(1 − ρ2j+2ζ)(1 − ρ2jζ−1)

= −ζ−1(1 − ζ)
∞∏

j=1

(1 − ρ2jζ)(1 − ρ2jζ−1) = −ζ−1P (ζ, ρ). (2.36)

Alternatively, note that

ω(θ1(ζ), γ) = −
γ

C2
P (ρ2ζ/γ, ρ). (2.37)

Using (2.25) and (2.30), we obtain

exp (−2πiv1(ζ) + 2πiv1(γ) − πiτ11)

(
dθ1(ζ)

dζ

)1/2

ω(ζ, γ) =
γ2

ζC2
P (ζ/γ, ρ), (2.38)

where the negative branch of the square root has been taken. Thus, using (2.37) and (2.38)

in (2.11), we obtain

P (ρ2ζ/γ, ρ) = −
γ

ζ
P (ζ/γ, ρ). (2.39)
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We recover the second relation in (2.31) upon settingγ = 1 in (2.39). It also follows

immediately from (2.39), on taking a ratio, that

P (ρ2ζ/γ1, ρ)

P (ρ2ζ/γ2, ρ)
=

γ1

γ2

P (ζ/γ1, ρ)

P (ζ/γ2, ρ)
, (2.40)

which recovers the relation (2.20). Finally, note that the relation (2.18) can easily be veri-

fied using the first relation in (2.31):

ω(γ, ζ) = −
ζ

C2
P (γ/ζ, ρ) =

γ

C2
P (ζ/γ, ρ) = −ω(ζ, γ). (2.41)

UsingP (ζ, ρ), it is possible to define another special function:

K(ζ, ρ) = ζ
P ′(ζ, ρ)

P (ζ, ρ)
. (2.42)

Here, P ′(ζ, ρ) means differentiation ofP (ζ, ρ) with respect to the first argument. The

functionK(ζ, ρ) satisfies the following two functional relations:

K(ζ−1, ρ) = 1 − K(ζ, ρ), K(ρ2ζ, ρ) = K(ζ, ρ) − 1. (2.43)

These are easily derived from (2.31). Indeed, taking logarithmic derivatives on the first

relation in (2.31) yields

−
1

ζ2

P ′(ζ−1, ρ)

P (ζ−1, ρ)
≡ −

1

ζ
K(ζ−1, ρ) = −

1

ζ
+

P ′(ζ, ρ)

P (ζ, ρ)
(2.44)

which, after multiplication by−ζ, recovers the first relation in (2.43). The second relation

in (2.43) can be derived in a similar fashion.

Let us now consider the Schottky-Klein prime function defined over an eccentric annulus.

Consider the eccentric annular region, in a parametricζ̂-plane, defined to be intersection of

the interior of|ζ̂| = 1 and the exterior of|ζ̂ − δ| = q (where, without loss of generality, we

chooseδ ∈ R). Call this eccentric annuluŝDζ .

An interesting question to pose is: what is the integral of the first kindv̂1(ζ̂) associated with

the eccentric annular region̂Dζ? Let us map the eccentric annulusD̂ζ to the concentric

annulusρ < |ζ| < 1, whereρ will need to be determined. Introduce a special Möbius
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Figure 2.4: The eccentric annulus (right) is mapped to the concentric annulus (left) by the
automorphism defined in (2.45).

mapping known as an automorphism of the unit disc:

η(ζ̂; α) =
ζ̂ − α

|α|(ζ̂ − 1/α)
, (2.45)

whereα ∈ R. The image of|ζ̂| = 1 underη(ζ̂; α) is |η| = 1 and the image of|ζ̂ − δ| = q

underη(ζ̂; α) is |η| = ρ, where

ρ =
1 − δ2 + q2 − ((1 − δ2 + q2)2 − 4q2)

1/2

2q
, α =

(
ρ − q

ρ(1 − qρ)

)1/2

, (2.46)

(Crowdy [private communication]). See Figure2.4. In (2.46), the positive branches of the

square roots are chosen.

We claim that the integral of the first kind associated with the eccentric annular regionD̂ζ

is

v̂1(ζ̂) = v1(η(ζ̂; α)), (2.47)

wherev1(ζ) is the integral of the first kind associated with the concentric annular region
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ρ < |ζ| < 1 as given in (2.25), andη(ζ̂; α) is the automorphism in (2.45). Thus

v̂1(ζ̂) =
1

2πi
log

(
ζ̂ − α

|α|(ζ̂ − 1/α)

)

, (2.48)

whereα ∈ R is given in (2.46). It should be noted thatα always lies in the interior

of |ζ̂ − δ| = q. This function is analytic but not single-valued everywhere inD̂ζ . It is

straightforward to demonstrate that the necessary properties required of an integral of the

first kind are satisfied by function̂v1(ζ̂) given in (2.48) over D̂ζ ; that is, these necessary

properties are conformally invariant under the automorphism (2.45), and hencêv1(ζ̂) is

related tov1(ζ) through the relation (2.47).

It is shown in Baker [6] that theM integrals of the first kind have an infinite product

representation:

vj(ζ) =
1

2πi
log

(
∏

θ∈Θk

ζ − θ(Bk)

ζ − θ(Ak)

)

+ icj. (2.49)

Here,cj ∈ R are constants chosen so that (2.26) is satisfied,Ak andBk are the fixed points

of θk(ζ) (with |Ak| > 1 and|Bk| < 1), andΘk ⊂ Θ is a special subgroup ofΘ consisting of

all members ofΘ but excluding the compositions ending inθk andθ−1
k ; that is,θ1(θ

−1
2 (ζ))

is contained inΘ3 but θ1(θ
−1
3 (ζ)) andθ−1

2 (θ3(ζ)) are not. Thus, for all doubly connected

circular domains, the only member ofΘ1 is the identity element. Hence, for the eccentric

annulusD̂ζ , (2.49) reduces to
1

2πi
log

(
ζ − B1

ζ − A1

)

. (2.50)

Here,A1 andB1 are the two solutions of the equation

θ1(ζ) = ζ, (2.51)

where, for the eccentric annuluŝDζ , we have from (2.4) that

θ1(ζ) = δ +
q2ζ

1 − δζ
. (2.52)

After lengthy algebraic manipulations (which we neglect for brevity), it can be verified that

(2.50) is indeed equivalent to (2.48).
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2.3 Conformal slit mappings

We will now introduce some important ‘building block’ functions which will be used

throughout the thesis. These building block functions are in fact classes of conformal

mappings to multiply connected slit domains. These special functions are building block

functions in the following sense: they facilitate incorporating a desired structure of zeroes

and poles into the definition of a particular function whilst maintaining properties such as

constant modulus or constant argument on each of the boundary circles. In this thesis, we

will give evidence that conformal slit mappings are natural candidate functions to consider

when dealing with multiple boundary conditions in free boundary problems. The review

article of Crowdy [24] elucidates the central role of the conformal slit mappings when

solving certain applied mathematical problems set in multiply connected geometries. It is

also worth noting here that DeLillo & Kropf [39] and DeLillo et al [40] have formulated

numerically efficient infinite product representations for conformal mappings to multiply

connected slit domains; however, we advocate using the Schottky-Klein prime function

owing to the fact that the functional forms of the maps are mathematically elegant when

written in terms of this function, and their defining properties can be both understood and

demonstrated in a straightforward manner by using aspects of the function theory presented

in this chapter.

Introduce the bounded circular slit mapping (Crowdy & Marshall [29]):

η(ζ; γ) =
ω(ζ, γ)

|γ|ω(ζ, 1/γ)
. (2.53)

Here, ζ = γ is an arbitrary point in the interior ofDζ . Functionη(ζ; γ) has constant

modulus on all the boundary circlesC0, C1, ..., CM . It has a simple zero atζ = γ and a

simple pole atζ = 1/γ. Under the mapη(ζ; γ), C0 is mapped to the unitη-circle while

C1, ..., CM are mapped onto finite-length concentric circular arcs lying in the interior of

|η| = 1. Figure2.5 shows the image underη(ζ; γ) of some quadruply connected circular

domainDζ . Note that whenω(ζ, γ) = ζ − γ, the mapη(ζ; γ) in (2.53) reduces to an

automorphism of the unit disc (recall (2.45)).

To illustrate the usefulness of the functional relations (2.19) and (2.20), let us now prove
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Figure 2.5: Image ofDζ with the conformal moduliδ1 = 0, q1 = 0.1, δ2 = 0.3+0.1i, q2 =
0.05, δ3 = −0.35 − 0.275i, q3 = 0.08 under the bounded circular slit mapη(ζ; 0.2 + 0.1i)
of (2.53). The origin is indicated by a dot.

explicitly that|η(ζ; γ)| = constant forζ ∈ C0, C1, ..., CM . Considerζ ∈ C0. Then

ζ = ζ−1. (2.54)

Taking the complex conjugate of (2.53) and using (2.19) reveals:

η(ζ; γ) =
ω(ζ−1, γ)

|γ|ω(ζ−1, γ−1)
=

|γ|ω(ζ, γ−1)

ω(ζ, γ)
=

1

η(ζ; γ)
. (2.55)

Thus

|η(ζ; γ)| = 1, ζ ∈ C0. (2.56)

Now considerζ ∈ Cj, j = 1, ..., M . Note that

ζ = θj(ζ
−1). (2.57)

Taking the complex conjugate of (2.53), and using (2.20) followed by (2.19), reveals:

η(ζ; γ) =
ω(θj(ζ

−1), γ)

|γ|ω(θj(ζ−1), γ−1)
= βj (γ, 1/γ)

ω(ζ−1, γ)

|γ|ω(ζ−1, γ−1)
=

βj (γ, 1/γ)

η(ζ; γ)
. (2.58)
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Figure 2.6: Image ofDζ with the conformal moduliδ1 = 0, q1 = 0.1, δ2 = 0.3 + 0.1i,
q2 = 0.05, δ3 = −0.35 − 0.275i, q3 = 0.08 under the radial slit mapχ(ζ; 0.8,−0.1 + 0.5i)
of (2.60).

Thus

|η(ζ; γ)| =
(
βj (γ, 1/γ)

)1/2

= constant, ζ ∈ Cj , j = 1, ..., M. (2.59)

Let us now introduce the radial slit mapping (Crowdy & Marshall [29]):

χ(ζ; ζ1, ζ2) =
ω(ζ, ζ1)ω(ζ, 1/ζ1)

ω(ζ, ζ2)ω(ζ, 1/ζ2)
. (2.60)

Here, ζ = ζ1 and ζ = ζ2 are any two distinct points in the closure ofDζ . Function

χ(ζ; ζ1, ζ2) has constant argument on each of theM +1 boundary circlesC0, C1, ..., CM of

Dζ . This can be proved by showing that

χ(ζ; ζ1, ζ2)

χ(ζ; ζ1, ζ2)
= constant, ζ ∈ C0, C1, ..., CM , (2.61)

using the functional relations (2.19) and (2.20). Functionχ(ζ; ζ1, ζ2) has a simple zero

at ζ = ζ1 and a simple pole atζ = ζ2. Functionχ(ζ; ζ1, ζ2) maps each of the boundary
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Figure 2.7: Image ofDζ with the conformal moduliδ1 = 0, q1 = 0.1, δ2 = 0.3+0.1i, q2 =
0.05, δ3 = −0.35−0.275i, q3 = 0.08 under the radial slit mapξ(ζ; δ2+q2e

2πi/3, δ2+q2e
5πi/3)

of (2.62). The origin is indicated by a star.

circles in theζ-plane onto finite-length slits emanating from origin in theχ-plane. Figure

2.6shows the image underχ(ζ; ζ1; ζ2) of some quadruply connected circular domainDζ .

Crowdy [13] showed that, for any two distinct pointsζ = ζ3 andζ = ζ4 lying on one of the

boundary circlesCj, j = 0, 1, ..., M , function

ξ(ζ; ζ3, ζ4) =
ω(ζ, ζ3)

ω(ζ, ζ4)
(2.62)

has constant argument on each of the boundary circlesC0, C1, ..., CM . Functionξ(ζ; ζ3, ζ4)

has a simple zero atζ = ζ3 and a simple pole atζ = ζ4. Functionξ(ζ; ζ3, ζ4) is a particular

type of radial slit mapping: it mapsC1, ..., Cj−1, Cj+1, ..., CM onto finite-length slits ema-

nating from the origin in theξ-plane andCj onto an infinite line throughξ = 0. Figure2.7

shows the image underξ(ζ; ζ3; ζ4) of some quadruply connected circular domainDζ .

For further detail on the aforementioned conformal slit mappings, the reader is referred to

Crowdy & Marshall [29]. There are three other types of conformal slit mappings which

will not feature in this thesis: namely, the unbounded circular slit map, the parallel slit

map, and the map to an annular region with concentric circular slits. For further detail on
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these, the reader is again directed to [29].

2.4 Computing the Schottky-Klein prime function

To conclude this chapter, we will present details of a numerical method we have devised

to compute the Schottky-Klein prime function. The infinite product (2.3) is a numerically

inefficient mathematical object to compute and it is not always convergent for some choices

of bounded multiply connected circular domain. However, the Schottky-Klein prime func-

tion itself is a well-defined function overanybounded multiply connected circular domain.

It is therefore important to have at hand a reliable, accurate and fast numerical scheme to

compute the Schottky-Klein prime function if it is to be employed in applications.

Our numerical scheme improves on the numerical scheme presented by Crowdy & Marshall

[31]. Crowdy & Marshall [31] formulated their method around the four defining properties

of the square of the Schottky-Klein prime functionX(ζ, γ) presented by Hejhal [59] and

used a method of least squares to solve for the coefficients in a Fourier-Laurent series rep-

resentation ofX(ζ, γ). Our method also seeks the coefficients in a Fourier-Laurent series

representation ofX(ζ, γ) and is centred around the four defining properties ofX(ζ, γ) from

Hejhal [59]; the main difference is that our numerical scheme proceeds using a method

called ‘successive iteration’ (explained in due course) and adopts the fast Fourier trans-

form. One main advantage of our numerical scheme is that any level of truncation in the

Fourier-Laurent series may be chosen; with a least squares method, there is an optimum

level of truncation so that minimal numerical error is induced. There are two main steps to

our method, and these are the same as in Crowdy & Marshall [31]: firstly, the computation

of the integrals of the first kindvj(ζ), and secondly, the computation ofX(ζ, γ).

2.4.1 Computation of thevj(ζ) functions

Consider the following ansatz:

vj(ζ) =
1

2πi
log(ζ − δj) +

∞∑

k=0

a
(j)
k ζk +

M∑

p=1

∞∑

k=1

b
(j,p)
k qk

p

(ζ − δp)k
, j = 1, ..., M. (2.63)

Observe that this representation (2.63) is analytic everywhere inDζ i.e. analytic in one

‘half’ of F . However, we can exploit analytic continuation acrossC0 to evaluate each
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vj(ζ) at points on the other ‘half’ ofF , if required (recall (2.8)):

vj(ζ) = vj(ζ
−1), j = 1, ..., M. (2.64)

Eachvj(ζ), j = 1, ..., M , must satisfy the conditions (2.8) and (2.9). The constantsγjk ∈ R

in (2.9) are not knowna priori and must be solved for as part of the solution.

The numerical procedure can be outlined by the following three steps:

1. Truncate (2.63) at O(N). Take 4N equi-spaced collocation points around each

{Cj}M
j=0 (allowing for ‘padding’).

2. On each{Cj}M
j=0, enforce the conditions (2.8) and (2.9) and determine the set of

constants{γjk}.

3. Use the fast Fourier transform on each{Cj}M
j=0 to solve for the coefficients{a(j)

k , b
(j,p)
k }

by a method known as successive iteration.

Let us now outline what we mean by ‘successive iteration’. We initially make suitable

initial guesses of the coefficients{a(j)
k , b

(j,p)
k } (we find it is sufficient to take them all as

zero) so thatvj(ζ) is a fully determined function. Upon substitution of ansatz (2.63) into

the boundary conditions (2.8) and (2.9), we use fast Fourier transforms on each of the

circles{Cj}M
j=0 to determine a set of ‘improved’ values of the coefficients. We use these

up-dated values of the coefficients as initial guesses in the next iteration. The iterations

continue to be performed until a desired level of accuracy is attained and convergence can

be considered to have been achieved. It should be noted that Wegmann [122] solves a

special type of Riemann-Hilbert problem using similar ideas.

2.4.2 Computation ofX(ζ, γ)

To find a representation forX(ζ, γ), we need a Fourier-Laurent expansion which is analytic

and single-valued everywhere in the fundamental regionF . Write

X(ζ, γ) = (ζ − γ)2X̂(ζ, γ) (2.65)

and let

X̂(ζ, γ) = A

(

1 +
M∑

j=1

∞∑

k=1

b
(j)
k qk

j

(ζ − δj)k
+

M∑

j=1

∞∑

k=1

c
(j)
k q′kj

(ζ − δ′j)
k

)

(2.66)
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whereA ∈ C is a constant to be determined.

The numerical procedure can be outlined as follows:

1. Truncate (2.66) atO(N) (and ignore complex constantA for the moment). Take4N

equi-spaced collocation points on each of the2M circles{Cj , C
′
j}

M
j=1 (allowing for

‘padding’).

2. On each{C ′
j}

M
j=1, enforce the condition

X̂(θj(ζ), γ) = Rj(ζ, γ)X̂(ζ, γ) (2.67)

where we have defined function

Rj(ζ, γ) = exp(−4πivj(ζ) + 4πivj(γ) − 2πiτjj)

(
ζ − γ

θj(ζ) − γ

)2
dθj(ζ)

dζ
. (2.68)

3. On each{Cj}M
j=1, enforce the condition

X̂(ζ, γ) = Rj(θ
−1
j (ζ), γ)X̂(θ−1

j (ζ), γ). (2.69)

4. Use the fast Fourier transform on each{Cj , C
′
j}

M
j=1 to solve for the coefficients

{b(j)
k , c

(j)
k } via successive iteration.

5. Finally, enforce the normalisation

X̂(γ, γ) = 1 (2.70)

to determine the complex constantA.

For some choice of circular domainDζ , the square of the Schottky-Klein prime function

can now readily be computed. We should now think of the Schottky-Klein prime func-

tion as a special but perfectly computable function (like trigonometric functions, Bessel

functions etc).

2.4.3 Special classes of circular pre-image domainDζ

As it stands, our numerical scheme will fail for domains when either one of theδj = 0, or

when one of theqj = |δj|. We discuss the required modifications below.
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Figure 2.8: Schematic of the fundamental region (shown by lines) associated with a
bounded triply connected circular domain with an interior circleC1 which is centred at
the origin. The unit circle is shown by a dashed line.

The caseδj = 0

Consider a circular domainDζ with one interior circleC1 of radiusq1 such thatδ1 = 0.

See Figure2.8 for a schematic of the fundamental region in this case. For these circular

domains, let

X̂(ζ, γ) = A

(

1 +
∞∑

k=1

akq
k
1

ζk
+

∞∑

k=0

bkq
k
1ζ

k +
M∑

j=2

∞∑

k=1

c(j,k)qk
j

(ζ − δj)k
+

M∑

j=2

∞∑

k=1

d(j,k)q′kj
(ζ − δ′j)

k

)

.

(2.71)

The caseqj = |δj|

Consider a circular domainDζ with an interior circleC1 such thatq1 = |δ1|. Note that the

reflection ofC1 in the unit disc is an infinite straight line. See Figure2.9 for a schematic

of the fundamental region in this case. This explains why our previous Fourier-Laurent

expansion (2.66) is now rendered inappropriate for this class of circular domain. For these
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Figure 2.9: Schematic of the fundamental region (shown by lines) associated with a
bounded triply connected circular domain with an interior circleC1 such that|δ1| = q1,
i.e. the magnitude of the centreδ1 is equal to the radiusq1. The unit circle is shown by a
dashed line.

circular domains, let

X̂(ζ, γ) = A

(

1 +
∞∑

k=1

akρ
k

(η(ζ))k
+

∞∑

k=0

bk(η(ζ))k +
M∑

j=2

∞∑

k=1

c(j,k)qk
j

(ζ − δj)k
+

M∑

j=2

∞∑

k=1

d(j,k)q′kj
(ζ − δ′j)

k

)

(2.72)

whereη(ζ) is a Möbius map (we neglect details for brevity).

2.4.4 The case whenγ lies on a boundary circle

The way in which functionRj(ζ, γ) in (2.68) is defined leads to a potential problem:

namely, whenω(ζ, γ) is such thatγ lies on one of the boundary circles{Cj , C
′
j}

M
j=1. This

is because there could be a collocation point,ζ∗ ∈ C ′
j (say), such thatθj(ζ

∗) = γ and the

denominator of boundary condition (2.67) vanishes. Similarly, there could be ãζ ∈ Cj

such that̃ζ = γ, leading to the denominator of boundary condition (2.69) vanishing. We

were able to devise a resolution to this problem, but we will not present these modifications

here for brevity (it is similar to the foregoing analysis).
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Chapter 3

Von Kármán streets of hollow vortices

3.1 Introduction

In this chapter, we shall examine the fascinating and well-studied phenomena of vortex

rows and vortex streets. By a vortex row, we mean an infinite array of equally separated

vortices of equal circulation. By a vortex street, we mean two parallel vortex rows of equal

and opposite circulation. The vortex street usually goes by the name of a von Kármán

vortex street owing to the fact that von Kármán pioneered the first theoretical studies into

them by using point vortices (see von Kármán [120] and von Ḱarmán & Rubach [121]).

Unfortunately, using point vortices to model vortex streets is a somewhat approximate ap-

proach and presents several limitations: there is an infinite kinetic energy associated with

the structure, and it is difficult to fit the model to flow past a body. Thus, to offer a more

realistic physical interpretation, we have chosen to model these structures using the dis-

tributed vorticity model of the hollow vortex. Recall that a hollow vortex is a finite-area

vacuum at constant pressure whose free boundary is a vortex sheet of constant strength.

The free boundary problems we shall solve in this chapter will consist of determining the

shapes of the hollow vortex boundaries in these structures.

We shall first develop a new mathematical approach to model a single row of hollow vor-

tices in unbounded fluid. This configuration has already been studied by Baker, Saffman

& Sheffield [7] and they were able to find an exact solution for the shape of a typical

hollow vortex member of the row by appealing to symmetry and by the application of

Schwarz-Christoffel methods. We will present an equivalent exact solution describing this

free boundary but with a different (and arguably more concise) mathematical form. Al-

though this free boundary problem for the single row has already been solved, our pre-
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liminary study into establishing a different mathematical approach will pave the way to

finding analytical solutions for a von Ḱarmán street of hollow vortices. We shall show how

to construct a concise formula for the conformal mapping determining the relative equilib-

rium shapes of the hollow vortices in both staggered and unstaggered street configurations.

Central to the solutions of both free boundary problems in this chapter will be the use of

conformal circular slit mappings.

Both the hollow vortex row and the hollow vortex street are periodic structures: a regu-

lar pattern of hollow vortices which replicates itself to infinity. Their intrinsic periodicity

immediately implies that the original free boundary problem over free space can be refor-

mulated over a simpler, ‘reduced’ domain. For us, these simplified domains will take the

form of so-called ‘period windows’ or ‘period cells’: these are finite-width vertical slices

through the structure, extending to infinity, containing either one or two hollow vortices

whose boundary shapes will need to be determined. We will incorporate the periodicity

into our models by introducing branch cuts in the preimage domains. This is a novel idea

but one which nevertheless makes the free boundary problems to be considered analytically

tractable. Similar ideas have been employed by Tanveer [110], in simply and doubly con-

nected cases, in relation to the free boundary problem of determining the shapes of inviscid

planar finite-amplitude water waves. We will employ this branch cut technique again in

Chapter 4.

The fundamental approach of the present chapter (and also the proceeding two chapters)

is to exploit ideas from free streamline theory and conformal mapping theory in order to

produce analytical solutions to our free boundary problems: knowledge of the complex ve-

locity functiondw/dz and the complex potentialW (ζ) will allow us to construct an integral

for the conformal mapz(ζ) determining the shapes of the hollow vortex free boundaries:

z(ζ) =

∫ ζ

ζ0

(dW/dζ)(ζ ′)

(dw/dz)(ζ ′)
dζ ′. (3.1)

In the case of the row of hollow vortices, this integral (3.1) can be evaluated analytically

to produce an exact solution for the conformal map. For the von Kármán street of hollow

vortices, we obtain an explicit indefinite integral for the conformal map whose integrand

is expressed in terms of the Schottky-Klein prime function associated with a concentric

annulus, and which can be readily evaluated numerically. The solutions we present in this

chapter for the von Ḱarmán street of hollow vortices appear to be the first of their kind.
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3.2 Background

There is a very wide literature on the subject of von Kármán vortex streets and they arise

throughout nature. There are some photographs of typical von Kármán vortex streets in Van

Dyke [114]. They are commonly formed in the wakes behind obstacles in uniform flow, as

discussed by both Williamson [125] and Saffman [93]; they are also commonly formed in

the oceans and in the atmosphere. In the atmosphere, turbulence caused by wind interact-

ing with a land mass produces eddies which swirl clouds into a von Kármán vortex street.

Heinze, Raasch & Etling [58] studied von Ḱarmán vortex streets generated in the wake of

an idealised island using large eddy simulation, and Chopra & Hubert [11] determined the

properties of mesoscale eddies in the wake of islands due to their resemblance with von

Kármán vortex streets. Chopra & Hubert [10] have also studied von Ḱarmán vortex streets

in the atmosphere of the Earth. Li et al [70] have analysed the sea surface imprint of two

atmospheric von Ḱarmán vortex streets observed in satellite imagery. Von Kármán vortex

streets have also been studied on curved surfaces. Chamoun, Kanso & Newton [9] iden-

tified the complete family of streamline patterns associated with von Kármán point vortex

streets on the surface of a non-rotating sphere whilst Alobaidi & Mallier [4] have recently

derived some new expressions for vortex streets on a spheroidal surface. Hally [57] has also

considered streets of vortices on surfaces of revolution from a more abstract perspective.

Vortex streets can now, in principle, be studied on a ring torus using the function theory

recently proposed by Green & Marshall [54].

More realistic theoretical models of von Kármán vortex streets have emerged over the years

since the initial investigations of von Ḱarmán. Saffman & Schatzman [94] desingularised

the point vortex model of a von Ḱarmán street by using finite-area vortex patches. They

determined the relative equilibrium shapes of the vortex patches in a steadily translating

staggered street configuration, in ideal unbounded fluid, by finding numerical solutions to

an integro-differential equation. We shall be making several intriguing connections with the

results of Saffman & Schatzman [94] later in this chapter. In a subsequent work, Saffman &

Schatzman [96] analysed the stability of their street of vortex patches. Kamm [65] studied

a street of vortex patches by using an approach based on Schwarz functions whilst Saffman

& Szeto [98] found a one-parameter family of shapes for a linear array of vortex patches

by numerically solving an integro-differential equation.

Von Kármán vortex streets continually arise in new applications. Recently, Liao et al [71]
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found that rainbow trout interacting with von Kármán streets voluntarily adjust their body

kinematics and adopt a pattern of movement to aide their swimming, a phenomenon dubbed

the ‘Kármán gait’. Such studies into fish schooling were the inspiration for Whittlesey,

Liska & Dabiri [124] who have proposed that wind farm efficiency can be enhanced by

placing vertical axis turbines in the form of staggered von Kármán vortex streets. Von

Kármán vortex streets can also be made to form in the laboratory. Sasaki, Suzuki & Saito

[100] investigated vortex shedding from an obstacle potential moving in a Bose-Einstein

condensate and discovered a von Kármán vortex street can establish in the wake. Saito,

Aioi & Kadokura [99] showed that a von Ḱarmán vortex street can emerge in an exciton-

polariton superfluid resonantly injected into a semiconductor microcavity. Shao et al [103]

used von Ḱarmán vortex streets with ethanol flowing around a cylinder to deposit tin cata-

lyst in such a way as to grow a pattern of nanoscale silicon disks.

3.3 A single row of hollow vortices

Baker, Saffman & Sheffield [7] found analytical expressions describing the shapes of hol-

low vortices aligned in a single row. They used hodograph plane techniques and exploited

symmetry. By a row of hollow vortices, we mean an infinite line of equally separated

hollow vortices of equal circulation. In this section, we re-derive the solution of Baker,

Saffman & Sheffield [7] using a different and novel mathematical approach.

3.3.1 Formulation of problem

In a physicalz = (x + iy)-plane, let the centroids of the hollow vortices be atx = nL,

n ∈ Z, whereL is the period (i.e. the horizontal distance between two neighbouring

centroids). Given this periodic structure, it suffices to consider a single period cell: this

cell contains one hollow vortex of finite-area with circulationΓ, has widthL, and extends

to ∞±. Here,∞+ denotes the region of the period cell asy → +∞ while ∞− denotes the

region asy → −∞. Figure3.1 illustrates this arrangement.

Let z(ζ) be the conformal mapping taking the unitζ-disc to a single period cell of the

hollow vortex row. Our task is to determine the shape of the boundary of the hollow vortex

by constructing a suitable functional form forz(ζ). The boundary of the hollow vortex will

be taken to be the image of the unit circle|ζ| = 1 under the mapz(ζ). Note that traversing

|ζ| = 1 in an anticlockwise sense corresponds to traversing the hollow vortex boundary in
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Figure 3.1: Schematic showing three periods of lengthL of a row of hollow vortices, each
of circulationΓ. The shapes of the hollow vortex boundaries are to be determined.

a clockwise sense (keeping the fluid region on the left). There are two points in the interior

of the unit disc,ζ = α andζ = β, which will map respectively to∞+ and∞−. We require

z(ζ) to behave in the following manner nearζ = α:

z(ζ) = −
iL

2π
log(ζ − α) + locally analytic function. (3.2)

In other words, encirclingζ = α by 2π corresponds to a jump inz(ζ) by the real amount

L. Similarly, nearζ = β, we requirez(ζ) to behave in the following manner:

z(ζ) =
iL

2π
log(ζ − β) + locally analytic function. (3.3)

That is, encirclingζ = β by 2π corresponds to a jump inz(ζ) by the real amount−L. A

choice of branch cut joining the logarithmic branch points atζ = α andζ = β is required

to be made in order to uniquely define the mapz(ζ). We give further details in due course.

The fluid region in a typical period cell of the hollow vortex row is doubly connected: the

two boundaries are that of the hollow vortex and the edges of the cell. Introducing a branch

cut betweenζ = α andζ = β has a dual purpose: the two sides of this branch cut will
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Figure 3.2: The preimage unitζ-disc with a branch cut, shown as a dashed line, joining
α = ia = −β (the preimages of∞+ and∞−) chosen along the imaginaryζ-axis [left],
and a typical period window of the hollow vortex row [right]. Under the conformal map
z(ζ), the circle|ζ| = 1 is taken to map to the hollow vortex boundary. The two sides of the
branch cut map, underz(ζ), to the two edges of the period window.
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be taken to map to the two edges of the period cell underz(ζ) and this branch cut neatly

encodes the intrinsic periodicity structure of the hollow vortex row into our mathematical

model. This branch cut could be interpreted as a second boundary in theζ-plane, but

the key point is that we only require periodicity across it. Alternatively, the periodicity

structure can be viewed from a Riemann surface perspective. Moving through the branch

cut corresponds to moving onto a different sheet of some infinite-sheeted Riemann surface,

where each sheet of this surface is a copy of|ζ| = 1 corresponding to a particular period

cell in the hollow vortex row.

In our analysis, we shall make use of the bounded circular slit mapping (2.53). Since,

for the present problem, we are mapping between two conformally equivalent simply con-

nected domains, (2.53) reduces to

η(ζ; γ) =
ζ − γ

|γ| (ζ − 1/γ)
, (3.4)

whereγ ∈ C, |γ| < 1. It is easy to see thatη(ζ; γ) has a simple zero atζ = γ. Straightfor-

ward algebra can be used to show that|η(ζ; γ)| = 1 on |ζ| = 1; thus,η(ζ; γ) maps the unit

ζ-circle onto the unit circle in the complexη-plane.

3.3.2 FunctionW (ζ)

Let the complex potential for the potential flow associated with the hollow vortex row be

denoted byw(z). Owing to the symmetry of the hollow vortex row, the hollow vortices

are expected to be in equilibrium, and sow(z) will be defined in a stationary frame of

reference. The complex potentialw(z) in the z-plane is related to the complex potential

W (ζ) in theζ-plane through the composition

W (ζ) = w(z(ζ)). (3.5)

Let the circulation around the hollow vortex beΓ; this means that

∮

|ζ|=1

d[W (ζ)] = −Γ, (3.6)

where|ζ| = 1 is positively oriented in the anticlockwise direction. Notice the appearance

of the minus sign on the right-hand-side of (3.6); recall that traversing|ζ| = 1 in an an-

ticlockwise direction corresponds to traversing the hollow vortex boundary in a clockwise
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direction. The circulation around the hollow vortex induces the following uniform flow

type behaviour of the complex potential:

w(z) = ∓Uz + locally analytic function, z → ∞±. (3.7)

The value ofU will be determined shortly. The boundary of the hollow vortex must be a

streamline of the flow. Thus, on|ζ| = 1, we require

Im[W (ζ)] = constant. (3.8)

It follows from (3.2), (3.3) and (3.7) that we must have

W (ζ) =
iLU

2π
log(ζ − α) + locally analytic function, ζ → α, (3.9)

and

W (ζ) =
iLU

2π
log(ζ − β) + locally analytic function, ζ → β. (3.10)

We shall now build the complex potential functionW (ζ). Consider the function

L1(ζ; α) = log η(ζ; α), (3.11)

whereη(ζ; α) is the bounded circular slit mapping of (3.4). Sinceη(ζ; α) has a simple zero

at ζ = α, functionL1(ζ; α) must have the following behaviour:

L1(ζ; α) = log(ζ − α) + locally analytic function, ζ → α. (3.12)

Also, since|η(ζ; α)| = 1 on |ζ| = 1, we must have that

Re[L1(ζ; α)] = log |η(ζ; α)| = 0 (3.13)

on |ζ| = 1. Let us consider the integral

∮

|ζ|=1

d[L1(ζ; α)], (3.14)

where|ζ| = 1 is positively oriented in the anticlockwise direction. Since this integral is

of the logarithmic type, we can invoke the Argument Principle (Ablowitz & Fokas [1]).
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Functionη(ζ; α) has one simple zero atζ = α inside|ζ| = 1 and no poles anywhere inside

|ζ| = 1. Thus, by the Argument Principle, we have

1

2πi

∮

|ζ|=1

d[L1(ζ; α)] =
1

2πi

∮

|ζ|=1

d[log η(ζ; α)] = 1. (3.15)

Next, consider the function

L2(ζ; α, β) = L1(ζ; α) + L1(ζ; β) = log η(ζ; α)η(ζ; β). (3.16)

Using (3.12), it is clear to see that

L2(ζ; α, β) = log(ζ − α) + locally analytic function, ζ → α, (3.17)

and

L2(ζ; α, β) = log(ζ − β) + locally analytic function, ζ → β. (3.18)

Using (3.13), it is also clear to see that on|ζ| = 1,

Re[L2(ζ; α, β)] = log |η(ζ; α)| + log |η(ζ; β)| = log |η(ζ; α)η(ζ; β)| = 0. (3.19)

From (3.15), it is immediate that

1

2πi

∮

|ζ|=1

d[L2(ζ; α, β)] =
1

2πi

∮

|ζ|=1

(d[log η(ζ; α)] + d[log η(ζ; β)]) = 2, (3.20)

where|ζ| = 1 is positively oriented in the anticlockwise direction.

Consider, thus, the following function:

W (ζ) =
iLU

2π
L2(ζ; α, β), (3.21)

i.e.

W (ζ) =
iLU

2π
log η(ζ; α)η(ζ; β). (3.22)

From (3.19), we see that this function has constant imaginary part on|ζ| = 1. It has the

required behaviours (3.9) and (3.10) owing to (3.17) and (3.18). It also changes by−Γ as

|ζ| = 1 is traversed in an anticlockwise sense thereby producing the required circulation
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(3.6) around the hollow vortex, provided

U =
Γ

2L
. (3.23)

Indeed, using (3.58), we have that

∮

|ζ|=1

d[W (ζ)] = −2LU, (3.24)

where|ζ| = 1 is positively oriented in the anticlockwise direction. But from (3.6), it is

required that ∮

|ζ|=1

d[W (ζ)] = −Γ, (3.25)

and hence we must chooseU as in (3.23).

Given the symmetry of the arrangement, we take

α = ia = −β, (3.26)

wherea ∈ R, |a| < 1. See Figure3.2. We shall take the branch cut linking the logarithmic

branch points atζ = ±ia to lie along the segment of the imaginary axis between these

points with the two sides of the branch cut mapping to the two edges of the period cell. By

the symmetry, the centre of the branch cut atζ = 0 will map to the two real points on the

edges of the period cell and we expect these two points to be stagnation points of the flow.

With the choices (3.26) in (3.22), we obtain

W (ζ) =
iLU

2π
log

(
ζ2 + a2

ζ2 + 1/a2

)

. (3.27)

3.3.3 Functiondw/dz

One of the defining properties of the complex velocity functiondw/dz stems from Bernoulli’s

theorem. The boundary of the hollow vortex is a vortex sheet and the pressure is constant

inside it. Thus, Bernoulli’s theorem implies that the fluid speed is constant on the hollow

vortex boundary. Consequently, on|ζ| = 1:

∣
∣
∣
∣
dw

dz

∣
∣
∣
∣ = constant. (3.28)
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dw/dz must also incorporate the stagnation points lying on the real axis on the edges of the

period cell:
dw

dz
(0) = 0. (3.29)

Finally, dw/dz must beL-periodic.

It turns out that the complex velocity function takes a particularly simple form:

dw

dz
= Rζ, (3.30)

whereR ∈ C is a constant. This function (3.30) is clearly analytic and single-valued every-

where in|ζ| < 1; in particular, it is invariant as eitherζ = ±ia are encircled. Hence,dw/dz

is L-periodic across the period cell. Function (3.30) also clearly has constant modulus on

|ζ| = 1, and a simple zero atζ = 0, as required. In light of (3.7), we must have that

dw

dz
= −U + locally analytic function, ζ → ia, (3.31)

and so it follows at once that

R =
iU

a
. (3.32)

It is then apparent that

dw

dz
= U + locally analytic function, ζ → −ia, (3.33)

as required by (3.7).

3.3.4 Conformal mapz(ζ)

Free streamline theory allows us to derive an expression for the derivative of the conformal

map using the chain rule, given separate expressions forW (ζ) anddw/dz:

dz

dζ
=

dW/dζ

dw/dz
. (3.34)

Using (3.30) and the derivative of (3.27) with respect toζ in (3.34), it follows that

dz

dζ
=

aL

π

(
1

ζ2 + a2
−

1

ζ2 + 1/a2

)

. (3.35)
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On integration, the conformal map is found to be

z(ζ) =
L

π

(
tan−1(ζ/a) − a2 tan−1(aζ)

)
+ z0, (3.36)

wherez0 ∈ C is a constant. Given the periodL, (3.36) represents a one-parameter family of

conformal maps governing the shape of the boundary of the hollow vortex. The dependency

on the single real parametera can be viewed as a measure of the area of the hollow vortex.

Our solution (3.36) is different (and, arguably, in a more concise form) to that of Baker,

Saffman & Sheffield [7], but it can be shown to be equivalent (see AppendixB).

3.4 Hollow vortex streets

Using the ideas developed in the preceding section, we can now shift attention to finding

solutions describing the shapes of hollow vortices in a street configuration. By a street of

hollow vortices, we mean two parallel rows of hollow vortices where the hollow vortices in

one row have an equal and opposite circulation to those in the other row, and these streets

can be either staggered or unstaggered. We will focus specifically on solutions where the

hollow vortices in each row have identical shapes and are of equal area. In principle,

our method should be able to be modified to cater for more general classes of solution

describing, perhaps, configurations where the areas of the hollow vortices are different in

each row.

3.4.1 Formulation of problem

In a physicalz = (x+iy)-plane, consider a von Ḱarmán street of hollow vortices consisting

of two rows of equal area hollow vortices moving in unbounded fluid. Let the centroids of

the hollow vortices in both rows be separated by a horizontal distanceL. Let the circulation

around the hollow vortices in the top row beΓ (whereΓ > 0) and let the circulation around

the hollow vortices in the bottom row be−Γ. We will seek solutions for which the street is

expected to translate steadily parallel to thex-axis towards the right with speedU . Figure

3.3shows a schematic of this configuration for a typical staggered hollow vortex street.

Consider a conformal mappingz(ζ) from the concentric annulusρ < |ζ| < 1 to a single

period cell of the hollow vortex street in thez-plane. The circles|ζ| = 1 and|ζ| = ρ will

be mapped onto the boundaries of the two hollow vortices in the period cell. Note that
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∞+

∞-

period L

hollow vortices

Γ Γ Γ

- Γ - Γ - Γ

hollow vorticeshollow vortices

Figure 3.3: Schematic showing three periods of a period-L von Kármán street of hollow
vortices. The hollow vortices will be taken to have circulationΓ in the top row and−Γ in
the bottom row. The hollow vortex street is expected to translate with speedU towards the
right. The shape of the vortex sheets bounding the hollow regions are to be determined.

traversing|ζ| = 1 in an anticlockwise sense corresponds to traversing the boundary of its

image in a clockwise sense, but traversing|ζ| = ρ in an anticlockwise sense corresponds

to traversing the boundary of its image in an anticlockwise sense. As before, two interior

points of the annulus,ζ = α andζ = β, will map to ∞+ and∞−, respectively. Near

ζ = α, we must have

z(ζ) = −
iL

2π
log(ζ − α) + locally analytic function, (3.37)

and nearζ = β, we must have

z(ζ) =
iL

2π
log(ζ − β) + locally analytic function. (3.38)

Like before, we must of course also make a choice of branch cut in the interior of the

annulusρ < |ζ| < 1 joining the two pointsζ = α andζ = β in order to uniquely define

z(ζ). The two sides of this branch cut will map to the two edges of the period cell. By a

rotational degree of freedom in the Riemann-Koebe mapping theorem (Goluzin [52]), we

can takeα ∈ R and lying on the positive real axis. See Figure3.4.
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1

ρ

α

β

∞+

∞-

period L

hollow vortex,     
circulation -Γ

hollow vortex,    
circulation Γ

Figure 3.4: The preimage annulusρ < |ζ| < 1 [left] and a typical period window of a von
Kármán hollow vortex street [right]. The two sides of the branch cut, shown as a dashed
line, joining ζ = α andζ = β (the preimages of∞+ and∞−) are mapped byz(ζ) onto
the two edges of the period window. The two circles|ζ| = 1 and|ζ| = ρ each map to one
of the hollow vortex boundaries.
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The fluid region in a typical period cell of the hollow vortex street is triply connected: the

three boundaries are those of the two hollow vortices and the edges of the period cell. To

proceed, we will use the same technique as we did for the single row: introduce a branch

cut linking ζ = α andζ = β. As before, this serves two main purposes: the two sides of

the branch cut will be taken to map to the two edges of the period cell underz(ζ) and this

branch cut neatly encapsulates the intrinsic periodicity structure of the hollow vortex street

into our mathematical model. Moving through the branch cut corresponds to moving onto

a different sheet of some infinite-sheeted Riemann surface, where each sheet of this surface

is a copy of the concentric annulusρ < |ζ| < 1 corresponding to a particular period cell in

the hollow vortex street.

Also like before, we shall again employ the bounded circular slit mapping (2.53). We are

now mapping between two conformally equivalent doubly connected domains. In this case,

(2.53) becomes

η(ζ; γ) =
|γ|P (ζ/γ, ρ)

P (ζγ, ρ)
. (3.39)

Here,γ ∈ C is an arbitrary point in the interior of the annulusρ < |ζ| < 1. Note that

η(ζ; γ) has a simple zero atζ = γ. Straightforward manipulations using the relations

(2.31) can be used to show thatη(ζ; γ) has constant modulus on both|ζ| = 1 and|ζ| = ρ.

It can be shown thatη(ζ; γ) maps|ζ| = 1 onto the unit circle in the complexη-plane with

|ζ| = ρ mapping onto a finite-length concentric circular slit in the interior of|η| = 1.

3.4.2 FunctionW (ζ)

We expect the hollow vortex street to translate uniformly, without change of form, in the

positivex-direction with speedU . Let the complex potential for the potential flow asso-

ciated with the hollow vortex street in a co-travelling frame with the street be denoted by

w(z); in this co-travelling frame, the hollow vortices will be in a state of relative equilib-

rium. Introduce the composition

W (ζ) = w(z(ζ)). (3.40)

Let the circulations around the two hollow vortices be±Γ; this means that

∮

|ζ|=1

d[W (ζ)] = −
∮

|ζ|=ρ

d[W (ζ)] = −Γ, (3.41)
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where both|ζ| = 1 and|ζ| = ρ are positively oriented in the anticlockwise direction. As

z → ∞±, we require

w(z) = −Uz + locally analytic function. (3.42)

The hollow vortices are stationary in the co-travelling frame and their boundaries will be

streamlines. Thus, on both|ζ| = 1 and|ζ| = ρ, we require

Im[W (ζ)] = constant. (3.43)

It follows from (3.37), (3.38) and (3.42) that we need to ensure that

W (ζ) =
iLU

2π
log(ζ − α) + locally analytic function, ζ → α, (3.44)

and

W (ζ) = −
iLU

2π
log(ζ − β) + locally analytic function, ζ → β. (3.45)

We shall now build the complex potential functionW (ζ). Consider the function

L1(ζ; α) = log η(ζ; α), (3.46)

whereη(ζ; α) is the bounded circular slit mapping of (3.39). Sinceη(ζ; α) has a simple

zero atζ = α, functionL1(ζ; α) must have the following behaviour:

L1(ζ; α) = log(ζ − α) + locally analytic function, ζ → α. (3.47)

Also, since|η(ζ; α)| = constant on both|ζ| = 1 and|ζ| = ρ, we must have that

Re[L1(ζ; α)] = log |η(ζ; α)| = constant (3.48)

on |ζ| = 1 and|ζ| = ρ. Let us consider the integral

∮

|ζ|=1

d[L1(ζ; α)], (3.49)

where|ζ| = 1 is positively oriented in the anticlockwise direction. Since this integral is of

the logarithmic type, we can invoke the Argument Principle. The simple zeroes ofη(ζ; α)
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inside|ζ| = 1 are

α,
{
αρ2j | j ∈ N

}
, (3.50)

and the simple poles ofη(ζ; α) inside|ζ| = 1 are

{
ρ2j/α | j ∈ N

}
. (3.51)

Note that the cardinality of the sets{αρ2j | j ∈ N} and{ρ2j/α | j ∈ N} is equal. LetN−P

denote the difference between the number of simple zeroes and the number of simple poles

of functionη(ζ; α) lying inside|ζ| = 1. Thus, by the Argument Principle, we have

1

2πi

∮

|ζ|=1

d[L1(ζ; α)] =
1

2πi

∮

|ζ|=1

d[log η(ζ; α)] = N − P = 1. (3.52)

Next, consider the function

L2(ζ; α, β) = L1(ζ; α) − L1(ζ; β) = log

(
η(ζ; α)

η(ζ; β)

)

. (3.53)

Using (3.47), it is clear to see that

L2(ζ; α, β) = log(ζ − α) + locally analytic function, ζ → α, (3.54)

and

L2(ζ; α, β) = − log(ζ − β) + locally analytic function, ζ → β. (3.55)

Using (3.48), it is also clear to see that

Re[L2(ζ; α, β)] = log |η(ζ; α)| − log |η(ζ; β)| = log

∣
∣
∣
∣
η(ζ; α)

η(ζ; β)

∣
∣
∣
∣ = constant. (3.56)

From (3.52), it is immediate that

1

2πi

∮

|ζ|=1

d[L2(ζ; α, β)] =
1

2πi

∮

|ζ|=1

(d[log η(ζ; α)] − d[log η(ζ; β)]) = 0. (3.57)

The preceding analysis is very similar in order to show that

1

2πi

∮

|ζ|=ρ

d[L2(ζ; α, β)] = 0. (3.58)
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Consider, thus, the function

W (ζ) = −
iΓ

2π
log ζ +

iLU

2π
L2(ζ; α, β), (3.59)

i.e.

W (ζ) = −
iΓ

2π
log ζ +

iLU

2π
log

(
η(ζ; α)

η(ζ; β)

)

. (3.60)

From (3.56), we see that this function has constant imaginary part on both|ζ| = 1 and

|ζ| = ρ. It has the required behaviours (3.44) and (3.45), owing to (3.54) and (3.55). It also

changes byΓ as either|ζ| = 1 or |ζ| = ρ is traversed in an anticlockwise sense thereby

producing the required circulations (3.41) around the hollow vortices (to see this, recall

(3.57) and (3.58)).

3.4.3 FunctionζWζ(ζ)

In order to derive the most convenient analytical expression for the conformal mapz(ζ), it

is necessary to make some further analytical observations.

From the boundary conditions (3.43), it is straightforward to deduce that on|ζ| = 1, we

have

W (ζ) − W (ζ−1) = constant, (3.61)

whilst on|ζ| = ρ, we have

W (ζ) − W (ρ2ζ−1) = constant. (3.62)

These relations (3.61) and (3.62) can be analytically continued off their respective circles

to deduce the following functional relation for functionW (ζ):

W (ρ2ζ) = W (ζ) + constant. (3.63)

Taking a derivative of (3.63) with respect toζ yields

ρ2Wζ(ρ
2ζ) = Wζ(ζ), (3.64)

where we denoteWζ = dW/dζ (and similarly for other functions). Let us define the
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function

S(ζ) = ζWζ(ζ). (3.65)

It follows immediately on multiplication of (3.64) by ζ that we have

S(ρ2ζ) = S(ζ). (3.66)

In other words, the functionS(ζ) is invariant if its argument undergoes the transformation

ζ 7→ ρ2ζ. Meromorphic functions satisfying this property (3.66) are known as loxodromic

functions (Valiron [113]).

Let us deduce another important property of functionS(ζ). After analytic continuation off

|ζ| = 1, taking a derivative of (3.61) with respect toζ yields

Wζ(ζ) + ζ−2W ζ(ζ
−1) = 0, (3.67)

from which it follows that

S(ζ) = −S(ζ−1). (3.68)

From (3.44) and (3.45), we requireWζ(ζ) to have simple poles atζ = α and ζ = β,

implying thatS(ζ) must also have simple poles atζ = α andζ = β. It follows from (3.68)

that if S(ζ) has simple poles atζ = α andζ = β, then it will necessarily have simple poles

at ζ = 1/α andζ = 1/β.

From an analysis of the von Ḱarmán point vortex street (see AppendixA), in both the

unstaggered and staggered cases, we expect two stagnation points in a typical period cell.

For the von Ḱarmán hollow vortex street, let the preimages in the annulusρ < |ζ| < 1 of

the two stagnation points in a typical period cell be labelledζ = γ1 andζ = γ2. Then the

complex velocity function must have two simple zeroes at these points:

dw

dz
(γ1) =

dw

dz
(γ2) = 0. (3.69)

By the chain rule:

Wζ(ζ) =
dw

dz

dz

dζ
. (3.70)

Now, dz/dζ must be non-zero everywhere inρ < |ζ| < 1 (ensuring thatz(ζ) is indeed a

conformal map). Thus, any zeroes ofdw/dz in ρ < |ζ| < 1 must also be zeroes ofWζ(ζ)
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in ρ < |ζ| < 1.

It follows that we also requireζ = γ1 andζ = γ2 to be simple zeroes ofWζ(ζ) implying

thatS(ζ) must also have simple zeroes atζ = γ1 andζ = γ2. It follows from (3.68) that if

S(ζ) has simple zeroes atζ = γ1 andζ = γ2, then it will necessarily have simple zeroes

at ζ = 1/γ1 andζ = 1/γ2. In light of property (3.66), it suffices to build the singularity

structure of functionS(ζ) in the fundamental regionρ ≤ |ζ| < 1/ρ; this is because the

singularity structure ofS(ζ) in all other concentric annuli in theζ-plane can be deduced

using relation (3.66).

Consider the function

P (ζ/γ1, ρ)P (ζγ1, ρ)P (ζ/γ2, ρ)P (ζγ2, ρ)

P (ζ/α, ρ)P (ζα, ρ)P (ζ/β, ρ)P (ζβ, ρ)
. (3.71)

This function (3.71) can be shown to be loxodromic by using the properties (2.31), provided

the product of its zeroes is equal to the product of its poles:

γ1γ2

γ1γ2

=
αβ

αβ
. (3.72)

Function (3.71) has only simple zeroes and simple poles in the fundamental regionρ ≤

|ζ| < 1/ρ. Moreover, it has precisely the same simple zeroesζ = γ1, 1/γ1, γ2, 1/γ2 and

simple polesζ = α, 1/α, β, 1/β as required of functionS(ζ). Appealing to a special

version of Liouville’s theorem for loxodromic functions (Valiron [113]), functionsS(ζ)

and (3.71) are in fact proportional:

ζWζ(ζ) = B
P (ζ/γ1, ρ)P (ζγ1, ρ)P (ζ/γ2, ρ)P (ζγ2, ρ)

P (ζ/α, ρ)P (ζα, ρ)P (ζ/β, ρ)P (ζβ, ρ)
. (3.73)

Here,B ∈ C is a constant.

3.4.4 Functiondw/dz

We will now construct the complex velocity functiondw/dz. Bernoulli’s theorem implies

that on|ζ| = 1 and|ζ| = ρ, ∣
∣
∣
∣
dw

dz

∣
∣
∣
∣ = constant. (3.74)
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Recall from (3.69) that we require

dw

dz
(γ1) =

dw

dz
(γ2) = 0. (3.75)

We also requiredw/dz to beL-periodic.

Consider the function
dw

dz
=

Rη(ζ; γ1)η(ζ; γ2)

ζ
. (3.76)

This function has constant modulus on|ζ| = 1 and|ζ| = ρ, and two simple zeroes atζ = γ1

andζ = γ2. It is analytic and single-valued everywhere inρ < |ζ| < 1; in particular, it

is invariant as eitherζ = α or ζ = β is encircled, and henceL-periodic across the period

window. The factor ofζ in the denominator can be explained as follows. Recall, from

either (3.60) or (3.73), thatWζ(ζ) has a simple pole atζ = 0. In order thatzζ(ζ) does not

have a simple pole atζ = 0, and thereby be appropriately single-valued upon traversing

either|ζ| = 1 or |ζ| = ρ (for particular values ofζ = γ1 andζ = γ2 to be determined), it is

required thatdw/dz must indeed have a simple pole atζ = 0.

3.4.5 Conformal mapz(ζ)

Given the functions in (3.73) and (3.76), it follows from the chain rule that

dz

dζ
= A

P 2(ζγ1, ρ)P 2(ζγ2, ρ)

P (ζ/α, ρ)P (ζα, ρ)P (ζ/β, ρ)P (ζβ, ρ)
, (3.77)

whereA ∈ C is a constant. The final form of the conformal mapz(ζ) is

z(ζ) = A
∫ ζ

ζ0

P 2(ζ ′γ1, ρ)P 2(ζ ′γ2, ρ)

P (ζ ′/α, ρ)P (ζ ′α, ρ)P (ζ ′/β, ρ)P (ζ ′β, ρ)
dζ ′. (3.78)

We have found that this conformal map (3.78) encapsulates both unstaggered and staggered

street configurations. Here,ζ0 ∈ C is an arbitrary point in the annulusρ < |ζ| < 1. It

reflects a translational degree of freedom and determines the position of the origin in the

z-plane; this can be set arbitrarily and the mapping shifted by an appropriate constanta

posteriori. The value ofA is founda posterioriby insisting that the residue ofdz/dζ at

ζ = α is −iL/2π as required by (3.37). We thus obtain the following expression for the

constantA:

A =
iL

2π

(
P̂ (1, ρ)P (|α|2, ρ)P (α/β, ρ)P (αβ, ρ)

αP 2(αγ1, ρ)P 2(αγ2, ρ)

)

, (3.79)



Chapter 3. Von Kármán streets of hollow vortices 61

where

P̂ (ζ, ρ) =
P (ζ, ρ)

1 − ζ
. (3.80)

Recall thatζ = γ1 andζ = γ2 are two solutions inρ < |ζ| < 1 of the equation

dW

dζ
(ζ) = 0, (3.81)

which, on use of (2.42) and (3.60), can be expressed as

K(ζ/α, ρ) − K(ζα, ρ) − K(ζ/β, ρ) + K(ζβ, ρ) =
Γ

LU
, (3.82)

where we recall that

K(ζ, ρ) = ζ
P ′(ζ, ρ)

P (ζ, ρ)
. (3.83)

Since
dw

dz
→ −U, z → ∞±, (3.84)

we must have
Rη(α; γ1)η(α; γ2)

α
=

Rη(β; γ1)η(β; γ2)

β
= −U. (3.85)

One of the equations in (3.85) can be used to determine the value ofR; the velocity field

then follows from (3.76). If the velocity field in a typical period cell is required, a particular

choice of branch cut betweenζ = α andζ = β needs to be made in order to guarantee

that the edges of the period cell are straight and vertical. To find such a branch cut, it is

necessary to solve an ordinary differential equation forζ as a function ofz obtained by

differentiating the equation

Re[z(ζ)] = constant (3.86)

and then making use of the expression (3.77) for dz/dζ. It should be noted that the shapes

of the two edges of the period cell (i.e. the images of the two sides of the branch cut under

z(ζ)) are irrelevant if one is interested solely in determining the shapes of the hollow vortex

boundaries. As mentioned before, the key point of introducing the branch cut between

ζ = α andζ = β is to capture the periodicity structure of the hollow vortex street.
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3.4.6 Characterisation of the solutions

We fix

L = Γ = 1 (3.87)

which sets the length scale and the time scale, respectively. Both unstaggered and staggered

von Kármán streets of point vortices admit one-parameter families of equilibrium solutions

(see AppendixA): we shall take this parameter to beU . For a hollow vortex street, we

expect an additional freedom associated with the area of the hollow vortices: the parameter

ρ is a natural choice for this.

We will now examine the solution spaces for both unstaggered and staggered hollow vortex

streets. For both street configurations, we find two-parameter families of solutions param-

eterised byρ andU . We choose a value ofU a priori and proceed in tracing out a solution

branch corresponding to this value ofU by a continuation procedure inρ; that is, gradually

increasingρ to obtain hollow vortices of gradually increasing area. For small values ofρ,

the hollow vortices are always found to be small and close-to-circular in shape.

Unstaggered streets

It has been found that unstaggered hollow vortex streets exist forU & 0.5; this is consistent

with the result for point vortex streets as indicated in AppendixA. We have found that the

parametersα, β, γ1 andγ2 are either all real and such that

β =
ρ

α
, γ2 =

ρ

γ1

, (3.88)

or are such that

β =
ρ

α
, γ2 = γ1 =

√
ρeiφ, (3.89)

with α, β, φ ∈ R. Figure3.5shows two schematics of the preimage domain in theζ-plane

illustrating the locations of the parametersα, β, γ1 andγ2 according to (3.88) and (3.89).

With the choices (3.88) and (3.89), it turns out that the images of the circles|ζ| = ρ and

|ζ| = 1 under the mapz(ζ) are reflections of each other through a horizontal midline

between them. Recall that we are restricting attention to hollow vortices whose shapes and

areas are the same in both rows, and thus, given the symmetry, it is not necessary to enforce

an equation requiring the hollow vortex areas, or perimeters, be equal.
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GivenU andρ, we solve two real equations forα andγ1; β andγ2 then follow immediately

from either (3.88) or (3.89). The first equation to enforce is

Im

[∮

|ζ|=1

zζ(ζ
′)dζ ′

]

= 0 (3.90)

so that the conformal map be appropriately single-valued. By the symmetry, imposing

(3.90) is sufficient to ensure that also

Im

[∮

|ζ|=ρ

zζ(ζ
′)dζ ′

]

= 0. (3.91)

With the choice of parameters (3.88) and (3.89), it turns out to be automatic that

Re

[∮

|ζ|=1

zζ(ζ
′)dζ ′

]

= Re

[∮

|ζ|=ρ

zζ(ζ
′)dζ ′

]

= 0. (3.92)

The second equation to enforce is

K(γ1/α, ρ) − K(γ1α, ρ) − K(γ1/β, ρ) + K(γ1β, ρ) =
Γ

LU
(3.93)

so that functionWζ(ζ) has the correct zero structure: by the symmetry, imposing (3.93)

is sufficient to ensure thatWζ(ζ) will also have a zero atζ = γ2, as required. Equations

(3.90) and (3.93) can be readily solved using Newton’s method.

For each fixed value of0.5 . U < 0.5773502693, there is a critical value ofρ = ρ∗ (say)

below which all parameters are real and satisfy the relations in (3.88). Whenρ = ρ∗, γ1

andγ2 coincide atζ =
√

ρ. Then, forρ > ρ∗, γ1 andγ2 become a complex conjugate pair

on the circle|ζ| =
√

ρ. Figure3.6 shows a graph of the critical value ofρ as a function

of U . This transition ofγ1 andγ2 off the real axis onto the circle|ζ| =
√

ρ has a physical

significance: the two stagnation points lying on the edge of each period cell move off the

edges onto the realz-axis. ForU > 0.5773502693, the parametersα, β, γ1 andγ2 are such

that they obey the relations in (3.89) and, therefore, the stagnation points for these solutions

are always on the realz-axis.

In Figure3.7, three periods of unstaggered hollow vortex streets are shown for whenU =

0.6 and U = 0.8. It appears from these figures that the maximum area of the hollow

vortices decreases asU increases (the graph in Figure3.12 vindicates this observation).

These unstaggered street solutions can be considered as a generalisation of the classical
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Figure 3.5: The distribution of parametersα, β, γ1 andγ2 in the two cases (3.88) [left]
and (3.89) [right] for the unstaggered street solutions. For fixed0.5 . U < 0.5773502693,
there is a criticalρ for which γ1 = γ2 =

√
ρ represents a transition between the two

situations shown.

0.5 0.51 0.52 0.53 0.54 0.55 0.56 0.57 0.58
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

U

ρ

γ
1
 and γ

2
 complex

γ
1
 and γ

2
 real

Figure 3.6: A graph showing the critical value ofρ, for eachU , at which the parameters for
unstaggered vortex streets transition from satisfying (3.88) to satisfying (3.89).



Chapter 3. Von Kármán streets of hollow vortices 65

hollow vortex pair solutions due to Pocklington [85] to the case of a singly periodic array of

such hollow vortex pairs moving steadily and uni-directionally. Indeed, the hollow vortex

shapes we present look qualitatively similar to those found by Pocklington [85]. A feature

characterising the maximum area configurations is the long flattened part of the hollow

vortex boundaries which are closest together.

Staggered streets

We find that solutions for staggered hollow vortex streets exist for0 < U . 0.5; this is

again consistent with the staggered point vortex street solutions (see AppendixA). We find

that the parametersα, β, γ1 andγ2 are all real and such that

β = −
ρ

α
, γ2 = −

ρ

γ1

. (3.94)

For given values ofρ andU , we solve forα andγ1 by enforcing

Im

[∮

|ζ|=1

zζ(ζ
′)dζ ′

]

= 0 (3.95)

and

K(γ1/α, ρ) − K(γ1α, ρ) − K(γ1/β, ρ) + K(γ1β, ρ) =
Γ

LU
. (3.96)

As for unstaggered streets, due to the symmetry, (3.95) is sufficient to ensure that

Im

[∮

|ζ|=ρ

zζ(ζ
′)dζ ′

]

= 0 (3.97)

for staggered streets. With the choice of parameters (3.94), it is automatic that

Re

[∮

|ζ|=1

zζ(ζ
′)dζ ′

]

= Re

[∮

|ζ|=ρ

zζ(ζ
′)dζ ′

]

= 0. (3.98)

By the symmetry, imposing (3.96) is sufficient to ensure thatWζ(ζ) will also have a zero

at ζ = γ2, as required. Equations (3.95) and (3.96) can be readily solved using New-

ton’s method. The solution branch for the fixed value ofU is traced out by a continuation

procedure inρ.

Figure3.8 shows three periods of staggered hollow vortex streets for whenU = 0.2 and

U = 0.4. As the areas increase, the hollow vortices assume quasi-triangular shapes with
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Figure 3.7: Three periods of unstaggered hollow vortex streets, showing hollow vortices of
different areas, with speedsU = 0.6 [top] andU = 0.8 [bottom]. The different solutions
have been superposed. The maximum possible area of the hollow vortices in the street
decreases asU increases.
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two flattened regions of their boundary which are nearest to the neighbouring hollow vor-

tices in the adjacent row. It is interesting that these quasi-triangular shapes are reminiscent

of the shapes of the vortices appearing in photographs of certain staggered vortex streets

shown, for example, in Van Dyke [114]. For a fixedU , we find thatρ can be increased up

to some limiting value with no apparent singularity in the hollow vortex shapes and without

the conformal map becoming multi-valued.

Our staggered street solutions are the hollow vortex analogues of the staggered streets of

vortex patches found by Saffman & Schatzman [94]. It is instructive to compare our solu-

tions with those of Saffman & Schatzman [94]. We reparametrise our solutions to emulate

their presentation for means of effective comparison. Figure 2 of Saffman & Schatzman

[94] shows the speedU against the area of the vortex patches making up the street for

several fixed aspect ratiosκ, defined to be

κ =
h

L
, (3.99)

whereh is the vertical separation of the vortex centroids in the two rows. Figure 3 of

Saffman & Schatzman [94] shows the quantityD against vortex patch area for the same

set of aspect ratios. The quantityD is a measure of the streamwise momentum flux of the

fluid (with the contribution from the vortices neglected):

D = −
1

2
Im

[∫ i∞

−i∞
(u − U − iv)2dz

]

. (3.100)

The contour of integration can be taken to be any path from−i∞ to i∞ which does not

intersect the hollow vortices. Note that the integral in (3.100) is defined in a stationary

frame of reference (and not in the co-travelling frame with the hollow vortices).

The perimeter of the hollow vortex which is the image of|ζ| = ρ underz(ζ) is given by

∮

|ζ|=ρ

ds =

∮

|ζ|=ρ

|zζ(ζ
′)dζ ′| . (3.101)

Here,ds denotes an element of arc length on|ζ| = ρ. To enforce the desired aspect ratio

of the streetκ, we must compute the imaginary part of the centroid of the hollow vortex
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Figure 3.8: Three periods of typical staggered hollow vortex streets, showing hollow vor-
tices of different areas, withU = 0.2 [top] andU = 0.4 [bottom]. The different solutions
have been superposed.
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Figure 3.9: Graphs ofU against area for several fixed aspect ratiosκ. This figure should
be compared with Figure 2 of Saffman & Schatzman [94].
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compared with Figure 3 of Saffman & Schatzman [94].
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Figure 3.11: Non-uniqueness of solutions: two different hollow vortex streets are super-
posed, each comprising hollow vortices of area 0.175 and with aspect ratioκ = 0.4. The
street with hollow vortices that are more extended in the streamwise direction travels faster
(U = 4817, compared toU = 0.4437) but has a lower value of the momentum fluxD.

which is the image of|ζ| = ρ underz(ζ), and set this equal toκ/2:

Im

[∮

|ζ|=ρ

z(ζ ′)|zζ(ζ
′)dζ ′|

]/(∮

|ζ|=ρ

|zζ(ζ
′)dζ ′|

)

= κ/2. (3.102)

(3.102) follows from the general formula for the centroid of a planar shapeS:

(∫∫

S
zdA

)/(∫∫

S
dA

)

. (3.103)

Here,dA denotes an element of area ofS. However, since we do not have anya priori

knowledge of the area of the hollow vortices, the formula in (3.103) reduces to

(∮

∂S
zds

)/(∮

∂S
ds

)

. (3.104)

Here,∂S denotes the boundary of planar shapeS andds is an element of arc length on∂S.

Figure3.9shows graphs ofU against the area of the hollow vortices for various values of

κ. The area of the hollow vortex which is the image of|ζ| = ρ underz(ζ) is given by

∣
∣
∣
∣
1

2i

∮

|ζ|=ρ

z(ζ ′)zζ(ζ
′)dζ ′

∣
∣
∣
∣ . (3.105)
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(3.105) can be derived using Stokes’ theorem. The speed of translation of the hollow

vortices, whose centroids have been fixed, is retrieved using (3.82):

U = (K(γ1/α, ρ) − K(γ1α, ρ) − K(γ1/β, ρ) + K(γ1β, ρ))−1 . (3.106)

We find that there is a critical value ofκ betweenκ = 0.33 andκ = 0.35 signalling a

dramatic change in the qualitative behaviour of these graphs. Forκ < 0.33, the speedU of

the street for a given hollow vortex area is unique but, forκ > 0.35, the graphs turn around

on themselves implying non-uniqueness of the street solutions for a given aspect ratioκ and

a given hollow vortex area. Figure3.11shows two different hollow vortex streets, of aspect

ratio κ = 0.4, with area equal to 0.175. The street in which the hollow vortices are more

extended in the streamwise direction travels with the greater speed (U = 4817 compared to

U = 0.4437) but has a lower value of the momentum fluxD. Saffman & Schatzman [94]

find exactly the same qualitative behaviour for their streets of vortex patches: they report

the critical aspect ratio to beκ ≈ 0.36 which is very close to the value we have found. This

is quite remarkable given that these two inviscid vortex models are so different. There could

be special physical significance of this given that these similar aspect ratios have arisen in

two different distributed vorticity models of staggered vortex streets; however at present,

it is unknown what this significance could be. One interpretation could be a qualitative

classification of two types of hollow vortex equilibria: one where as the hollow vortices

grow, the shapes encroach on the neighbouring row, and the other where two continuous

vortex ‘layers’ of equal and opposite circulation form (perhaps in a similar manner to the

special limit of lens shaped touching vortices mentioned by Saffman & Szeto [98] for their

street of vortex patches).

Figure3.10shows graphs of the quantityD against hollow vortex area for various values

of κ. We observe qualitatively similar behaviour to the graphs in Figure 3 of Saffman &

Schatzman [94] and again notice that forκ ≥ 0.35, the graphs turn around on themselves,

reflecting the non-uniqueness of the solutions. It is worth mentioning that Saffman &

Schatzman [94] also presented graphs of excess energy against vortex area for their streets

of vortex patches; we have not computed such graphs but they would be expected to share

a resemblance with those shown in Figure 4 of [7].

Each solution branch terminates owing to the Newton iteration no longer being able to

converge. The solution branches of Saffman & Schatzman [94] were also terminated for
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Figure 3.12: A graph of the maximum area of the hollow vortices in a street as a function of
the speed of the streetU , including both unstaggered and staggered varieties. It is difficult
to find parameters forU ≈ 0.5, but the graph appears to be a near-continuous function.

similar numerical reasons. We note that the hollow vortex shapes corresponding to the end

of the solution branches do not possess any singularities and they remain univalent. Recall

that we found solutions where the hollow vortices in each row had identical shapes and

equal areas; in light of this, it could be possible that the solution branches continue into a

different class of solution where, for example, the hollow vortices in each row do not have

the same shape.

Finally, we found that there exists a maximum admissible area of the hollow vortices in a

given staggered or unstaggered street for a fixed value ofU . Figure3.12shows a graph of

the maximum admissible area of the hollow vortices as a function ofU , for both staggered

and unstaggered streets. The graph appears to be a near-continuous and monotonically

decreasing function. It was difficult to find solutions in the vicinity ofU = 0.5; hence

the small ‘gap’ in the graph. Saffman & Schatzman [94] also found similar regions of

parameter space where convergence of their numerical scheme was hard to achieve.
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3.5 Summary

After re-deriving the solution, in a different but equivalent form, for a single row of hollow

vortices in unbounded fluid due to Baker, Saffman & Sheffield [7] using new mathematical

techniques, we presented new classes of analytical solutions describing steadily translating

von Kármán streets of hollow vortices, in staggered and unstaggered configurations. We

solved this free boundary problem by generalising the approach we used to resolve the

single row: we took a single period window of the configuration and, by using free stream-

line and conformal mapping theory, determined the relative equilibrium shapes of the two

hollow vortex boundaries. The periodicity of the street structure was incorporated into our

model by the introduction of a branch cut in the preimage domain whose two sides map

to the two edges of the period window (and whose precise shapes are irrelevant). The use

of conformal circular slit mappings was essential to constructing the functions we needed.

We found a concise formula for our conformal map as an explicit indefinite integral whose

integrand is expressed in terms of the Schottky-Klein prime function associated with the

preimage concentric annulus, and is fully determined with the knowledge of just two geo-

metrical parameters to be found as part of the solution. The solutions we have presented in

this chapter are believed to be the first analytical solutions for von Kármán vortex streets

with distributed vorticity; consequently, we expect them to arise in many future modelling

applications.

We were able to reveal an array of features about hollow vortex streets from our solutions.

From the plots illustrating the shapes of the free boundaries, we observed remarkable sim-

ilarities between our staggered hollow vortex street solutions and experimentally-observed

staggered vortex streets such as those shown in photographs in Van Dyke’s monograph

[114]. For the unstaggered configurations, we observed an increased flattening of the free

boundaries in the regions where the hollow vortices are closest together. This was a char-

acteristic found by Pocklington [85] for a co-travelling hollow vortex pair and indeed, the

unstaggered hollow vortex street is a precisely a singly periodic array of Pocklington pairs.

We then undertook a comparison of our staggered hollow vortex street solutions with the

staggered vortex patch street solutions found by Saffman & Schatzman [94] by plotting

graphs of streamwise fluid momentum flux and speed of translation against area. We found

that there is a critical aspect ratio of the street, in both our model and the model of Saffman

& Schatzman [94], of approximately 0.34-0.36, which has special significance for the equi-

libria and also determines whether or not there is non-uniqueness in the solutions.
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Chapter 4

Hollow vortices in an infinite channel

4.1 Introduction

This chapter is devoted to the analysis of two different hollow vortex configurations in

an infinite channel with straight, parallel-sided, impenetrable walls. We examine first the

situation of a co-travelling hollow vortex pair in a channel. This free boundary problem

turns out to exhibit similar mathematical features to the von Kármán hollow vortex street

problem. We then extend our analysis to investigate a single row of hollow vortices in a

channel. This problem requires the use of special conformal mappings known as polycir-

cular arc mappings. As in Chapter 3, we will employ free streamline theory in combination

with conformal mapping ideas in order to find analytical solutions which will reveal the

shapes of the hollow vortex boundaries in our two chosen configurations set in the infinite

channel. Given that these two free boundary problems are both set in infinite channels,

the fluid flows to which they pertain are examples of so called ‘wall-bounded flows’ and

as such, are expected to exhibit interesting physical features as well as requiring a special

mathematical treatment.

In Chapter 3, our approach was to find separate expressions for the complex potentialW (ζ)

and the complex velocity functiondw/dz, and from these, apply the chain rule to determine

the conformal mappingz(ζ). This approach proved to be particularly expedient given that

formulae forW (ζ) anddw/dz were constructed in a straightforward manner using con-

formal slit mappings. We shall adopt the same approach in this chapter in order to solve

our two free boundary problems. Also central to our approach in Chapter 3 was the intro-

duction of a branch cut in the preimage circular domain. This served the primary purpose

of incorporating the intrinsic periodicity of the configuration into our model, and also af-
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forded us some analytical simplifications; for the same reasons, we shall again employ this

mathematical technique of using branch cuts in this chapter. The solutions we present in

this chapter for the single row of hollow vortices in the channel appear to be the first of

their kind.

4.2 Background

To construct the complex potential for ideal fluid flows involving point vortices in infinite

channels, the so-called ‘method of images’ (Acheson [2]) is usually adopted to produce

an image system in free space through a series of successive reflections of the original

system in the two channel walls; consequently, the two channel walls are guaranteed to

be streamlines of the flow. Glauert [51] used the method of images in this way to derive

an estimate for the reduction in the velocity of point vortices in a von Kármán street in an

infinite channel due to the effects of the channel walls. The method of images was also the

cornerstone of the approach by Rosenhead [92]. He analysed the von Ḱarmán point vortex

street in a channel, in both staggered and unstaggered configurations, and found analytical

expressions for the complex potentials for both these systems, determined the speed of

translation of the streets, and found explicit equations for the streamlines, using elliptic

function theory. Greengard [55] has devised a fast numerical algorithm to calculate planar

potential flows in infinite channels. He used the method of images to deduce an expression

for the velocity field induced by a point vortex in an infinite channel and consequently,

the associated streamfunction. Knowledge of these allowed him to develop the algorithm,

based on recursive subdivisions of space and multipole expansions, in which the method of

images also plays a central role.

The methods we will use to solve the free boundary problems of this chapter are not associ-

ated in any way with the method of images. Unlike point vortices, vortices with distributed

vorticity intrinsically have an area and a boundary shape. In point vortex problems set in an

infinite channel, there is of course no notion of size associated with the point vortices (point

vortices have no area): the two length scales in these problems are the channel width and

the distance of the point vortex to a channel wall. By considering the hollow vortex ana-

logues of these point vortex problems in infinite channels, we see that there are now three

length scales which feature: the channel width, the distance of the hollow vortex centroid

to a channel wall and the area of the hollow vortex. The tantalising question fuelling our

study into the free boundary problems of this chapter is how introducing a distributed vor-
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ticity structure into a confined geometry has an effect on the shape of its free boundary. By

considering the pair of hollow vortices in a channel, we are also motivated in devising an

idealised mathematical model of a vortex ring travelling along a tube: the two-dimensional

analogue of this problem is precisely our free boundary problem for a co-travelling pair of

hollow vortices in a channel.

Two of the earliest works on hollow vortices are directly relevant to the free boundary

problems we shall tackle in this chapter. Michell [77] used Schwarz-Christoffel methods

and elliptic functions to derive an expression for the conformal map determining the shape

of the free boundary of a single hollow vortex in an infinite channel. An interesting fea-

ture of this hollow vortex configuration is that it is stationary for all time and does not

propagate along the channel. Pocklington [85] also used Schwarz-Christoffel methods and

elliptic function theory to derive the conformal map for a steadily translating pair of hollow

vortices in free space. Crowdy, Llewellyn Smith & Freilich [37] have recently re-derived

this solution due to Pocklington using mathematical methods analogous to those that we

shall use in this chapter. For this configuration, the pair of hollow vortices translates at

constant speed parallel to their axis of symmetry, without change of form. We will make

connections with both these classical solutions of Michell [77] and Pocklington [85]. A

very recent study by Zannetti & Lasagna [128] replaces the stagnation points associated

with hollow vortex pairs by so-called ‘Chaplygin cusps’ or finite-area regions of stagnant

fluid. They have been able to determine the shapes of a pair of hollow vortices in a channel

but their approach is different to ours. (This paper appeared in the literature after the work

in this chapter was completed).

Other studies pertaining to vortex dynamics in channel geometries include the following.

Giannakidis [50] has undertaken a numerical study into the effects of placing a Sadovskii

vortex, which is a vortex patch bounded by a vortex sheet, in a channel containing ideal

fluid. This type of steady planar flow also goes by the name of Prandtl-Batchelor flow,

and the hollow vortex is a special type of Sadovskii vortex. Govorukhin, Morgulis &

Vladimirov [53] have studied in detail the dynamics of planar inviscid incompressible flows

in a straight channel of finite-length, focusing on the effects of boundary conditions on

the vorticity dynamics. Yu et al [126] have studied vortices in superconducting channels

with periodic constrictions, and Suzuki & Colonius [108] have devised an inverse-imaging

method using a least-squares algorithm for the detection of a point vortex in ideal fluid in a

channel.
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Finally, it is worth highlighting some studies involving point vortices and vortex patches

evolving around gaps in walls. Johnson & McDonald [62] have looked into point vortex

and vortex patch dynamics near an infinitely long barrier with multiple gaps. Crowdy &

Marshall [30] employed Kirchhoff-Routh theory to analyse the dynamics of a point vortex

in fluid domains bounded by straight walls with multiple gaps. Elcrat, Hu & Miller [43]

determined the equilibrium configurations of point vortices for flow past objects, such as

an inclined flat plate, in an infinite channel.

4.3 Hollow vortex pair in an infinite channel

We first consider the case of a pair of hollow vortices in an infinite channel. We shall

present a method of solution to this free boundary problem which is conceptually different

to that of Zannetti & Lasagna [128].

4.3.1 Formulation of problem

In a physicalz = (x+iy)-plane, consider an infinite channel of widthL with impenetrable

walls atx = ±L/2. We will seek solutions for which a hollow vortex pair is steadily

translating along the channel in they-direction parallel to the walls of the channel with

speedU . In a co-travelling frame of reference, one hollow vortex is assumed to have its

centroid atx = c and to have circulation−Γ (whereΓ > 0) with the other hollow vortex

assumed to have its centroid atx = −c with circulationΓ. Figure4.1 shows a schematic

of this configuration.

Consider a conformal mappingz(ζ) from a concentric annulusρ < |ζ| < 1 to the fluid

region occupying the infinite channel exterior to the two hollow vortices. Let the circles

|ζ| = 1 and|ζ| = ρ map to the two hollow vortex boundaries in the channel. Let the two

pointsζ = α andζ = β lying inside this concentric annulus map to the two ends of the

channel at infinity which we shall label by∞±. This means that we require

z(ζ) =
iL

2π
log(ζ − α) + locally analytic function, ζ → α, (4.1)

and

z(ζ) = −
iL

2π
log(ζ − β) + locally analytic function, ζ → β. (4.2)

It will be necessary to make some choice of branch cut between the two logarithmic branch
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Figure 4.1: Schematic, in a co-travelling frame moving with the hollow vortices in az-
plane, of an infinite channel containing a pair of hollow vortices of equal and opposite
circulation. The hollow vortex on the left has circulationΓ and the hollow vortex on the
right has circulation−Γ. The centroids of the hollow vortices are taken to be such that
Re[z] = ±c ∈ R. The two ends of the channel at infinity are denotes by∞±. The shapes
of the hollow vortex boundaries are to be determined.
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points atζ = α andζ = β, and it is natural to choose this so that the images underz(ζ) of

the two sides of the branch cut map to the channel walls. The choice of this branch cut will

be made later. Figure4.2shows a schematic of the preimage domain in theζ-plane.

It may seem surprising why we have chosen to map the two sides of the branch cut onto

the channel walls. The reason for this becomes apparent if we consider an equivalent prob-

lem. If, instead of considering an infinite channel containing a pair of hollow vortices, we

consider a singly periodic array of period windows (extending to∞± and each contain-

ing a pair of hollow vortices), the problem now has an in-built periodicity structure and is

analogous to the mathematical framework introduced in Chapter 3. The two problems are

equivalent because, in the infinite channel case, the channel walls are streamlines, whilst in

the singly periodic case, the straight vertical edges of a typical period window are precisely

the same streamlines. For the case of the pair of hollow vortices in a channel, there is no

periodicity in the problem, but when interpreted as a singly periodic array of hollow vor-

tex pairs in free space, we can view the two sides of the branch cut mapping to the edges

of a typical period window (moving through the branch cut corresponds to moving into a

neighbouring period window) or, equivalently, the two channel walls.

4.3.2 FunctionW (ζ)

We shall work in the co-travelling frame with the hollow vortex pair in which the configura-

tion is steady and the hollow vortices assume a state of relative equilibrium with no change

of form. Let complex potential associated with the flow in the co-travelling frame bew(z).

Introduce the composition

W (ζ) = w(z(ζ)). (4.3)

The circulations around the two hollow vortices are±Γ; this means that

∮

|ζ|=1

d[W (ζ)] = −
∮

|ζ|=ρ

d[W (ζ)] = −Γ, (4.4)

where both|ζ| = 1 and|ζ| = ρ are positively oriented in the anticlockwise direction. As

z → ∞±, we require

w(z) = iUz + locally analytic function. (4.5)
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Figure 4.2: Schematic of the preimage circular domain in theζ-plane. The circles|ζ| = 1
and|ζ| = ρ map to the two hollow vortex boundaries under the mapz(ζ). The branch cut
joining ζ =

√
ρ andζ = β (the preimages of∞±) on |ζ| =

√
ρ is shown by a dashed line.

The preimages of the two stagnation points on|ζ| =
√

ρ are labelled byζ = γ1 andζ = γ2.
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Apart from this simple pole at infinity,w(z) is an analytic function everywhere in the fluid

region exterior to the two hollow vortices. In light of (4.1), (4.2) and (4.5), we require

W (ζ) = −
LU

2π
log(ζ − α) + locally analytic function, ζ → α, (4.6)

and

W (ζ) =
LU

2π
log(ζ − β) + locally analytic function, ζ → β. (4.7)

FunctionW (ζ) must also satisfy

Im[W (ζ)] = constant (4.8)

on both circles|ζ| = ρ and|ζ| = 1, as well as on the two sides of the branch cut, thereby

ensuring that the two hollow vortex boundaries and the two channel walls are streamlines

of the flow.

By using similar arguments to those presented in Chapter 3 to construct function (3.60), we

claim that functionW (ζ) is

W (ζ) = −
iΓ

2π
log ζ −

LU

2π
log χ(ζ; α, β), (4.9)

where the conformal radial slit mappingχ(ζ; α, β) of (2.60), in the present case, is given

by

χ(ζ; α, β) =
P (ζ/α, ρ)P (ζα, ρ)

P (ζ/β, ρ)P (ζβ, ρ)
. (4.10)

Note thatχ(ζ; α, β) has a simple zero atζ = α. Straightforward manipulations using the

relations (2.31) can be used to show thatarg[χ(ζ; α, β)] = constant on both|ζ| = 1 and

|ζ| = ρ. It can be shown thatχ(ζ; α, β) maps|ζ| = 1 and|ζ| = ρ onto two finite-length

radial slits emanating from the origin in the complexχ-plane.

Due to the presence of the radial slit mapping (4.10) in (4.9), (4.8) is clearly satisfied on

|ζ| = 1 and |ζ| = ρ. It also has the required behaviours (4.6) and (4.7) nearζ = α and

ζ = β. It changes byΓ as either|ζ| = 1 or |ζ| = ρ is traversed in an anticlockwise

sense thereby producing the required circulations (4.4) around the hollow vortices. We

may chooseζ = α to be on the positive real axis by the remaining rotational freedom

of the Riemann-Koebe mapping theorem and, in order to enforce the required left-right
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symmetry about the vertical channel centreline, we take

α =
√

ρ. (4.11)

Then

β =
√

ρeiθ (4.12)

whereθ ∈ R will need to be determined.

4.3.3 Functiondw/dz

The complex velocity function needs to be analytic and single-valued in the fluid region ex-

terior to the two hollow vortices. Based on the problem of a co-travelling point vortex pair

in an infinite channel (see AppendixC), we expect two stagnation points aty = ±d lying

on the channel centrelinex = 0; this implies that the preimages of this pair of stagnation

points will lie on|ζ| =
√

ρ. Thusdw/dz will have two simple zeroes:

dw

dz
(γ1) =

dw

dz
(γ2) = 0. (4.13)

Here, the preimages of the two stagnation points have been labelled byζ = γ1 andζ = γ2.

As before, Bernoulli’s theorem implies that

∣
∣
∣
∣
dw

dz

∣
∣
∣
∣ = constant (4.14)

on both|ζ| = 1 and|ζ| = ρ. We also requiredw/dz to beL-periodic across the channel.

Consider the function
dw

dz
=

Rη(ζ; γ1)η(ζ; γ2)

ζ
(4.15)

which has been derived using similar arguments to those presented in Chapter 3. Here,

R ∈ C is a constant, andη(ζ; γ) is the bounded circular slit map as in (3.39). Note that

this complex velocity function (4.15) has the same functional form as the complex velocity

function (3.76) for the hollow vortex street. This function has constant modulus on|ζ| = 1

and|ζ| = ρ, and two simple zeroes atζ = γ1 andζ = γ2, as required. It is analytic and

single-valued inρ < |ζ| < 1 and so it is invariant as eitherζ =
√

ρ or ζ = β is encircled,

and henceL-periodic across the channel. The reason for the factor ofζ in the denominator

is the same as that given in Chapter 3 for von Kármán hollow vortex streets.
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The parametersζ = γ1 andζ = γ2 are two solutions inρ < |ζ| < 1 of the equation

dW

dζ
(ζ) = 0, (4.16)

which, on use of (2.42) and (4.9), can be expressed as

K(γj/
√

ρ, ρ) + K(γj
√

ρ, ρ) − K(γj/β, ρ) − K(γjβ, ρ) = −
iΓ

LU
, j = 1, 2. (4.17)

Since
dw

dz
→ iU, z → ∞±, (4.18)

we must have
Rη(α; γ1)η(α; γ2)

α
=

Rη(β; γ1)η(β; γ2)

β
= iU. (4.19)

One of the equations in (4.19) can be used to determine the value ofR; the velocity field

then follows from (4.15) once a particular choice of branch cut betweenζ =
√

ρ andζ = β

is made. This choice of branch cut is discussed later.

4.3.4 Conformal mapz(ζ)

Using similar arguments to those presented in Chapter 3, it is straightforward to show that

the functionζWζ(ζ) is a loxodromic function. It can be argued that another representation

of ζWζ(ζ) is given by

ζWζ(ζ) = B
P (ζ/γ1, ρ)P (ζγ1, ρ)P (ζ/γ2, ρ)P (ζγ2, ρ)

P (ζ/
√

ρ, ρ)P (ζ
√

ρ, ρ)P (ζ/β, ρ)P (ζβ, ρ)
, (4.20)

whereB ∈ C is a constant. By free streamline theory, it follows on use of (4.15) and (4.20)

that
dz

dζ
= A

P 2(ζγ1, ρ)P 2(ζγ2, ρ)

P (ζ/
√

ρ, ρ)P (ζ
√

ρ, ρ)P (ζ/β, ρ)P (ζβ, ρ)
, (4.21)

whereA ∈ C is a constant. Thus, an integral for the conformal mappingz(ζ) is

z(ζ) = A
∫ ζ

ζ0

P 2(ζ ′γ1, ρ)P 2(ζ ′γ2, ρ)

P (ζ ′/
√

ρ, ρ)P (ζ ′√ρ, ρ)P (ζ ′/β, ρ)P (ζ ′β, ρ)
dζ ′. (4.22)

Here,ζ0 ∈ C is an arbitrary point inside the annulusρ < |ζ| < 1. Remarkably, (4.22)

shares the same functional form as the conformal map (3.78) governing the shapes of the

hollow vortices in a von Ḱarmán street. The value of the pre-multiplicative constantA in
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(4.22) is founda posterioriby insisting that the residue ofdz/dζ at ζ =
√

ρ is iL/2π as

required by (4.1). An explicit expression for it is given by

A = −
iL

2π

(
P̂ (1, ρ)P (ρ, ρ)P (

√
ρ/β, ρ)P (

√
ρβ, ρ)

√
ρP 2(

√
ργ1, ρ)P 2(

√
ργ2, ρ)

)

, (4.23)

where functionP̂ (ζ, ρ) is as in (3.80).

4.3.5 Characterisation of the solutions

We fix

L = Γ = 1. (4.24)

This corresponds to setting one of the length scales of the problem (i.e. the width of the

channel) and the time scale of the motion, respectively. The analogous problem of a pair of

point vortices in an infinite channel admits a one-parameter family of equilibrium solutions

(see AppendixC); we shall take this parameter to bec ∈ R, where the centroids of the two

hollow vortices are

x = ±c. (4.25)

This corresponds to setting the second length scale of the problem. We additionally expect

to be able to dictate the area of the hollow vortices; this then sets the third length scale of

the problem. As in Chapter 3, a natural way to do this is to specify the value ofρ. Once all

these parameters have been determined, the translation speedU of the hollow vortices will

follow from (4.17):

U = (i (K(γ1/
√

ρ, ρ) + K(γ1
√

ρ, ρ) − K(γ1/β, ρ) − K(γ1β, ρ)))−1 . (4.26)

The constantζ0 in the conformal map (4.22) reflects a translational degree of freedom

which can be set arbitrarily and the mapping shifted by an appropriate constanta posteriori.

We shall now proceed to examine the solution class withc and ρ as our two free real

parameters.

Our general strategy in finding solutions is to choose a valuec for the hollow vortex cen-

troids and then gradually increase the value ofρ from zero in a standard continuation pro-

cedure. As in Chapter 3, we will focus on solutions where the hollow vortex pair have

identical shapes and equal areas. Note that this is already intrinsic in our model due to the
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symmetry in the preimageζ-plane through the circle|ζ| =
√

ρ.

We have found that solutions for two hollow vortices of equal area and identical shape are

given by the special parameter choices:

β =
√

ρeiθ, γ1 =
√

ρeiφ, γ2 =

√
ρβ

γ1

=
√

ρei(θ−φ). (4.27)

Figure4.2 shows the location of these parameters (4.27) in the preimageζ-plane. With

these parameter choices (4.27), the images of the circles|ζ| = 1 and|ζ| = ρ under the map

(4.22) are reflections of each other through the vertical channel centreline between them.

For a givenρ andc, the two real parameters

θ = arg[β], φ = arg[γ2], (4.28)

remain to be determined. Knowledge of these two real parameters will reveal the shapes of

the hollow vortex boundaries. One condition to determine these parameters is

Re

[∮

|ζ|=1

zζ(ζ
′)dζ ′

]

= 0 (4.29)

which is a necessary condition for the image of|ζ| = 1 underz(ζ) to be a closed curve.

Once (4.29) has been satisfied, the symmetry is such that the image of|ζ| = ρ is also a

closed curve:

Re

[∮

|ζ|=ρ

zζ(ζ
′)dζ ′

]

= 0. (4.30)

With the choice of parameters (4.27), it turns out to be automatic that

Im

[∮

|ζ|=1

zζ(ζ
′)dζ ′

]

= Im

[∮

|ζ|=ρ

zζ(ζ
′)dζ ′

]

= 0. (4.31)

The other condition to be enforced is:

Re

[∮

|ζ|=ρ

z(ζ ′)|zζ(ζ
′)dζ ′|

]/(∮

|ζ|=ρ

|zζ(ζ
′)dζ ′|

)

= c. (4.32)

This sets the real part of one of the hollow vortex centroids. Equations (4.29) and (4.32)

can be readily solved using Newton’s method.

It should be noted that thus far, we have not enforced the streamline conditions (4.8) on the
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Figure 4.3: Superposition of co-travelling hollow vortex pairs in an infinite channel with
centroidsRe[z] = ±c = 1/16.

channel walls; indeed, we have not even determined the preimages of the channel walls in

theζ-plane. We will now show that the channel walls correspond to the image of an arc of

the circle|ζ| =
√

ρ under the conformal mappingz(ζ). It can be shown using the relations

(2.31) that

Im[W (ζ)] = constant (4.33)

on |ζ| =
√

ρ. Recall thatζ =
√

ρ andζ = β map to the two ends of the channel at infinity.

In light of the left-right symmetry of the configuration in thez-plane, one arc of the circle

|ζ| =
√

ρ betweenζ =
√

ρ andζ = β will map onto the channel centrelinex = 0 joining

∞±. (4.33) then immediately implies that the channel centrelinex = 0 will indeed be a

streamline of the flow, as required. The preimages of the stagnation points,ζ = γ1 and

ζ = γ2, will lie on this arc. The second arc on|ζ| =
√

ρ joining ζ =
√

ρ andζ = β will be

taken to be our branch cut whose two sides will map to the channel walls (see Figure4.2).

It is then automatic from (4.33) that the two channel walls will indeed be streamlines of the

flow, as required.

Figures4.3-4.6show infinite channels of unit width containing co-travelling hollow vortex

pairs of varying areas. In each channel, the hollow vortex centroids are fixed atRe[z] = ±c,
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Figure 4.4: Superposition of co-travelling hollow vortex pairs in an infinite channel with
centroidsRe[z] = ±c = 1/8.
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Figure 4.5: Superposition of co-travelling hollow vortex pairs in an infinite channel with
centroidsRe[z] = ±c = 3/16.
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Figure 4.6: Superposition of co-travelling hollow vortex pairs in an infinite channel with
centroidsRe[z] = ±c = 1/4. These solutions forc = 1/4 correspond to the solutions due
to Michell [77].

for some specified value ofc. We have established that there exist solutions, corresponding

to a distinct shape of hollow vortex, with a unique value of area, for each value ofρ.

One interesting observation to make is that our solutions do not exhibit maximum area

configurations; rather, the area of the hollow vortices appears to increase without bound

asρ → 1. This is consistent with the results shown in Figure4.8 which shows graphs of

hollow vortex area as a function ofρ: the area of the hollow vortices, for a given value ofc,

is a monotonically increasing function ofρ. We also observe that the hollow vortex areas

are smallest when the centroids are closest together, and are largest when the centroids are

equi-distant to the channel centreline and to a channel wall. For small values ofρ, the

hollow vortices are always found to be small and almost circular. We also remark that the

hollow vortices in Figures 2 and 6 of Zannetti & Lasagna [128] look qualitatively the same

as our solutions for similar hollow vortex areas and centroid locations; this is reassuring

given that our mathematical approaches are different.

Pocklington [85] makes the observation that when a pair of co-travelling hollow vortices

in free space are very close together, their boundary shapes are much flatter on their near
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rather than on their remote sides. We observe this phenomenon whenc = 1/16 andc = 1/8

in Figures4.3, when the centroids are close together. These hollow vortex shapes indeed

closely resemble those found by Pocklington [85]; this is to be expected when the centroids

are close together because the hollow vortices are never close to the channel walls and

should therefore appear qualitatively similar to their free space counterparts. Indeed, our

solutions can be viewed as generalisations of the co-travelling hollow vortex pair due to

Pocklington [85] to the infinite channel geometry.

The case whenc = 1/4 is special (Figure4.5). Here, each of the two centroids of the

hollow vortices is equi-distant to both the channel centreline and to one of the channel

walls. Since both the channel centreline and the channel walls are streamlines of the flow,

the hollow vortex shapes in the case whenc = 1/4 are precisely those obtainable from the

solution due to Michell [77] for a single hollow vortex in an infinite channel. It should be

possible to exactly superpose a solution of given area, obtained from the conformal map

in [77], onto one of our solutions with the same area; however, due to a lack of notational

explanation in his paper, we have been unable to do this.

We have also established that both the area and the hollow vortex centroids have an effect

on the speed of translation of the hollow vortex pair along the channel. Figure4.7 shows

graphs forc = 1/16, 1/8, 3/16 of the ratioU/Up as a function ofρ, whereUp is the speed

of translation of a pair of point vortices in an infinite channel positioned atRe[z] = ±c:

Up =
1

2
cot(2πc). (4.34)

The graph forc = 1/4 does not feature because the hollow vortex pair is stationary for all

time, in the same way that the single hollow vortex considered by Michell [77] is. For each

value ofc, it is clear that

lim
ρ→0

U

Up

= 1, (4.35)

as expected. For a fixed value ofc, we observe thatU is a monotonically decreasing

function with hollow vortex area; hollow vortex pairs with large areas will translate with

a smaller speed. We also observe that the hollow vortex pairs whose centroids are closest

together move along the channel faster than those whose centroids are spaced further apart.
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Figure 4.7: Graphs, for three different hollow vortex centroidsRe[z] = ±c =
1/16, 1/8, 3/16, of the ratio of the speed of translation of the hollow vortex pairU to the
corresponding point vortex speed1

2
cot(2πc) as a function ofρ. As expected, each graph is

tending to unity in the limit asρ → 0. WhenRe[z] = ±c = 1/4, the hollow vortices are
stationary.
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Figure 4.8: Graphs, for four different hollow vortex centroidsRe[z] = ±c =
1/16, 1/8, 3/16, 1/4, of the area of the hollow vortices as a function ofρ. As ρ → 1,
the area of the hollow vortices grows without bound.
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Figure 4.9: Schematic showing three periods of lengthL of a row of hollow vortices, each
of circulationΓ, in an infinite channel of widthλ in az-plane. The horizontal channel walls
areIm[z] = ±y = λ/2. Each of the hollow vortex centroids in this row lie on the channel
centrelineIm[z] = 0. The shapes of the hollow vortex boundaries are to be determined.

4.4 Row of hollow vortices in an infinite channel

We shall now consider the case of a single row of hollow vortices, whose centroids are

aligned along the channel centreline, in an infinite channel. In doing so, we will be con-

sidering generalisations of the works of both Michell [77] and Baker, Saffman & Sheffield

[7]. The reader is referred to AppendixD for an overview of how the mathematical model

we shall develop in the remainder of this chapter can be modified when the centroids of the

hollow vortices are moved off the channel centreline.

4.4.1 Formulation of problem

In a physicalz = (x + iy)-plane, consider a horizontal parallel-sided channel whose two

ends extend to infinity in both directions∞± and which has a widthλ. Let the impenetrable

walls of the channel be the horizontal linesy = ±λ/2 so that the channel centreline is

y = 0. Let the centroids of the hollow vortices be located atx = nL, n ∈ Z, so thatL be

the period of the configuration i.e. the horizontal length between two neighbouring hollow

vortex centroids on the channel centreline. Let the circulation of each of the hollow vortices
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Figure 4.10: Schematic showing the preimage triply connected bounded circular domain
Dζ in the ζ-plane. Under the conformal mapz(ζ), the unit circleC0 is taken to map to
the hollow vortex boundary and the two interior circlesC1 andC2 are taken respectively to
map to the top and bottom horizontal channel walls of the period window. The branch cut
joining the centres ofC1 andC2 is shown as a dashed line. The two sides of this branch cut
lying in the interior ofDζ map to the two vertical edges of the period cell.

in the row beΓ. These hollow vortices in the row are expected to remain in equilibrium.

Given this periodic structure, it suffices to consider a single period cell of the configuration:

this cell contains one hollow vortex of finite-area with circulationΓ, and has the dimensions

L × λ. Figure4.9 illustrates this arrangement.

Let Dζ be the following triply connected bounded circular domain in a parametricζ-plane.

Let the unitζ-circle be labelledC0. Take the unitζ-disc and from it excise two smaller discs

whose boundaries are the circlesC1 andC2. Let the centre ofC1 be−δ and let the centre

of C2 be+δ, whereδ ∈ R. Owing to the up-down symmetry of the period cell about the

channel centreline, let the radius of bothC1 andC2 be q. Figure4.10shows a schematic

of Dζ . In choosing this preimage domainDζ , we have used up the three real degrees

of freedom associated with the Riemann-Koebe mapping theorem. Letω(∙, ∙) denote the

Schottky-Klein prime function associated withDζ .

Consider a conformal mappingz(ζ) taking the interior ofDζ to a single period cell of the
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hollow vortex row in the channel. Our task is to determine the shape of the boundary of the

hollow vortex in this period cell. Let the unit circleC0 be mapped onto the boundary of the

hollow vortex in the period cell, and let the interior circlesC1 andC2 be mapped onto the

top and bottom channel walls of the period cell. Note that traversingC0 in an anticlockwise

sense corresponds to traversing the boundary of the hollow vortex in a clockwise sense.

In order to capture the periodic structure of the row of hollow vortices in the channel, and

uniquely define the conformal mapz(ζ), we must make a choice of branch cut inDζ . Since

C1 andC2 map to the two channel walls of the period cell, the branch cut must link these

two circles. The two sides of this branch cut, lying in the interior ofDζ , will map to the

two straight vertical edges of the period cell of heightλ. A 2π traversal of eitherC1 or C2

corresponds to moving a distanceL along a channel wall; encirclingC1 or C2 by more than

2π corresponds to moving a distanceL along the wall and into the neighbouring period

cell. In light of this, it is natural to take the branch cut along the real axis through the

origin, joining the centres ofC1 andC2 betweenζ = −δ andζ = δ.

Rosenhead [92] has analysed von Ḱarmán point vortex streets in an infinite channel. From

Rosenhead’s work, we are led to expect two stagnation points lying on the vertical edges

of each of our period cells. Moreover, we expect both these stagnation points to lie on the

channel centreline. In light of this, we expect the same point inDζ , lying on the branch cut,

to map to both stagnation points. Let the preimage inDζ of these two stagnation points be

labelledζ = γ ∈ R. For hollow vortices whose centroids lie on the channel centreline, it is

clear from the symmetry thatγ = 0 (see Figure4.10).

4.4.2 FunctionW (ζ)

Let the complex potential for the flow associated with the hollow vortex row in the channel

be denoted byw(z). We need the total circulation in the period cell to beΓ:

∮

∂D

d[w(z)] = Γ. (4.36)

Here, we denote∂D by the boundary of the period cell, i.e. the two horizontal walls and

the two vertical edges, and is positively oriented in the anticlockwise direction. Introducing

the composition

W (ζ) = w(z(ζ)), (4.37)
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we see that in theζ-plane, the integral (4.36) is

∮

C1∪B+∪C2∪B−

d[W (ζ)] = Γ. (4.38)

Here,B+ denotes the top-side of the branch cut lying in the interior ofDζ andB− denotes

the under-side. There is a net zero contribution to this integral as both sides of the branch

cut are traversed: this is due to cancellation owing to the opposite directions of integration.

This is reflected by the fact that the fluid velocity is equal on the two vertical edges of the

period cell; indeed, the fluid velocity isL-periodic in thex-direction. Consequently, the

non-zero contribution to the integral in (4.38) must come from integrating aroundC1 and

C2: recall the ‘a-cycle’ properties of thevj(ζ) functions (2.7) which allow us to fulfil this

requirement. We also require the two channel walls and the hollow vortex boundary to be

streamlines:

Im[W (ζ)] = constant (4.39)

for ζ ∈ C0, C1, C2.

We propose the following function for the complex potential:

W (ζ) =
Γ

2
(v1(ζ) + v2(ζ)) . (4.40)

Given the up-down symmetry of the period cell about the channel centreline, we would

expect an equal contribution to the total circulation in the period cell along the two channel

walls; this explains the pre-multiplying constantΓ/2. It follows from the ‘a-cycle’ proper-

ties of thevj(ζ) functions (2.7) that (4.40) indeed satisfies (4.38). From the properties (2.8)

and (2.9), (4.40) is easily seen to have constant imaginary part on each of the boundary

circles ofDζ . Taking a derivative of (4.40) with respect toζ yields

dW

dζ
(ζ) =

Γ

2
(v′

1(ζ) + v′
2(ζ)) . (4.41)

Here,v′
j(ζ) means the derivative ofvj(ζ) with respect toζ. (4.41) is required to have a

simple zero atζ = 0. Let us show that this is in fact the case. The ‘a-cycle’ properties of

thevj(ζ) functions (2.7) imply that

vj(ζ) =
1

2πi
log(ζ − δj) + locally analytic function, j = 1, ..., M. (4.42)
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Differentiating (4.42) with respect toζ implies

v′
j(ζ) =

1

2πi

1

ζ − δj

+ cj + locally analytic function, j = 1, ..., M, (4.43)

wherecj ∈ C are constants. In the present case, we haveδ1 = −δ andδ2 = δ. Note that as

ζ → 0, it follows from (4.43) that

v′
1(ζ) =

1

2πiδ
+ c1 + locally analytic function (4.44)

and

v′
2(ζ) = −

1

2πiδ
+ c2 + locally analytic function, (4.45)

wherec1, c2 ∈ C are constants. But, given the symmetry ofDζ , it turns out thatc1 = −c2.

Thus, the simple zero ofdW/dζ at ζ = 0 is intrinsic in (4.41).

4.4.3 Functiondw/dz

Bernoulli’s theorem implies that the fluid speed must be constant on the boundary of the

hollow vortex: ∣
∣
∣
∣
dw

dz
(ζ)

∣
∣
∣
∣ = Q0, ζ ∈ C0. (4.46)

Here,Q0 ∈ R is a positive constant. The fluid velocityu − iv on the two channel walls

must be purely tangential to the walls; that is, the fluid velocity is purely real on the two

channel walls:

v = −Im

[
dw

dz
(ζ)

]

= 0, ζ ∈ C1, C2. (4.47)

We needdw/dz to have a simple zero atζ = 0 in order to include the two stagnation points:

dw

dz
(0) = 0. (4.48)

We also requiredw/dz to beL-periodic in thex-direction.

In order to construct the complex velocity function, we appeal to a special class of confor-

mal mappings known as polycircular arc mappings. The target domains of these maps are

multiply connected regions whose boundaries consist of a union of circular arc segments.
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Consider the following polycircular arc mapping:

S(ζ; R) =
ω(ζ,−1) − Rω(ζ, 1)

ω(ζ,−1) + Rω(ζ, 1)
, (4.49)

whereR ∈ C is a constant to be determined shortly. This conformal map can be constructed

through the following composition:

S(ζ; R) = S2(S1(ζ; R)), (4.50)

where

S1(ζ; R) = Rξ(ζ; 1,−1), S2(ζ) =
1 − ζ

1 + ζ
, (4.51)

andξ(ζ; 1,−1) is the radial slit mapping of (2.62):

ξ(ζ; 1,−1) =
ω(ζ, 1)

ω(ζ,−1)
. (4.52)

FunctionS(ζ; R) mapsC0 to the unitS-circle withC1 andC2 mapping to two finite-length

horizontal slits lying on the real axis. Figure4.11shows a schematic of this triply connected

polycircular domain. Figure4.12shows a schematic of the sequence of conformal maps

(4.51) required to mapDζ , as in Figure4.10, to the polycircular arc domain as in Figure

4.11.

We claim that the complex velocity function is

dw

dz
= Q0S(ζ; R) (4.53)

with functionS(ζ; R) as in (4.49). Note that the conditions (4.47) are automatically satis-

fied by this function (4.53) given the nature of the image ofDζ under the polycircular arc

mapping (4.49), i.e. the triply connected polycircular arc domain shown in Figure4.11.

The condition (4.46) is clearly satisfied. Notice that this mapping (4.53) has a simple zero

at ζ = 0 if we choose

R =
ω(0,−1)

ω(0, 1)
, (4.54)

thus satisfying (4.48). Function (4.53) is also analytic and single-valued everywhere in the

interior ofDζ and hencedw/dz is L-periodic across the period cell.
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Figure 4.11: Schematic showing the image ofDζ under the polycircular arc mapping
S(ζ; R) given in (4.49). Under this map,C0 is mapped onto the unit-circle whilstC1

andC2 are mapped onto two finite-length horizontal slits on the real axis. The nature of
this polycircular arc domain is vital to the construction ofdw/dz.
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Figure 4.12: Schematic showing the sequence of conformal mappings (4.51) for the con-
struction of an analytical expression for the triply connected polycircular arc domain shown
in Figure4.11.
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4.4.4 Conformal mapz(ζ)

By free streamline theory, the conformal map determining the shape of the boundary of the

hollow vortex in a typical period window, with centroid on the channel centreline, is given

through the integral

z(ζ) =
Γ

2Q0

∫ ζ

ζ0

v′
1(ζ

′) + v′
2(ζ

′)

S(ζ ′; R)
dζ ′, (4.55)

whereζ0 ∈ C is an arbitrary point in the interior ofDζ .

4.4.5 Characterisation of the solutions

Let us set one of the length scales of the problem, and the time scale of the motion, by

fixing

L = Γ = 1. (4.56)

Let us define the aspect ratio of the period cell to beR = λ/L so that, withL = 1, the

aspect ratio of the period cell is

R = λ. (4.57)

We expect to be able to fix this aspect ratio of the period cell; this sets the second length

scale of the problem. As usual, the constantζ0 in the conformal map (4.55) reflects a

translational degree of freedom which can be set arbitrarily and the mapping shifted by an

appropriate constanta posteriori. The complex potential of Rosenhead [92] for the unstag-

gered von Ḱarmán point vortex street in a channel is determined by two parameters related

to the horizontal distance between consecutive point vortices and their vertical spacing,

once the channel width has been fixed. For us, this is equivalent to specifyingL andλ.

The area associated with the hollow vortex can be assigned through the parameterq; this

sets the third length scale of the problem. We shall now proceed to examine the solution

class withq as our only free parameter. This leaves just one real parameter, namelyδ, to

be found in order to determine the shape of the hollow vortex boundary in a typical period

cell of the row.

Our general strategy in finding solutions is to choose a value of the aspect ratioλ and then

gradually vary the value ofq in a standard continuation procedure, solving for the value

of δ in each case. Recall the preimage circular domainDζ in theζ-plane. The centres of

C1 andC2 are±δ ∈ R, and their radii are bothq. We can choose this value ofq a priori;

this is analogous to fixing the area of the hollow vortex. We are then left with just the real
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parameterδ to determine. This is done by enforcing the single real condition prescribing

the aspect ratio of the period cell:

R =

(∫ δ−q

−δ+q

|zζ(ζ
′)dζ ′|

)/(∮

C1

|zζ(ζ
′)dζ ′|

)

. (4.58)

Owing to the up-down symmetry of the period cell about the channel centreline, the con-

formal map turns out to automatically be single-valued. It was checked that the image of

C0 underz(ζ) is indeed a closed curve:

∮

C0

zζ(ζ
′)dζ ′ = 0. (4.59)

From the value ofδ found by solving (4.58), we can calculate the length,L̂ (say), of one of

the channel walls:

L̂ =

∮

C1

|zζ(ζ
′)dζ ′|. (4.60)

Then we can find the value of the pre-multiplicative constant in (4.55) a posteriori; this can

be thought of as a rescaling parameter in order to fulfil our requirement thatL = 1:

Γ

2Q0

=
1

L̂
. (4.61)

For a given area of the hollow vortex, we find that for any given channel widthλ, there are

two different sets of values ofδ andq defining the preimage domainDζ . Both of these two

sets of conformal moduli correspond to hollow vortices exhibiting two different shapes, but

with the same area.

Figure4.13shows three period cells making up infinite channels with widthsλ = 0.28,

0.375 and0.5. In each period cell is a superposition of typical hollow vortex members,

of different areas, forming part of the row in the channel. For each channel width, we

observe that the hollow vortices vary in shape between one which is almost circular to one

with long flattened faces along the two regions of their boundary which are closest to the

channel walls. It is reassuring to observe that the hollow vortex shapes closely resemble

those in free space (obtained either using the conformal map (3.36) presented in Chapter

3, or using the solution in [7]) when the width of the channel becomes large; such hollow

vortices are shown in Figure4.15for λ = 1. All of these aforementioned observations are

consistent with the behaviour of the graphs shown in Figure4.16(to be discussed shortly).
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Figure 4.13: Superposition of typical members of the hollow vortex row in an infinite
channel, of varying area, for three different channel widths:λ = 0.28 [top], λ = 0.375
[centre] andλ = 0.5 [bottom]. Three periods (of unit lengthL = 1) of the row are shown.
For eachλ, there is a hollow vortex with some maximum area.
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λ=0.25
λ=0.375

λ=0.5

Figure 4.14: Three plots, for channel widthsλ = 0.25 (left), λ = 0.375 (centre) and
λ = 0.5 (right), of typical hollow vortex members in a row, of area 0.027. Superposed for
comparison is a Baker, Saffman & Sheffield [7] hollow vortex in free space also of area
0.027; these are shown as dashed lines. As the channel widens, our solutions tend towards
the free space shapes.

Although not immediately apparent in Figures4.13and4.15, the graphs in Figure4.16also

confirm that there exists a unique hollow vortex shape of some maximum area for a given

channel width. Figure4.14compares one shape of hollow vortex, all of the same area, in

three different channels with widthsλ = 0.25, 0.375, 0.5. The free space hollow vortex is

superposed on each. It is seen that there is a noticeable difference in shape compared with

the free space hollow vortex for small channel widthsλ . 0.375, but whenλ ≈ 0.5, the

hollow vortex shapes assume essentially the same shapes as in free space. Our solutions

can be viewed as the generalisation of the free space hollow vortex row solutions due to

Baker, Saffman & Sheffield [7] to the case of an infinite channel of finite width, and are also

the singly periodic generalisations of the Michell [77] hollow vortex in an infinite channel.

Figure4.16shows graphs, each corresponding to a different channel widthλ, of the hollow

vortex perimeterP as a function of inverse separation between the hollow vortex cen-

troids, each rescalled by the square root of the hollow vortex areaA. Both of these quan-

tities P/A1/2 andA1/2/L (with L = 1) are dimensionless. Figure 3 in Baker, Saffman &

Sheffield [7] shows a graph of the same quantities for the single row of hollow vortices in

free space: this is shown in Figure4.16by a dashed line. One observation to make is that

for each channel widthλ, there is a maximum value ofA1/2 that can be attained, and this

occurs at a unique value ofP/A1/2. As λ is reduced, this maximum value ofA1/2 is also

reduced, but the unique value ofP/A1/2 for which this is attained increases. Forλ = 1, the



Chapter 4. Hollow vortices in an infinite channel 103

-1.5 -1 -0.5 0 0.5 1 1.5
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Figure 4.15: Superposition of typical members of the hollow vortex row, of varying areas,
in an infinite channel of widthλ = 1. Three periods (of unit lengthL = 1) of the row are
shown. These hollow vortices essentially share the same shapes as hollow vortices in a row
in free space.

maximumA1/2 ≈ 0.375 and this is very close to value for a single row of hollow vortices

in free space which isA1/2 ≈ 0.38 as reported by Baker, Saffman & Sheffield [7]: this

was expected sinceλ = 1 corresponds to a wide channel. Forλ = 0.375, the maximum

A1/2 ≈ 0.33, and forλ = 0.28, the maximumA1/2 ≈ 0.3.

We observe that each of the graphs turn around on themselves implying non-uniqueness

of the solutions for a given value of the areaA and channel widthλ; that is to say, for a

given areaA and channel widthλ, there will be two possible hollow vortex shapes with

the same area. There will exist two possible shapes provided the value ofA1/2 is less than

the maximum possible value; there do not exist any solutions for a given channel widthλ

if one specifies an area greater than this permissible maximum. For a fixed area not close

to the maximum, it appears that the hollow vortex with the higher value ofP/A1/2 exhibits

a boundary shape with two elongated faces, whilst the hollow vortex with the lower value

of P/A1/2 appears to exhibit a quasi-elliptical or quasi-circular shape. For each channel

width λ, the graphs each tend towards the free space graph whenA1/2 → 0 and when

P/A1/2 → ∞. WhenA1/2 → 0, the hollow vortices are tending towards their point vortex

counterparts by assuming near circular shapes of small area. QuantityP/A1/2 has the

minimum value2
√

π for circles and each graph tends precisely to this value asA1/2 → 0.
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Figure 4.16: Graphs, for seven different channel widthsλ, of the quantityP/A1/2 as a
function ofA1/2/L (with L = 1 fixed). Here,A andP denote the perimeter and area of the
hollow vortex, respectively, andL denotes the separation between hollow vortex centroids.
The corresponding graph for a single row of hollow vortices in free space is shown by the
dashed line.
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As P/A1/2 → ∞, the graphs will eventually intersect the vertical axis at infinity; this again

corresponds to zero area solutions. The nature of these limiting shapes is of particular

interest. As reported in Baker, Saffman & Sheffield [7], asP/A1/2 → ∞ in free space,

the result is a vortex sheet of constant strength. Our results seem to suggest that the same

phenomenon occurs in channels; that is, for any channel widthλ, it is expected that a vortex

sheet of constant strength will form along the channel centreline as the hollow vortex area

shrinks to zero from its maximum value (i.e. a hollow vortex, in each period cell, of zero

area).

It is important to note that the vertical axis in Figure4.16has been deliberately truncated

at P/A1/2 = 6.5 since beyond this point, for all the solution branches, accurate computa-

tion of the Schottky-Klein prime function becomes very difficult; this is because the inner

circlesC1 andC2 of the preimage circular domain become close to the unit circleC0, and

such domains pertain to the hollow vortices which are very close to one another at an edge

between two neighbouring period windows. Also, for channel widthsλ ≤ 0.28, the radii

of C1 andC2 become rather large, and again, accurate computation of the Schottky-Klein

prime function is known to become more challenging. Consequently, we stopped reducing

the size of the channel widths atλ = 0.28. All the solution branches in Figure4.16were

terminated when convergence of the Newton iteration became hard to achieve. The shapes

of all our computed hollow vortices do not exhibit any singularities, and all are univalent.

Finally, it is worth describing how the preimage circular domainDζ changes as the hollow

vortex shapes vary in qualitative appearance, for a given channel widthλ. The inner circles

C1 andC2 are initially centred in the vicinity of the origin with small radii; these domains

correspond to small circular hollow vortices.C1 andC2 then gradually increase in radii and

move apart until a maximum radiusq is reached at some value ofδ; this domain corresponds

to the quasi-elliptical hollow vortices (note that this maximum radiusq does not correspond

to the maximum area hollow vortex).C1 andC2 continue moving apart, but with their radii

now decreasing, until they get very close to the unit circleC0; these domains correspond to

the hollow vortices impinging on their neighbours.

4.5 Summary

We have found closed-form analytical solutions for two types of free boundary problem

involving hollow vortex configurations, and sharing the common feature that they are both
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set is an infinite channel with straight, parallel-sided, impenetrable walls. We determined

the free boundary shapes for a hollow vortex pair and for a single row of hollow vortices

in an infinite channel. Incorporating the channel walls into the mathematical model (which

are not themselves free boundaries) in addition to the free boundaries of the hollow vor-

tices, required a delicate consideration of how the boundary conditions were to be enforced.

As in Chapter 3, we used ideas from free streamline and conformal mapping theory which

again proved to be advantageous. We also used our branch cut technique to assist in con-

structing the desired conformal mappings. Our analytical solutions for the single row of

hollow vortices in an infinite channel appear to be the first of their kind whilst our analytical

solutions for the co-travelling hollow vortex pair in an infinite channel complement those

analytical solutions found recently by Zannetti & Lasagna [128].

In the case of the hollow vortex pair in an infinite channel, we constructed a conformal

mapping from the interior of a concentric annulus to the fluid region exterior of the hollow

vortex pair with some choice of branch cut mapping to the two channel walls. We found

that the integral (4.55) for this conformal map shares an integrand with the same func-

tional form as that found in the integral (3.78) governing the hollow vortex shapes in a von

Kármán street. The use of both radial and circular conformal slit maps proved to be crucial.

We determined that there exist solutions, each corresponding to a distinct shape of hollow

vortex, with an infinite continuum of possible areas; that is to say, the hollow vortices can

have their areas ‘grown’ without bound. We established that both the area and the relative

position of the pair to the channel side walls has an effect on the speed of translation in

the channel. Connections with two classical works were also made. Our solutions can be

considered as generalisations to the infinite channel geometry of the solutions due to Pock-

lington [85]. When the centroids of the hollow vortex pair were equi-distant to themselves

and the channel walls, we obtained the stationary solutions due to Michell [77].

To determine the boundary shapes for hollow vortices arranged in a single row in an infinite

channel, we restricted attention to a period cell containing a typical member of the row, with

centroid on the channel centreline, and incorporated the periodic nature of the problem by

introducing a branch cut in the preimage circular domain whose two sides were required

to map to the vertical edges of the cell. We found a concise formula for the conformal

map as an explicit indefinite integral to the interior of this period cell from a particular

triply connected bounded circular domain. In devising this conformal map, we made use

of the integrals of the first kindvj(ζ) associated with the preimage circular domain and
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a special choice of polycircular arc map. Our solutions are natural generalisations to an

infinite channel of the hollow vortex row solutions in free space due to Baker, Saffman &

Sheffield [7]; our solutions are also the singly periodic generalisations of the single hollow

vortex in an infinite channel due to Michell [77]. Three interesting discoveries were made

for a given channel width: there exist two possible hollow vortex shapes for a given value

of area, there exists a boundary shape with a maximum obtainable area, and the formation

of a vortex sheet of constant strength is theoretically possible as the maximum area shape

is deformed to zero area in a particular limit. Our approach to the single row in an infinite

channel can be readily generalised to the case where the centroids of the hollow vortices

are not aligned on the channel centreline (see AppendixD).
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Chapter 5

Föppl hollow vortex pair behind a

circular cylinder

5.1 Introduction and background

In this chapter, we will desingularise another point vortex equilibrium: the Föppl vortex

pair behind a circular cylinder. We will consider a pair of up-down symmetric hollow vor-

tices, of equal and opposite circulation, positioned behind a circular cylinder of unit radius

superposed with a steady uniform flow. As in Chapters 3 and 4, our aim is to solve for the

free boundary shapes of the hollow vortices. Rather than find explicit analytical solutions,

we will instead devise a hybrid analytical-numerical method to solve this free boundary

problem. More specifically, by employing the ‘new calculus’ of Crowdy [14, 22] for ideal

fluid mechanics in multiply connected geometries, we can write down an analytical for-

mula for the complex potential; if we then express the conformal mapping determining

the hollow vortex boundary shapes in terms of a Fourier-Laurent series expansion, the free

boundary problem is reduced to a finite-set of non-linear equations to be solved numeri-

cally.

The topic of flow around a circular cylinder is a classical one and a problem of fundamental

importance in fluid dynamics owing to the fact that, at a moderate Reynolds number, sta-

tionary counter-rotating vortical eddies form in the wake of the cylinder which, when the

symmetry about the flow centreline is lost at a higher Reynolds number, can evolve into a

von Kármán vortex street. To gain insight into this vortex shedding phenomenon behind

a cylinder, it is expedient to first study a simplified model of this system using a pair of

point vortices of equal and opposite circulation placed behind the circular cylinder within
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a uniform stream of ideal fluid with an up-down symmetry about the flow centreline: this

flow is a potential flow and the configuration is known as a ‘Föppl system’ or ‘F̈oppl equi-

librium’ owing to the first study of this system by Föppl in 1913 [46]. He found that the

point vortices lie on particular curves when in equilibrium with the cylinder (these curves

now go by the name of ‘F̈oppl curves’), and that the position and circulation of the point

vortices are related by two simple algebraic expressions (see AppendixE). As indicated

by Föppl [46], this simplified point vortex model agrees with observations of the locations

of the centroids of the vortical eddies as seen in experiments. The review by Protas [89]

makes further references to the Föppl system in a variety of different contexts.

In this chapter, we will solely focus on desingularising Föppl equilibria with the two vor-

tices positioned strictly behind the circular cylinder. One reason for this choice is that this

configuration is likely to be the most physically relevant scenario in applications and is

also most likely to occur in nature. A second reason for this choice is related to the is-

sue of stability. F̈oppl [46] found that this class of point vortex equilibria is stable against

symmetric perturbations with respect to the flow centreline. Moreover, Elcrat, Fornberg &

Miller [ 42] found that when the F̈oppl equilibrium is desingularised by finite-area vortex

patches of constant vorticity that the system shares the same stability properties as the as-

sociated point vortex system. In light of this, it seems reasonable to hypothesise that our

hollow vortex desingularisations, when positioned strictly behind the cylinder, should also

be stable with respect to such symmetric perturbations about the flow centreline.

Recently, Vasconcelos, Moura & Schakel [118] have reappraised the Föppl point vortex

system from the point of view of Hamiltonian dynamics and have discovered some novel

and interesting dynamical features of the configuration. They have presented the phase por-

trait of the governing Hamiltonian for a pair of point vortices moving symmetrically with

respect to the flow centreline, and discovered the existence of a nilpotent saddle point at

infinity whose homoclinic orbits throw further light on the non-linear stability of the Föppl

equilibria. The F̈oppl point vortex model has also fuelled various other studies, including

the investigation of the control of vortex shedding (Protas [86, 88]), the modelling of sym-

metrical wakes behind slender bodies using equilibria consisting of multiple point vortices

(Weihs & Boasson [123]), and the determination of point vortex equilibrium conditions in

flows past bluff bodies with arbitrary shapes (Zannetti [127]).

The F̈oppl point vortex system has already been desingularised using vortex patches. In-
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deed, Elcrat et al [44] have undertaken a comprehensive numerical investigation into the

desingularised F̈oppl system using the vortex patch model. They demonstrated the exis-

tence of continuous families of finite-area vortex patches of constant vorticity in equilib-

rium behind a circular cylinder. Furthermore, they were able to show that solutions exist

for vortex patches which are close-to-touching with the circular cylinder; in particular, they

found that as the area of the vortex patch is increased, it eventually attains a maximum

area shape which is bounded by the cylinder. Subsequently, Protas [87] has constructed a

two-parameter family of ‘higher-order Föppl systems’; Protas has described these as gener-

alisations of the F̈oppl point vortex system which approximate the velocity field for a given

flow of the type considered by Elcrat et al [44].

There have been two recent studies involving hollow vortices in the wakes of obstacles.

Elcrat & Zannetti [41] have very recently examined hollow vortices in the wake of a plate

normal to an oncoming uniform flow. Of most interest to us is the study by Telib & Zannetti

[112]. They have presented solutions, obtained using a combination of conformal mapping

techniques and elliptic function theory, describing hollow vortex equilibria in the wakes

behind ‘bumps’ of various shapes on an infinite horizontal wall; in particular, they found a

continuous family of hollow vortex solutions in the wake of a semi-circular bump i.e. hol-

low vortex desingularisations of the Föppl system in the upper-half plane. Like ours, the

approach of Telib & Zannetti [112] can also be described as a hybrid analytical-numerical

method and, even though our mathematical approaches are different, several similar theo-

retical threads appear to run through both our work and theirs. Owing to the solutions of

Telib & Zannetti [112], the solutions we present in this chapter are therefore not the first

desingularisations of the Föppl point vortex pair using the hollow vortex model. Never-

theless, our approach is valuable since it has a large analytical component, is conceptually

straightforward to understand, and pertains entirely to hollow vortex equilibria behind a

circular cylinder. It is also fair to say that Telib & Zannetti [112] did not devote much

of their study to the F̈oppl desingularisation, presenting only one family of hollow vortex

solutions (for some circulation value) in this particular case. We will recover this family

of solutions featuring in [112], and present three other families, and therefore build on the

contribution of Telib & Zannetti [112].

When devising the complex potential for the pair of hollow vortices in a uniform flow be-

hind a circular cylinder, we will adhere to the work of Crowdy [14, 22] who has found gen-

eralised analytical expressions for the complex potentials, in terms of the Schottky-Klein
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prime function, describing various inviscid flows in multiply connected geometries. In-

deed, the hollow vortex configuration of interest in this chapter can equivalently be viewed

as a uniform flow past three arbitrary obstacles with circulation, and thus naturally lends

itself to the analytical treatment of Crowdy [14, 22]. This new calculus due to Crowdy is

expected to arise in the modelling of many exciting future applications. One such example

is the recent interesting study by Subhash Reddy, Muddada & Patnaik [107]. They have

examined the uniform flow past a circular cylinder in the presence of two small counter-

rotating circular control cylinders. By employing the analytical results of Crowdy, they

used a F̈oppl model to establish the optimum position and circulation strength of the two

counter-rotating control cylinders in order to suppress vortex formation behind the cylinder.

5.2 Formulation of problem

Consider a circular cylinder of unit radius, centred at the origin in az-plane, surrounded by

inviscid, incompressible, irrotational fluid. The boundary of the circular cylinder|z| = 1

is assumed to be solid and impenetrable. Suppose there is a uniform flow of speedU

translating left-to-right, parallel to the real axis. Suppose there are two hollow vortices,

positioned strictly behind the circular cylinder, of equal and opposite circulation; let the

hollow vortex in the upper-half plane have circulation−Γ (Γ > 0) and let the hollow

vortex in the lower-half plane have circulationΓ. We assume that the hollow vortices are

in equilibrium, and are up-down symmetric about the flow centreline. Figure5.1 shows a

schematic of this configuration.

Let Dζ be the following triply connected circular domain in a parametricζ-plane. Take the

unit ζ-disc and from it excise two smaller discs whose boundaries are the circlesC1 andC2.

Let the unitζ-circle be labelledC0, letC1 label the circle|ζ| = ρ and letC2 label the circle

with centreδ ∈ R, δ > 0, and radiusq. In choosing this preimage domainDζ , we have

used up the three real degrees of freedom associated with the Riemann-Koebe mapping

theorem. Letω(∙, ∙) denote the Schottky-Klein prime function associated withDζ .

Consider a conformal mappingz(ζ) taking the interior ofDζ to the exterior of the circular

cylinder |z| = 1 and the pair of hollow vortices. We wish to determine the shape of the

boundaries of the two hollow vortices. LetC0 andC1 map to the two hollow vortices, with

C0 mapping to the hollow vortex in the upper-half plane andC1 mapping to the hollow

vortex in the lower-half plane. LetC2 map to the boundary of the circular cylinder. In light



5.2 Formulation of problem 112

uniform flow of speed U

1-1 0

Γ

- Γ

circular
cylinder of
radius 1

hollow vortex

hollow vortex

Figure 5.1: Schematic of the physical configuration in thez-plane. A pair of hollow vor-
tices, whose free boundary shapes are to be determined, are positioned behind the circular
cylinder |z| = 1 within a uniform flow of speedU . The hollow vortices are in equilibrium
with the cylinder, and are up-down symmetric about the flow centreline (the real axis).
The hollow vortex in the upper-half plane has circulation−Γ and the hollow vortex in the
lower-half plane has circulationΓ.
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of the up-down symmetry in thez-plane, the arc of the circle|ζ| =
√

ρ lying in the interior

of Dζ will map to the real line through the point at infinity. Note that the interior ofDζ

such that
√

ρ < |ζ| < 1 maps into the upper-halfz-plane whilst the interior ofDζ such

thatρ < |ζ| <
√

ρ maps into the lower-halfz-plane; thus, the up-down symmetry of the

configuration is intrinsic in the definition ofz(ζ). There will be some pointζ = β =
√

ρeiθ

mapping to infinity. This implies that

z(ζ) =
a

ζ − β
+ locally analytic function, ζ → β, (5.1)

wherea ∈ C. At all other points inDζ , the mapz(ζ) is analytic. Figure5.2 shows a

schematic of the preimage domainDζ .

We will now devise a hybrid analytical-numerical method, in a similar spirit to Telib &

Zannetti [112], to solve our free boundary problem. We will first construct an analytical

expression for the complex potentialW (ζ) using the work of Crowdy [14, 22]. We will then

write a Fourier-Laurent expansion for the conformal mappingz(ζ) governing the hollow

vortex boundary shapes whose coefficients, in addition to some other parameters, will need

to be determined numerically.

5.3 FunctionW (ζ)

Let us first construct an analytical expression for the complex potential functionW (ζ).

The complex potentialw(z) in thez-plane is related to the complex potentialW (ζ) in the

ζ-plane through the composition

W (ζ) = w(z(ζ)). (5.2)

We opt to formW (ζ) as the sum of two auxiliary functions, i.e.

W (ζ) = W1(ζ) + W2(ζ), (5.3)

whereW1(ζ) is the complex potential for the uniform flow at infinity, andW2(ζ) is the

complex potential associated with the pair of hollow vortices. Owing to the fact that the

circular cylinder and the hollow vortex boundaries are streamlines, we require

Im[W (ζ)] = constant, ζ ∈ C0, C1, C2. (5.4)
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Figure 5.2: The preimage bounded triply connected circular domainDζ in theζ-plane. Let
C0 denote|ζ| = 1, let C1 denote|ζ| = ρ, and letC2 denote|ζ − δ| = q. The circlesC0 and
C1 are mapped byz(ζ) onto the two hollow vortices. The interior circleC2 is mapped onto
the circular cylinder. The arc of the circle|ζ| =

√
ρ lying in the interior ofDζ is mapped

onto the real axis. The pointζ = β lying on |ζ| =
√

ρ is mapped to infinity.
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To ensure that the hollow vortices have the correct circulations around them, and that there

is zero circulation around the circular cylinder, we must also have

∮

C0

d[W (ζ)] = −Γ,

∮

C1

d[W (ζ)] = Γ,

∮

C2

d[W (ζ)] = 0, (5.5)

where all three boundary circles are positively oriented in the anticlockwise direction.

5.3.1 FunctionG0(ζ; α)

An important function to be used in the proceeding analysis is

G0(ζ; α) = −
i

2π
log

(
ω(ζ, α)

|α|ω(ζ, 1/α)

)

, (5.6)

whereα = αx + iαy ∈ C is some point lying in the interior ofDζ . FunctionG0(ζ, α) is

the complex potential for a point vortex of circulation+1 in a multiply connected domain

(Crowdy [14, 22]). FunctionG0(ζ, α) is also the analytic extension of the modified Green’s

function for Laplace’s equation inDζ (Crowdy & Marshall [32]). FunctionG0(ζ, α) is

analytic everywhere inDζ except for a logarithmic singularity atζ = α. It has constant

imaginary part on each of the boundary circles ofDζ ; this is easily realised on noting that

G0(ζ; α) = −
i

2π
log η(ζ; α), (5.7)

whereη(ζ; α) is the bounded circular slit mapping of (2.53).

Crowdy [14] used the functionG0(ζ; α) to derive the complex potential for a uniform flow

past multiple obstacles by taking parametric derivatives ofG0(ζ; α) i.e. derivatives with

respect to its second argument. Note that

∂G0(ζ; α)

∂αx

=

(
∂

∂α
+

∂

∂α

)

G0(ζ; α) (5.8)

and
∂G0(ζ; α)

∂αy

= i

(
∂

∂α
−

∂

∂α

)

G0(ζ; α). (5.9)

We have
∂G0

∂α
=

i

2π

1

ζ − α
+ locally analytic function, ζ → α, (5.10)
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and so it follows from (5.8) and (5.9) that

2π
∂G0

∂αx

=
i

ζ − α
+ locally analytic function, ζ → α, (5.11)

and

− 2π
∂G0

∂αy

=
1

ζ − α
+ locally analytic function, ζ → α, (5.12)

i.e. both these quantities have simple pole singularities atζ = α. Since both∂G0/∂αx and

∂G0/∂αy are partial derivatives taken with respect to real quantities, we have that

Im

[
∂G0

∂αx

]

= constant, ζ ∈ C0, C1, C2, (5.13)

and

Im

[
∂G0

∂αy

]

= constant, ζ ∈ C0, C1, C2. (5.14)

We are now in a position to construct, in turn, the two auxiliary functionsW1(ζ) andW2(ζ).

Recall thatW1(ζ) is the complex potential for the uniform flow at infinity, andW2(ζ) is the

complex potential associated with the pair of hollow vortices.

5.3.2 FunctionW1(ζ)

We have a uniform flow parallel to the real axis. This means that

w(z) = Uz + locally analytic function, z → ∞. (5.15)

It follows from (5.1) that we require

W (ζ) =
Ua

ζ − β
+ locally analytic function, ζ → β. (5.16)

Consider, thus, the function

W1(ζ) = UAx

(

−2π
∂G0

∂αy

∣
∣
∣
∣
α=β

)

+ UAy

(

2π
∂G0

∂αx

∣
∣
∣
∣
α=β

)

, (5.17)

or, equivalently,

W1(ζ) = −2πiU

(

a
∂G0

∂α

∣
∣
∣
∣
α=β

− a
∂G0

∂α

∣
∣
∣
∣
α=β

)

, (5.18)
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where

a = Ax + iAy. (5.19)

Note thatW1(ζ) in (5.18) has the correct behaviour (5.16) asζ → β, and is such that

Im[W1(ζ)] = constant, ζ ∈ C0, C1, C2, (5.20)

as required. Note also thatW1(ζ) in (5.18) is single-valued when a2π traversal is made

around each of the boundary circles (as can be seen from the behaviours (5.11) and (5.12));

this immediately implies

∮

C0

d[W1(ζ)] =

∮

C1

d[W1(ζ)] =

∮

C2

d[W1(ζ)] = 0. (5.21)

That is, functionW1(ζ) puts zero circulation around the hollow vortices and zero circula-

tion around the circular cylinder.

5.3.3 FunctionW2(ζ)

We need to add circulation around the hollow vortices and ensure that their boundaries are

streamlines of the flow. The hollow vortex whose preimage isC0 has circulation−Γ and

the hollow vortex whose preimage isC1 has circulationΓ (with Γ > 0). Consider the

function

W2(ζ) = Γv1(ζ). (5.22)

It is immediate that

Im[W2(ζ)] = constant, ζ ∈ C0, C1, C2, (5.23)

owing to the properties (2.8) and (2.9). From the ‘a-cycle’ properties of thevj(ζ) functions

(2.7), we have ∮

C1

d[W2(ζ)] = Γ,

∮

C2

d[W2(ζ)] = 0, (5.24)

as required, whereC1 andC2 are positively oriented in the anticlockwise direction. We

also have ∮

C0

d[W2(ζ)] = −Γ, (5.25)

where the integral is positively oriented in the anticlockwise direction aroundC0, as re-

quired. To evaluate this integral (5.25), consider integrating along the contour shown in

Figure5.3. We makev1(ζ) a single-valued function inDζ by introducing a branch cut
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Figure 5.3: Contour to evaluate the integral (5.25) aroundC0.

along the negative real axis joining0 and∞. It is then apparent, using (5.24), that

∮

C0

d[W2(ζ)] = −

(∮

C2

+

∮

C1

)

d[W2(ζ)] = −Γ. (5.26)

5.3.4 FunctionW (ζ)

Adding (5.18) and (5.22), we conclude that the complex potential function is

W (ζ) = −2πiU

(

a
∂G0

∂α

∣
∣
∣
∣
α=β

− a
∂G0

∂α

∣
∣
∣
∣
α=β

)

+ Γv1(ζ). (5.27)

5.4 FunctionWζ(ζ)

In taking the derivative ofW (ζ) with respect toζ, it is required to evaluate the following

mixed second-order derivatives of functionG0(ζ; α):

∂2G0

∂ζ∂α
and

∂2G0

∂ζ∂α
. (5.28)
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To evaluate these, we must use the infinite product form of the Schottky-Klein prime func-

tion (2.3). From (5.6), we have

∂G0

∂α
=

iΓ

2π

(
1

2α
−

∂ω(ζ, α)/∂α

ω(ζ, α)

)

(5.29)

and
∂G0

∂α
=

iΓ

2π

(
1

2α
+

∂ω(ζ, 1/α)/∂α

ω(ζ, 1/α)

)

. (5.30)

By taking logarithmic derivative of (2.3) with respect toα, and then taking a derivative

with respect toζ, we obtain from (5.29) that:

∂2G0(ζ; α)

∂ζ∂α
≡ −

iΓ

2π

∂

∂ζ

(
∂ω(ζ, α)/∂α

ω(ζ, α)

)

= −
iΓ

2π

[
1

(ζ − α)2
+
∑

θ∈Θ′′

θ′(α)

(ζ − θ(α))2
+
∑

θ∈Θ′′

θ′(ζ)

(α − θ(ζ))2

]

. (5.31)

Similarly, taking a logarithmic derivative of (2.3) with respecttoα, followed by a derivative

with respect toζ, we obtain from (5.30) that:

∂2G0(ζ; α)

∂ζ∂α
≡

iΓ

2π

∂

∂ζ

(
∂ω(ζ, 1/α)/∂α

ω(ζ, 1/α)

)

= −
iΓ

2πα2

[
1

(ζ − 1/α)2
+
∑

θ∈Θ′′

θ′(1/α)

(θ(1/α) − ζ)2
+
∑

θ∈Θ′′

θ′(ζ)

(θ(ζ) − 1/α)2

]

. (5.32)

Written out in full, the derivative ofW (ζ) with respect toζ is:

Wζ(ζ) = −2πiU

(

a
∂2G0

∂ζ∂α

∣
∣
∣
∣
α=β

− a
∂2G0

∂ζ∂α

∣
∣
∣
∣
α=β

)

+ Γv′
1(ζ) (5.33)

with the mixed derivatives∂2G0/∂ζ∂α and∂2G0/∂ζ∂α given in (5.31) and (5.32), respec-

tively.

5.5 Conformal mapz(ζ)

Let us now consider the conformal mappingz(ζ) from the interior ofDζ to the exterior of

the unit radius circular cylinder and the two hollow vortices in thez-plane. Consider the
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following ansatz:

z(ζ) =
a

ζ − β
+

∞∑

j=0

cjζ
j +

∞∑

j=1

djρ
j

ζj
+

∞∑

j=1

ejq
j

(ζ − δ)j
. (5.34)

This Fourier-Laurent series expansion is a very convenient representation for the confor-

mal mapping. It is obviously single-valued and analytic everywhere inDζ except for the

required simple pole singularity atζ = β. The coefficients{cj , dj , ej ∈ C}, in addition

to the numbersa ∈ C andβ =
√

ρeiθ ∈ C, are to be determined; once found, the free

boundary shapes of the two hollow vortices will be revealed. Obviously, for numerical

implementation, it is required to truncate the infinite sums.

5.6 Functionzζ(ζ)

The derivative of the conformal mapz(ζ) with respect toζ can easily be obtained once all

the parameters in (5.34) have been determined. It is

zζ(ζ) = −
a

(ζ − β)2
+

∞∑

j=1

jcjζ
j−1 −

∞∑

j=1

jdjρ
j

ζj+1
−

∞∑

j=1

jejq
j

(ζ − δ)j+1
. (5.35)

5.7 Characterisation of the solutions

Upon consideration of the Föppl point vortex system, we note that the solution family can

be described by four real parameters:Γ, U , x0, y0, wherez0 = x0 + iy0 is the equilibrium

position of the point vortex in the upper-half plane. By the symmetry, there is a correspond-

ing equilibrium positionat z0. Without loss of generality, we can setU = 1. If we then fix

the value ofΓ, then the position of the point vortex equilibriumz0 is determined from two

simple algebraic equations (see AppendixE).

Consider the parametersU , Γ andρ. These parameters correspond to the length scale of the

problem, the time scale of the problem, and the area of the hollow vortices, respectively.

In a similar fashion to our work in Chapters 3 and 4, we will assume that small hollow

vortices are close-to-circular, and trace out a family of solutions for fixed values ofΓ and

U by a standard continuation procedure in the free parameterρ. Analogously to the F̈oppl

system, fixing the values of bothΓ andU will fix the centroids of our two hollow vortices

for a particular value ofρ. Note however that these centroid positions will change asρ is

varied (keepingΓ andU fixed).
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It is required to truncate the Fourier-Laurent series in (5.34). Let us truncate each series in

(5.34) atO(N). We must solve for the following3N + 2 real parameters

Im[a], Im[c0], {Im[cj ], Im[dj ], Im[ej ] | j = 1, ..., N}, (5.36)

and the following3N + 6 real parameters

c, δ, q, arg[β], Re[a], Re[c0], {Re[cj ], Re[dj ], Re[ej ] | j = 1, ..., N}, (5.37)

wherec is the speed of the fluid on both of the hollow vortex boundaries:

∣
∣
∣
∣
dw

dz
(ζ)

∣
∣
∣
∣ = c, ζ ∈ C0, C1. (5.38)

Thus, it is apparent that we have a total of6N + 8 real parameters to determine.

To obtain good initial estimates for these parameters in (5.36) and (5.37), and hence lock

onto a family of hollow vortex solutions, with the values ofΓ andU fixed, it is possible to

construct a M̈obius map from the interior ofDζ to the exterior of|z| = 1 and two small

circular hollow vortices whose centroids are located at the Föppl equilibrium positions

z0 andz0 corresponding to the chosen fixed values ofΓ andU . When these two circular

hollow vortices are small, the parameters we seek should be very close to those obtained via

this Möbius map (see AppendixE for details). As mentioned previously, we shall restrict

attention to finding hollow vortex equilibria which lie strictly behind the circular cylinder

since these are likely to be of most physical interest.

We require that the image ofC2 underz(ζ) is |z| = 1. We take2N + 2 equi-spaced

collocation points aroundC2, and enforce at each of these points the real equation

|z(ζ)| = 1. (5.39)

We further require that Bernoulli’s theorem be satisfied on the hollow vortex boundaries.

We take2N +3 equi-spaced collocation points around bothC0 andC1, and enforce at each

of these points the real equation

∣
∣
∣
∣
dw

dz

∣
∣
∣
∣ ≡

∣
∣
∣
∣
Wζ(ζ)

zζ(ζ)

∣
∣
∣
∣ = c, (5.40)
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Figure 5.4: Schematic of the preimage circular domainDζ illustrating the locations of the
preimages of the five stagnation points{γj | j = 1, ..., 5} (these are shown as stars).

where we recall from (5.38) that c is the speed of the fluid on both of the hollow vortex

boundaries (to be determined as part of the solution),Wζ(ζ) is given by (5.33), andzζ(ζ)

is given by (5.35). Since we have explicit forms for both functionsWζ(ζ) andzζ(ζ), the

complex velocity functiondw/dz does not need to be constructed separately (like it was in

Chapters 3 and 4) and is given by the chain rule. Together, (5.39) and (5.40) then comprise

a set of6N + 8 real equations in6N + 8 real unknowns. We proceed using Newton’s

method to find solutions to our free boundary problem, and thus determine the shapes of

the hollow vortex boundaries.

From consideration of the Föppl system, we expect five stagnation points in the flow field.

We expect a stagnation point at the front and back of the circular cylinder, two on the

circular cylinder surface, and one on the real axis. It was verified numerically, for the

solutions we have found, that functionWζ(ζ) does indeed have five such zeroes inDζ , and

in the locations where they would be expected. Let us label these zeroes by{γj ∈ C | j =

1, ..., 5}. Figure5.4shows a schematic of the preimage locations of these stagnation points.

ζ = γ1 andζ = γ2 = γ1 are the preimages of the two stagnation points at the front and

back of the circular cylinder,ζ = γ3 andζ = γ4 = ρ/γ3 are the preimages of the two

stagnation points on the circular cylinder surface, andζ = γ5 =
√

ρeiσ is the preimage of
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Figure 5.5: Superposition of Föppl hollow vortex pairs of different areas behind a unit
radius circular cylinder forU = 1 andΓ = 2. The F̈oppl equilibria corresponding toU = 1
andΓ = 2 are1.258 ± 0.252i.

the stagnation point on the real axis.

For the remainder of this section, we shall fixU = 1 and find solution families for four

fixed values of the circulationΓ. Figures5.5-5.8 show superpositions of hollow vortices

of different areas located behind|z| = 1 for Γ = 2, 4, 8, 16.61, respectively. The value

Γ = 16.61 was chosen by Telib & Zannetti [112]; the family of solutions in Figure 4 of their

paper correspond to this value. In each of the Figures5.5-5.8, the hollow vortices have been

‘grown’ in area from the corresponding Föppl point vortex equilibrium locations. Figures

5.5-5.8 collectively show the existence of continuous families of hollow vortex equilibria

taking a finite range of area values, up to some maximum admissible value, dependent

on the choice ofΓ. For Γ = 2, 4, 8, the hollow vortices essentially exhibit quasi-circular

shapes. ForΓ = 16.61, the hollow vortices develop increasingly flattened faces along the

sides of their boundaries which are closest together.

We terminated the solution branches when we noticed that the image of circleC2 under

z(ζ) was no longer|z| = 1 to within an acceptable numerical accuracy. This phenomenon
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Figure 5.6: Superposition of Föppl hollow vortex pairs of different areas behind a unit
radius circular cylinder forU = 1 andΓ = 4. The F̈oppl equilibria corresponding toU = 1
andΓ = 4 are1.424 ± 0.402i.
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Figure 5.7: Superposition of Föppl hollow vortex pairs of different areas behind a unit
radius circular cylinder forU = 1 andΓ = 8. The F̈oppl equilibria corresponding toU = 1
andΓ = 8 are1.774 ± 0.689i.
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always occurred at the same point in the solution branch for any number of modesN and

regardless of the choice of collocation points on the boundary circles ofDζ (suggesting it

is not the manifestation of a numerical ‘crowding’ problem). The Newton iterations we

performed did not encounter any difficulties with convergence, and the values of the co-

efficients in the Fourier-Laurent series also appeared to continue naturally between two

consecutive solutions. For each solution, the boundary circles ofDζ were sufficiently sep-

arated thus ruling out any possible numerical error associated with the computation of the

Schottky-Klein prime function. It is worth noting that Elcrat & Zannetti [41] also experi-

enced “peculiar accuracy issues” in their hollow vortex wake models.

It therefore seems reasonable to conclude that hollow vortex solutions do not exist beyond

a particular point in the solution branch, at which point some maximum area configuration

has been attained. This conclusion is supported by a qualitative comparison of our hollow

vortex solutions forΓ = 16.61 in Figure5.8 with those obtained in Figure 4 of Telib &

Zannetti [112]. For this value ofΓ, we find a maximum area configuration which appears

identical to the one found by Telib & Zannetti [112] (although they do not state explicitly if

they actually attained a maximum area configuration), and we observe excellent qualitative

agreement between all our hollow vortex boundary shapes and theirs in this particular fam-

ily, implying that we have traced out precisely the same solutions. This gives us confidence

in our analytical-numerical method and the hollow vortex solutions we have computed in

Figures5.5-5.8. The maximum area configurations observed in Figures5.5-5.8 are not

close-to-touching with the circular cylinder; such hollow vortex configurations would ap-

pear not to exist. This is in contrast to the findings of Elcrat et al [44] in the case of vortex

patches where the maximum area configurations are special limiting cases bounded by the

circular cylinder. Until the nature of the existence of our solutions is properly understood,

it will remain a matter for future investigation to determine the limiting behaviour of our

hollow vortex solutions as their area is increased (if such solutions exist at all).

5.8 Summary

Through a combination of numerical and analytical techniques, we have been able to solve

the free boundary problem for a pair of hollow vortices of equal and opposite circulation in

equilibrium behind a circular cylinder in a uniform stream. We first wrote down a closed-

form analytical expression for the complex potential of the system using the specialist

techniques of Crowdy [14, 22] and proceeded to solve a non-linear system of equations
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Figure 5.8: Superposition of Föppl hollow vortex pairs of different areas behind a unit
radius circular cylinder forU = 1 andΓ = 16.61. The hollow vortices shown here look
qualitatively very similar to those shown in Figure 4 of Telib & Zannetti [112]. The Föppl
equilibria corresponding toU = 1 andΓ = 16.61 are2.695 ± 1.338i.
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determining a finite set of conformal mapping parameters governing the shapes of the free

boundaries of the hollow vortices. Our new solutions are valuable contributions to the

expanding body of work on hollow vortex wakes behind bluff bodies.

For four fixed values of the circulation, we were able to determine the hollow vortex free

boundary shapes over a finite range of areas, up to some maximum admissible area value. A

better understanding regarding the existence of these solutions would throw some light on

the limiting behaviour of the hollow vortex shapes as the area is increased. We obtained a

particular family of solutions (Figure5.8) which were found to be qualitatively very similar

to those obtained by Telib & Zannetti [112] whose mathematical approach is different to

ours. The three solution families we have presented in Figures5.5-5.7 appear to be new

and do not feature in [112].
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Chapter 6

Multiple steadily translating bubbles in

a Hele-Shaw channel

6.1 Introduction

For the final free boundary problem we shall solve in this thesis, we will determine the

shapes of multiple bubble interfaces as they steadily translate along a Hele-Shaw channel

with straight, parallel-sided walls. Of particular interest are the analytical methods that we

have chosen to employ to tackle this problem. Crowdy [19] made an attempt at solving

this free boundary problem, but it was subsequently found that part of his argument con-

tained erroneous reasoning (Crowdy [private communication]). This chapter presents an

alternative, successful approach for solving this free boundary problem.

As discussed in Chapter 1, Hele-Shaw flows are paradigmatic free boundary problems tak-

ing a wide variety of forms, and have a rich array of solutions. We shall resolve our free

boundary problem using methods related to a special class of scalar Riemann-Hilbert prob-

lem (Gakhov [49]). Crowdy [20] recently solved the following special Riemann-Hilbert

problem: find functionw(ζ), which is analytic and single-valued inDζ , satisfying

Re[λjw(ζ)] = dj , ζ ∈ Cj, j = 0, 1, ..., M. (6.1)

Here,λj ∈ C are constants such that|λj| = 1, anddj ∈ R are constants. Such a prob-

lem is intimately related to the classical Schwarz problem in multiply connected domains

(Crowdy [18]); indeed, such a problem is retrieved on takingλj = 1 for all j in (6.1).

Just like a standard Riemann-Hilbert problem which has an ‘inner’ and ‘outer’ region, so



Chapter 6. Multiple steadily translating bubbles in a Hele-Shaw channel 129

does this special type of Riemann-Hilbert problem: this is encapsulated through the identity

Re[f(ζ)] = 1
2

(
f(ζ) + f(ζ)

)
and the analytic continuation off(ζ) off each boundary com-

ponent. Crowdy found the solution to this special Riemann-Hilbert problem in the form of

a concise integral formula in terms of Schottky-Klein prime functions, the construction of

which is related to the method of formulating his generalised Schwarz-Christoffel formu-

lae to multiply connected polygonal domains (Crowdy [13, 16]). We will see that the free

boundary problem in consideration in this chapter can be couched in the form of this spe-

cial Riemann-Hilbert problem solved by Crowdy [20]. We will solve this free boundary

problem in its most generality, for any finite number of bubbles in a given assembly, using

similar ideas to those in [20]. The final expression for the conformal map revealing the

bubble boundary shapes is given as an explicit indefinite integral whose integrand consists

of a product of Schottky-Klein prime functions.

6.2 Background

There are some relevant prior results pertaining to steady multiple bubbles in Hele-Shaw

systems which we will now survey to motivate the free boundary problem of this chapter.

An important assumption that is made in each of these works is the exclusion of surface ten-

sion effects on the bubble boundaries: from a theoretical standpoint, this makes the problem

analytically tractable and allows for exact solutions to be found. Taylor & Saffman [111]

found an exact solution for a single bubble in a channel with reflectional symmetry about

the channel centreline. Tanveer [109] was able to generalise this solution using elliptic

function theory to describe a single asymmetric bubble in the channel. Vasconcelos [117]

reported exact solutions for a finite number of steadily translating bubbles in a Hele-Shaw

channel. He considered two symmetrical classes of solution pertaining to bubbles which

are either symmetrical about the channel centreline or which possess fore-and-aft symme-

try. He derived Schwarz-Christoffel type formulae for the conformal mappings determining

the bubble interfaces. Adopting the same bubble symmetry assumptions as in [117], Silva

& Vasconcelos [104] have recently found exact solutions for a doubly periodic array of

multiple symmetrical bubbles, with Schwarz-Christoffel methods again proving to be fruit-

ful. Vasconcelos has also found families of exact solutions for various infinite streams of

bubbles in the Hele-Shaw system [115, 116].

Most relevant to our present free boundary problem is the work of Crowdy [21] who found

analytical solutions determining the shapes of any finite number of steadily translating
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bubbles, with noa priori symmetry assumptions concerning the geometrical arrangement

of the bubbles, in an unbounded Hele-Shaw cell. He derived analytical expressions for

both the complex potential and the conformal map from a bounded multiply connected

circular domain to the exterior of the bubble assembly by using conformal mappings to

multiply connected slit domains and the Schottky-Klein prime function. The solutions we

will present in this chapter can be viewed as the generalisation of the solutions due to

Crowdy [21] in the case of the Hele-Shaw channel: our solutions account for the effect

of the two channel walls which greatly influence the nature of the free boundary problem

(otherwise, the boundary conditions in the two problems are the same). We also shall not

make any assumptions about the geometrical arrangements of the bubbles.

6.3 Formulation of problem

In this section, we discuss the details of the problem to be solved. We then establish the

functional form of several auxiliary functions, before writing down an explicit indefinite

integral for the conformal mappingz(ζ) which will determine the shapes of the free bound-

aries we seek.

Without loss of generality, we will consider a Hele-Shaw channel of width 2 containing

incompressible viscous fluid, extending to infinity∞± in both horizontal directions. In this

fluid, we suppose there areM finite-area bubbles. We choose to neglect surface tension

effects on their boundaries. Let us label the viscous fluid region byDz and let us label

the boundary of thej-th bubble∂Dj. In order to have a steady configuration of bubbles,

we suppose that each of theM bubbles translates uniformly left-to-right in the horizontal

direction with speedU > 1, and that the viscous fluid has uniform speedV = 1 in the far

field. See Figure6.1for a schematic.

Our model will be centred around some simplifying assumptions in order to render the

problem analytically tractable. We shall assume that the fluid inside the bubbles has negli-

gible viscosity so that the pressure inside each bubble is constant. We shall assume that the

Hele-Shaw channel is horizontally placed so that the effects of gravity can be neglected. As

mentioned before, for all the bubbles, we neglect any surface tension effects; this implies

that the viscous fluid pressure will have a constant value on each bubble boundary. Finally,

we shall also neglect any three-dimensional thin film effects. With these assumptions, we

shall first formulate the free boundary problem to be solved in the physicalz = (x + iy)-
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Figure 6.1: Schematic of a Hele-Shaw channel of width 2 containing an assembly of
steadily translating bubbles. In the case illustrated, the assembly contains 3 bubbles. The
shapes of the bubble boundaries, in a co-travelling frame with the bubbles, are to be deter-
mined.

plane.

In a laboratory frame of reference (not co-travelling with the bubble assembly), let

F (z, t) = φ(x, y, t) + iψ(x, y, t) (6.2)

be the complex potential describing the flow. Here,φ is the velocity potential andψ is the

streamfunction. In this laboratory frame, we shall assume that the motion of the incom-

pressible viscous fluid in our Hele-Shaw channel is governed by Darcy’s law:

v = ∇φ = −
b2

12μ
∇p. (6.3)

Here,v is the averaged fluid velocity across the channel,p is the viscous fluid pressure,b

is the channel width, andμ is the viscosity. On taking the divergence of (6.3), we obtain

Laplace’s equation

∇ ∙ v = ∇2φ = −
b2

12μ
∇2p = 0 (6.4)

implying that our free boundary problem is amenable to techniques of complex analysis.
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From (6.3), it is immediate that

φ = −
b2

12μ
p + constant. (6.5)

The bubble assembly is assumed to be steadily translating along the channel with speedU ,

hence the complex potentialF (z, t) in (6.2) must be of the form

F (z, t) = τ(z′) (6.6)

for some functionτ(z′), where

z′ = z − Ut. (6.7)

Let w(z′) be the complex potential describing the flow in a co-travelling frame of reference

with the bubbles. Thenw(z) is related toτ(z) by

w(z) = τ(z) − Uz, (6.8)

where we have dropped the prime notation with the understanding that we will be hence-

forth working in the co-travelling frame with the bubbles. The viscous fluid is assumed to

have unit speed in the far-field. Thus, asz → ∞±, we require

w(z) = (1 − U)z + locally analytic function. (6.9)

Apart from this simple pole at infinity, the complex potential functionw(z) is analytic

everywhere in the viscous fluid region.

Taking the real part of (6.8) evaluated on the bubble boundaries, i.e. forz ∈ ∂Dj, j =

1, ..., M , yields

Re[τ(z)] = Re[w(z) + Uz] = −
b2

12μ
p + constant. (6.10)

Recall that, in the laboratory frame, the viscous fluid pressurep is constant on each bubble

boundary. Thus:

Re[τ(z)] = Re[w(z) + Uz] = constant. (6.11)

In the co-travelling frame with the bubble assembly, the bubble boundaries are necessarily
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streamlines of the flow; thus

Im[w(z)] = constant (6.12)

for z ∈ ∂Dj, j = 1, ..., M . In light of (6.9), the channel wallsy = ±1 are also streamlines

of the flow since

Im[w(z)] = ±(1 − U) (6.13)

for y = ±1.

In order to determine the shapes of the bubbles (which are in equilibrium in the co-travelling

frame), we shall construct the conformal mapz(ζ) from some boundedM + 1 connected

circular domainDζ in a parametricζ-plane to theM +1 connected fluid regionDz exterior

toM bubbles in az-plane. Label the unit circle byC0 and label theM inner circular bound-

aries asC1, ..., CM . Let the centre and radius ofCj beδj andqj respectively. A schematic

of Dζ is shown in Figure6.2 in the case whereM = 3 (quadruply connected). LetC0 map

to the channel walls: this implies thatz(ζ) will necessarily have two logarithmic singulari-

ties onC0. By a rotational freedom afforded by the Riemann-Koebe mapping theorem, we

can place one of these logarithmic singularities atζ = 1; the other will be at some point

ζ = α on C0 to be found as part of the solution. Let the interior circlesC1, ..., CM map to

the bubble boundaries∂D1, ..., ∂DM .

6.4 FunctionW (ζ)

First, we construct an explicit expression for the complex potentialW (ζ) in the ζ-plane.

FunctionW (ζ) is related to the complex potentialw(z) in the z-plane co-travelling with

the bubble assembly through the composition

W (ζ) = w(z(ζ)). (6.14)

From conditions (6.12) and (6.13), this functionW (ζ) must be such that

Im[W (ζ)] = piecewise constant, ζ ∈ C0, (6.15)

and

Im[W (ζ)] = γj , ζ ∈ Cj , j = 1, ..., M. (6.16)
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Figure 6.2: The preimage bounded multiply connected circular domainDζ . The case of
a quadruply connected domain is illustrated, to be conformally equivalent to the physical
domain in Figure 6.1. The unit circle|ζ| = 1 maps to the channel walls withζ = 1 and
ζ = α being the preimages of∞+ and∞− (the ends of the channel). The circleCj maps,
underz(ζ), to the boundary of bubble∂Dj (for j = 1, 2, 3).

Here,γj ∈ R are constants. This ensures that the bubble boundaries and the channel walls

are streamlines. We note that functionW (ζ) can be interpreted as the conformal mapping

from Dζ to an infinite horizontal channel of width2(U −1) with M finite-length horizontal

slits. See Figure6.3. W (ζ) is required to be a single-valued analytic function everywhere

in the interior ofDζ .

From (6.15) and (6.16), we notice that the function

exp W (ζ) (6.17)

must have constant argument on each of theM + 1 boundary circles ofDζ . Recall the

conformal radial slit mapping of (2.60):

χ(ζ; ζ1, ζ2) =
ω(ζ, ζ1)ω(ζ, 1/ζ1)

ω(ζ, ζ2)ω(ζ, 1/ζ2)
. (6.18)

Recall from Chapter 2 that this functionχ(ζ; ζ1, ζ2) has constant argument on each of the
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boundary circles ofDζ , a simple zero atζ = ζ1 and a simple pole atζ = ζ2. Now consider

exp W (ζ) = a (χ(ζ; 1, α))b , (6.19)

wherea ∈ C andb ∈ R are constants, andζ = 1 andζ = α are the two points lying onC0

which map to the two ends of the channel at infinity∞±. Sinceζ = 1 andζ = α are two

points onC0, (6.18) becomes

χ(ζ; 1, α) =
ω2(ζ, 1)

ω2(ζ, α)
. (6.20)

Hence, it follows from (6.19), on taking a logarithm, that

W (ζ) = c + d log

(
ω(ζ, 1)

ω(ζ, α)

)

, (6.21)

wherec is an inconsequential complex constant andd ∈ R is another constant. Notice that

this function (6.21) satisfies the requirements (6.15) and (6.16). This function (6.21) also

has logarithmic singularities atζ = 1 andζ = α. Passing through eitherζ = 1 or ζ = α

results in aπi jump in the logarithm. Hence, in order that the channel width is2, we require

z(ζ) =
2

π
log(ζ − 1) + locally analytic function, ζ → 1, (6.22)

and

z(ζ) = −
2

π
log(ζ − α) + locally analytic function, ζ → α. (6.23)

Recall that, in the co-travelling frame with the bubbles, the fluid far-field looks like a uni-

form flow of speed1 − U (translating right-to-left), i.e.

w(z) = (1 − U)z + locally analytic function, z → ∞±. (6.24)

Thus

W (ζ) =
2(1 − U)

π
log

(
ω(ζ, 1)

ω(ζ, α)

)

. (6.25)
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Figure 6.3: Schematic showing the conformally equivalent image domains ofDζ (as in
Figure 6.2) under the conformal mappingsW (ζ) [left] and T (ζ) [right]. Both are infinite
channels with three finite-length slits which are either horizontally or vertically aligned.
The infinite channel in theW -plane has width2(U − 1) whilst the infinite channel in the
T -plane has width 2. The slit end-points are labelled accordingly.

6.5 FunctionWζ(ζ)

The derivative of functionW (ζ) in (6.25) with respect toζ is given by

Wζ(ζ) =
2(1 − U)

π

(
ωζ(ζ, 1)

ω(ζ, 1)
−

ωζ(ζ, α)

ω(ζ, α)

)

, (6.26)

whereωζ(ζ, ∙) denotes the derivative with respect toζ of the Schottky-Klein prime function.

Let {b(j)
1 , b

(j)
2 ∈ Cj | j = 1, ..., M} be the set of preimages of the2M horizontal slit

end-points in theW -plane (see Figure6.3). FunctionWζ(ζ) has2M simple zeroes at

{b(j)
1 , b

(j)
2 ∈ Cj | j = 1, ..., M}; these are simple zeroes because the arguments ofW (ζ; β)−

W (b
(j)
1 ; β) andW (ζ; β)−W (b

(j)
2 ; β) change by2π asζ passes through these points. These

points{b(j)
1 , b

(j)
2 ∈ Cj | j = 1, ..., M} are also the preimages of the2M stagnation points

in the z-plane (there are two stagnation points lying on each of theM bubbles); these

preimages can in principle be computed from (6.26), but this is not necessary for our present

purposes.
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6.6 FunctionT (ζ)

We now construct an explicit expression for the functionT (ζ) which we will now define.

FunctionT (ζ) is related to the complex potentialτ(z) through the composition

T (ζ) = τ(z(ζ)). (6.27)

In light of (6.8), we can thus define

T (ζ) = W (ζ) + Uz(ζ). (6.28)

From the conditions (6.11), we require

Re[W (ζ) + Uz(ζ)] = νj , ζ ∈ Cj , j = 1, ..., M. (6.29)

Here,νj ∈ R are constants. Noting that, due to channel walls, we must have

Im[z(ζ)] = piecewise constant, ζ ∈ C0, (6.30)

we can now see that our free boundary problem is the following special type of Riemann-

Hilbert problem: find functionT (ζ), analytic and single-valued insideDζ , satisfying

Im[T (ζ)] = piecewise constant, ζ ∈ C0, (6.31)

owing to the conditions (6.15), (6.16) and (6.30), and

Re[T (ζ)] = constant, ζ ∈ Cj , j = 1, ..., M, (6.32)

owing to the conditions (6.29). This type of Riemann-Hilbert problem is of the same type

solved by Crowdy in [20]. The success of his approach came from introducing the auxiliary

conformal mappingη(ζ; β) takingDζ to a bounded multiply connected circular slit domain

in anη-plane; recall these maps are of the functional form given in (2.53):

η(ζ; β) =
ω(ζ, β)

|β|ω(ζ, 1/β)
. (6.33)

Let ζ = γ
(j)
1 andζ = γ

(j)
2 be the preimages of the two slit end-points on thej-th circular

slit; these will lie on the interior circleCj, j = 1, ..., M . Note that if one specifiesDζ and a
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value ofζ = β, the set of points{γ(j)
1 , γ

(j)
2 ∈ Cj | j = 1, ..., M} is completely determined.

The derivative ofη(ζ; β) with respect toζ has simple zeroes at these points:

ηζ(γ
(j)
1 ; β) = ηζ(γ

(j)
2 ; β) = 0, j = 1, ..., M. (6.34)

These2M zeroes ofηζ(ζ; β) are simple zeroes since the arguments ofη(ζ; β) − η(γ
(j)
1 ; β)

andη(ζ; β) − η(γ
(j)
2 ; β) change by2π asζ passes through these points.

From the requirements (6.31) and (6.32), and then following the same arguments in Crowdy

[20], it can be shown that function

ηT̂η(η) (6.35)

must have constant argument on each boundary component in the auxiliaryη-plane, where

T̂ (η(ζ; β)) = T (ζ), (6.36)

andT̂η(η) denotes the derivative with respect toη of T̂ (η). In light of the conditions (6.22)

and (6.23), we need

T (ζ) =
2

π
log(ζ − 1) + locally analytic function, ζ → 1, (6.37)

and

T (ζ) = −
2

π
log(ζ − α) + locally analytic function, ζ → α. (6.38)

We note that functionT (ζ) can be interpreted as the conformal mapping fromDζ to an

infinite horizontal channel of width 2 withM finite-length vertical slits:C0 mapping to the

channel walls, andC1, ..., CM mapping to theM vertical slits. See Figure6.3. Let ζ = a
(j)
1

andζ = a
(j)
2 be the preimages of the two slit end-points on thej-th vertical slit; these will

lie on the interior circleCj. The set of points{a(j)
1 , a

(j)
2 ∈ Cj | j = 1, ..., M} is unknowna

priori , and must be found as part of the solution. The derivative ofT (ζ) with respect toζ

has simple zeroes at these points:

Tζ(a
(j)
1 ) = Tζ(a

(j)
2 ) = 0, j = 1, ..., M. (6.39)

These2M zeroes ofTζ(ζ) are simple zeroes since the arguments ofT (ζ; β) − T (a
(j)
1 ; β)

andT (ζ; β) − T (a
(j)
2 ; β) change by2π asζ passes through these points. The construction

of this mappingT (ζ) is the vital cornerstone upon which our solution scheme is based.
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6.7 FunctionTζ(ζ)

FunctionηT̂η(η) must have constant argument on each of the boundary components in the

η-plane. We now construct a functional form forηT̂η(η) and use it to deduce an expression

for Tζ(ζ) .

Our strategy is to specify someM + 1 connected circular domainDζ and find the con-

formal mapz(ζ) determining the bubble shapes. It is advantageous to specifyDζ a priori

since the conformal moduli defining the Schottky-Klein prime function will not have to be

re-computed on each iterative step in our solution scheme. Furthermore, choosing these

conformal moduli is analogous to prescribing the bubble areas and the bubble centroids.

We shall now build the functionηT̂η(η). Note that

ηT̂η(η) ≡ η(ζ; β)
Tζ(ζ)

ηζ(ζ; β)
. (6.40)

From (6.40), we see that we require functionηT̂η(η) to have a simple zero atζ = β (func-

tion η(ζ; β) has a simple zero atζ = β) and simple poles at{γ(j)
1 , γ

(j)
2 ∈ Cj | j = 1, ..., M}

(recall (6.34)). In light of the required behaviours (6.37) and (6.38), ηT̂η(η) needs to

have simple poles atζ = 1 andζ = α. We also needηT̂η(η) to have simple zeroes at

{a(j)
1 , a

(j)
2 ∈ Cj | j = 1, ..., M} (recall (6.39)). Recall the conformal radial slit mapping of

(2.62):

ξ(ζ; ζ3, ζ4) =
ω(ζ, ζ3)

ω(ζ, ζ4)
. (6.41)

Functionξ(ζ; ζ3, ζ4) has constant argument on each of the boundary circles ofDζ . It also

has a simple zero atζ = ζ3 and a simple pole atζ = ζ4.

Consider the following function:

M∏

j=1

ξ(ζ; a
(j)
1 , γ

(j)
1 )ξ(ζ; a

(j)
2 , γ

(j)
2 ). (6.42)

Being a product of2M radial slit mappings of the form (6.41), function (6.42) has constant

argument on each of the boundary circles ofDζ . It also has simple zeroes at{a(j)
1 , a

(j)
2 ∈

Cj | j = 1, ..., M} and simple poles at{γ(j)
1 , γ

(j)
2 ∈ Cj | j = 1, ..., M}, as can easily be
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seen from (6.41). Next consider the function:

ξ(ζ; 1, α)χ(ζ; β, 1) =
ω(ζ, β)ω(ζ, 1/β)

ω(ζ, 1)ω(ζ, α)
. (6.43)

where functionχ(ζ; β, 1) is the radial slit mapping of (6.18). This function has two simple

zeroes atζ = β andζ = 1/β, and two simple poles atζ = 1 andζ = α. Being a product

of two radial slit maps (albeit of different type), function (6.43) has constant argument on

each of the boundary circles ofDζ .

Consider, thus, the product of functions (6.42) and (6.43). Let

ηT̂η(η) = Bχ(ζ; β, 1)ξ(ζ; 1, α)
M∏

j=1

ξ(ζ; a
(j)
1 , γ

(j)
1 )ξ(ζ; a

(j)
2 , γ

(j)
2 ), (6.44)

whereB ∈ C is a constant, and{a(j)
1 , a

(j)
2 ∈ Cj | j = 1, ..., M} is the set of preimages of

the slit end-points in theT -plane, to be determined. Being a product of radial slit maps,

this function has constant argument onC0, C1, ..., CM , as required. It has simple poles at

ζ = 1 andζ = α, simple poles at{γ(j)
1 , γ

(j)
2 ∈ Cj | j = 1, ..., M}, and simple zeroes at

{a(j)
1 , a

(j)
2 ∈ Cj | j = 1, ..., M}, as required. The simple zeroζ = β of the mapη(ζ; β) can

be chosen arbitrarily; this is demonstrated in an appendix of Crowdy [20]. Written out in

full, (6.44) is

ηT̂η(η) ≡ η(ζ; β)
Tζ(ζ)

ηζ(ζ; β)
= B

ω(ζ, β)ω(ζ, 1/β)

ω(ζ, 1)ω(ζ, α)

M∏

j=1

ω(ζ, a
(j)
1 )ω(ζ, a

(j)
2 )

ω(ζ, γ
(j)
1 )ω(ζ, γ

(j)
2 )

. (6.45)

It then follows that

Tζ(ζ) = B

(
ωζ(ζ, β)ω(ζ, 1/β) − ωζ(ζ, 1/β)ω(ζ, β)

ω(ζ, 1)ω(ζ, α)

) M∏

j=1

ω(ζ, a
(j)
1 )ω(ζ, a

(j)
2 )

ω(ζ, γ
(j)
1 )ω(ζ, γ

(j)
2 )

. (6.46)

The constantB is calculateda posterioriby enforcing the conditions (6.37) and (6.38). It

is found to be:

B =
2

π

(
ω(1, α)

ωζ(1, β)ω(1, 1/β) − ωζ(1, 1/β)ω(1, β)

) M∏

j=1

ω(1, γ
(j)
1 )ω(1, γ

(j)
2 )

ω(1, a
(j)
1 )ω(1, a

(j)
2 )

. (6.47)

Our construction of (6.46) is reminiscent of two methodologies of Crowdy using confor-

mal slit mappings as ‘building block’ functions in order to construct some desired function
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solving a particular problem: in [13, 16], this desired function was a Schwarz-Christoffel

mapping to a multiply connected polygonal domain, while in [20], this desired function

was the general solution of the special Riemann-Hilbert problem of the type we are solv-

ing. Note that the special type of Riemann-Hilbert problem we are solving in this chapter

(i.e. finding single-valued analytic functionT (ζ) solving (6.31) and (6.32)) has boundary

conditions of precisely the Schwarz-Christoffel type: it is therefore not surprising that our

construction of (6.46) bears some resemblance to the two methodologies in the works of

[13, 16, 20].

6.8 Conformal mapz(ζ)

In light of definition (6.28), the conformal mapz(ζ) we seek will then follow from the

integral

z(ζ) = A +
1

U

∫ ζ

ζ0

[Tζ(ζ
′) − Wζ(ζ

′)] dζ ′, (6.48)

whereA ∈ C is a constant,ζ0 ∈ C is an arbitrary point insideDζ , and expressions for

Tζ(ζ) andWζ(ζ) are given in (6.46) and (6.26), respectively.

6.9 Characterisation of the solutions

Let us fix the value ofU . The number of free real parameters in (6.48) is 3M + 4: the3M

conformal moduli ofDζ , the complex constantA, and the complex numberβ. The value

of β (the simple zero ofη(ζ; β)) can be selected arbitrarily. There are three real degrees of

freedom associated with the Riemann-Koebe mapping theorem and we used up one of these

freedoms by insisting thatζ = 1 maps to infinity at one end of the channel. The remaining

two real degrees of freedom can be used to fix the value of the complex constantA. This

leaves a total of3M free parameters; these correspond to the3M conformal moduli ofDζ .

If we specify the3M conformal moduli ofDζ , the values of{γ(j)
1 , γ

(j)
2 | j = 1, ...M} are

set. We are then left to determine the following parameters:

α ∈ C0, {a(j)
1 , a

(j)
2 ∈ Cj | j = 1, ..., M}. (6.49)

We will now present the equations to be solved in order to determine the parameters of the

conformal mappingz(ζ). Once we have a solution to these equations, functionsTζ(ζ) and

Wζ(ζ) will be fully determined, and the conformal mapz(ζ) found through the integral
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(6.48).

First, we must ensure that theM finite-length slits in theT -plane are vertical and perpen-

dicular to the channel walls. As one traces out an interior circleCj in the preimageζ-plane,

on whichζ = δj + qje
iθ, the corresponding image under the mapT (ζ) in theT -plane must

be a vertical slit. We require:

Re[Tζ(δj + iqj)] = 0, j = 1, ..., M. (6.50)

To see why, consider the Taylor expansion of functionT (ζ) = T (δj + qje
iθ) about an

arbitrary pointζ(j)
∗ = δj + qje

iθ
(j)
∗ ∈ Cj as a function ofθ:

T (θ) = T (θ(j)
∗ ) + (θ − θ(j)

∗ )Tθ(θ
(j)
∗ ) + O(θ − θ(j)

∗ )2. (6.51)

Here,θ(j)
∗ is close toθ (and the higher order terms can be neglected). For the slits to be

vertical, the difference between any two points on the slit must have zero real part:

Re[T (θ) − T (θ(j)
∗ )] = 0, j = 1, ..., M, (6.52)

i.e.

Re[Tθ(θ
(j)
∗ )] ≡ Re[Tζ(ζ

(j)
∗ )iqje

iθ
(j)
∗ ] = 0, j = 1, ..., M. (6.53)

As a matter of convenience, we pickθ(j)
∗ = π/2 in (6.53) so that it suffices to enforce the

following M real equations:

Re[Tζ(δj + iqj)] = 0, j = 1, ..., M. (6.54)

In order to ensure thatT (ζ) is everywhere single-valued inDζ , there areM further real

equations to enforce. A2π traversal ofCj should correspond to returning to the same point

on thej-th vertical slit, i.e.

Im

[∮

Cj

Tζ(ζ
′)dζ ′

]

= 0, j = 1, ..., M. (6.55)

The conditions (6.55) will then, in turn, imply that the conformal mapz(ζ) is everywhere

single-valued inDζ (recall thatW (ζ) is single-valued by construction).
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We have one further real equation to enforce in order to ensure that the channel walls in the

T -plane are horizontal. It is

Im[Tζ(i)] = 0 (6.56)

and can be derived in a similar fashion to (6.54).

Newton’s method was used to solve the set of2M + 1 real equations (6.54), (6.55) and

(6.56) for the following2M + 1 real parameters:

α, {arg[a
(j)
1 − δj ], arg[a

(j)
2 − δj ] | j = 1, ..., M}. (6.57)

We will now illustrate the foregoing theory by considering some specific examples of var-

ious bubble configurations. Henceforth, we shall setU = 2; it is demonstrated in Vascon-

celos [117] that all other bubble assemblies corresponding to different values ofU can be

obtained from theU = 2 solutions by a simple re-scaling. Taylor & Saffman [111] consid-

ered the case of a reflectionally symmetric bubble about the channel centreline, and Tanveer

[109] considered the case of a single bubble with fore-and-aft symmetry with no symme-

try about the channel centreline: both the solutions of [109] and [111] should be able to

be retrieved using our solution scheme. We shall present examples of steadily translating

assemblies of two, three and five bubbles.

Figure6.4shows an example of two bubbles whose centroids are aligned along the channel

centreline and which are reflectionally symmetric about the channel centreline. Given their

up-down symmetry about the channel centreline, this pair of bubbles in Figure6.4 could

have been generated using the solution scheme presented by Vasconcelos [117]. In fact,

we were able to successfully recover the same bubbles shapes as in Figure6.4 using the

analytical solutions of Vasconcelos [117]. Figure6.5shows an example of two asymmetric

bubbles. Three streamlines in the local flow field of the bubbles have also been plotted:

these streamlines provide a qualitative check on the solutions. Figure6.6shows an example

of the bubble shapes for a particular asymmetric assembly of three bubbles.

The versatility and generality of our method can be demonstrated through solving for pa-

rameters yielding more than three bubbles in some asymmetric configuration. We chose

M = 5 bubbles by way of example (a higher number of bubbles can be treated in a similar

manner). It appears that this is the first time these most general bubble solutions have been
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Figure 6.4: An example of two bubbles whose centroids lie on the channel centreline and
which are reflectionally symmetry about it. To obtain these bubbles, we chose the following
conformal moduli ofDζ : δ1 = 0, δ2 = 0.185, q1 = 0.075, q2 = 0.05.

Figure 6.5: An example of two bubbles in a general asymmetric configuration with three
typical streamlines superposed. To obtain these bubbles, the following conformal moduli
of Dζ were chosen:δ1 = 0, δ2 = 0.185 + 0.07i, q1 = 0.075, q2 = 0.05.
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Figure 6.6: An example of three bubbles in a general asymmetric configuration. For this
bubble assembly, the following conformal moduli ofDζ were picked:δ1 = 0.1, δ2 =
0.175eπi/4, δ3 = 0.19e−πi/5, q1 = 0.045, q2 = 0.05, q3 = 0.04.

retrieved. Figure6.7 reveals the shape of the five bubble boundaries in a particular assem-

bly. The assembly is not symmetric about any axis and the areas of the bubbles are each

different (corresponding to the different choices ofqj values).

It is worth pointing out that we were unable to produce bubbles with areas much larger

than those shown in Figures6.4-6.7, or bubble assemblies with bubbles close to the chan-

nel walls. This is because computing the Schottky-Klein prime function in these cases

becomes difficult: in these special cases, in the preimage domainDζ , there will either be

multiple close-to-touching boundary circles, or interior circles with large radii, or both. As

mentioned in Chapter 4, computing the Schottky-Klein prime function becomes numeri-

cally challenging in these circumstances. With improved methods of computation of the

Schottky-Klein prime function, obtaining such bubble assemblies should be a straightfor-

ward matter.
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Figure 6.7: An example of five bubbles in a general asymmetric configuration. We chose
the following conformal moduli ofDζ : δ1 = 0, δ2 = 0.185, δ3 = −0.185, δ4 = 0.185i,
δ5 = −0.185i, q1 = 0.075, q2 = 0.05, q3 = 0.06, q4 = 0.04, q5 = 0.045.
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6.10 Summary

In this chapter, we have presented analytical solutions to the free boundary problem of

determining the interface shapes of a finite numberM of bubbles, without surface tension,

steadily translating along a Hele-Shaw channel. To do this, we found a concise formula

for the conformal map in the form of an explicit indefinite integral from a boundedM + 1

connected circular domain to the fluid region in the channel exterior to theM bubbles,

with the unit circle mapping to the channel walls. The integrand of our indefinite integral

is neatly expressed in terms of products of Schottky-Klein prime functions and is known

up to a finite set of accessory parameters to be found as part of the solution.

Our formula for the conformal map determining the bubble shapes is very general. An

important characteristic of the derivation of this conformal map is that we made noa priori

symmetry assumptions concerning the geometrical arrangement of the bubbles: indeed, all

the geometrical information about the physical domain is encapsulated in the prescription

of the preimage domainDζ over which each of the Schottky-Klein prime functions ap-

pearing in (6.48) is defined. In previous works on bubbles in Hele-Shaw channels, such

symmetries had to be enforced in order to make progress; for example, in the works of

Taylor & Saffman [111] and Vasconcelos [117]. Our solution scheme now readily incor-

porates the solutions found in these works and these solutions can be viewed as special

cases of ours. It also generalises the work of Tanveer [109] on a single asymmetric bubble

in a channel to more than one bubble, and the free space solutions of Crowdy [21] to the

Hele-Shaw channel geometry. On the latter, it should be possible to retrieve the solutions

of Crowdy [21] from those obtained using the methods of this chapter by taking the limit

as the channel width becomes infinite, although we have not done this.

We have devised a constructive method for finding solutions to the free boundary problem

based on ideas presented by Crowdy [13, 16, 20]. The free boundary problem determining

the bubble shapes turns out to be equivalent to a special scalar Riemann-Hilbert problem

solved in [20] and this Riemann-Hilbert problem, in turn, is related to the construction of

generalised Schwarz-Christoffel formulae in [13, 16]. We made liberal use of conformal

slit mappings as building block functions to incorporate the desired properties into the

functions we were constructing. Consequently, just as in the other free boundary problems

of this thesis, the Schottky-Klein prime function is the central mathematical object and the

key to the success of our solution scheme.
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We considered examples of various bubble assemblies, demonstrating that our solution

scheme is capable of modelling any finite number of bubbles in a particular assembly.

In each of the Figures6.4-6.7 for the bubble assemblies we considered, the interaction

between the bubbles is clearly visible from the shapes of their boundaries. We made choices

of the conformal moduli definingDζ in order to find the finite set of accessory parameters in

our conformal map determining the bubble shapes. Alternatively, we could have specified

the areas and the centroids of each of the individual bubbles and solved for the conformal

moduli of Dζ . However, this would have been a rather challenging undertaking, owing to

the fact that the parameters{γ(j)
1 , γ

(j)
2 | j = 1, ..., M} (the set of preimages of the ends of

theM circular slits in theη-plane) would need to be calculated in each iterative step.
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Chapter 7

Discussion

In this thesis, we have solved six different free boundary problems arising in fluid mechan-

ics, in various multiply connected geometries. Each of the six free boundary problems we

have solved has required individual and special mathematical treatments. The overriding

challenge in each of these problems was to determine the shape of the multiple fluid inter-

faces defining the physical system: namely, in this thesis, hollow vortices and Hele-Shaw

bubbles. The solutions we have presented are essentially special solutions of Laplace’s

equation in geometries with multiple boundaries. Constructing these solutions required

employing the Schottky-Klein prime function in combination with elements of complex

function theory, conformal mapping between multiply connected domains, and specialist

techniques developed in recent years by Crowdy and collaborators. The solutions to each

of the problems in this thesis also clearly illustrate the fundamental role of conformal slit

mappings when solving free boundary problems with multiple boundaries. Further evi-

dence of this is elucidated in a recent review by Crowdy [24] where a survey of usages of

conformal slit mappings in applied mathematics is presented.

When analysing von Ḱarmán streets of hollow vortices, we introduced the idea of capturing

the periodicity of the street structure by restricting attention to a single period window

containing two hollow vortex members of the street, and introducing a particular choice

of branch cut in the preimage domain. We found a concise formula for the conformal

mapping as an explicit indefinite integral describing the shapes of the free boundaries of

the pair of hollow vortices in the period window; this formula captures both staggered and

unstaggered street configurations. We then made an interesting qualitative comparison of

our staggered street solutions with the solutions of Saffman & Schatzman [94] who studied

von Kármán streets of finite-area vortex patches. By compiling analogues of Figures 2 and
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3 in Saffman & Schatzman [94], we highlighted that approximately the same street aspect

ratio in both inviscid vortex models is found to have a special significance; that is, there

exists a critical aspect ratio determining whether or not we have unique solutions.

When studying the hollow vortex pair and a single row of hollow vortices in an infinite

channel, we again incorporated the periodicity into our models by introducing appropriate

branch cuts in the preimage circular domains. For both problems, we found concise formu-

lae for the conformal mappings as explicit indefinite integrals determining the shapes of the

hollow vortex boundaries. For the hollow vortex pair, we were able to make connections

with the classical Michell [77] and Pocklington [85] solutions. With an eye on a recent

experimental study by Stewart et al [106], where particle image velocimetry was used to

study the evolution of vortex ring circulation in a channel, we note that our solutions could

be used as a two-dimensional model of a vortex ring in a pipe. Since the study of Zannetti

& Lasagna [128] only recently appeared after our work in Chapter 4 was complete, it is of

great interest to undertake a direct numerical comparison of our solutions with theirs and

to confirm that our two different methods of solution give identical free boundary shapes.

The solutions pertaining to a single row of hollow vortices in a channel are generalisations

of the Baker, Saffman & Sheffield [7] solutions to a confined environment, and also the

singly periodic generalisations of the Michell [77] solution. We were able to verify that as

the channel width becomes large, the hollow vortex shapes tend to the free space solutions

due to [7]. We then compiled an intriguing analogue of Figure 3 in [7] for different channel

widths and found that for a given hollow vortex area, two possible hollow vortex shapes

can exist and which appear qualitatively very different in two particular limiting cases.

Saffman & Schatzman [95] used the vortex patch street solutions they found in [94] to de-

vise an inviscid model of the vortex street wake behind a cylinder. It would be of great phys-

ical interest, and important for applications, to mimic this work of Saffman & Schatzman

[95] for von Kármán hollow vortex streets and formulate an analogous model involving the

solutions we constructed in Chapter 3. A natural extension of the work in both Chapter 3

and 4 would be to find analytical solutions for a von Kármán street of hollow vortices in

an infinite channel. Analytical solutions of this particular free boundary problem will offer

an inviscid wake structure model in a confined environment, and will be couched in a rich

mathematical structure. This problem presents several mathematical challenges, not least

because of the intrinsic periodicity structure and a typical period window being quadru-

ply connected, but also because the analysis is expected to involve inverse conformal slit
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mappings.

The new hollow vortex solutions of this thesis should facilitate studies into the effects of

compressibility on the various hollow vortex structures we have considered. These studies

are usually accomplished by performing low Mach number weakly compressible analyses

using so-called Rayleigh-Jansen expansions; indeed, our new hollow vortex solutions are

expected to be the leading order terms in these Rayleigh-Jansen expansions when such

studies are undertaken. These analyses would be particularly valuable in the investigation

of the compressibility effects in trailing von Ḱarmán vortex streets in the wakes of aircraft.

Ardalan, Meiron & Pullin [5] have examined the effects of compressibility on the structure

of the single hollow vortex row by taking the Baker, Saffman & Sheffield [7] solution

as the leading order term in their Rayleigh-Jansen expansion. Moore & Pullin [82] and

Leppington [69] have also studied the effects of compressibility on types of vortex pairs.

Determining the stability properties of the new hollow vortex solutions presented in this

thesis also remains as a task for the future. Recently, some stability analyses of certain

classes of hollow vortex solution have appeared in the literature, and it should be possi-

ble to adapt the ideas in these works to our new hollow vortex solutions in order to make

progress in this direction. Llewellyn Smith & Crowdy [72] have carried out a linear stabil-

ity analysis of the equilibrium solutions they found for a single hollow vortex in both linear

and non-linear straining flows. This paper also features a linear stability analysis, using

ideas from Floquet theory, for the hollow vortex row due to Baker, Saffman & Sheffield

[7]. In addition, Crowdy, Llewellyn Smith & Freilich [37] have examined the linear sta-

bility properties of their co-travelling hollow vortex pair solutions, whilst Luzzatto-Fegiz

& Williamson [73] have presented a fascinating and detailed investigation using energy-

based stability arguments into the possible equilibrium flows, and their associated stability

properties, for von Ḱarmán streets of finite-area vortex patches. Kida [66] and Meiron,

Saffman & Schatzman [76] have also conducted investigations into the stability of von

Kármán streets of vortex patches.

In Chapter 5, we derived a hybrid analytical-numerical scheme determining the shapes of

the free boundaries of a pair of hollow vortices in the wake of a circular obstacle. The

‘new calculus’ proposed by Crowdy [14, 22] was a key ingredient in our work. We were

able to trace out continuous families of hollow vortices and found that solutions exist for a

finite range of area values. We saw that we were able to obtain qualitatively similar hollow
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vortex shapes to Telib & Zannetti [112] for a particular value of the circulation. It is of

pressing importance to make a closer comparison of our solutions with those of Telib &

Zannetti [112], not least to understand the issue regarding existence of our solutions. The

important question of stability of our solutions naturally arises. Elcrat, Fornberg & Miller

[42] carried out a stability analysis of their solutions for a pair of vortex patches behind a

circular cylinder. It would be interesting to make a similar line of enquiry with our hollow

vortex solutions. This may shed light on why we were only able to determine classes of

solution having a finite range of area values and without ever becoming close to the circular

obstacle, unlike in the case of vortex patches (Elcrat et al [44]). It would also be interesting

to desingularise other point vortex equilibria around a circular cylinder using our solution

scheme of Chapter 5: there exists another equilibrium configuration when the two point

vortices lie directly above and below the cylinder (documented in Protas [87] and Elcrat et

al [44]), and Miller [78] has shown that there exists another class of point vortex equilibria

consisting of two up-down symmetric point vortex pairs lying on either side of the cylinder.

In determining the shapes of any finite number of bubbles in a Hele-Shaw channel, we

have generalised the work of Crowdy [21] who found the shapes of any finite number of

bubbles in an unbounded Hele-Shaw cell. We have solved another version of a classical

Laplacian growth free boundary problem and added to the vast body of prior work on bub-

bles in Hele-Shaw channels and cells. This particular free boundary problem turned out

to be a special type of scalar Riemann-Hilbert problem. Consequently, we emulated the

constructive methods of Crowdy [13, 20] and built the relevant formulae using conformal

mappings to multiply connected slit domains. Our solution scheme is very general: all

our formulae are applicable to any finite number of bubbles in a Hele-Shaw channel and

the configuration of bubbles can be completely devoid of any symmetries. An interesting

extension of our work would be to consider a doubly periodic array of asymmetric bubble

assemblies. This, in turn, would generalise the solutions of Silva & Vasconcelos [104].

Another interesting line of enquiry would be to investigate the effects of surface tension on

the bubble boundaries in the assemblies we have considered. This gives rise to so-called

selection problems: for non-zero surface tensions, there is no longer a continuum of bubble

speeds for which solutions can exist. It is also important to point out that obtaining exact

analytical solutions for steady Hele-Shaw systems naturally paves the way to finding time-

dependent solutions which are of great physical interest. An example of an extension to

the steady theory is the very recent study by Mineev-Weinstein & Vasconcelos [81] who

have been able to determine an exact solution for the time evolution of a bubble of arbi-
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trary initial shape using elliptic functions. Our new solutions will be the starting point for

any future endeavours looking into constructing time-dependent solutions for asymmetric

configurations of multiple bubbles in a Hele-Shaw channel.

If more important problems in applied mathematics involving geometries in multiply con-

nected domains are to be tackled successfully (which perhaps proved too computationally

impenetrable in the past), having robust and volatile software at our disposal to rapidly

and accurately compute the Schottky-Klein prime function given any multiply connected

geometry, however complicated, would be highly desirable: for example, when resolving

complicated parameter problems associated with the computation of Schwarz-Christoffel

or polycircular arc mappings, or further improving the accuracy of certain solutions pre-

sented in this thesis. Computing the Schottky-Klein prime function becomes a challenging

numerical undertaking if the circular domain over which it is defined becomes highly mul-

tiply connected, or when there are some boundary circles which are close-to-touching.

Conformal mappings are usually susceptible to numerical problems such as ‘crowding’ if

the preimage domain is of this type. One way to overcome the effects of crowding is to use

a very high number of collocation points and compute with very high accuracy; however,

this is computationally expensive. On this issue, it has been proposed recently by Crowdy,

DeLillo & Marshall [35] that the use of so-called ‘hybrid methods’ can dramatically reduce

computational time and can actually increase the overall accuracy of the solution being

computed when boundary circles become closer and closer together. Further investigation

into the (as yet unknown) special properties of these ‘hybrid methods’ would no doubt

shed light on devising an efficient and accurate way to compute the Schottky-Klein prime

function over a complicated circular domain. Work on developing an optimum method to

compute the Schottky-Klein prime function is already in progress.
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Appendix A

Von Kármán streets of point vortices

In this appendix, we outline some details of the analysis for constructing steady von Kármán

point vortex streets. We will focus here on staggered streets, but the unstaggered case in-

volves only minor changes in detail. Such details can also be found, for example, in the

monographs of Acheson [2] and Saffman [93].

Consider a staggered von Kármán street of point vortices. Suppose the point vortices in the

top row are all of circulationΓ, and the point vortices in the lower row are all of circulation

−Γ. Suppose the configuration moves, without change of form, with speedU . The point

vortices in both rows are assumed to be separated by a distanceL. The complex potential

in co-travelling frame of speedU is

w(z) = −Uz −
iΓ

2π
log sin

(
π(z − c)

L

)

+
iΓ

2π
log sin

(
π(z + c)

L

)

, (A.1)

where−L/2 < Re[±c] < L/2. The complex velocity is

dw

dz
= −U −

iΓ

2L
cot

(
π(z − c)

L

)

+
iΓ

2L
cot

(
π(z + c)

L

)

. (A.2)

The condition that the vortex atz = c is stationary (and, hence, by periodicity, all the other

vortices in this row) is

− U +
iΓ

2L
cot

(
2πc

L

)

= 0. (A.3)

By the symmetry, the same condition ensures that the point vortices in the lower row are

also stationary. Thus

tan

(
2πc

L

)

=
iΓ

2LU
. (A.4)
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On use of the well-known identity

tan (X + iY ) =
tan Xsech2Y

1 + tan2 X tanh2 Y
+

i tanh Y sec2 X

1 + tan2 X tanh2 Y
, (A.5)

we see that we require
2πc

L
=

π

2
+ iY, (A.6)

with

coth Y =
Γ

2LU
. (A.7)

Hence:

c =
L

4
+

iL

2π
coth−1

(
Γ

2LU

)

. (A.8)

If L = Γ = 1, solutions for staggered point vortex streets exist provided

0 < U <
1

2
. (A.9)

It can be shown in a similar fashion that solutions exist for unstaggered streets provided

U >
1

2
. (A.10)
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Appendix B

Re-derivation of the Baker, Saffman &

Sheffield [7] solution

In this appendix, we will show that the conformal map we derived in Chapter 3 describing

the shape of a typical hollow vortex in a row is equivalent to the solution presented by

Baker, Saffman & Sheffield [7].

Recall from (3.36) that the conformal map from the interior of the unitζ-disc to a period

cell containing a typical hollow vortex in a row is

z(ζ) =
L

π

(
tan−1(ζ/a) − a2 tan−1(aζ)

)
(B.1)

(ignoring the additive constant). This map takes the unitζ-circle to the boundary of the

hollow vortex. Baker, Saffman & Sheffield [7] have given parametric equationsX(λ)

andY (λ) for the same hollow vortex in terms of a perimeter parameterλ, taking values

0 ≤ λ < 2π. Motivated by this, putζ = eiφ, with 0 ≤ φ < 2π, so that

z(φ) = x(φ) + iy(φ) =
L

π

(
tan−1(eiφ/a) − a2 tan−1(aeiφ)

)
. (B.2)

At some point on the hollow vortex boundary,x(φ) andy(φ) (for some value ofφ) must be

equal toX(λ) andY (λ) (for some value ofλ). Thus, our aim is to show thatφ is related to

λ at an arbitrary point on the boundary of the hollow vortex, i.e. when

x(φ) + iy(φ) = X(λ) + iY (λ). (B.3)



Appendix B. Re-derivation of the Baker, Saffman & Sheffield [7] solution 157

On use of the well-known identity

tan−1(Z) =
i

2
log

(
i + Z

i − Z

)

, (B.4)

(B.2) becomes

x(φ) + iy(φ) =
L

π

(
i

2
log

(
ai + eiφ

ai − eiφ

)

−
a2i

2
log

(
i + aeiφ

i − aeiφ

))

, (B.5)

or

x(φ) + iy(φ) =
L

π
log

((
ai + eiφ

ai − eiφ

)i/2(
i − aeiφ

i + aeiφ

)a2i/2
)

. (B.6)

Let
ai + eiφ

ai − eiφ
= R1e

iΘ1 ,
i − aeiφ

i + aeiφ
= R2e

iΘ2 , (B.7)

whereR1, R2, Θ1, Θ2 ∈ R can be found. Then

x(φ) + iy(φ) =
L

π
log

(

exp

(
i

2
log(R1e

iΘ1) +
a2i

2
log(R2e

iΘ2)

))

, (B.8)

i.e.

x(φ) + iy(φ) =
L

2π

(
i(log R1 + a2 log R2) − (Θ1 + a2Θ2)

)
. (B.9)

Thus, upon equating real and imaginary parts,

x(φ) = −
L

2π
(Θ1 + a2Θ2), y(φ) =

L

2π

(
log R1 + a2 log R2

)
, (B.10)

a first correspondence between (B.2) and the parametric equations of Baker, Saffman &

Sheffield [7] is made. Recall from (3.30) and (3.32) that our complex velocity function is

dw

dz
=

iUζ

a
. (B.11)

Baker, Saffman & Sheffield [7] define the quantity

R =
U∞

q0

. (B.12)

In our notation,U∞ = U , and

q0 =

∣
∣
∣
∣
dw

dz

∣
∣
∣
∣
|ζ|=1

=
U

a
. (B.13)
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Hence

R = a. (B.14)

After some algebra, it can be shown that

R1 =
1 + 2R sin φ + R2

((1 + R2)2 − 4R2 sin2 φ)1/2
=

1

R2

, Θ1 = tan−1

(
2R cos φ

1 − R2

)

= Θ2, (B.15)

and so (B.10) becomes

x(φ) = −
L

2π
(1 + R2) tan−1

(
2R cos φ

1 − R2

)

,

y(φ) =
L

2π
(1 − R2) log

(
1 + 2R sin φ + R2

((1 + R2)2 − 4R2 sin2 φ)1/2

)

. (B.16)

The parametric equations of Baker, Saffman & Sheffield [7] are

X(λ) =
L

2π
(1 + R2) sin−1

(
2R sin λ

1 + R2

)

,

Y (λ) =
L

2π
(1 − R2) sinh−1

(
2R cos λ

1 − R2

)

. (B.17)

For (B.3) to hold true, it is clear that we require

− tan−1

(
2R cos φ

1 − R2

)

= sin−1

(
2R sin λ

1 + R2

)

(B.18)

and

log

(
1 + 2R sin φ + R2

((1 + R2)2 − 4R2 sin2 φ)1/2

)

= sinh−1

(
2R cos λ

1 − R2

)

. (B.19)

On use of the well-known identities

sin(tan−1 Z) =
Z

(1 + Z2)1/2
, sinh(log Z) =

1

2

(

Z −
1

Z

)

, (B.20)

and after some algebra, we find that

cos λ =
(1 − R2) sin φ

((1 + R2)2 − 4R2 sin2 φ)1/2
, sin λ = −

(1 + R2) cos φ

((1 + R2)2 − 4R2 sin2 φ)1/2
. (B.21)

Thus, we indeed have a consistent correspondence betweenφ andλ.
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Appendix C

Co-travelling pair of point vortices in an

infinite channel

In this appendix, we outline the analysis for a pair of point vortices steadily translating

along an infinite channel with vertically-aligned walls.

The complex potential for two point vortices with circulations±Γ inside the unit circle in

a parametricζ-plane is

W (ζ) = −
iΓ

2π
log

(
ζ − γ1

ζ − 1/γ1

)

+
iΓ

2π
log

(
ζ − γ2

ζ − 1/γ2

)

. (C.1)

The conformal mapping from an infinite vertical channel of unit width in az-plane to the

interior of the unitζ-disc is given by

ζ(z) = tanh
(πz

2i

)
. (C.2)

Suppose the point vortices are located at

x = ±c. (C.3)

Their corresponding images in theζ-plane are

ζ = ± tanh(πc/2i). (C.4)
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It follows that the complex potential in thez-plane is

w(z) = −
iΓ

2π
log

(
tanh(πz/2i) + tanh(πc/2i)

tanh(πz/2i) − coth(πc/2i)

)

+
iΓ

2π
log

(
tanh(πz/2i) − tanh(πc/2i)

tanh(πz/2i) + coth(πc/2i)

)

,

(C.5)

or, after some algebra:

w(z) = −
iΓ

2π
log

(
tanh(iπz) + tanh(iπc)

tanh(iπz) − tanh(iπc)

)

. (C.6)

By some further algebra, it can be verified that the vortex pair travels vertically down the

channel with velocity
dw

dz
= U − iV = −

iΓ

2
cot(2πc) (C.7)

(with U = 0) so that ∣
∣
∣
∣
dw

dz

∣
∣
∣
∣ =

Γ

2
cot(2πc). (C.8)

When c < 1/4, the stagnation points are complex conjugate pairs lying on the channel

centreline. Asc → 1/4, the stagnation points move off towards infinity in opposite direc-

tions. The point vortex pair is stationary whenc = 1/4. Whenc > 1/4, these stagnation

points move onto one of the channel walls, still as a complex conjugate pair. There is an ac-

companying pair of stagnation points, with the same imaginary parts, on the other channel

wall.
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Appendix D

Row of hollow vortices in an infinite

channel with centroids not on the

channel centreline

In this appendix, we briefly outline how our approach presented in Chapter 4 can be gen-

eralised to the case where the centroids of the hollow vortices in the row configuration are

moved off the channel centreline, withy-coordinatey0 6= 0. This row of hollow vortices is

expected to translate steadily in thex-direction along the channel with some constant speed

U to be determineda posteriori.

It is expected that a formula forU should be able to be derived using information about

the flux of the fluid through the period cell, but we have so far been unable to do this. We

were also not contented by several aspects of our numerical work at the time of writing.

Resolving these issues remains a matter for the future.

D.1 Function W (ζ)

To perform the analysis, we move to a co-travelling frame of reference with the hollow

vortex row. A typical period window of this row does not have any up-down symmetry

about the channel centreline; consequently, inDζ , we expectq1 6= q2. See FigureD.1. As

before, we expect two stagnation points to lie on the edges of the period window with the

samey-coordinate.

We propose the following function for the complex potential, in a co-travelling frame with
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Figure D.1: Schematic showing the preimage triply connected bounded circular domain
Dζ in theζ-plane, corresponding to solutions for a hollow vortex row with centroids not on
the channel centreline.

the hollow vortices:

W (ζ) = Γ1v1(ζ) + Γ2v2(ζ). (D.1)

Here, Γ = Γ1 + Γ2 is the total circulation in the period cell. Since the period cell is

not up-down symmetric, we expect an unequal contribution to the total circulation in the

period cell along the two channel walls. It follows from the ‘a-cycle’ properties of thevj(ζ)

functions (2.7) that (D.1) satisfies (4.38). Being a sum ofvj(ζ) functions, (D.1) also has

constant imaginary part on all the boundary circles ofDζ , as required.

D.2 Function dw/dz

We claim that the complex velocity function is again

dw

dz
= Q0S(ζ; R) (D.2)

with functionS(ζ; R) as in (4.49). The preimage of the two stagnation pointsζ = γ 6= 0

will lie on the branch cut joiningδ1 andδ2, whereγ ∈ R will need to be found as part of
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the solution. The value ofR will now be

R =
ω(γ,−1)

ω(γ, 1)
, (D.3)

thus ensuring that
dw

dz
(γ) = 0. (D.4)

D.3 Conformal map z(ζ)

The conformal map is given through the integral

z(ζ) =
1

Q0

∫ ζ

ζ0

Γ1v
′
1(ζ

′) + (Γ − Γ1) v′
2(ζ

′)

S(ζ ′; R)
dζ ′. (D.5)

Here,ζ0 ∈ C is an arbitrary point in the interior ofDζ .

D.4 Proposed solution scheme

As in Chapter 4, we can fix

L = Γ = 1. (D.6)

The centres ofC1 andC2 can again be taken to beδ1 = −δ2 = δ ∈ R (see FigureD.1). For

convenience, introduce a continuation parameter0 < ε < 1 such that

Γ1 =
1

2
(1 + ε). (D.7)

Hence

Γ2 = 1 − Γ1 =
1

2
(1 − ε). (D.8)

There are then the following four real parameters to determine:

δ, q1, q2, γ. (D.9)

These parameters can be found by solving the following four real equations. We expect to

be able to specify the aspect ratio of the period cell

λ =

(∫ δ−q2

−δ+q1

|zζ(ζ
′)dζ ′|

)/(∮

C1

|zζ(ζ
′)dζ ′|

)

, (D.10)
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and the imaginary partC of the centroid of the hollow vortex

Im

[∮

C0

z(ζ ′)|zζ(ζ
′)dζ ′|

]/(∮

C0

|zζ(ζ
′)dζ ′|

)

= C. (D.11)

We require the length of the top and bottom channel walls of the period cell to be equal:

∮

C1

|zζ(ζ
′)dζ ′| =

∮

C2

|zζ(ζ
′)dζ ′|. (D.12)

This condition (D.12) implicitly enforces that the conformal mapz(ζ) be single-valued

everywhere inDζ . Finally, the derivative ofW (ζ) with respect toζ should have a simple

zero atζ = γ. It is sufficient to enforce

Im

[
dW

dζ
(γ)

]

= 0, (D.13)

since the choice ofDζ guarantees that

Re

[
dW

dζ
(γ)

]

= 0. (D.14)
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Appendix E

Initial estimates of the solutions in

Chapter 5

In this appendix, we briefly outline the procedure we employed to generate initial estimates

for the values of the conformal mapping parameters in Chapter 5. Our procedure is centred

around knowledge of the Föppl point vortex system.

E.1 Föppl point vortex equilibria

In a z = (x + iy)-plane, let two point vortices of strengths−Γ andΓ be placed behind

|z| = 1 in a uniform streamU at positionsz = z0 = x0 + iy0 andz = z0 (where|z0| > 1),

respectively. The complex potential for this Föppl point vortex system is

w(z) = U

(

z +
1

z

)

+
iΓ

2π
log

(
(z − z0)(z − 1/z0)

(z − z0)(z − 1/z0)

)

. (E.1)

For fixed values ofΓ andU , it can be shown that the two point vortices are in equilibrium

providedx0 andy0 satisfy the two non-linear equations

x2
0 + y2

0 − 1 = 2ry0, (E.2)

and

Γ = 4πUy0

(

1 −
1

(x2
0 + y2

0)
2

)

. (E.3)

There are five stagnation points in the system, and these are the solutions to

dw

dz
= 0. (E.4)
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E.2 Möbius mappings

We will construct a M̈obius mapζ(z) from the exterior of two small circles of radiusε

aroundz0 and z0 in the z-plane to the interior of a concentric annulusρ < |ζ| < 1 in

a ζ-plane (whereρ will be determined). The image of|z| = 1 in the ζ-plane is easily

determined once the mapz(ζ) is known; this provides the initial estimates for the centreδ

and radiusq of circleC2 (recall Figure5.2).

Consider the following sequence of conformal mappings taking the exterior of|z− z0| = ε

and|z − z0| = ε to the interior of an eccentric annuluŝDζ with inner circle having centre

δ′ and radiusq′ (say):

ζ1(z) =
z − z0

ε
, ζ2(ζ1) =

1

ζ1

, ζ3(ζ2) = −iζ2. (E.5)

Next, consider mapping this eccentric annulusD̂ζ to a concentric annulusρ < |ζ̃| < 1

which we will labelD̃ζ :

ζ̃(ζ3) =
ζ3 − α

|α| (ζ3 − 1/α)
(E.6)

This map (E.6) is an automorphism of the unit disc which we introduced in Chapter 2

(recall (2.45)). Recall also from Chapter 2 the values (2.46):

ρ =
1 − δ′2 + q′2 − ((1 − δ′2 + q′2)2 − 4q′2)

1/2

2q′
, α =

(
ρ − q′

ρ(1 − q′ρ)

)1/2

. (E.7)

Note that the image of|z| = 1 under(ζ̃ ◦ ζ3 ◦ ζ2 ◦ ζ1)(z) is a circle lying in the interior of

the concentric annulus̃Dζ having centreδ = |δ′|ei(2π−φ) (with 0 < φ < π/2) and radius

q (say). Explicit formulae can be written down determining the values ofδ and q (see

Marshall [74]). A final rotation ofD̃ζ through

ζ(ζ̃) = eiφζ̃ (E.8)

yields another concentric annulusρ < |ζ| < 1 which we labelDζ . Now the image of

|z| = 1 under(ζ ◦ ζ̃ ◦ζ3 ◦ζ2 ◦ζ1)(z) is a circle lying in the interior of the concentric annulus

Dζ having centreδ = |δ′| and radiusq.

Written out in full, the map from the exterior of|z− z0| = ε and|z− z0| = ε to the interior
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of Dζ is

ζ(z) =
eiφ (iε − α(z0 − z))

|α| (iε − (z0 − z)/α)
. (E.9)

The inverse mapz(ζ) taking the interior ofDζ to the exterior of|z−z0| = ε and|z−z0| = ε

can now be written down:

z(ζ) =
eiφ (iε − αz0) + |α|ζ (z0/α − iε)

|α|ζ/α − αeiφ
. (E.10)

All the conformal mapping parameters that we require to begin the Newton iterations of

Chapter 5 can now be deduced. We can initially take all the coefficients in the Fourier-

Laurent series expansion ofz(ζ) in (5.34) to be zero (say). The initial estimate for the

value of the fluid speedc on the hollow vortex boundaries is given by

c =
Γ

2πε
. (E.11)
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