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Abstract

The subject of this thesis is exact solutions of the two-dimensional inviscid Euler
equations, consisting of both finite area vorticity and point vorticity, based on a
method of Crowdy [3]. There are only a small number of exact finite area vortex
distributions known at present, so these solutions are naturally of interest. In addi-
tion, this thesis broadly aims to show that solutions produced by this method are
valuable as models of known atmospheric and electromagnetic phenomena. To this
end, new classes of solution are presented, both on the sphere and on the plane, and

the stability of solutions created using this method is examined.

The solutions derived utilize the Schwarz function of some domain to combine a
patch of constant vorticity with some array of point vortices. We show that these
solutions behave in a manner consistent with physically observed coherent vortical
structures, and also argue that the form of an isolated point vortex on the sphere

motivates the combination of patch and point vorticity.

The content is divided into chapters detailing the process of obtaining solutions and
chapters analysing the stability of the solutions. An existing class of multipolar
planar solutions, derived using the Crowdy Schwarz function method, is reviewed
and then the linear stability of these planar structures examined. Also for this case,
a contour dynamics code is used to examine evolution of the structure under various
perturbations and these results are compared with results of numerical and physical
studies. The methods used to construct the planar solutions is then extended to the
surface of the sphere, utilizing a stereographic projection from the complex plane.
An analogous class of solutions lying on the surface of a sphere is hence obtained.
The stability of this class of solutions on the surface of the sphere will be examined
and compared with simpler spherical results. Finally, a class of solutions on the
plane is presented which possesses a singly periodic vortex patch with superposed
line vortices. This is created by considering the Schwarz function associated with a

quasi-loxodromic conformal map.
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CHAPTER 1

Introduction

1.1 Background

In the last 20 years, considerable interest has arisen in the coherent vortical struc-
tures occurring in inviscid fluid mechanics. These are long-lived, horizontally recir-
culating fluid motions through closed streamlines of compact size. These structures
play an essential role in transient flows, such as unstable ocean currents [1], or
two-dimensional turbulence [2]. It has been known for some time that these are im-
portant in the dynamics of large scale fluid systems, such as the Gulf Stream rings,

and the ‘spots’ on Jupiter.

The simplest and most commonly observed of these structures is the monopolar
vortex. The interactions of pairs of monopoles with opposite signs can give rise
to dipoles, structures which are best described as a self-propelling compound vor-
tex. Flierl [17] shows how baroclinic two-contour Rankine vortices can form more
complex vortical structures, or break down into pairs of dipoles. More complex
structures have also been observed, in meteorological data, laboratory experiments
and in numerical simulations. One of the more common of these complex structures,

observed in [7], [8], [10], [11], is the multipolar vortes.

Multipolar vortices can be defined using the following qualitative features:

1. Multipolar vortices are isolated finite-area regions of nonzero vorticity sur-

rounded by irrotational flow;

2. The vorticity distribution of multipolar vortex of order n is characterised by
a central core vortex of one sign, surrounded by a distribution of n satellite

vortices, all of opposite polarity from the central region;
3. They are steadily-rotating with a constant angular velocity €2;

2
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1.2 Literature 3

4. The approximate shape of a multipolar structure of order n (for n > 3) is an
n-polygonal core region with n semicircular satellite regions on each side of

the central polygon;

5. The multipolar structures calculated in numerical simulations often have zero
total circulation since they are frequently generated by the instability of zero

circulation monopolar vortices;

6. The streamline patterns in the vortical region typically display saddle points

joined by separatrix streamlines, as well as regions of closed streamlines.

1.2 Literature

1.2.1 Known finite area exact solutions

Ouly a small number of solutions of the two-dimensional Euler equations are known
which have finite area vortex distribution. The simplest of these is the Rankine
vortex, a circular region of vorticity surrounded by irrotational flow. A more in-
teresting distribution is the Kirchoff elliptical vortex, a region of constant vorticity,
bounded by an ellipse rotating with constant angular velocity(see Lamb, [39]§159).
As the ratio between the major and minor axes tends to unity, the Kirchoff vortex
can be viewed as a perturbation to the boundary of the Rankine vortex. Moore and
Saffman [6] generalised this to include a steady straining flow exterior to the patch.
The Rankine, Kirchoff and Moore-Saffman results are the only known exact steady

solutions for uniform vortex patches.

1.2.2 Multipolar Papers

Following observations in meteorological data in the early 1980s, a series of papers
appeared detailing approaches to modeling multipolar vortices, both experimentally
and numerically. The most common method used to produce multipolar equilibria,
in both laboratory and numerical experiments, is to destabilise a monopolar vortex

structure through azimuthal perturbations into a distribution with a distributed
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vorticity with at least 3 maxima of vorticity, of alternating polarity. It has been also
possible to form higher order equilibria, through stronger perturbations of vortices.
Some of these forms, particularly the tripole and quadrupole, having three and four

vortical maxima respectively, appear to be relatively common dynamical attractors.

Polvani and Carton, in their 1990 paper [11], were the first to reproduce the tripole
numerically, using a contour dynamics code. Their model consists of patch vortic-
ity, also called V-states, and rotating multipolar steady states are obtained using a
relaxation algorithm. The speed of rotation and evolution of small patches is com-
pared with a purely point vortex model, and the results are found to correspond.
Stability analysis is carried out on these steady states using contour dynamics and
a pseudo-spectral code. In conclusion, they find that the majority of the param-
eter space for their structures is stable, and any unstable structures break down
into asymmetric dipoles of a shielded axisymmetric vortex. They remark that the

formation and breakdown of multipolar vortices may well be a reversible transition.

Carneval and Kloosterziel, in their 1994 paper [7] create multipolar vortices in lab-
oratory conditions, and then model them numerically. The laboratory multipolar
vortex is formed by the use of a rotating tank filled with dyed fluid. A circular di-
viding barrier is placed in the tank, and within the barrier, anti-cyclonic vorticity is
induced. When the barrier is removed, the two regions mix. The fluid is filmed, and
the marks enable streak-lines to be followed, and vorticity fields to be calculated. If
the barrier is perturbed with some symmetric perturbations, then the resulting form
can evolve to a multipolar structure. Although the tank has significant depth, it is
shown in [22] that rotation effects cause the flow to become quasi-two-dimensional.
Carnevale and Kloosterziel find it is possible to form robust quadrupole vortices
in this manner, and higher order multipoles for short time periods. As the exper-
iment is fully three dimensional, this shows these structures are indeed physically
present using these initial conditions, and not merely artifacts produced by taking
the two dimensional limit of the Euler equations. After several rotation periods,
the quadrupole vortices break down into a pair of dipoles travelling in opposite di-
rections. Also in this paper, a numerical multipolar vortex simulation is examined.
Adding dissipation terms to the vorticity equation, they aim to reproduce the lab-

oratory results using patch vortices. To this end, a two-contour Rankine vortex
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is perturbed azimuthally at some wavenumber, and time evolved to create rotat-
ing quadrupoles or higher multipoles. They find it easier to produce quadrupoles
than higher order multipoles using this method. The quadrupole is found to be a
more robust structure than higher order structures. The stability results from these
patch vortex models are compared with the point vortex limit, and found to be

qualitatively the same.

Morel and Carton [18] also published on the stability of multipolar vortices. Their
paper is entirely numerical and concentrates on an investigation of barotropic in-
stability. They find it is possible to produce multipolar vortices from three-contour
Rankine vortices. They utilise a relaxation algorithm of [31]. Once this algorithm
reaches a steady state, stability is examined using contour surgery and pseudo-
spectral methods. They conclude that quadrupoles are relatively robust, while
higher order multipoles degenerate quickly. Interestingly, they consider only vortex
structures with zero total circulation, stating that their study of non-zero circulation

models shows they do not exhibit significant differences [18].

1.2.3 Tornado models

Similar structures have also been observed in tornado dynamics. In [43], Snow notes
that a characteristic of tornadoes is often a central core of vorticity surrounded by
up to six outer regions of vorticity of an opposite sign. In additions, he notes that
tornados possess vorticity at two different scales, a large outer region of low vorticity

and a small region of extremely high vorticity.

A numerical paper by Shian-Jiann Lin [42] also uses the methods of contour dynamics
to perturb a variety of multi-contour Rankine vortices to create a multipolar model
of tornado behaviour. He also presents a contour dynamics simulation of a large
region of low vorticity with a superposed small region of high vorticity. This is

shown to entrain boundary elements as it numerically evolves.
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1.2.4 Magneto-dynamic results

Experimental work has also been performed more recently by various researchers.
Many of these have been utilising the equivalence of the 2-D Euler equations and the
equations of motion of highly magnetised plasma fields. This approach is used be-
cause of the difficulty in modelling patch vorticity and point vorticity combinations.
The laboratory fluids are difficult to manipulate in the twin length scales required
for point/patch combinations. The recent development of the Malmberg-Penning
trap has enabled experiments involving background magnetic fields and trapped
electrons. Hence these strongly magnetised electrons are a valuable tool to study

patch and point vortex interactions.

The 1999 paper [20] examines the formation of vortex crystals. A vortex crystal
is a lattice of intense, small diameter vortices which rotate rigidly in a lower vor-
ticity background. The paper compares the process of formation of vortex crystals
experimentally and numerically. Firstly, a vortex crystal is formed using a Penning-
Malmberg trap. Two crystal types are formed by perturbations of an annular dis-
tribution of vorticity. The first is equivalent to the J.J. Thompson distribution,
[32] of N point vortices in a ring. The second consists of a ring of N point vortices
with a central vortex, as in the Morikawa and Swenson case [19]. Both of these
are superposed over a patch of constant vorticity. This is then compared with a
vortex-in-cell numerical simulation, which is a discretised numerical integration of
the two dimensional Euler equations. In both cases, the vorticity when perturbed

self-organises into these vortex crystals.

In their paper [23], Durkin and Fajans form a combination of patch vorticity and
point vorticity using electrons in a Malmberg-Penning trap. In this experiment, an
electron is placed in a magnetic field using the trap. When the electron, equivalent
to a point vortex in two-dimensional Euler equations, is close enough to the patch
edge, it entrains a region of irrotational flow. This occurs through a wave forming
on the boundary of the patch. When this wave breaks, a region of irrotational flow
is trapped, which in the frame of the patch is equivalent to a vortex of opposite

polarity.
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Also in this paper, they describe how N-vortices are placed in a ring within the
background patch by a identical method. If placed near the perimeter, a similar
entrainment of irrotational flow acts as a mechanism to move the electrons inwards,

seemingly to form a stable solution of the Euler equations.

Jin and Dubin [24] consider an idealised model of the patch and point vortex in-
teraction, within the context of the Malmberg-Penning trap. They confine their
considerations to a nearly circular vortex, and to point vortices whose circulation,
A, is weak compared to the background vorticity. They show waves forming on the

patch boundary break after a time of order A~ !log(A~1).

1.2.5 Exact solutions

Until recently, no exact solutions of the two-dimensional Euler equations have been
known which possess these general features, although point vortex models have qual-
itatively similar properties (see [19]), but provide no information about the shape
of vortex patches. Similarly, numerical patch vortex models of the structures also
exist, but must be perturbed from different equilibria and then time-evolved, and
hence are not exact. Previously, stability calculations pertaining to multipolar vor-
tices modelled using vortex patches have therefore involved two stages. Firstly, an
initial distribution of patches of constant vorticity, often a shielded monopole per-
turbed azimuthally at wavenumber—n, is numerically time evolved using the Euler
equations with the aim of forming a multipolar structure. If such a structure is
found, this is then perturbed in some systematic manner and also time evolved. In
numerical simulations, the evolution is often tracked using Dritschel’s technique of
contour surgery [12], a form of contour dynamics [13] in which the vortex boundary
is divide into multiply connected regions if the boundary begins to form loops con-
nected to the main region by narrow bottlenecks. As a result of this, investigations
of the properties of the structures have necessarily been carried out in a somewhat

ad-hoc manner.

However, in [3], Crowdy presents a novel class of exact analytic solutions which

satisfy the criteria (1)—(6). Crowdy demonstrates the efficacy of superposing line
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vortices on a patch of vorticity to form a model with all the characteristics of mul-
tipolar vortices. The resulting class of solutions captures the shape of the boundary
and also models, through point vorticity, internal structure observed in experimen-
tal and meteorological data. These solutions utilise the Schwarz function to map
from the unit circle to some region with a more complex boundary. The properties
of this function allow the creation of exact solutions to the two-dimensional Eu-
ler equations, with merely a stationarity condition to be satisfied. The use of the
Schwarz function to form exact solutions of the Euler equations is common through
out this thesis. It is perhaps worth mentioning that while the Schwarz function has
been utilised in other work, [13, 15], the paper [3] seems to be the first in which the
geometric properties of the Schwarz function are utilised to create exact solutions
of the Euler equations. These properties allow information to be gained about the
boundary shape, while the equations of motion remain tractable, as the dynamics
of point vortex to point vortex are governed by a finite system of O.D.E.s. In [3],
Crowdy demonstrates how a one parameter family of solutions of the Euler equa-
tions consisting of regions of patch vorticity with superposed point vortices can be
derived from a certain class of conformal maps. The Euler equations are shown to be
automatically satisfied, and it is straightforward to show that continuity of pressure
is satisfied, and similarly the boundary is a streamline. Provided the boundary is a
simple closed curve the remaining condition is then to choose conformal map param-
eters such that the structure is stationary. This however turns out to be non-trivial,

with many classes of maps not possessing stationary parameter regimes.

Systematic stability calculations are much facilitated by the exact nature of Crowdy’s
solutions. Hence in the investigation of linear stability, analytic expressions are
available for all the entries in the final eigenvalue problem. The majority of these
expressions reveal themselves as quite intractable integrals, but can be evaluated
numerically. In the nonlinear case, contour dynamics software can be used to nu-
merically evolve perturbations of the exact base state. As these base states are

known exactly, a systematic approach is possible.
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1.2.6 Vortical structures on the surface of a sphere

Work on vortex equilibria on the surface of the sphere is comparatively recent. The
first consideration of such problems was by Bogomolov in 1977 [26], considering the
motion of point vortices on a spherical surface. Kimano and Okamoto [36] later
retrieved these equations and also the equations of motion for a patch of constant
vorticity. In [28], Polvani and Dritschel extend Dritschel’s contour surgery code to
the surface of the sphere. This is then used to study roll-up of vorticity strips on
a sphere, and also study interaction of patched of vorticity. DiBattista and Polvani
[37] have constructed models combining point vortices and uniform vortex patches

to study barotropic vortex pairs on a rotating sphere.

The 1977 paper [26] considers a thin layer of fluid on the the surface of a rotating
sphere. This is the first time a spherical geometry was considered, as opposed to
the planar S-plane approximation previously used in models of fluids on a rotating
sphere. The layer is considered as being placed between two spherical shells. As the
distance between the shells tends to zero, gravitational effects disappear, and the
flow becomes two dimensional. By a process of replacing vortices in two dimensions
with an infinite line of vortices in three dimensions, Bogomolov derives the stream
function of a line vortex on the surface of a sphere, and shows an isolated vortex

cannot exist, as the integral of vorticity over the surface of the sphere must be zero.

In the paper [27], Bogomolov considers the dynamics of point vortices on the sphere.
The paper compares the behaviour of three point vortex exact solutions in the (-
plane approximation and on the rotating sphere. They conclude that the cascade
of energy to larger scales occurs more rapidly on the sphere than in the g-plane

approximation, and that point vortex arrays tend to be more unstable on the sphere.

Dynamics of linear and nonlinear waves in patch vorticity on a sphere are considered
in [28]. A zonal vorticity interface is taken on the surface of a sphere, with two-
dimensional barotropic equations of motion. They find that non-linear waves are
nonlinearly stable for large wave amplitudes. Finite area multi-vortex equilibria are
investigated using contour dynamics techniques. Also considered in this paper is

the equivalent of the Thompson n-vortex ring on the sphere. The barotropic model
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can provide a model of the polar vortex. The instability of the patches manifests
itself through “pinch oftf” of regions of vorticity. Polvani and Dritschel find that, in
general, vortex structures on the sphere are found to be less stable than those on
the plane. It is hence to be assumed that the curvature of the sphere provides some

mechanism for instability which is not present on the plane.

Approaches other than contour dynamics are possible to model the behaviour of
vorticity on the sphere. A group theory approach is utilised in [29] towards point
vortex equilibria. The paper [30] considers vortex motion on surfaces with constant
curvature. After introducing the stereographic projection, the dynamics of vortex

structures on both spherical and hyperbolic two-dimensional surfaces are considered.

1.3 Layout of thesis

In Chapter 2, we review the class of exact solutions to the two-dimensional Euler
equations, presented by Crowdy in [3]. These possess the characteristics of atmo-
spherically and experimentally observed multipolar vortex structures. Hence after
this review, we examine their stability properties and compare those properties to
those observed for other multipolar models. The shielded Rankine vortex is also
considered, as it forms the simplest example of our paradigm of patch vortex and
point vortex combinations. A methodology is presented for analysing the linear
stability of structures defined by a conformal map from a simply connected region
and its numerical implementation is discussed. Stability is also examined using the

contour surgery methods of Dritschel.

Multipolar vortices have been observed atmospherically, and motivated by this, ex-
tension of the solutions of [3] to the surface of a sphere is presented in Chapter 3.
Crucial to the method is the introduction of the stereographic projection, which
allows the sphere to be projected onto the complex plane. This allows techniques of
complex analysis, necessary for the methods of [3], to be utilised. Consideration of
the form of point vorticity on the surface of the sphere will also reveal that on the
sphere, a point vortex cannot exist in isolation, but must be surrounded by a region

of patch vorticity. This retrospectively justifies the superposition of line vortices
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upon regions of constant vorticity. Using this methodology, it becomes clear that
the same conformal map used on the plane can be used for the spherical solutions.
However, due to curvature effects, different stationarity conditions apply, and hence

different parameters values for the conformal map are obtained.

In Chapter 4, the linear stability of various vortical structures on the sphere are
considered. These are a generalisation of the Morikawa and Swenson point vortex
model, a generalisation of the shielded Rankine vortex and the stability of the multi-
polar vortices presented in Chapter 3. The results from the simpler point vortex and
shielded Rankine vortex stability are calculated to provide checks for the stability
of the full multipolar stability.

Finally, Chapter 5 presents a new class of planar solutions to the two-dimensional
Euler equations. This consists of an periodic infinite band of patch vorticity with

point vortices superposed.
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CHAPTER 2

Linear stability of multipolar

vortices

2.1 Two dimensional incompressible fluid flow

We present a brief review of two dimensional fluid low on the unbounded plane. We
restrict attention to flows with vorticity only in the form of isolated delta functions

or regions of constant vorticity. We introduce the notation

u(x) = (u(x),v(x)), (2.1)

where x = (z,y) is a point on the plane. The scalar value u represents the velocity
of the fluid at the point x in the z-direction, while v represents the same in the y-
direction. We define the vorticity at the point x as V x u = w. The incompressible
nature of the flow is enforced by V.u = 0. Where the flow is irrotational, V x u = 0.

These can equivalently be written as

ugy +vy = 0, (2.2)

Uy —vg = 0, (2.3)

which are the Cauchy-Riemann equations for a complex function F(z) = u(z)—iv(z),

where z = z + iy. If we define the complex potential W (z) by
z
W(z) = / F(2")dz' = ¢ + iy, (2.4)

where we call ¢ the scalar potential and 1 the streamfunction. Then given either ¢

or 1, we can construct the velocity field by applying

o 0y
8_y =u, or (2.5)
op 04
8_11,‘ = u, a—y =7 (26)

12
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2.1 Two dimensional incompressible fluid flow 13

Examining (2.5), we see that in addition

Vi) = —w. (2.7)

2.1.1 Point vorticity

Introduce a delta function into the vorticity expression,

Vxu= TI§z—z) (2.8)

Vi) = —T6(z — z). (2.9)

We say this defines a point vortex with circulation I' at the point z = 2y. Using

Green’s function for the unbounded plane, we see that

=
= —log|z — 2] (2.10)
2m
As
P =Im(W(z)) = Wiz) —Wiz) ;l W(z), (2.11)
then v — iv = 241),. Then
= i (2.12)
u— v = 227rz—zo' .

Expanding a general velocity field near a line vortex at z = zy will result in a Laurent

series expansion of form

) . 1
U— 10 = —1—

2.1
3 O, (213)

where G(z) is some function analytic near z = zp. The line vortex itself is advected

by the part of the flow which is locally analytic,
u(zo) —iv(z0) = G(20). (2.14)

This is referred to as the non-self-induction condition, as the removed non-analytic

part is induced by the line vortex.

© 2004 University of London Dr. Martin Cloke



© 2004 University of London

2.1 Two dimensional incompressible fluid flow 14

2.1.2 Regions of constant vorticity

Suppose that in some simply connected region D, there is a constant vorticity wy,

and outside this area the flow is irrotational. Then

9 —wp, zZ€D
Vo) = (2.15)
0, 2z¢D,
or
2 —wp, 2 €D
Y _ ’ (2.16)
020z 0 = Q/ D.
Then integrating, we have
Wo_  Wo
—ZZ—ZF(Z), zeD
P, = (2.17)

_%G(Z)v z ¢ Dv

where F(z) is a function analytic inside D, G(z) is a function analytic outside D,
both introduced by integration. These functions are determined by the shape of the
boundary dD. By requiring that the boundary is a material surface and that the
velocity is continuous across the boundary, we enforce continuity of pressure. To see

this, consider pairs of points A,C and B,D adjacent across the boundary,

D%/ABu.dl _ /A <%lt1dl+u—(5l))
_ /AB (__vp+V(“;)> L.

Making the assumption that the fluid is barotropic, p = p(p). Then —%Vp = Vh(p),
for some h(p). Then

(2.18)

D B

"’ dl < h()+1 2)
— udl= [ -h(p) + zu
Dt /, 27 )14

This applies also to the integral from C to D, as the surface is material, and velocity

(2.19)

continuous. Therefore

D [B D [P
= / udl = — u.dl, (2.20)
Dt [, Dt /.
and
1, |7 1, 0"
(—=h(p) + §u2) = (=h(p) + ke ) (2.21)
A C
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Fig. 2.1: Diagram of a patch of constant vorticity

which implies

1 B A
(~hip) + 5u0)| = (~hip) + 5u)| . (2.22)
D (&
Applying continuity of velocity, then
B A
~h(p)| = —hip)| (2.23)
D C
which implies
B A
plp)| =plp)| . (2.24)
D (&

Hence if the pressure is continuous anywhere on the surface, it is continuous every-

where.

Hence enforcing that the velocity is continuous and the patch boundary is a material

surface enforces continuity of pressure, for incompressible or barotropic flows.
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2.2 Mathematical formulation of exact solutions

2.2.1 Shielded Rankine vortex

Counsider the vorticity distribution, commonly known as the Rankine vortex, given

by
wor <
— r < T
2 ) 0
Uy = (2.25)
2
worg
) >
2r ror

Counsider then the two contour Rankine vortex, taken to be the vortex distribution
consisting of a Rankine vortex of vorticity wr surrounded by an annular region of
vorticity wo. Note that this is the initial vorticity distribution for many of the

numerical and experimental models for multipolar vortices.

If the limit as v, — 0 and w; — oo is then taken in such a way that the total
circulation remains finite, an important precursor to the class of solutions presented
in [3] is obtained. This is named the shielded Rankine vortex or shielded point vortex.
This is equivalent to adding a line vortex at the origin of the Rankine vortex (2.25).

The velocity field is then

uy = 2 2r . (2.26)

The shielded Rankine vortex consists of a patch of constant vorticity, with a a
line vortex superposed at the origin. The patch is surrounded by quiescent fluid.
Dynamically, we require that the velocity is continuous at the patch boundary,
which is well known to imply continuity of pressure for vortex patches [13], while
kinematically the boundary must be a streamline, which is clearly true. For this to
be a steady solution of the Euler equations, the line vortex must be stationary under
the non-self-induction hypothesis, and this is trivially satisfied here. Hence (2.26) is

a steady solution of the two dimensional Euler equations.
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2.2.2 The Schwarz function

Definition 2.2.1 The Schwarz function

Given a domain D € C with boundary 0D, a closed curve, then the
Schwarz function, S(z), is the unique, locally analytic complex function
such that

S(z) =z, VzeodD.

The stream function associated with (2.26) can now be written inside r = rg as

P(z,y) = —2Z — —Re [ i S(z')dz'] , (2.27)

where z = z +iy and S(z) is the Schwarz function of the domain D = {z|zZ < ry?}.

Using def. (2.2.1), it is apparent that for this geometry,
S(z) = —. (2.28)
Then integrating S(z),

/S(z')dz' = r3log z, (2.29)
z

and (2.27) consists of a patch of vorticity with superposed point vortex of strength
K= 7Tw07”(2), at z = 0. Note that the Schwarz function is not only equal to z on 0D
but, with this domain, is also in the form of a point vortex. This behaviour will be

crucial for the creation of the multipolar equilibria.

2.3 Multipolar solutions

Counsider the streamfunction

o) — “’0422 - % ( / " de + / ZS(Z’)dZ’) z€D 20)
0 z¢D.

In the case where D = {z|zZz < 1}, this is identical to the streamfunction (2.27).

Suppose, however, that instead of taking D to be a circular disc, a general domain

© 2004 University of London Dr. Martin Cloke
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is taken. We still require a valid solution to the Euler equations however, so the
kinematic and dynamic boundary conditions hold still be satisfies. Examining the

total derivative on 0D and using (2.30),

dp = .dz +psdz

- Zo(z — S(2)))dz + Zo(z — 5(z2))dz (2.31)
= 0,

by the definition of the Schwarz function, and hence the patch boundary is a stream-

line, satisfying the kinematic boundary condition.

The fluid velocity is given by u — v = 2i¢,, and is clearly continuous across 0D,
and equal to 0 there. Therefore, before specifying a domain, this streamfunction
satisfies the dynamic and kinematic boundary conditions on dD. It was shown in
§2.2.2 that the Schwarz function of the map from the (-circle with radius 73 has
a point vortex at the origin. It is desirable that we map from domains which will
produce Schwarz functions analytic inside D, except perhaps for simple poles with
real residue. This will correspond to the presence of line vortices within the patch
of constant vorticity. Assume a mapping from the interior of the unit circle in the
¢-plane to the inside of a domain D in the z-plane. It can be shown (see [38])
that if the Schwarz function is meromorphic within D, then the conformal map z(()
is necessarily a rational function of (. Hence consideration is given only to these
conformal maps. The Riemann mapping theorem guarantees that we may enforce

that 2(0) = 0 [35].

For a steady solution, it is then necessary to impose the condition that each line vor-
tex be steady under the non-self-induction hypothesis. After choosing a conformal
map, it then remains to pick any parameters in the conformal map to enforce sta-
tionarity of the line vortices. Note that this may not in general be possible, and hence

the choice of conformal map is a crucial part of this method of creating solutions.

2.3.1 Conformal Map

The conformal map presented in [3] is
b(a;n)

A0) = Rlasn)¢ (14 252

) , b ReR, la]>1. (2.32)
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Take the domain D = {z(¢)|¢¢ < 1}, with associated Schwarz function

R ¢™b
S =—(14+—F+ ). 2.33
o) =5 (14 o (2:39
This is singular at ( =0 and ( = e(%ik/")/a, where kK = 1,...,n. These correspond

to line vortices in the velocity field. As z(¢) is non-trivial function of {, the inverse
((z) is unknown, hence S(z(¢)) is written in terms of {. It is shown in [3] that
satisfying the stationarity condition for the satellite line vortices provides non-linear
equations for R(a;n) and b(a;n), where the a parameterises the solutions space for
given n. We specify that the line vortices lie on the zzZ = 1 circle in the z-plane.
Hence the equations given in [3] become:

1 ba" b(n —1) b zec(a™t)
—(1+—-5= ) — =0 2.34
b < * (1- a2”)> T M YT zc(a™t) ’ (2:34)

which can be solved as a quadratic for b, and

a2ntl _ g
R= ——F-—7. 2.35
1 — a?" + ba™ (2:35)
The strength of these line vortices is then given by
Fo = w7TRZ<(0) (2.36)
Rb _
r,= —erfels) (2.37)

2.3.2 Solutions

As b(a;n) and R(a;n) are now known, the Schwarz function type solutions specified
by (2.32) can be examined. A typical quadrupolar (n = 3) vortex structure is
shown in Fig. (2.2). Note how it possesses the characteristics (1) - (6) used to
define a multipolar vortex in §1.1. The vortex structures produced by this map for
all n satisfy the qualitative features of multipolar vortices, as described in Section
1.1. The presence of line vortices provide some inner structure to the distribution,
and the placing of the line vortices are analogous to the distribution of vorticity
mentioned in (2) of our definition of multipolar vortices. Some general features
of the solutions can be detailed. For large values of the parameter a, the patch

becomes approximately circular, and the n 4+ 1 point vortices are close together.
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Fig. 2.2: Schematic of a quadrupolar vortex consisting of a uniform patch of vorticity
w with four superposed line vortices — a central line vortex of strength 'y and 3
satellite line vortices each of strength I';.

Fig. 2.3: Patch boundary for N = 2 and a = 1.05. Line vortices are shown as bold
dots.

As a — 1, the patch boundary becomes more distorted and the line vortices move
further apart. For some value a..;, the patch boundary becomes cusped (see Fig.
2.4) and a values below this are inadmissible, as the patch boundary crosses itself.
Figure 2.3 shows a tripole (n = 2), which is close to cusped - note how the patch
of vorticity approaches two touching circles, with a point vortex at the point where

there would be an intersection.

The value aqsymp is the value at which the strength of the central line vortex is zero.
For values of a > ausymp, I's and I'g are opposite signs, I'; being of the opposite sign

from the patch vorticity. This is in common with condition (2) of our definition of
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G

Fig. 2.4: Vortex patch shapes for a close to a!

= 1.211; N =
4, aérit =1.241; N =5, aérit = 1.232. These are close to the limiting states in the

sense of Overman [16] and exhibit near-cusp singularities in the patch boundary.
Line vortices are shown as bold dots.

3)

N =3, d

crit

crzt

Fig. 2.5: Vortex patch shapes for a close to ag]g;)mp: N=3,a=1385 N=4, a=
1.485 (cf. Figure 8 of [3]). Line vortices are shown as bold dots.

a multipolar vortex from §1.1. However, for a < agsymp, I's and I'. have the same
sign, both opposite to the patch vorticity. This is contrary to condition (2) of §1.1.
Fig. 2.5 shows solutions near a,symp. Figs. 2.6 and 2.8 show b against a for n = 3
and n = 4 respectively. The asymptotes and cusp values can be seen. Figs. 2.7 and
2.9 show the ratio of the central point vortex circulation to the patch circulation

and satellite point vortices to the the patch circulation for n = 3 and n = 4.
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Fig. 2.6: b against a for N = 3: '), = 1.211; alom, = 1.371.
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Fig. 2.7: Graph of %), and g—; against a for N = 3.
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Fig. 2.8: b against a for N = 4: a'), = 1.241; al%),,., = 1.477.
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Fig. 2.9: Graph of %), and g—; against a for N = 4.
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2.4 Stability analysis of planar multipoles

We now examine the stability of the planar multipolar solutions. Firstly we consider
the stability of a distribution consisting of a circular patch of constant vorticity, with
a superposed line vortex at the origin, and some flow outside. The case where the
flow outside is quiescent corresponds to the shielded Rankine vortex (2.26). Stability
of this case is tractable analytically, and will provide a check of the numerical results
of the full multipolar solutions. This analysis will then be generalised to the full

multipolar solutions.

2.4.1 Shielded Rankine Vortex

Counsider the case of a circular patch with constant vorticity wg, and a superposed
line vortex at the origin of circulation I', with some irrotational flow outside. Then

wor  Twy
_ <1
2 2mr ’

Ug = (2.38)

2 r
w0—<1——>, r > 1.
r A7

Without loss of generality, we may set wyp = 1. Then the velocity field is given by

21z — —, zeD
2nz

u—iv = (2.39)
2 r
21— D
“(1-4)- #¢D

where the unperturbed conformal map is taken to be

20(¢) = ¢, (2.40)

in the domain

D = {z(¢); [¢] < 1}. (2.41)

The conformal map must now be perturbed. In general, we wish to find the values of
o in the perturbed conformal map which are valid solutions of the Euler equations.
Equation (2.41) requires that this perturbation also perturb the patch boundary and

position of the central line vortex. The Helmholtz laws require that the vorticity of
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any fluid element must be conserved; hence the area of the vorticity patch must also
be constant, and the strength of any line vortex must be constant. The perturbed

expression for u — v thus becomes

. o .
21z — m+22F(Z,t), ZED(t)
u—iv = (2.42)
) 24 r
2iG(z,t) + P (1—5) , 2 ¢ D(1),

where z, denotes the position of the line vortex, F'(z,t) is some function analytic
within D(¢), and G(z,t) some function analytic outside D(t). F(z,t) and G(z,1)
therefore represent the irrotational correction to the velocity field caused by the

perturbation to the conformal map.

2.4.2 Riemann-Hilbert problem

Applying continuity of velocity on the patch boundary, it is required that

z L = z — Z Z
z—m—G( t) — F(z,t), z€08D . (2.43)

As G(z,t) is analytic outside D(t) and F(z,t) inside D(t), and G(z,t) — F(z,t) =
P(z,t), this is in the form of a Riemann-Hilbert problem (see [14] for details). Hence

it admits a Plemelj solution, so

1 [ P(Z1)
F =—— ¢ ——"dZ D 2.44
(eit) = o oz, 2 (249
and
1 [ P(Z1)
=—— ¢ —>dZ D 2.45
Get) = g p 2D az, 2 ¢ (2.45)

However, it will be shown that in this case, as the conformal map from the (-plane
to the z-plane is trivial, the function P(z,t) can be split by inspection into parts

analytic inside and outside the patch.

The perturbed conformal map is now taken to have form 2(¢) = 2 (¢) + 2(¢,t) =
C+ed 2, ("ay, where a, = e, The perturbed point vortex position will be taken
to be z, = eg:c. We assume the perturbation is infinitesimal, i.e. ¢ < 1, and terms

of order €? and higher will be vanishingly small. However, due to the high degree of
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symmetry in the shielded Rankine vortex, the ansatz

2(C) =C¢+ean", neN (2.46)

is taken, which effectively implies the modes of perturbation decouple. Gg can legit-
imately be set to 0 as this corresponds to setting 2(0) = 0, which is allowed under
the Riemann mapping theorem (see [35]). Similarly, it is also required that for small

¢, arg(z(¢)) = 0, which sets the condition on a;, a; = a;.

For z € D, (( =1, hence ¢ = 1/(. Substituting into (2.46), it can be seen that

A

Z(1/¢) = % +eZ—Z, (2.47)

and

— 1 € nfla
= Sy L e an): (2.48)

1
¢
Substituting (2.46) into (2.48), we obtain

£= 0 (1 + ez(O)"Lan) + O(e?) (2.49)
and hence X
A1/ = S+ 0" M) + S+ O(E) (2.50)
= /9 ~ 5 2y ~ 7o 0"+ 55~ e —a
(2.51)

Clearly, (2.51) can be divided into parts analytic inside and outside 0D, so it is
apparent that
1 €a 2
G(z,t) = —= + = — ——5 7, (2.52)
2(¢) - 2m o (2(0) = 2:(1))

and

F(z,t) = —€anz()" 2 (2.53)

2.4.3 Kinematic Boundary Condition

The boundary of the patch of vorticity is a material surface (see [13]), and as such,
must move with the local velocity field. This is enforced by the kinematic boundary
condition, that

Imn[z;zs] = Im[(u + iv)Z,]. (2.54)
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As
_ 6z

= , z € 0D, (2.55)
£

Zs

this can be rearranged to give

2(¢)Z(¢)

— Re (u-l-z'v)EC(C*l)
OO floriosen g
Written out in full, (2.56) becomes
2t(()z -1 o w+iv)z(¢L .
AOXCT) | ac o) = BEEET) L C i) @)

¢

u — v is determined from equation (2.42), with F'({) given by equation (2.53).

Then expanding v — 7v to order ¢, it can be seen that

1 €z

~ 1 1N
u — v = 20> + edn o cte — €, ("7?) = 2iean ("7 4 O(€)). (2.58)

T

Then, considering only terms which arise from (u —iv)(z¢(¢) on the right hand side,

€ay, AN Ze o e
Cn—1) - g(l + Z — €dn( 1)

(u—iv)Czc(C) = 2i(1+
(2.59)

e UV 1 R
—2iean ("L + 2ienan VT — 2—enanC” L
s

with (u +iv)z:((7')/¢ the complex conjugate of this.

Considering only positive powers of ¢ on both sides of the kinematic condition (neg-

ative powers consist are given by the complex conjugate),

T . i
€OninC"t = —2ietnC" ™+ 5,0 + —ein("
27 27
(2.60)
- o~ rm—1 - o~ rn—1 el n—1
—2i€0, (" + 2ienan( — —na, (",
2
Equating powers of , the perturbations must satisfy
—il" il .
— a2 + —2Z, n=2
Oply = 27 2m (2.61)

2iap((n —2) + _7r(1 -n)), n>2.
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2.4.4 Line Vortex

The central line vortex must also move with the non-self-induced local velocity.

Hence

dz o
d_tc = 2iZ+ 2iF(z,t)|,=3,
= 2%, — 2iay 202 (2.62)
= 2iel, — 2ian(eC.)" 2.
This gives us
. %, — 2idy, m=2
onle = o = 21y (2.63)

2., n>2.
Note that both equation (2.63) and equation (2.61) decouple for n > 2, so only in
the elliptic modes (i.e. n = 2) is there interaction between the boundary and the

line vortex motions.

2.4.5 Eigenvalue problem

An eigenvalue problem can now be formed,

ox = Ax (2.64)
where
a
x=[ "], (2.65)
Ce
and
( il
2t 2w , n=2
-2 21
A= (2.66)
2i((n—2) + (1 —m)) 0
i((n — —(1—-mn
dm , m>2
0 2¢
\
Solving this gives
r
{0,2:(1 — —)}, n=2
47

(2.67)

g =

{2i((n —2) + %(1 —n)),2}, n>2.

The following observations can be made:
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1. The eigenvalues have zero real part, and thus the structure is neutrally stable.

2. The eigenmode a1 has a zero eigenvalue, which corresponds to area changing

perturbations (which are inadmissible in this formulation).

3. When I' = 0, the central line vortex is not present, and the eigenvalue 2i(n —2)
is recovered. This eigenvalue corresponds to the value obtained by considering
the Rankine vortex [13]. In this case, the zero (n = 2) eigenvalue in (2.67)

corresponds to steady bifurcation to the Kirchoff elliptical vortex patch.

4. When I' = 4, the total circulation of the vortex is zero, and the fluid outside
is quiescent. In this case, the n = 2 eigenvalues are both zero, and for n > 2,

repeated eigenvalues of £2¢ are obtained.

Note that in the I' = 47 case, the representation from (2.30) can be used to express

the streamfunction as

S = < / TS de - / ZS(z’)dz’) 2eD s
0 2 ¢ D.

where D = {z(¢); [¢] < 1} and z = (+> o7 | ("ay,. In this case, the Schwarz function

18

il
—2i =—-—"\ 2.
1S(z) 27(s — 20) (2.69)
The velocity field is then given by
, ) 2iz —2iS(z), z€D
u— v = 2ith, = (2.70)
0, z¢D.

2.5 Linear stability of multipolar exact solutions

We now generalise the methods applied to the shielded Rankine vortex to the full

multipolar solutions.

Taking the conformal map for the planar multipolar solutions from §2.3

z(¢) = R¢ <1 + ﬁ) : (2.71)
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the following streamfunction is formed:

P(z,y) = “’0:5 - % </ S(#)de' - /zs(zl)dzl> o FED (2.72)
0, z¢ D.

D is taken as the domain {z({);|¢| < 1}. The velocity field is given by

u—10 = 2i¢
S (2.73)
0, z¢ D

2.5.1 The Schwarz function in the z-plane

Note that while the Schwarz function S(z) is known explicitly in the (—plane, it is

not in general known in the z-plane. However, S(z) can always be written as
S(Z) = Hm(z) + Hout(z)7 (274)

where H;, is analytic within the patch, and H,,; is analytic outside the patch. In
fact, for the general n-th order exact solution, the Schwarz function can be divided
into parts of form I'j/(z — z;) where z; is the position of a line vortex, and some
function F'(z), which is analytic within the patch. Hence,

—2i8(z) = -3 {L} +2iF(2), (2.75)

2m(z — zj)

where I'; is the strength of the line vortex z;, which is fixed by the stationarity

condition.

2.5.2 General Method

The method of §2.4.1 must now be extended to the multipolar case. The steps which

must be performed are as follows:
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1. u — v must be rewritten as
in _ K,j
— |z - - F eD
5 <z Z P (z)> , Z

0, z€ D

U — U =

(2.76)

where z; and k; represent the position and strength of the j line vortices.
The term S(z) in (2.73) contains the line vortices, plus some irrotational flow.
Hence we split the Schwarz function into line vortex terms and some unknown

analytic function, F'(z).

2. Introduce a time dependent perturbation to the conformal map z((), so that
z(€) = 20(¢) +€2(¢, t), where zp(() is the base state conformal map, and 2((, t)
is the perturbation to the conformal map. Consequently the line vortex po-
sitions are perturbed to z; = zjo + €Z;(t), where zg is the unperturbed line
vortex position, and 2;(t) is the perturbation to the line vortex position. fk
will denote the pre-image of this perturbation in the (-plane. Note that the
perturbations, while altering infinitesimally the position of the line vortices,
do not alter the line vortex strength. They may, however, induce an irrota-
tional flow exterior to the patch. We hence introduce an analytic function
G(z,t) = €G(z,t) in the region exterior to the domain D, and note the F(z)
after perturbation becomes F(z,t) = Fy(z) + eF(z,t). Again, Fy(z) repre-
sents the unperturbed F' function, and ﬁ'(z,t) represents the alteration after
perturbation. Hence the velocity field after perturbation can be expressed as

—iw [~ % Yo
—~ (z—; ey (R —F(z,t)) , z€D(1),
— G0, 2 ¢ D(t);
(2.77)

U — 1w =

3. Continuity of velocity across the patch boundary must still hold. Applying this
condition, we form a Riemann-Hilbert problem for F'(z) and G(z), which will
allow the expression of F'(z) and G(z) in terms of the perturbation coefficients

by using the Plemelj formulae;

4. Expand the kinematic boundary condition and equations of motion for the line
vortices to obtain a generalized eigenvalue problem, of form Ax = cBx, where
x will be a vector consisting of the some boundary perturbation coefficients

and the pre-images of the perturbed point vortex positions .
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2.5.3 Numerical Method

Due to the more complicated conformal map, many calculations performed analyt-
ically for the shielded Rankine vortex become intractable for multipoles of higher
order. Hence numerical methods must be applied. A spectral method based on Lau-
rent series is used, which will ultimately result in a generalized eigenvalue problem.
Much of the numerical work can be viewed as problems in linear algebra, and so the
commercial package MATLAB was used, due to its powerful numerical linear algebra

libraries.

The form of the perturbation is taken to be

2(G,t) = 20(¢) +€2(t)
2(1/¢t) = Z(1/¢) +ez(b),

where € < 1, and terms of O(e?) are taken to be infinitesimally small. Line vortex

(2.78)

perturbations are taken as
Zk(t) =2zpy+ €2, k=0,..,N, (2.79)

where z( is the unperturbed position of the k-th vortex, and Zj is the perturbation to

it’s position. The circulations of the line vortices are unchanged by the perturbation.

The unknown perturbation to the conformal map 2((,t) is expressed as
oo (o)
2oty =em) anct, 21/t =Tty apct (2.80)
k=0 k=0

where {a} } are assumed independent of {a,,}. This is standard in stability analysis of
patches of vorticity (see [44], [45]). In treating the boundary perturbation coefficients
and their complex conjugates as independent variables, we simplify the stability
calculation. The resulting solutions allow us to recreate the physical perturbations:
consider the perturbation 2 = ¢?*F + ¢%'@G, with complex conjugate given by z =
e?*F+e?'G. The o are linearly independent, as they will be solutions of an eigenvalue
problem, hence the computational technique will yield (2, 2) = e’ (F, G) and (2, %) =

e?t(F,G). From these, the physical perturbations can be reconstructed. This is then
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truncated at order A so that the unknown is now

N
2(¢t) m ey agct (2.81)
k=0

In the numerical method, the value of NV is picked by choosing some M, a power of
two, and applying a fast Fourier transform (FFT) of order M. The integer N will
be chosen to be a power of 2 also, and M is chosen at least two powers of 2 larger
than N to avoid aliasing errors. For example, with M = 64, take N/ = 16 and all

functions will be expanded in the following spectral representation

G(¢) = % % + o+ Go+ .G + Gt (2.82)

so that there are precisely 2N/ — 3 spectral coefficients.

As discussed in §2.5.3 the {a, } are to be determined numerically and the infinite set
ay, is truncated to N'/2 — 1 terms, where N is a power of two. As in section 2.4.1,

we set a; = a; and ag = 0.

As ( is evaluated on |¢| = 1, or alternatively ¢ = €'*, and the FFT provides a se-
ries of form X = ) 2,e™ . the components of the Fourier transform provide the
coefficients of the Laurent expansion of X. This allows us to utilise the convolution
properties of Fourier transforms throughout our code , so providing significant speed
increases. It is well known that fast Fourier transforms of n points requires com-
putational effort of order n logn, which compares favourably with other methods of

calculating the Laurent coefficients.

If the quantities {Cxo} are defined as pre-images in the (-plane of the points {zj},

then it is consistent to define the quantities {Cj} by

zk(t) = Zko + Eeaték = Z(Cko + €€k7t)7 k=0,..,N. (283)

Similarly,
2 = Crzoc (Cro) + 2(Cro); k=0,..., N, (2.84)

The quantities {¢ + } are again independent of {C ).

& = E20c(Cro) + 2(Cro)y k=0, N (2.85)
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Using the Riemann mapping theorem [35], the condition z(0,¢) = 0 is specified.
As for the shielded Rankine vortex, we can specify ap = aj = 0. Additionally, we
enforce a1 = aj, eliminating a rotational degree of freedom. This provides the set of

N 4+ 2N — 1 unknowns

{ag]k = 1.4 —1}, {af|k=2..4 -1},
{§k|k=0---N}, {§;|k=0...N},

which, after enforcing that the perturbed flow satisfies the Euler equations, will form

(2.86)

a generalised eigenvalue problem.

2.5.4 Riemann-Hilbert Problem

From (2.87), the velocity field (2.73) for the general multipole case can be written

as:
w Yy g
- _ ] 0
| z= — —F(z,t)], zeD(t
u—iv = 2 ( kz_lz—zk(t) z — 20(t) ( )) “ (2.87)
0 6(a), 2 ¢ D(1),
where
Yo = —Rzo¢(0), (2.88)
Rbzo¢(a-1)

from [3]. D(t) represents the perturbed vortex patch, with F analytic inside the
patch, G analytic outside the patch. The zi(t) represent the perturbed vortex

positions. Applying continuity of velocity on the patch gives

F(z,t) = Gla,t) = =2+~ _V;k(t) + - _7;0(t) 2 € OD(t). (2.90)

which is, as for the shielded Rankine vortex (2.43), a Riemann-Hilbert problem (see
[14]). In the case of the shielded Rankine vortex, this was solved by inspection.
However, this case is too complex for solution by inspection. It is necessary to solve

using the Plemelj formulae. This gives
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N
1 _ Vs
F Z,t — -— —Z’ -|— -
(=1) 21 Jop(t) < ,; 2 — 2 ()
(2.91)
Yo dz’
D(t
z’—zo(t)> 2 -z € D),
and N
1 _ Vs
G(z,t) = — -7+ —
(=1) 21 Jap(t) < kz_:l 7' — 2 ()
(2.92)
Yo dz’
D(t).
+z’—zo(t)> Z—z 2¢ D)
As the line vortices z; are within D, this reduces to
1 Z'dz
F(z,1) 2 LeDw). (2.93)

_% 8D(t) zl— 2z
2.5.5 F functions
F functions on the patch boundary

The dependence of the function F(z,t) on the perturbation coefficients (2.86) must
now be determined. To do so, F(z,t) is expanded in a Taylor series - by definition,
F' is analytic in the domain D, so this is valid. We shall then expand in terms of (,

so we are implicitly defining the functions Fy(¢) and F(¢) by the relation

F(2(C,t),t) = Fo(C) + €F()e’t + O(€2). (2.94)

Writing N
F(2(0),t) =Y Fy2", (2.95)

k=0

where the Fj, € C are the constant coefficients of the Taylor series, and expanding

equation (2.93), it can be seen that

1 z'
Fp=—— ——d, k=0,1,2,.... 2.96
k 27ri é[) S k+1 2, 07 ) 4y ( )

Then, as z({) = 20(¢) + €2((, t), F) can itself be expanded in €, and
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By, = Fyo + €F), + O(€2). (2.97)

Substituting z(¢) = 20(¢) +€2(¢) into equation (2.93) and expanding, it follows that

1 (¢ z0¢(€)

FkO = _Q—M o ZO(C)’H_I dC (2.98)
and
> 1 Z —1 2 .
T Mcm %Z(Odc
2 -1 Z
- 744_1(16 * 1)W5(C)OK (2.99)

207,
+7{ Zc(¢)d( | -
cl=1 20 (QFFT™
The dependence of z(1/¢) on the a}, and 2(¢) and Z.(¢) on the &, is known, and

hence we can calculate the dependence of the perturbations to the Taylor coefficients

Fk on &k-

F functions near the line vortices

Similarly, we expand the F'(z,t) near the line vortex at zj, to give a Taylor expansion

o0

F(z,t) =) Fj(z — z). (2.100)
j=0

It will transpire we only require the first term of this sum and this quantity is given

by
F]glv) _ 1 7{( (C 1)ZOC(C)§dC

2w fig1 20(8) — 2k

1 (¢
744 (Q)de (2.101)

2w fig21 20(C) — 2o

1 A e0cld)
744 (36 — 2(0))d.
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This holds for all point vortices, the central line vortex expansion being given by

the k£ = 0 quantity.

2.5.6 Kinematic boundary condition

Recall that the boundary of the patch of vorticity must move with the local velocity.
Now that the dependence of F(¢) on the a is known, this can be evaluated. Firstly,
examining the O(e) terms in the linearised kinematic boundary condition gives the

equation:

’Yszk
(20(C) — 2k0)?

Mz

oRe [M] = [ Coc(

k=1
(2.102)

~ oo
Yoo 7 k
te—s = D Frao(C) )] -
[20(O]? =
Using equations (2.99), (2.84) and (2.85), the dependence of equation (2.102) on the

unknown perturbation coefficients is established. After truncating the infinite sum,

coefficients of ¢ are equated, to provide N — 3 equations.

2.5.7 Line vortex equations

The final requirement is that the line vortices must move with the non-self-induced
local velocity. This requires a similar expression to equation (2.99) for z near the

line vortices. Notating this as F) then

oz = ——

_ iw 7 Z vs(25 — Zg)

2 o (zko — zjo)?
_WO(ZL;’C) T ﬁlglv>> k=1,..,N, (2.103)
(Zko)
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where

2.5.8 Eigenvalue problem

Through the kinematic boundary condition, the equations of motion of the line
vortices and their complex conjugates, a total of N'+2N — 1 equations are provided.
As this is the same as the number of unknown perturbation coefficients, we may
now form a well-posed matrix equation for this problem. We hence form a vector x

of unknowns from equation (2.86). An eigenvalue problem is hence formed,

Ax = 0Bx (2.104)

where A and B depend on the base state map. To find the entries of these matrices,
the functions which depend on the base-state conformal map are Laurent or Taylor
expanded using fast Fourier transforms. N and M are increased until the results

are constant as A and M increase.

2.6 Checks on linear stability analysis

There are a number of checks which can be carried out on these linear stability

results.

Firstly, both patch vortex and point vortex systems are Hamiltonian. This implies
eigenvalues will occur as either pure real pairs, pure imaginary pairs or complex
conjugate quartets. Hence Hamiltonian systems can be at best neutrally stable

linearly. The results indeed satisfy this.

Secondly, recalling the presence of zero eigenvalue modes in the shielded Rankine
vortex case, a number of zero eigenvalues are also expected in the multipolar case.
These will correspond again to bifurcations to neighbouring steady states. Neigh-
bouring states are present with altered patch area, and vortex centroid shifted in

either of the two coordinate directions. The alteration of the patch area corresponds
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to altering R. These three modes are indeed found, and discarded from consider-
ation. As for the shielded Rankine vortex, only perturbations which preserve the
area and centroid of the patch are considered. Also, angular momentum is known to
be preserved by the linearised Euler equations. As the initial angular momentum is
zero, it is to be expected that the angular momentum after perturbation must also

be zero.

As a consequence of this restriction, nonzero eigenvalues must also be checked to en-
sure the patch area and centroid are unchanged to order e. The angular momentum

of these nonzero eigenvalues is also shown to be zero to order e.

As a — oo, the patch boundary tends to a circle, and the point vortices appear to
the boundary to coalesced into a single point vortex. Hence as a — 0, we expect
the boundary modes to approach the spectrum of a shielded Rankine vortex, while
the point vortex behaviour should echo that of a corotating point vortex array. This
is because the patch boundary should be at sufficient distance for the effects of the
patch to be viewed as providing a bulk rotation effect, countering any rotation the
point vortex distribution would otherwise possess. We may take the limit ¢ — oo

in (2.34), giving
2Na®

bNN—l'

(2.105)

Then using (2.36), allows the ratio of the circulations of the point vortices to be
calculated as

fe SN2 (2.106)

in this limit, see Fig. 2.10. Comparing this ratio with the results of Morikawa and
Swenson [19], we see that this ratio falls with in the stability range only for the case
N = 3. Hence we expect that in the a — oo limit, the n = 3 case but no others
will be stable. As a decreases, this comparison with [19] may still prove of value,

provided the patch and point vortices are not too close.
Also, for N = 0, the shielded Rankine vortex spectrum is retrieved, as expected.

As a — acrit, however, the Taylor expansion of F'(z,t) must be evaluated near the
radius of convergence, as the line vortices tend towards the boundary. The values

of N and M which must be taken for computational stability of the method to be
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Fig. 2.10: Graph of E—(s’ for N =2,3,4and 5. As a — oo, ratio approaches asymptotic
value given by (2.106).

achieved increases to a degree such that it becomes infeasible to calculate the linear
stability. Hence as ¢ — a4, the linear stability becomes uncomputable using this

method.

2.7 Linear stability results

The solutions presented here for w = 1. The eigenvalues are linear with w, so obtain-
ing growth rates for different w is straightforward. The growth of any instabilities
will be dominated by the largest positive real part of any eigenvalue. This will give
the maximum growth rate for various parameters. The maximum growth rate is
presented for varying N, the order of the multipole, over a range of a. As noted
above, as a — a.-, N must increase dramatically to account for numerical errors

mtroduced.

The linear stability results display different qualitative behaviour for various N

values.
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Fig. 2.11: Maximum linear growth rate against a for N = 2,4,5 and 6. The con-
figurations for N = 4,5 and 6 are found to become neutrally stable at aggb = 1.40,

al), =141 and a8, = 1.37.

2.7.1 N = 2 results

The tripolar, N = 2, solutions are found to be linearly unstable for all a. Figure 2.11
shows that the maximum linear growth rate decreases as ¢ — a¢ri, but does not
reach zero. For large a, the stability might be expected to decouple into terms cor-
responding to shielded Rankine vortex behaviour from the boundary, and behaviour
corresponding to the Morikawa and Swenson point vortex model (see [19]), for the

clustered line vortices.

The spectrum indeed separates in this manner. The most unstable eigenmode as
a — oo is that associated with the central line vortex. This is also consistent with
the results of Morikawa and Swenson, as they find that for N = 2, perturbations of

the central line vortex are responsible for instabilities.

2.7.2 N=3 results

The quadrupole is the only case which is found to neutrally stable for all a tested

using this method.
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2.7.3 N =4, 5, 6 results

For N = 4,5,6 qualitatively different behaviour is found. For these N values, as a
tends to infinity, the structure is unstable. However, as a falls below some critical
value, asqp, say, the configurations become neutrally stable. Any real eigenvalues
pass through the origin, and become purely imaginary. For N = 4, agqp is aggb =

1.40, ) = 1.41 and a§), = 1.37. Graphs are shown in Fig. (2.11). It is conjectured
that this is true for N greater than 6, and this is confirmed for N = 7 and 8. For
these higher order multipoles, the most unstable eigenmode for high « is associated

purely with the satellite line vortex. Again, this is consistent with Morikawa and

Swenson, who find that the satellite vortices are the cause of instability for N > 4.

2.8 Nonlinear Evolution - Contour Surgery

The nonlinear evolution of these structures may also be computed. It must be
remembered, however, that linear stability does not imply nonlinear stability, and
hence the correspondence of stability regions cannot be guaranteed. The solutions
of Crowdy are a composite of two common vorticity models - the point vortex
model and the patch vortex model. The contour dynamics method developed by
Deem and Zabusky [25] to model the evolution of patch vortex configurations can
easily be adapted to include the O.D.E.s necessary for time evolving the superposed
line vortices. In these results, the more advanced routines of Dritschel’s contour
surgery code are used, adapted again to include the O.D.E.s corresponding to the

line vortices.

These additional equations are checked by considering the unperturbed Thompson

configuration of N line vortices placed in a ring. The angular velocity is given by

T(N - 1)

) =
47r7"g

(2.107)

where 7q is the radial distance of each line vortex from the origin and T is the
circulation of each vortex (see [32]). The angular velocity obtained through contour

dynamics is indeed found to take the value (2.
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2.8.1 Shielded Rankine vortex

The stability of the shielded Rankine vortex is examined first. The main purpose of
this is to examine whether a shielded Rankine vortex can destabilise into multipolar
vortex structure. This is motivated by experimental data. Carton[9], found that
perturbations of this form with sufficient magnitude cause the two-contour Rankine
vortex to evolve into a multipolar structure, although these structures formed are
not steady states. In a similar experiment, Morel and Carton[18] show that a three-
contour Rankine vortex can also evolve after perturbation in to a multipole. As the
shielded Rankine vortex can be considered as a limit of the two-contour Rankine
vortex, it is feasible that the same qualitative results apply. Indeed, the following

results confirm this.

The shielded Rankine vortex is shown earlier to be linearly neutrally stable. This
does not necessarily mean that it will be non-linearly stable. The unperturbed

structure is taken with patch radius » = 1. Perturbations of the form
r=1+ Acosmb, (2.108)

are taken, where 6 is the polar angular variable and A represents the amplitude of
the perturbation. A need not be small, as the perturbations are non-linear. Under
this class of perturbations, an m = 3 perturbation has the following behaviour.
Firstly, the patch boundary folds in on itself, to form an approximately triangular
central core, surrounded by semi-circular regions of vorticity on the outer boundaries
which form the satellite regions with three-fold symmetry. These satellite regions
have identical circulation, which is opposite in sign to that of the central patch.
Such a formation can be seen in Fig. 2.12, at time ¢t = 3, evolved from a shielded
Rankine vortex perturbed with form (2.108), with magnitude A = 0.4. The shielded
Rankine vortex is also perturbed under a m = 5 perturbation, and again form a

clear penta-polar vortex, which can be seen in Fig. (2.13).

In contrast, a standard Rankine vortex is also examined, under the same perturba-
tions Fig. 2.12. There are no clearly defined multipoles formed in this case, although
thin filaments are expelled by the vortex patch. This contrast in results highlights

the role that the central line vortices play in forming multipolar vortices.
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Fig. 2.12: Vortical configuration at ¢ = 3 of shielded Rankine vortex (left diagram)
and regular Rankine vortex (right diagram) perturbed by azimuthal mode-3 per-
turbation of the form (2.108) with amplitude A = 0.4. In contrast to the regular
Rankine vortex, the shielded vortex forms a distinctly quadrupolar configuration.

Fig. 2.13: Vortical configuration at ¢ = 3 of shielded Rankine vortex (left diagram)
and regular Rankine vortex (right diagram) perturbed by azimuthal mode-5 per-
turbation of the form (2.108) with amplitude A = 0.3. In contrast to the regular
Rankine vortex, the shielded vortex forms a distinctly sexta-polar configuration.
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Fig. 2.14: Evolution of an unperturbed N = 2, ¢ = 2 vortex at times ¢t = 0,3.25
and 5. The tripole splits into a monopole and a dipole by growth of an instability
in which the central line vortex becomes displaced.

2.8.2 Non-linear multipolar stability and robustness

In this section, the unperturbed multipolar equilibria of [3] are time evolved using
contour surgery with no perturbation. This is to provide a check on the equilibria
found, and also investigate any numerical instabilities generated. There are some
numerical issues involved with the contour dynamics evolution which must be ad-
dressed. Firstly, as a — a..i, the patch boundary becomes more cusped, and the
number of points on the boundary must be increased. Also, as ¢ — oo, the line
vortices become close on the scale of the patch boundary, and the system of O.D.E.s

suffers from stiffness problems. To counteract this, the time step is decreased.

The evolution of these unperturbed equilibria has one of two outcomes. Structures
which are linearly stable remain in the equilibrium form. In structures which are
linearly unstable, over long time scales, the small numerical errors which occur seed

the instabilities and the structures breakdown after some period of time.

The tripole, (IV = 2) is found to be linearly unstable for all a. As might be expected,
for all a, the tripolar solutions breakdown after some (relatively large) period of
time. All long time simulations of this unperturbed equilibria break down to form a
monopole and dipole embedded in regions of patch vorticity. The initial instability is
caused by movement of the central line vortex. This is consistent with the behaviour
of the linear stability code, which for the largest eigenvalue, consists largely of a
central line vortex perturbation, with small satellite vortex perturbations. This is

shown in Fig. 2.14.
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Fig. 2.15: Evolution of an unperturbed N = 3, a = 2 vortex at times ¢ = 0, 3.25 and
5. No detectable change in the vortex is observed (even after much longer times).

The quadrupole has been shown to be linearly stable for all a. As expected, the
equilibrium distribution is hence stable for all time. This provides a check that both
the equilibria are correct and that the adaption to the code to include line vortices

is correct. This is demonstrated in Fig. 2.15.

The pentapole and higher structures have the property that they are linearly unsta-
ble above some a value, a5, and neutrally stable below this. As expected, these
structures are robust for the linearly neutral a values, and disintegrate after some
significant time period for the linearly unstable ¢ values. However, for these IV val-
ues, the mechanism of the disintegration is the instability of satellite vortices. This
corresponds with the linear stability results, in which the unstable eigenmodes of
the largest eigenvalues are associated with the satellite point vortices. The break-
down of these structures forms a dipole, and NV — 1 monopoles. For the regions of
a above agqp, a is larger than agsym. For a > agsym, L¢ is of different sign from
I's. For a < agsym, they are of the same sign. Hence the formation of this dipole
is a foreseeable consequence of breakdown. An example of this for the pentapole is

shown in Fig. 2.16.

An interesting phenomenon is observed for certain values of o for N > 4. The
linear instability of the satellite vortices, seeded by numerical errors seems to be
balanced by some non-linear effects. This causes a “dance” to take place, involving
the satellite vortices moving from their positions around the central vortex, before
swapping positions with other satellite vortices. This movement perturbs the patch

temporarily, but the original shape is restored as the point vortices regain an equi-
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Fig. 2.16: Evolution of an unperturbed N =4, a = 2 vortex at times ¢ = 0, 3.25 and
5. The vortex is seen to decompose into three monopoles and a dipole by growth in
the displacements of the satellite line vortices.

Fig. 2.17: Noulinear response of a quadrupolar vortex (a = 1.37) to a perturbation
in which all satellite line vortices (each of strength I's = 2.563) are moved outwards
by 0.1. The strength of the central line vortex is negligible. A slight rearrangement
of the patch vorticity occurs and the structure rotates anti-clockwise but retains its
overall quadrupolar form. Times shown are ¢t =0,1,2 and 5.

librium position. This interesting phenomenon is similar to observations made by
Morikawa and Swenson. They found similar behaviour with even numbered groups

of line vortices, providing the perturbation is small enough.

2.8.3 Non-linear evolution of perturbed equilibria

The result of perturbing this class of solutions is now examined. The class of pertur-

bations is restricted to perturbations of the radial position of the satellite vortices.

The quadrupole is examined first. Figure 2.17 shows the evolution of the ¢ = 1.37
quadrupole, perturbed so the satellite line vortices are initially a distance 1.1 from
the origin. The structure rotates slowly anticlockwise, with a small alteration of
the patch boundary. Figure 2.18 shows the same base state, with the satellite
vortices moved inwards to the position 0.9 from the central line vortex. This causes a

more pronounced alteration of the patch boundary, with the boundary folding over
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Fig. 2.18: Noulinear response of a quadrupolar vortex (a = 1.37) to a perturbation
in which all satellite line vortices (each of strength I's = 2.563) are moved inwards by
0.1. The strength of the central line vortex is negligible. There is a more dramatic
rearrangement of the patch vorticity than in Figure 2.17 but the structure retains
its overall quadrupolar form and rotates steadily in a clockwise direction. Times
shown are t = 0,1,2 and 5.

onto itself, and a rotation clockwise. The process of folding causes some contour
surgery to be performed, and filamentation also takes place. Some circulation is
lost through these processes. Note that the self reorganisation to a rotating form is

highly suggestive of a bifurcation to a neighbouring steady state.

The pentapole and higher structures provide an interesting demonstration. For
a > Ggqp, perturbations of the satellite line vortices cause a disintegration of the
multipole structure in roughly e-fold time. This is demonstrated by Fig. 2.19, with
a = 1.65 and the satellite vortices perturbed by 0.1 outwards. Figure 2.20 shows
the evolution of a pentapolar structure with a < agqp, in fact a = 1.4. As with
the quadrupole, this linearly stable structure undergoes a rearrangement of patch
boundary and rotates anticlockwise, in a robust fashion for long time periods (this
simulation was run up to t = 10). By ¢ = 7.5, however, the a = 1.65 structure has

disintegrated.
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Fig. 2.19: Nonlinear response of a pentapolar vortex (¢ = 1.65) to a perturbation
in which all satellite line vortices are moved outwards by 0.1. This structure is
linearly unstable with a linear growth rate of approximately 0.1. The structure
rotates steadily for a while but by ¢ = 7.5 (roughly the e-fold time according to
linear theory) it has eventually disintegrated. Times shown are t = 0,2.5,5 and 7.5.

Fig. 2.20: Nonlinear response of a pentapolar vortex (a = 1.4) to a perturbation in
which all satellite line vortices are moved outwards by 0.1. This structure sits on
the linear stability boundary. The structure is slowly rotating anti-clockwise and
retains its pentapolar form. Times shown are ¢t = 0,2.5,5 and 10.

From a large number of numerical runs, two types of behaviour are observed for
the perturbed multipoles, one stable and one unstable. These behaviour patterns
are found to behave as might be expected from the linear stability results. In a
regions which are linearly stable, perturbations are found to steadily rotate for long
periods of time. This follows reorganisation of the patch vorticity. Linearly unstable

structures however, disintegrate within roughly e-fold time.

Further illustration of this can be seen in the following figures. Figures (2.20) and
(2.21) show configurations with N = 8 and @ = 1.4 and a = 1.3. The base states are
perturbed by the satellite vortices moving outwards by 0.1. The ¢ = 1.4 is linearly
unstable, with maximum growth rate of 0.31, and indeed breaks down by ¢t = 7.5.

The a = 1.3 configuration, which is linearly stable, rotates steadily up until ¢ = 15.
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Fig. 2.21: Nonlinear response of an 8-polar vortex with ¢ = 1.4 to a perturbation in
which all satellite line vortices are moved outwards by 0.1. This configuration has
a maximum linear growth rate of 0.31. Times shown are t = 0,2.5,5 and 7.5. The
configuration rotates steadily for a while, but by ¢ = 7.5 (roughly the e-fold time
according to linear theory) the structure has disintegrated.

Fig. 2.22: Nonlinear response of an 8-polar vortex with a = 1.3 to a perturbation
in which all satellite line vortices are moved outwards by 0.1. Times shown are
t = 0,2.5,5 and 10. This structure is neutrally stable according to linear theory.
The configuration rotates steadily and maintains its structural form under evolution.
Note that small ripples in the boundary occur at the points of highest curvature.

This suggests that the perturbation being considered indeed counts as a linear one.

2.8.4 Discussion

It has been shown that, with the exception of the tripolar solution, this class of
multipolar solutions has the same stability properties as found in laboratory and
numerical experiments. The tripole is found in this formulation to be linearly and
nonlinearly unstable, which is in contradiction to the findings of [18], who find
it to be stable. Quadrupoles are found to be linearly neutrally stable for all a
values, and the structure is robust under nonlinear evolution. While it is generally
accepted that tripole and quadrupole structures are the only stable formulations,
for some parameter values, it seems the formulation of [3] admits linearly stable
and non-linearly robust multipoles of higher order. The stable region is for small
a, which corresponds to a deformed patch and satellite vortices some distance from

the central line vortex. At this scale, it is possible that replacing the point vortices
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with patch vorticity, as in purely patch based models, or traditional fluid dynamical
experiments may introduce some shape related effects to the perturbation, which
cause instabilities. A laboratory experiment of these particular configurations, using

the Malmberg-Penning trap would be of some interest.

With the case of the tripole, it is conjectured that the combined constraints that
the total structure has zero circulation and be non-rotating force the respective
strengths of the central and satellite line vortices to be such that linear stability of
the configuration is not possible. It is possible that a generalisation of this form
to equilibria involving line vortices superposed on a patch in a steadily rotating
configuration might produce stable tripoles. However, it seems unlikely that these
equilibria would be exact. It is possible, however, that they could be obtained as

perturbations of these stationary exact solutions.

Owing to the method used, which depends upon convergence of power series, it has
not been possible to study the linear stability of the limiting configurations of these

structures.

The preceding stability analysis is based on work of Crowdy and Cloke [4].
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CHAPTER SO

Analytical solutions for
distributed multipolar vortex

equilibria on a sphere

The phenomena motivating the work of Chapter 2 are commonly observed in either
the atmosphere, or in laboratory or numeric work based on atmospheric conditions
[41, 8, 7]. Hence it is natural to enquire if the class of exact multipolar solutions
can be extended to include curvature effects which would occur if they were placed
in the atmosphere. To this end, we show it is possible to extend these solutions to
the surface of a sphere. On the sphere, an extra length scale will be introduced, as
the vorticity patch can occupy at most an area of 47r?, taking r as the radius of
the sphere, whereas on the plane, any change in patch size can be viewed merely as
a rescaling of a different solution. Consequently, the one parameter family obtained

on the plane becomes a two parameter family on the sphere.

This chapter will present a generalisation of the exact planar solutions of Crowdy
[3] to the surface of a non-rotating sphere. Note that this surface is still inherently
two dimensional, but has been embedded in three dimensional space. Firstly we
will detail the representation of inviscid 2-D fluids on the surface of the sphere
using complex variables. The stereographic projection from the complex plane to
the sphere will be introduced, and the form of patch and point vorticity will then
be presented for the now complex equations of motion. It will become apparent
that in this geometry the shielded Rankine vortex is the simplest possible form of
point vorticity, which provides a further retrospective justification for the shielded
Rankine vortex model used on the plane. From now on, all references to fluid motion

on a sphere are taken to refer to motion on the surface of a sphere.

52
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The exact solutions below are presented in Crowdy and Cloke [5].

3.1 Overview

Models of behaviour of vorticity on the sphere are inevitably primarily associated
with modelling planetary scale geophysical systems. On the scale of these systemms,
curvature effects of the Earth’s surface can play a major role in the dynamics. A
case in point is the behaviour of the polar vortices. Interestingly, multiple vortex
equilibria are physically related to major warming events in the stratosphere when
the polar vortex is broken into many pieces [28]. Previous models have largely been
based on point vortex models, although some attention has also been paid to purely
patch based models, for example Polvani and Dritschel in [28]. The stereographic
projection will be presented, which maps the surface of the sphere to the complex
plane, and hence allows techniques of complex analysis to be utilized. The stereo-
graphic projection is mentioned in [26], but seems to be largely neglected by most
authors. As it is such a powerful tool, it is surprising that it is not more widely
used. The use of this map allows a much simplified form when calculating vortex
patch and line vortex behaviour, compared to the calculation in Cartesian or polar

coordinates.

This section demonstrates that using the Schwarz function methods of Crowdy [3],
it is possible to combine patch and point vortex models on the sphere as well as on
the plane. In this chapter, the planar techniques of Chapter 2 will be modified to

create a class of coherent structures which are exact and stationary on the sphere.

While the full curvature effects of the sphere are taken into account, the sphere
will remain non-rotating. In the following chapter, the stability to small amplitude

perturbations of these structures will be examined.
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3.2 Mathematics

The topology of the surface of a sphere, as opposed to the unbounded plane, will
produce different dynamics in two fundamental aspects. These both derive from
the surface of a sphere being closed and compact, and affect the class of admissible
solutions. Firstly, the surface of the sphere has a non zero curvature. This enforces
a characteristic length-scale not present on the unbounded plane. Secondly, as a
consequence of Gauss’ Theorem, the integral of the scalar vorticity field over the

spherical surface must be zero. This constraint does not exist on the plane.

In light of these differences, we pose the following question: Is it possible to generalise

the Schwarz function based method of Crowdy [3] onto the sphere?

3.2.1 Stereographic projection and Laplace operator

A fundamental requirement for the planar solutions of Chapter 2 is that the equa-
tions of motion must be in complex variables. The stereographic projection is a
mapping which maps between the extended complex plane and the surface of a
sphere. Hence this is utilised to map the equations of motion on the sphere onto the

complex plane. The projection is constructed as follows.

Take the Cartesian coordinate system (z,y,z). Then if { = x + iy, the (z,y,0)
plane can now be considered as the complex plane, with ¢ a complex variable lying
on this plane (Fig. 3.1). Additionally, define a sphere, S, of radius py, centred on the
origin. Suppose then that s is a point on the surface of the sphere. Then a line 1 is
constructed which passes through the north pole of the sphere (the point (0,0, ps))
and through the point s. Then at some point, (s say, 1 passes through the plane
(z,9,0), on which the complex variable ( is defined. This point (s is the unique map
of the point s onto the complex plane using the stereographic projection. Note that
the south pole of the sphere (0,0, —p;), maps to ¢ = 0, while the north pole (0,0, ps)
is taken as mapping to infinity, in the sense of the extended complex plane. The
equator of the sphere will map to the circle (¢ = r2. This ¢-plane will be mapped

to using some conformal map from a new complex 7-plane (see Fig. 3.1)
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stereographic
projection

(-plane

n-plane

Fig. 3.1: Schematic illustrating the stereographic projection from the physical sphere
to a complex (-plane and conformal mapping to the {-plane from the unit-disc in a
complex 7-plane.
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Express the point s on the surface of the sphere in terms of spherical polar coordi-
nates, (r,0,¢), where r is the distance from the origin, 6 is the latitude measured
from the north pole, and ¢ is the longitude. Without loss of generality, the sphere is
taken to have unit radius, so p = 1 for all points on the surface. Then it is straight
forward to demonstrate that the projection of the point s from the surface of the

sphere to the (-plane can be written as

¢ =re?, (3.1)

ran(?). 52

where (7, ¢) are the polar coordinates of the {-plane.

where

After some algebra, the relations

-1

cos @ = Cf—i-l
(3.3)

sinf = 27 <<

C+1

may also be derived.

3.2.2 Equations of motion on the sphere

The velocity vector on the surface of the sphere has the form
u = (0,v,u) = (0,uy,uyp),

where v and u are velocity field components in the 6 (zonal) and ¢ (meridional)
directions, respectively. uy and uy represent the components of u in the 6 and ¢

directions.

The flow is assumed to be incompressible, hence a scalar stream-function ¢ can be

introduced using the relation

u=Vgy X e, (3.4)
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where e, is the radial unit vector, and

o7

0 €y 0
Vy = 69% + sin@% (35)
is grad in spherical polar co-ordinates.
Hence
9y
U — ~70 (3.6)
_ 1 oy
v = Sin08—¢. (37)

From vector calculus, it is possible to intr

oduce a scalar vorticity field, w(6, ¢) such

that
wer = Vy X u. (3.8)
Then
w= -V, (3.9)
where
_of 1 of
Vel = 5% T Gna g (3.10)

and VQE is the spherical Laplace operator,

5 1 02

known as the Laplace-Beltrami operator,

 sin? HW
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Then v and v are given as

R4
= 12
20" (3.12)
1 oy
= —— T, 1
v sinf 0¢ (3:.13)
Applying the chain rule, it is apparent that
o)y __ ¢ 9 ﬁ
a9, sin 0¢ C 00|,
(3.14)
0
—| = iC—| .
99, 64‘ S e
Using (3.14), the following form of (3.11) is obtained:
Vi = (1+¢0) e (3.15)

Eqn. (3.6) is manipulated to provide the expression for the velocity field in spherical

polars on the surface of sphere,

. (3.16)

— jug =
o sm@

Cartesian components of the velocity on the (-plane is given by

u—iv = —%(1+C§)2¢<. (3.17)

3.3 Fundamental solutions

To proceed, it is necessary to determine the forms of patch vorticity and point
vortices on the surface of the sphere. On the plane, this is achieved by solving the
equations

V24 = wy, (3.18)

for patch vorticity, and

V) = ad(z, 2) (3.19)
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for a point vortex. The forms on the sphere will be determined in an analogous
manner, although with some modification to the point vortex expression to ensure

the Gauss condition is satisfied.

3.3.1 Patch Vorticity

Firstly, for patch vorticity, we solve
Vi = —wp (3.20)
Applying (3.15) this becomes
(14 ¢C)* s = —wo, (3.21)

which can be directly integrated to give

_ Y 47
w=-f Trer™
_ Wl (3.22)
1+¢¢

The last step follows by choosing the arbitrary function of integration such that ¢
is regular at ¢ = 0. Integrating again, the expression for patch vorticity on a sphere

is derived to be

¢ ~! _
v=un [ ] fg, ¢’ = wo log(1+0). (3.23)

3.3.2 Line Vortices on the surface of a sphere

The naive streamfunction for a point vortex on the sphere would be ¢ such that
Vi = 0(0,4;0", ¢).

The precise definition of § is perhaps no longer immediately clear, as the surface of

integration is no longer a plane. Merely taking d(6,1;6’, ¢') such that

0/7 /’ 0/’ ! D
/ 10,9050, 4:0, ¢)agag = § 107 0P € (3.24)
D 0, (0,7¢I) € D
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is inappropriate. To see this, consider the integral of the vorticity over the whole

sphere. Recalling that do = sin#dfd¢, then

/wda = /5(0, $,0',¢") sin 0dOd¢p = sin6'.

Clearly, as the sphere is not rotating and hence all spherical symmetry is present,
the integral of vorticity should have no relation to the latitude 6’ at which the vortex

is placed. We then define the delta-function on the surface of the sphere to satisfy

0/7 /’ 0’7 / D
/ 70,850, 6.0 ¢)do = § 100 €D (3.25)
p 0, @.¢)¢D

where o is the surface of the sphere, do is an area element on the sphere, and D is

some domain on the surface of the sphere.

However, consider again the integral of vorticity over the surface of the sphere. We

integrate over the infinitesimally thin volume, giving

JywdV = — /V ViypdV
= —/ V. (Vip)dV
v

= — [ V¢.ndS (3.26)
ov

= — | Vi.edsS
ov

= 0,

after using Gauss’ theorem and noting that e, and V4 are perpendicular. Hence,
the integral of vorticity must be equal to zero. Subtract, then, some function from
the expression (3.3.2), the most obvious being the constant 1/4w. A point vortex on

the surface of a sphere is therefore taken to be the solution of

Vi = 00,6,0,0) — - (3.27)

™
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Using Green’s functions,
1

P = . log(1 — cos ), (3.28)
where
cosy = cosfcos @ + sinfsind’ cos(d — ¢). (3.29)
Using (3.3) it can be shown that
2(¢ - ¢NC—¢)
1- - S v 3.30
R R3S TS 3:30)
Then a line vortex of circulation I' at the point (s has streamfunction
> I 2(C_Cs)(§_§s) >
) =——1 > L 3.31
6.0 =508 ([ s s o .

We can also use the strength of the line vortex, defined as k = I'/2w. Note that
(3.27) and (3.31) include some constant vorticity over the whole surface of the sphere.
Hence it is now apparent that the simplest example of point vorticity on the sphere
is a point vortex embedded in some region of patch vorticity. The form of the point
vortex on the sphere retrospectively justifies the use on the plane of the shielded
Rankine vortex. The fact that isolated point vortices on the sphere must be com-
bined with patch vorticity shows that the combination is not merely an artificial

construct, but is a fundamental and natural form.

3.4 Schwarz function method on the sphere

3.4.1 Adapting the Schwarz function to the surface of a sphere

Recall that the planar Schwarz function solutions take the form

w — ¢ 1 NI ‘ 1IN 7]
Hen7) = ~1 <zz —/ S'(z")dz / S'(z )dz) , 2z€D (332)
0, z ¢ D,

SO
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Note that the region D is chosen such that S(z), the Schwarz function, is meromor-

phic and has only simple poles with real residues.

The property which is of interest in forming these models, then is that the Schwarz
function cancels the patch vorticity on the boundary of the patch. An extension of

the Schwarz function is sought for vorticity distributions on the sphere.

Heuristically, this extension must cancel the expression for a patch of vorticity on
0D, and it is expected that it will then contain point vortex terms for suitable
domains. Additionally, we require d¢» = ¢:d¢ + @Zg-df = 0 on 0D, so 0D is a

streamline.

Postulate a streamfunction

- ¢ . ¢ o
peo=4 <1°g(1+<<>—/ S’ - [ ssph(c)d<>, €D

0, z ¢ D.
(3.33)

From (3.22), the patch vorticity on a sphere is

_ ¢
Ye=Ti
If Sypp(C) is defined as 0
(S
Ssp(Q) = T+ S(Q) (3.34)

then S,,,(¢) cancels the patch vorticity on 0D and satisfies diy = 9d( + ¢5d§ =0
on the boundary. Hence S, can be considered the analogue of the Schwarz function

for distributions on the surface of a sphere.

3.5 Exact Multipolar Vortices on a Sphere

It is shown in this section that the Schwarz function method as adapted for the

surface of the sphere can now be used to create Multipole solutions on the sphere,
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with an appropriate conformal map. This choice of conformal map will depend, as
in the planar case on some parameters which will be determined by the equations

which are derived to ensure stationarity.

As on the plane, singularities in Syp;, are required to only have simple poles with
real residues, for physicality. The conformal map must consequently be chosen to
satisfy this, and also ensure that the stationarity condition on the line vortices is

satisfiable.

3.5.1 Choice of conformal map

It may at first appear that the Schwarz function method of Crowdy allows us to
create vortical equilibria at will. However, in practice, there is still considerable
difficulty in choosing the conformal maps such that the stationarity condition may
be satisfied - this is the only condition left to satisfy, assuming the map chosen is a

physical one.

An initial approach might be to postulate that the conformal map used in the planar
case would also satisfy the stationarity condition on the sphere. It will be shown

that this is indeed the case, i.e.

() =R <n + ﬁ) (3.35)

is a suitable conformal map, where the unit n-circle is mapped onto the complex (-
plane, and then into the z-sphere, by the stereographic projections. The parameters

R, a, b and N, will be chosen to satisfy the stationarity condition.

It is obviously a condition of physicality that the vortex patch boundary on the
sphere should not cross itself. Due to the stereographic projection being univalent,
this implies that the projected boundary on the complex (-plane must also be uni-
valent. This can be enforced when performing numerical calculations by ensuring
the singularities outside the n unit circle do not come into contact with the unit

circle. Noting that on dD,, 1 = n71,
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w; ( ¢ S ) | < 1
e = L+C()¢@m  1+¢mSm))’ (3.36)
0, [nl > 1
becomes
(D
voo | (e - @) < e
0, In| > 1.
¢ has singularities within the |n| = 1 disc associated with the terms from the

function Sy, (n). Firstly consider the points where Spp(n) is singular. These can

occur where S(n) is singular or where

L+ C()S() =0. (3.39)
Given that . -
s = k(44w
(3.39)

N—1
= n (5 )
the singularities in S(n) occur at 7 = 0 and n = 1/a. However, Sy,;(7) is not
singular at n = 1/a, as the denominator has the same singularity. The pole at n =0
corresponds to the central line vortex, which maps to {( = 0, corresponding to the

south pole of the sphere, and those in 1 + {(1)S(n) correspond to satellite vortices.

The equation (3.38) is equivalent to the quadratic equation for n'V:

ca(a, b, R, N)n*N + ¢i(a,b, R, N)n™ + co(a,b,R,N) = 0, (3.40)

where

ca2(a,b, R, N) = R}b-a")—a
ci(a,b,R,N) = 1+a?N +R*+ R*(b—a™)? (3.41)
co(a,b, R, N) R%(b—a) —al.

The equation is quadratic in 1"V, so solutions will be evenly spread around the origin.
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Note that as R — 0, the planar solutions are retrieved, 7, = w™,., where . = 1/a
and w = ¢*™/N_ This is to be expected, as R — 0 corresponds to the patch area
approaching zero, hence the local curvature also tends to zero, and the surface is
locally planar. Note that this implies R now has some dimensional significance. On
the plane, the area of the patch is effectively irrelevant, as it could be factored out
by altering w, as no length scale was enforced on the distribution. Altering the patch
area, then, was indistinguishable after a rescaling of the vorticity. On the sphere,
however, the surface area is finite, due to the curvature of the sphere, and so a length

scale is enforced. Hence the patch area takes on a physical significance, so R must

also.

3.5.2 Stationarity of central line vortex

Suppose 1 to be near 0. Then

o) ~ it (1= 7 ) + O6P) (3.42)
and
(3~ 0w, (3.43)
n n
Hence it can be seen that
e ~ 12 (1= 2 ) + 06 (3.44)
. S(n) :
Expanding W we obtain
Sunli) ~ 2 { s L+ O0P) (3.49
while
¢
T+ (3:46)

as 7 — 0. Hence the central line vortex is stationary.

3.5.3 Stationarity of satellite vortices

The local velocity field must be expanded in Cartesian components on the stereo-

graphically projected (-plane. Near (,, a satellite point vortex, it is to be expected
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that
¢t
L+CmCnt)  ¢—G

for some real coefficients I's and 75 (u,v) in Cartesian co-ordinates on the (-plane

+ys 4. (3.47)

is given by, -
. 2wo( ¢ L'
— gy = - — —Ys+ ... 4
L sm9<1+<< (¢ T ) 349
Ll)il must be expanded and compared with the form in equation (3.47).
L+ ¢(n)C(nt)
Set G(¢) = 1+ ¢(n)¢(n~1). Firstly, note that

G"(Cs)(n — 775)2

Gln) ~ G (G =) + =y (3.49)
Then
1 1 G (11c)
~ - +... 3.50
G~ Gyl ) 2G3(ne) (350
Expanding ¢(n~!) using a Taylor series,
- 1
S = C1/me) = 5! (W/me) (0 = me) + - (3.51)
Combining equation (3.51) and equation (3.50) then
¢(/n) ¢(1/ne) Gyy(ne)C(/ne) — ¢'(1/ne)
= - - + O(n 3.52
G T Gm-m) 20Rm) Gy O B
However, an expansion in terms of c _1 C is required. This is given using the Taylor
expansion for ¢ near (.:
"
¢ = Cet (0 =ne) e+ (0= ne)* 5 + O((n = ne)”)- (3.53)
Hence
1 CI n
= =+ =+ 0(C = (o) (3.54)

n=ne (=G 2

Therefore the values of I'y and -y, can now be calculated to be

o C(l/nc)Cé
SRR (359
¢(1/ns) (Cnn(ns) _ Gy (ns) _ Gn(1/ns) >

T T Gy \2G,(ns) ~ 2Gy(ns)  2C(1/ny)

(3.56)
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The stationarity condition requires that the non-self-induced terms of the Cartesian
velocity u — tv are zero. Hence the point vortex strengths must be found and
subtracted from the total expression. It has been shown in equation (3.28) that the

expression for a point vortex on the sphere of strength « is

:—El ( (C_gs)(f_fs_) > 3.57
=3 a0+ ad) (3:57)
This implies that
o 2 k(1 ¢
“”_w”_@%“_sinei(g—gs B 1+g§>' (3.38)

Comparing this with equation (3.48), the point vortex at (s has strength
ks = —2wol's. (3.59)

The stationarity condition is thus [(u —iv) — (up —ivp)]c, ¢, = 0, which is equivalent
to the equation B
(1 B Fs)Cs

A (360

where I'y, 75 and (, are functions of a, b, R and N.

3.6 Properties of the solutions

Properties of the solutions are investigated for each N by varying the point vortex
latitude, 6y and patch area A. These parameters are chosen because they have a
physical meaning, as opposed to a and R, which are not easily interpreted physically.
Note that the solutions have become a two parameter family of solutions, compared
with the one parameter family on the plane. This is a result of the extra length
scale introduced by the finite area of the sphere. These two quantities specify the
solution exactly and are related to the parameters a, b and R by a set of equations.
Firstly, the solutions must indeed have point vortices at the required latitude, i.e.
Cs(ns) = cot(6p/2), where 1 is the value obtained by solving (3.40). The solution
must also be stationary, which is enforced by (3.60). The third equation requires

the area to be fixed, and is derived in Appendix A.
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— oy = 0 (3.61)

where, as before,

o R%*(1 — ba=)
© 14+ R2(1—baN)’

Solutions to these equations may then be plotted on the sphere, using the equations

0o =2cot H(|¢(n)])
¢ = arg(¢(n))

for |n| = 1. This produces boundary points in spherical polar coordinates, and then

(3.62)

the equations

x = sinf cos ¢
y = sinfsin ¢ (3.63)
z =cosf

are used to convert to Cartesian coordinates. This is also performed with satellite

vortex positions, and then plotted on a sphere using MATLAB.

3.7 Solution Regions

Exact solutions of this form are found for N > 2. The parameter N fixes the number
of satellite line vortices. Hence solutiouns are found for tripolar and greater multipole
distributions. For fixed 6y and NV, increasing a corresponds to increasing area. We

thus plot area rather than a as a has no physical significance.
The total strength of the patch vortex is also defined, as I') = wy.A, where A is area.

For the following calculations, we use wy = 1 and renormalise the point vortex

strength with respect to I'). For each IV, solutions exist as A — 4, corresponding
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to a — oo. This corresponds to the sphere being completely covered by patch
vorticity, with a superposed configuration of line vortices. In [19] Morikawa and
Swenson consider the stability of a ring of point vortices equally spaced around a
central line vortex on the plane. Recalling that on the sphere, patch vorticity is
integral to point vortices, it becomes apparent that the limiting case A — 47 is
the equivalent of the planar Morikawa and Swenson distribution. The problem then
has no patch boundary, and hence reduces to a point vortex problem. In [5], this
point vortex problem is considered. The configuration rotates in general. Values of
[y =T§(0) and I's =I'}(0), can be chosen such that the configuration is stationary
however. This must correspond to the limit of the spherical multipolar case. This

provides a useful check on the numerics of the multipolar case.

On the plane, for high a the patch boundary is essentially circular. As ¢ — 1, the
patch becomes more lobed and eventually cusps, hence the solutions break down.
This provides some intuition abut the behaviour of the patch on the sphere. For fixed
0y, the area A varies monotonically with a. For large a, the patch covers the entire
sphere, occupying an area of 4w. We might expect that as a decreases, and hence the
patch area decreases from 4w, a small circular region of irrotational flow will appear
at the north pole of the sphere. As A decreases further, this region will become
more distorted until the boundary becomes cusped, and the solutions are no longer
admissible. Also, as §y — 7 and A — 0, R — 0 the vortex structure will occupy
only a small region around the south pole of the sphere, and be locally planar. The
distribution will therefore be qualitatively identical to the planar solution. It can
be seen from Fig. 3.2 that in the point vortex problem for high 6y, the central line
vortex and the satellite vortices are of the same, positive strength as the uniform
background vorticity. As the satellites move further up the sphere, the strength
of the central point vortex becomes negative, passing through zero as it does so.
The zero of I'. occurs when the satellite point vortices are distributed around the

equator.

For high A, the multipolar solutions must be expected to behave similarly. Figures
r r

(3.3) and (3.4) show F—C and = against A, the patch area for various choices of
P P

0p. These quantities are important in the dynamics of the problem because they

measure the point vortex strength relative to the background vorticity.
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15
0y (in radians)

Fig. 3.2: Point vortex arrays - '} and I'} against latitudinal angle 6 (in radians) for
stationary point vortex arrays on the sphere, with NV = 3. The graphs intersect at
Oy = 05" = 70.5° (to 3 significant figures).
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Fig. 3.3: Full multipolar solutions - Renormalized point vortex strengths ; (solid

lines) and 1= (dashed lines) against vortex patch area for N = 3 and 6y = 160°, 135°
and 90°. Tﬂe values at patch area equal to 47 correspond to those given in Figure
3.2 for the point vortex arrays.
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Fig. 3.4: Full multipolar solutions - Renormalized point vortex strengths % (solid

lines) and E—; (dashed lines) against vortex patch area for N = 3 and 6y =

90°,70.5°(= Ogrit) and 68.7°. The values at patch area equal to 4n correspond
to those given in Figure 2.

3.7.1 Critical a

For any given 6, there exists some a.;; and hence A.,;; below which it is not possible
to find solutions. Tending to this value, the patch boundary becomes cusped, as in
the planar case. The neighbourhood of the cuspidal points is of course locally planar,
so this is in agreement with the analysis of [16], who showed that in limiting V-states
on the plane, any points of non-analyticity must be either right-angled corners or

cusps.

Near these acpi, with 0y = 7 the graphs (3.3) and (3.4) are qualitatively similar
to the planar case. This is to be expected, as the structure is extremely close to
the south pole, and hence nearly planar. However, as 6y increases and the satellite
point vortices move towards the north pole, there is a point at which the quantity

r r
F—C changes from positive to negative. At 6y = 0. = 70.5°, the value of I‘_c
P P

equals F—: when the patch area is close to 4w, so all the point vortices have the
same strength. This latitude represents the point where the central point vortex
matches the satellite point vortices in cancelling the patch vorticity. Fig. 3.5 shows
a set of solutions, in both orthographic and stereographic projections, with 8 = 160°

and varying patch area. The areas range from A = 0.868, which is close to the
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Fig. 3.5: Multipolar vortices with N = 3 satellites at latitude 6y = 160° for different
vortex patch areas A = 0.868 (close to cusped configuration), 1.322, 5.640 and
11.805 (close to point-vortex case). Each solution is shown in orthographic projection
on the left and in stereographic projection on the right. The corresponding point
vortex strengths (I'.,'s) are given respectively by (0.001,0.022), (—0.013,0.039),

(—0.189,0.213) and (—0.445,0.462).
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Fig. 3.6: Orthographic projection of multipolar vortices with N = 3 satellites at
latitude 6y = 135° for different vortex patch areas A = 4.106, 7.476 and 10.544
(correct to 3 decimal places). The corresponding point vortex strengths (I'c,I's) are
given respectively by (0.007,0.107), (—0.133,0.243) and (—0.281,0.373).

limiting area, to A = 11.805, where the patch covers almost the entire sphere, which

corresponds to the point vortex case.

Fig. 3.6 shows N = 3, 0y = 135° and Fig.3.7 shows N = 3, 6y = 90°. Figure
3.8 shows the tripolar N = 2 solutions, with 6y = 160°, while Fig. 3.9 shows the

quadrupolar N = 4 solutions.
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Fig. 3.7: Orthographic projection of multipolar vortices with N = 3 satellites at
latitude 6y = 90° for different vortex patch areas A = 11.107 and 12.271. The
corresponding point vortex strengths (I'¢, I') are given respectively by (0.110,0.258)
and (0.024,0.318).
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Fig. 3.8: Orthographic projection of multipolar vortices with N = 2 satellites at
latitude 6y = 160° for vortex patch areas A = 0.846,3.272 and 11.007. The corre-
sponding point vortex strengths (I'c,T's) are given respectively by (—0.001,0.034),

(—0.056,0.159) and (—0.275,0.575).
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Fig. 3.9: Orthographic projection of multipolar vortices with N = 4 satellites at lati-

tude 6y = 160° for vortex patch areas A = 0.838 and 3.239. The corresponding point
vortex strengths (I'¢, I') are given respectively by (0.003,0.016) and (—0.111, 0.092).
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CHAPTERA4

Linear stability analysis on the

surface of a sphere

We wish to examine the linear stability of the multipolar solutions from Chapter 3.
Before doing so, the stability of limits of these solutions will be examined, with the
aim of providing checks for the stability of the full multipolar solutions. There are
two limits which are of interest, namely the limit in which the multipole behaves
as an array of point vortices and the limit in which the multipole behaves as a
shielded Rankine vortex. The point vortex limit is expected to be reached as the
area of the sphere which is covered by the patch tends to 4w. Here, the patch
boundary is sufficiently distant, and the region in which w = 0 is sufficiently small
that we can assume constant background vorticity on the sphere. In this case, we
are examining the spherical analogue of the Morikawa and Swenson model on the
plane, with angular velocity @ = 0 (see Fig. 4.1). As 6y, the colatitude of the
ring of vortices, decreases from 6y = m, curvature effects play a part in the stability
behaviour. Similarly, in the case where the patch boundary is sufficiently far from
the point vortices and the point vortices are close enough together, we can assume
the Multipolar solutions approximate the shielded Rankine vortex. This assumes
the point vortices appear to the boundary as one single point vortex, shielded by

the southern vortex patch. The stability of this distribution will also be examined.

We may also expect some parameter regimes where multipolar solutions have the
boundary behaving as the boundary of a shielded Rankine vortex, and the point
vortices behaving like vortices in constant background vorticity, as in the Morikawa

and Swenson solutions.

The stability of the full multipolar equilibria will then be examined. The method-

ology of §2.5 will be adopted, although the actual equations of motion will contain

76
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Fig. 4.1: Diagram of Morikawa and Swenson distribution on the surface of a sphere.
The crosses mark vortex positions

curvature terms in the spherical case. Results of the stability analysis will be ex-
pected to match the limits detailed above. In addition, the eigenmodes obtained
will be expected to display similar general properties to those in §2.6, namely a lim-
ited number of modes with non-zero area perturbation, and no modes of non-zero

angular momentum perturbation.

4.1 Generalisation of the results of Morikawa and Swen-

son to a sphere

4.1.1 Background

The motion of point vortices has long been used as a model of geophysical and
oceanographical phenomena. In 1883, J. J. Thompson presented his work on the
stability of a ring of N point vortices of strength I', corotating with angular velocity

2 [32]. Thompson showed that, independent of I' this configuration is linearly stable
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Table 4.1: Range of linear stability, with I'y = 1, from [19]

N  Lower stability limit (I'y) Upper stability limit(I'p)
2 —00 —1.25
3 —00 1
4 -0.5 2.25
) —-0.5 4
6 —0.25 6.25
7 0 9
8 0.5 12.25
9 1 16

for N < 7, neutrally stable for N = 7 and unstable for N > 7.

Almost a hundred years later, in 1970, Morikawa and Swenson considered the linear
stability of the case with an added central line vortex [19]. They showed that the
linear stability is dependant on the ratio of the central line vortex strength to the
satellite vortex strength. Fixing (without loss of generality) the circulation of the
satellite line vortices to unity, Table 4.1 of stability regions is obtained. Note the
case I'g = 0 corresponds to the Thompson case, and falls in the stable regions for

n = 2,3,4,5,6, on the stability boundary for n = 7 and outside for n = 8.

D. G. Dritschel has examined the stability of similarly distributed configurations
of finite area patches of vorticity [33]. The results of this were compared with the
results of [32] and [19], and it was shown that provided the patches are sufficiently
separated, the results corroborate. If the patches are closer together, however, they
prove less stable than the point vortex model, the mechanism of instability being

derived from boundary deformation.

By applying the results of chapter 3, it is relatively straight forward to generalise
the results of Morikawa and Swenson to the sphere. Indeed, Thompson’s work has
already been generalised to the sphere by Polvani and Dritschel [28]. Table 4.2
summarizes their results. The non-linear stability of this case has been investigated
by Boatto and Cabral [34]. It was found in [34] that the region of non-linear stability
for this problem coincides with the region of linear stability, except on the equator,

where their method breaks down.

The linear stability of the generalisation of the Morikawa and Swenson case on the
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Table 4.2: Stability ranges, between which a vortex ring on a non-rotating sphere
becomes linearly unstable, from [28]

N  Unstable 6y range, in degrees Unstable 0y range, in radians
2 Always stable
3 Always stable
4 (54.736,125.2640) (0.9553,2.1863)
) (45,135) (w/4,3m/4)
6 (26.506, 153.4340) (0.4637,2.6779)
7 (0,180) (0, pi)
> 7 Always unstable

sphere has not previously been considered however. The equations of linear stability
are derived below, and solved numerically to give the stability regions in terms of the
ratio I's/I'¢, the circulations of the satellite vortices and central vortex, and angle

of colatitude 6y of the satellite vortices.

As 0y — 0, the ring of vortices will become closer together. This will then appear to
the central line vortex as a single line vortex, with strength Z;Vﬂ I';. Clearly on a
non-rotating sphere, any pair of vortices for which a joining line must pass through
the centre of the sphere induce no velocity in each other. To see this, consider point
vortices on the equator at ( = +1. This configuration gives a velocity field in polar

coordinates of

oy R W A 1 ¢
e 27rsin00(C—1 1+gg> 27rsin00(<+1 1+g<>' (4.1)

Evaluating at the two line vortices , we find that the non-self-induced velocity is zero.

The sphere is non-rotating, so this result holds for any pair placed diametrically
opposite each other. Hence the point vortex problem decouples into the stability of
an isolated vortex at the south pole and an isolated ring of N corotating vortices
at the north pole. As an isolated vortex is trivially stable, the stability in this limit

will be identical to that of the Thompson ring on the plane.

As 0y — 0, it is to be expected that the stability region of this distribution will
be identical to those of Thompson. Also, for I'y = 0, the results of Polvani and
Dritschel [28] must be retrieved. Similarly, as 6y — m, the stability results should

become the same as those of Morikawa and Swenson.

© 2004 University of London Dr. Martin Cloke



4.2 Formulation of the problem 80

4.2 Formulation of the problem

4.2.1 Base state

From §3.3, the stream function for a ring of N point vortices with colatitude 6y with
circulation I'y arranged around a point vortex at the south pole of circulation I'. is

given by

N ‘ s B e
I, 3" log (2(@ — G Cg(t))) _ e g <2(C ¢e()(C Cc(t))> |

(1+¢O)(1+¢i¢y) A (14 ¢O) (1 + Cele)

(4.2)
The positions of the pre-images of vortices on the complex plane shall be denoted
Ck(t) for the vortices arranged in a ring. These will be referred to as the satellite
vortices, and will co-rotate at constant colatitude with a constant angular velocity

Q2. The position of the central line vortex in the complex plane will be denoted (.(t).

Hence the derivative is given by

L 1 ¢ r.(1 ¢
¢<__Ez(c—cj(t>_1+c5)_ﬂ<2_1+<§>’ (4.3)

J=1

where (; = r\, r = cot(0p/2) and A = e*™/N. We wish to move to the co-rotating

frame, and hence must find the angular velocity of the structure. From (3.16)

<y, (4.4)

Uy — U = ——
¢ sin 6

then

N — —
r 1 r 1
Uy — g = — C,S > L, C_C _o_¢ ), (4.5)
271's1n9j:1 ¢—¢ 14+¢C 2rsind \¢ 1+(C
Consider the angular velocity of the satellite point vortex on the real axis. Hence

evaluating the non-self induced part of (4.5) at ¢ = r yields

N-1
: s 1 r rl; 1 r
- =" - - - ——]. (46
Ugp — LU 27 sin 0 ]z_:l (r—rwﬂ 1_1_7«2) 21 sin 0y (7“ 1-1-7“2) (4.6)
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N-1
1
Since ]2_; Y (N —1)/2, it can be seen that
, ['s(N — 1) cos by r. 1
_ = — 4.7
e — e 47 sin B 27 sin by 1+ 12 4.7
[s(N — 1) cos by I, . 9
= — 00/2). 4.8
47 sin 6y 27 sin @ sin”(6o/2) (48)

The RHS is purely real, and hence uy = 0. The angular velocity is given by {2 =

g/ sin g, hence

Ls(N — 1) cos by r,

2

0= ) - .
47 sin” 6y 47 sin” 6y

(1 — cosbp). (4.9)

We now need to find an expression for solid body rotation with angular velocity Q
on the sphere. If the whole sphere is solid body rotation with angular velocity 2,

the component of velocity ug will be equal to zero.

Ugp
— = 4.10
sin @ ( )

Aplying to (3.16), we obtain
ug  2C¢ _q

sinf  sin?0 (4.11)
Hence,
Yo = %sinQ 0
2 (4.12)
(1+¢0)?

is the required expression for solid body rotation on a sphere.

Then considering again the vortex array (4.3) and transforming to the frame coro-
tating with the ring of vortices, 9 in Cartesian coordinates on the projected ¢-plane

is given by

_ Dy 1 C>_E(l_ C)_ 207
Yo = 4nj:1<C—Cj(t) 1+¢C) ar \¢ 1+ TEN%E (4.13)

The velocity field is then given by

N

B PRy 1< o eme (Ll ¢
U “)_871'(1+<C)j2_;<<—<j(t) 1—|—gf>+87r(1+g<) (C 1+CE>+
o 0
T
(4.14)
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4.2.2 Linear Stability

We proceed to analyse the linear stability on the sphere, following broadly the
methods used in §2.5. The base state distribution of the line vortices (; in the co-
rotating frame is perturbed with form (; = (ox +€f(t), where (g is the unperturbed
position on the k-th line vortex, and ef(t) is some (infinitesimal) perturbation to
this position. f(t) is taken to be in the form f(¢) = (re’t. Applying the non-self-
induction hypothesis, the differential equation

% =U - iV|Ck (4.15)

is obtained. Here, U — iV/| ¢, 18 the non-self-induced velocity field at the location of

d
the point vortex (i, while % is the velocity of the point vortex (. The non-self-

induced velocity for a vortex with pre-image (; on the (-plane is given by

Y| o 1 G
U—iV = (u— 1) 87T(1+CC) (C—Cl 1+Cl§l>’ (4.16)

where I'; is the strength of the point vortex.

Substituting equation (4.14) into (4.15), and then expanding to order e provides the

following equation for motion of the satellite vortices:

LT al o [+ GoCr)®] | 5 [22 (14 CroCro)?
7k _Tj:%;k {C] [ (ko — Gjo)? ] o [Cko — (Gro — $jo)? *

1 Cok (Coj — Cro) ]

2Cko(1 + CkOCkO)(CkO — G N (Coj — Cor) (1 + CkoCro)

+C [Ckofko — (1 + CroCro) + 2Cko(1 + CkOEkO)(CkO i Cio (4.17)

Gok (Coj — Cro) ] } ik [A <(1 + Ck0§k0)2>
(Coj — Cok) (1 + CroCro) i & "
Cko

~ —_ - 2 - —
Ck (C}%o _ (L Giotko)” + 2(1 + Ckolro) — — 2C1§o>

C]%o Cko

+Ck (—CkoCro + (L + Ckofko))] — QG

Similarly, the central line vortex motion must satisfy the equation:
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: N _
aéc = _5 _2950 + = Z(Eo + _2 ) . (418)

4.2.3 Numerical Method and Results

This linear stability problem is solved numerically by considering the set of unknowns

{ék|k - 0...N} , {Ek|k - 0...N} .

Putting
XZ{ fo 51 fN—l CAN 50 51 EN—I EN } (4.19)

We hence have an eigenvalue problem,

ox = Ax.

Suppose the eigenvalues are {o};k = 1...2N +2}. Then the vortex array is linearly
stable if max(R[ox]) < 0. However, as for the planar case, our system is Hamiltonian,
so the eigenvalues occur in quartets symmetric about the real and complex axis.
Hence we require that all the real parts are identically zero for stability. A MATLAB
code was written to numerically calculate the matrix A, and determine the stability

of these structures.

4.2.4 Results

Results are presented for n = 2,3,...,8. Before commenting on specific results, the
following general observations should be noted. Firstly, as 8p — w, and hence the
vortex distribution becomes locally planar, the stability regions are identical to the
planar Morikawa and Swenson results (see Table 4.1 and [19]). Whether the most
unstable line vortex is the central line vortex or satellite line vortices is found to
correspond with the Morikawa and Swenson results, for all n and I'./I';. Morikawa

and Swenson found that for regions of instability in the I'./T's plane above the stable

© 2004 University of London Dr. Martin Cloke



4.2 Formulation of the problem 84

region, the central line vortex is the mechanism of instability. For unstable regions
below the region of stability, satellite vortices (called circle vortices in [19]) are the
instability mechanism. Secondly, as 8y — 0, the structure is stable for n = 2...6,
n = 7 is on the border of stability and all n > 7 are unstable. Hence the planar
results of Thompson are recovered, again as expected. Thirdly, the distributions for
which 'y = 0 are equivalent to a ring of vortices with no central vortex, the same
as Thompson’s distribution on the sphere, as examined by Polvani and Dritschel in
[28]. The case I'y is clearly dynamically identical to the Polvani and Dritschel case.
However, there is a “tracer” present at the position of the central point vortex. As
the behaviour of this tracer is included in the stability code, there is no a priori basis
for assuming that the stability for I'g should be the same as Polvani and Dritschel, or
indeed for the stability obtained to be symmetric about the equator. Any break in
symmetry would of course be expected to be associated with the central line vortex
tracer, as there will be no dynamical effect on the satellite vortices. In practice, the
only case with stability results differing from [28] is n = 2, which is found to be
stable by Polvani and Dritschel, but unstable for various 6y here. The instability is
indeed in the central line vortex mode. As the degree of symmetry increases, n > 3,

the I'. = 0 results exactly correspond to that of Polvani and Dritschel.

For each n, a contour plot of the maximum real part of Ay, with I'./T's against the
angle 6y. The dashed line indicates the values in the {6y,['./I's} plane for which
Q = 0, i.e. the vortex ring is not rotating. This is shown for comparison with
the stability of the multipolar vortices on a sphere, which will be examined in §4.4.
These structures are non-rotating, and in the limit where the patch area tends to 4,
the multipole will approach the Morikawa and Swenson distribution. In addition,
the stability for I'g = 0 is shown, which corresponds to no central line vortex in the

distribution.

We consider the stability behaviour for three distinct cases: n = 2,3, n = 4,5,6,

n="78.
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Fig. 4.2: Contour plot of maximum real part of eigenvalues for n = 2. Shaded region
is unstable.

10 TT

0.5 1 Jgo 2 25 3

Stability of n =2 and n =3

Figures 4.2 and 4.4 show contour plots of the largest real part of the eigenvalues
of the n = 2 and n = 3 equilibria. The (I'./I's, 6y)-plane contains two regions of
instability. One exists with I'./I's > 0 and 6y above 0y ~ 2, for n = 3, 6y > 1.2 for
n = 2. For n = 2, plots are shown of along the solutions with I'. = 0 and 2 = 0 (Fig.
4.3). These plots are not shown for n = 3 as they are identically zero. For 6y above
0y ~ 2 the central line vortex is unstable and this region maintains approximately
the same upper and lower stability boundaries as the planar point vortex model.
The other region is in I';/T's < 0. This is also unstable due to central line vortex
effects. Note that for n = 3, I'. = 0, the case with no central line vortex, the results

correspond exactly to the findings of [28]. Specifically, the distribution is stable.

Stability of n =4, n=5and n=6

The cases n = 4,5,6 have qualitatively different stability behaviour from the lower
n. The contour plots are presented in Figs. 4.5, 4.7 and 4.9. Plots along I'. = 0 and
2 = 0 are shown in Figs. 4.6, 4.8 and 4.10. There is also a progressive alteration
of stability behaviour as n increases through this set. There is an area of satellite

vortex instability which for n = 4 occupies mainly the area with I'. /T"; < 0, crossing
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Fig. 4.3: Maximum unstable eigenvalues along the 2 = 0 curve (left hand plot) and

the I'c = 0 curve (right hand plot)

, for n = 2.
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Fig. 4.5: Contour plots of maximum real part of eigenvalues for n = 4. Shaded
region is unstable.

10

into the region I'./I'; > 0 for some 6y values. For n = 5, n = 6, this region
extends, superposing further over I'./T's > 0. In addition, for I'./T's > 0, 6y above
0y ~ 2, of central line vortex instability. Note that for 8y — 7 , for all values of
n, in the 6./04 plane there is a lower region of instability caused by satellite vortex
instability and a higher region of central line vortex instability, as observed in [19].
It is instructive to compare the stability with that of the distribution with no central
line vortex, I'. = 0. As 6y — 0, the distribution mimics the stability of the planar
Thompson distribution, due the equations decoupling. For I'. /Ty < 0, i.e. different
sign circulations of satellite and central point vortices, the vortex distribution is
largely unstable for 6y greater than some value dependant on n. For I'./I"s > 0, the
distribution is generally stable, except for the high 6y central line vortex instabilities,
and possibly some satellite vortex instabilities. Uniformly, though, if the central line
vortex is of opposite sign to the ring of vortices, it is a destabilising influence, whereas
for I'./T's > 0, it is a stabilising influence. However, as n increases. the magnitude
of I'. needed to enforce this stability increases. For example, with n = 6, as 6
decreases from 0y = 7 to 6y = 0.5, an increasingly positive I'./I's is required to
enforce this stability, due to the effect of the central line vortex being shielded by

the curvature of the sphere.
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Fig. 4.6: Maximum unstable eigenvalues along the 2 = 0 curve (left hand plot) and
the I'c = 0 curve (right hand plot), for n = 4.
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Fig. 4.8: Maximum eigenvalues along the 2 = 0 curve (left hand plot) and the
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Fig. 4.9: Contour plots of maximum real part of eigenvalues for n = 6. Shaded
region is unstable.
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Fig. 4.11: Contour plots of maximum real part of eigenvalues for n =7
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Stability of n > 7

Contour plot are shown for n = 7 and n = 8 in Fig. 4.11 and Fig. 4.14, and are
indicative of results with higher n. For these n values, the stability behaviour is
dominated by the satellite line vortex instability, which, as 8y — 0 covers all values
of I'./I's. This is to be expected, as in the region 6y — 0, the equations decouple to
a isolated point vortex and a ring of point vortices near the north pole of the sphere.
As, for n > 7, this is unstable the stabilising effect of the central line vortex only
affects the stability of the vortex ring for high I'./I';. For I'./TI's > 0, as 6y — ,
there is still a region of central line vortex instability. As with the other n values,
as 0y — m, the unstable values of I';/T's above the stable region manifest central
line vortex instabilities while I'./T's below the stable region exhibit satellite vortex
instabilities. The I'. case is unstable, but for all colatitudes except 8y = 0, can be
stabilised for sufficiently positive I'./T's. As 6y — 0, I'./T's must become extremely

large for stability to be achieved.

General remarks
The most interesting region of this stability analysis occurs for non-extreme values

of 6p. The 6y — 0 and 6y — 7 values correspond to planar results, whereas non-

extreme values show the effect of curvature on the stability. For example, for n > 7,
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Fig. 4.12: Maximum eigenvalues along the Q = 0 curve (left hand plot), for n = 7.
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4.3 Linear stability of a shielded Rankine vortex on the sphere 92

the satellite ring with no central line vortex is unstable for all y. For stability of the
Morikawa and Swenson type case, the central line vortex must stabilise the satellite
ring, without being unstable itself. It can be seen from Fig. 4.11 and Fig. 4.14
that as 0y decreases from m, the strength of the central line vortex which enforces
stationarity increases. This is explicable physically, as the curvature of the sphere is
"shielding” the satellite vortices from the stabilising effect of the central line vortex.
Hence, for stability to be enforced as the curvature effects increase, the circulation

of the central line vortex must increase,

Compared to the planar Morikawa and Swenson distribution, the sphericaln = 4,5, 6
cases show that the central line vortex is more stable as the ring of satellite vortices
moves up the sphere. In this case, the curvature of the surface is a stabilising effect.
The satellite ring is found to be unstable for I';/T's less than some value x(6p), a
function of 6y. This value x(6y) is equal or greater than the planar value x(r),
until some value 6*(n). For 6y < 6*(n) x(6y) decreases rapidly. 6*(n) is found to
be close to the value at which the Thompson ring becomes stable. Hence as the
satellite ring tends towards the north pole, the stabilising effects of the central line
vortex become shielded. So the central line vortex must be increasingly powerful
to stabilise a ring which is intrinsically unstable. If the ring is intrinsically stable,
however, the stabilising effect of the central line vortex is irrelevant, and all values

of E—Z are stable.

With the lower symmetry of n = 2, n = 3, it is found that when near the equator,

the satellite ring causes an instability in the central line vortex.

4.3 Linear stability of a shielded Rankine vortex on the

sphere

4.3.1 Introduction

Considering again the full multipolar results, we are interested in the limit in which

the patch boundary is far from the point vortices, which are themselves close to-
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T

Fig. 4.15: Diagram of shielded Rankine vortex on the surface of a sphere. The region
beneath the angle 6y is a patch of vorticity with strength w,, around a line vortex
with circulation I' at the south pole.

gether. If the patch boundary is close to circular, then the boundary and point
vortices might be expected to interact as if the array of point vortices were replaced
with a single point vortex of strength Zj\;l [';. In this case, we expect that modelling

a single point vortex embedded in a patch of uniform vorticity will be instructive.

This is limit is clearly the spherical equivalent of a shielded Rankine vortex. We
shall model a patch of constant vorticity ws on the sphere in which a line vortex of
strength I' is embedded at the south pole. This patch shall extend to a colatitude
0y, above which the fluid shall be irrotational (see Fig. 4.3.1). The stability of
this structure has not previously been investigated, and hence the next section will

present its linear stability.
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4.3.2 Formulation

Consider the vortex distribution given by

Y wsé

E”+ 1%—(57 C(El)

P = (4.20)
A
ZW C ng,

on the complex plane, where D = {((n); |n| < 1}, {(n) = Rn and R = cot(6y/2). We
are here introducing a map which takes a unit circle in the n-plane to some circular
domain in the (-plane. The (-plane is then itself mapped on to the surface of the
sphere using a stereographic projection. A is to be chosen so the velocity field is

continuous, and hence pressure is continuous. From (3.17),

u—iv = —%(1+C§)2¢§ (4.21)

provides the velocity field, so for this distribution,

i =2 )Y wsg
—5(1—1-(() {Z+1+C§}’ ¢eD,
u— v = (4.22)
i(l —)Q{A} D
3 +¢¢ Ty ¢¢D.

Equivalent to (4.20) is the expression for vorticity

00 —m, ) +ws, 0 <0y,
we{ POV s ’ (4.23)

0, 0> 0.

Recalling that the integral of vorticity over the surface of the sphere must equal

zero, then

27 0o
/ / (46(8, ,0',¢') + ws) sin 8d0de = 0. (4.24)
¢

=0 JO=n
Hence

v = —wg(cos by + 1). (4.25)
This can be expressed in terms of the quantity R = cot(6y/2) as
wsR?

V=T (4.26)
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Applying continuity of (4.22),

ws R?
A =
1+ R? +

weRR? weR? (4.27)

1+R2 1+ R2
= 0.

Hence the flow on the northern region of the sphere is identically zero, and the base

velocity field is given by

RS
tarcp{Te ) cen
u—iv = (4.28)

0, ¢¢D,

We wish to examine the behaviour of this distribution under infinitesimal perturba-

tions.

4.3.3 Linear stability

The equilibrium (4.28) is more complex than the Morikawa and Swenson type point
vortex model (4.14), as it consists of a patch of constant vorticity as well as a point
vortex. While the equations for motion of point vortices can be written as a finite
system of O.D.E.s, the motion of the patch is specified by its boundary [13]. This
requires am infinite dimensional system of equations and possibly the solution of a
Riemann-Hilbert problem. However, as with the planar shielded Rankine vortex,
the Plemelj equations will not be required to solve the Riemann-Hilbert problem,
as the geometry is quite straightforward. Hence we follow the methodology of §2.5,
with respect to point vortex to patch boundary interactions. We aim again to obtain
a eigenvalue problem, Ax = ox. Specifically we perturb the central point vortex
position on the complex plane from its base state value of .y to the point (. =
Ceo + Efc(t). The base state conformal map from the n-plane to the (-plane will be
perturbed from Co(n) = By to C(n) = Co(n)+eC(n,2), where C(,8) = Y50 | ey,
The patch boundary, 0D = {((n);|n| < 1} is hence also perturbed. Note that due

to the simple geometry of this case, we expect the modes of QA“ (n,t) to decouple, as
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in the planar case §2.4.1. Hence we try the ansatz g:(n,t) = a,enin", for n € N.
Continuity of pressure must be enforced across the boundary, which will be achieved
by enforcing continuity of velocity. Also both the patch boundary and the central line
vortex must move with the local flow. Continuity of velocity will yield a Riemann-
Hilbert problem, while the movement of the patch boundary and point vortices will

result in a matrix problem, the eigenvalues of which will provide the linear stability.

Riemann-Hilbert problem

We now substitute ¢() = (o(n) + eC(n,t) into (4.28). As in §2.4.1, Helmholtz’s
law requires that the circulation of the vortex at (. must remain constant. Then

considering v, we obtain

(o Co(1/n) + (o1, 1) N
L+ Co(mGo(L/n) + oS (L /n,t) + ¢ )oo(L/m) ) < 1
e = 4 m + F(n,t), (4.29)
L G(n,1), In| > 1.

Here, F(((n),t) and G(C(n),t) are functions analytic inside and outside the patch

respectively. As they are introduced by the perturbation, there are no O(1) terms.

Equating on the boundary, ¢ € 0D, to ensure continuity of velocity,

F(C(m), ) — CCn),t) = —ws Gty

L+ Colm (L) + Co(mEL/me) + Ln 03o(L/n)
_r
Coln) + ealt)

(4.30)

This is then a Riemann-Hilbert problem. Substituting for ws from (4.26) and ex-
panding to O(e),

to,,—n> to, n—2~ to
- _eve’n "an | eve’n" 4, eye'i

F(C(n)vt) - G(C(n)vt) - R2(1 +R2) + R2(1 +R2) B R2772

(4.31)

for |n| = 1. Is it straight forwards in this case to split up the RHS. of (4.31) into

parts analytic inside and outside D = {{(n) : n < 1}. This gives
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to n—2& to, n—2x

. eye’n n Ewse "N Ay

Ficen.1) = ) “armp 4P

R 676tg77_nan G’Yetgﬁc

G(¢(n),t) = RA+R) R (4.33)
_ewsewn_”én ewsel7h,.

A+ R Ot e (4.34)

4.3.4 Kinematic Conditions

We require that the boundary moves with the local flow. The kinematic boundary

condition is therefore given by

Re [(¢y| = Re [(u = )Gyl (4.35)
on ¢ € 0D.
Then using (3.17),
iin = [0 B0+ Gl D)o + (1+ R+ (4.36)

for ((n) € 0D. Either the inner or outer form of ¢ can be used, as they are equal

on the boundary. Using the outer form,

and
P = G(C(n),1)
(4.38)
_ o eyen "an  eye'ie
RX(1+R?)  R2p?
Then
_ i pto 1 2 —2—n(__ 2771 1 2 nAC
i — i = —tee”(L+ ROy~ " (—n"an + (1 + %) 77)+0(62) (4.39)

2R?

© 2004 University of London Dr. Martin Cloke



4.3 Linear stability of a shielded Rankine vortex on the sphere 98

on the boundary. Substituting into (4.35) and equating positive and negative powers

of n,
iv(1 + R?) . X
WD) G~ 1+ B, n=2
oCy, = (4.40)
(1 2).
%an, n > 2.

In terms of ws; we can hence write this as

W ,~ N
_75( n_(1+R2)770)7 n =2,
oC, = (4.41)
—%én, n > 2.

4.3.5 Central line vortex motion

Applying the non-self-induction condition to the central line vortex, we obtain the

equation -
G,
dt

where U — 4V in the non-self-induced local velocity. The form of a point vortex on

= (U =iV)l¢=c., (4.42)

the sphere at point { = (; with circulation I'; is given by

ay e 1 G

—(1+¢¢) ( - — . (4.43)
8 C=¢  14+G¢

Noting that (4.28) has a point vortex of circulation 47y at the origin, then

U — 1 = —

. . 'L"Y N2 1 C
U—-iV = |[(u—1w)+ —(1+(¢ < - _>]
e A VT wrire | J
(4.44)
Y ) o a
= pppte— 5+ COPF(C(n), )] .-
Substituting from (4.32), the relation
V. Ya2 _ 9
or2 T 2R(1+R?)
ol = (4.45)
%éc, n> 2,
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is obtained. In terms of wy this gives

Wy = 1 WsQo

_ z =9
i+t aar R "
oa. = (4.46)
W -
s 2.
21+ R%) " "

Note that both the equations (4.45) and (4.40) decouple for n > 2, so only the
elliptic, n = 2, modes interact between the boundary and line vortex. This is

analogous to the planar case (see (2.63) and (2.61).

Eigenvalue problem

An eigenvalue problem Ax = ox can hence be formed. Note that equations (4.40)
and (4.45) are seemingly singular as R — 0. However, equation (4.26) shows that
v — 0 like R? as R — 0, and hence (4.40) and (4.45) are regular for all R. For
n = 2, the matrix equation is given by,

iws iws(1 + R?)

- 2 2 -
a a

ol "= " (4.47)
Ce — W W Ce

21+ R%)?2  2(1+ R?)

and for n > 2,

2o _ 2 0 2o
a a
ol "= 2 iw " (4.48)
. 0 s ¢
Ce 31+ 1?) ¢
Hence we obtain the eigenvalues
—iwsR?
st -9
Vi)
Op = (4.49)

W Wy
S o B 2.
{ 7 ’2(1+R2)}’ "

The following observations can be made:
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1. The eigenvalues have zero real part, and hence the structure is neutrally stable.

This is in direct correspondence with the planar case.

2. The n=2 mode has a zero eigenvalue, corresponding to perturbation to a

nearby solution with different area.

3. As R — 0, corresponding to the patch of non-zero vorticity shrinking to the
south pole, v — 0 for fixed w,. The eigenvalue tend to the planar values for the
shielded Rankine vortex, as expected, namely, for n = 2, repeated eigenvalues

are obtained, while for the eigenvalues tend to +iw,/2.

4. As R increases, the non-zero elliptical mode tends to —i/2. One of the higher
order modes simultaneously tends to zero, corresponding to a line vortex per-
turbation implying another bifurcation, in which the line vortex is perturbed.
As R — oo, the patch completely covers the sphere and hence the bifurcation

to an altered line vortex position become admissible

4.4 The linear stability of a multipolar vortex on the

surface of a sphere

We now proceed to examine the linear stability of the full multipolar solutions on the
sphere §3.36. As with the multipolar stability analysis on the plane §2.5, many steps
performed analytically for the shielded Rankine vortex and Morikawa and Swenson

distributions must now be evaluated numerically.

4.4.1 Base state

From §3.36, we have the base state for a multipolar vortex on the surface of a sphere:

] o (081 +60) = S Supn(¢dC = [€ SnlaC) s ¢ € D

YP((,¢) = _ (4.50)
0, ¢¢gD,

where D' = {((n);nm < 1} and Sy, is the spherical modification of the planar

Schwarz function, as discussed in §3.4. Differentiating gives us the expression for ¢
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y —w (%CQT - Ssph(o) , ¢e D
¢ =
0, (gD,

4.4.2 Stability

101

(4.51)

We will proceed broadly in the same manner as the planar stability analysis in §2.5,

performing the following steps:

© 2004 University of London

1. Rewrite 9 as

S (N Y D
““((Hci) = ;c—cﬁF(O)’ ‘e
b = (452)

0, (¢ D,
where 7y and ~y; are related to the strengths of the line vortices created by

Sspn(C) by 7 = I'p/4mwy, and the 'y are given in Chapter 3. F(({) contains

the irrotational flow part of Sy, ().

2. Introduce a time dependant perturbation to the conformal map ((7), so that
C(n) = Co(n) + €C(n), where Co(n) is the base state conformal map, and €( (1)
is the perturbation to the conformal map. Write the perturbed line vortex
positions as (; = (jo —i—eg:j(t), where (i is the unperturbed line vortex position,
and fj(t) is the perturbation to the line vortex position, and 7); to be the pre-
image of this perturbation in the n-plane. This perturbation will be taken to
preserve the line vortex strengths, and the area of the vortex. However, this
will perturb the shape of the boundary and also induce some irrotational flow

interior and exterior to the patch. Hence we now write v as

— 6 I Yk oF
wo((1+<§) TG z,;c—cHFO(C)*F(C’t))’ (e D)

P =

—woeG (¢, 1), ¢ ¢ D(t),
(4.53)

where D(t) is the domain D = {{(n);nn < 1}
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3. Apply continuity of velocity across the patch boundary. The Cartesian veloc-
ity field on the (-plane is given by u — v = —%(1 + Cf)%/}g, hence continuity of
velocity implies continuity of .. We hence form a Riemann-Hilbert problem
for F(¢) and G({), which will allow F(¢) and G(¢) to be expressed in terms of
the perturbation coeflicients, by applying the Plemelj formulae. The depen-
dence of the perturbed velocity field on the perturbation coefficients is hence

known;

4. Substitute the F({) and G(¢) from above into the kinematic boundary condi-
tion, and the equations of motion for the line vortices to obtain a generalised
eigenvalue problem for the perturbation coefficients and the pre-images of the

line vortices.

4.4.3 Numerical method

The numerical method is identical to that employed in §2.5.3.

We express the unknown perturbations to the map as

o o
Clmt) =€y awn®,  C(U/nt) =€t agn™" (4.54)
k=0 k=0

where {a; } are assumed independent of {a, }, and truncate the infinite sum so that

N
{n,t) = e . (4.55)
k=0

N will be picked as a power of 2. The Laurent series coefficients of functions will be
obtained using a FF'T of order M, where M is at least two powers of 2 larger than

N to prevent aliasing errors.

Define, as before the pre-images of the line vortex perturbations to be

2 = Crzoc (Cro) + 2(Cro); k=0,..., N, (4.56)
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Then we obtain a set of N’ 4+ 2N — 1 unknowns,

{ag]k = 1.4 1}, {af|k=2..4 -1},

(4.57)

4.4.4 Riemann-Hilbert problem

The perturbed velocity field is given by u — v = —%(1 + Cf)%ﬁg. ¢ is given by
(4.53), and hence applying continuity of )¢ on the boundary guarantees continuity

of velocity on the boundary. Hence

((1 TRt ik@) =G -k, ceoD. (459)
k

Since G(() is analytic outside D and F'(¢) is analytic inside D, (4.58) is in the form

of a Riemann-Hilbert problem, admitting a Plemelj solution. Writing

¢ " o
_ - =P 4.59
((1+c<) (-G z,;c—ck> (©) (459)
then
_ 1 P(¢)d¢’
F(<;,1t)_2—m_7gDW ceD (4.60)
and
-1 [ P(HA¢
G((,t) = 9 ?{)D © =0 C¢D. (4.61)
However, noting that the line vortex terms lie within D, then we obtain the form
- L _EI dCI
F(Gt) = 5 éD T30 @ =0 (€D (4.62)

for F.

4.4.5 F expansions
F expansions near the patch boundary

As the F((,t) is known to be analytic in ¢ through-out the domain D, it can be

expressed as a Taylor series,

F(¢t) =Y Frct, (4.63)
k=0
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where Fj, € C are the constant coefficients of the Taylor series.

Then expanding (4.62),

1 ¢!

"o fop TR OO .

Fk(Cvt) =

We now substitute ¢’(n) = ¢o(n) + €((n). F((,t) can now be expressed as the sum
of O(1) and O(e) terms, so

F((,t) = Fo(C,t) + €F (¢, 1). (4.65)
and
Then expanding (4.64),
1 Co(L/n")Con (1) /
Fo— L L 4.6
RO 2w fper Gl YL + Go()Go (1)) 50
Additionally,
) ~1 —(k + 1)¢o(n)~*2¢o(1/n)
I _ _
k 271 Inl=1 ( (1 + C0(77)C0(1/77)) COU(T])

Co(n) " *¢o(1/n)? 2
0+ <o(n)co(1/n>>2<°"(”)) ¢dn

1 ¢(n) "% Co(1/n)

"2 Py 0+ GomGo(i/m)

1 (n)~tF 2 .
2mi 75n|-1 (1+g0(77)@(1/n))2C0n(77)C 1. (4.67)

F expansions near satellite line vortices

The j-th line vortex is at the point ¢; in the ¢-plane. We wish to expand F(¢,t) for

¢ near (; in a Taylor series of form

F(¢,t) =Y B¢ -k (4.68)
k
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for ¢ near ¢;. Expanding (4.62),

Fet) = -1 (1/m)G (m)

¢
2mi Jop (14" (n)¢"(1/m) (<" (1) = ¢5)

dn

-1 ¢'(1/n)¢p(n) dn
2mi Jap (14 ¢ ()¢ (1/n)) (¢"(n) — &) — (C(n) = ¢5)

-1 ¢'(1/m)¢ (n)y dn =) -G \"
2mi Jop (1+¢' ()" (1/m) (¢'(n) — &) 2 <C’(n) — Q) '
(4.69)

n=0

Again substituting the perturbed map into this expression we can expand in terms
of e. As with the planar stability analysis, we only require the first term of the

expansion, which is given near the j-th vortex by

s =1 . (1 + ol
B = o M:l@(l/n)co"(n)(l+Co(n)§o

1/m))(Go(n) = Cjo)?

— Go(1/m)Son () .
2mi fnl—l (1 + Co(m)So(1/n)) (Co(n) — CjO)QCJ (n, t)dn

-1 Co(1/n)

2mi Py (T Gt /m) ol = o) D

—1 1 =
207 Jya T GG om0 (4.70)

4.4.6 F near central line vortex

Similarly, near the central line vortex, put we split ﬁ’ch’, the expansion coefficient of

F((,t) near the central line vortex, into
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plo _ 1 Go(1/n) .
B =3 G+ oy
- 3m bol1/n) Gy(n t)dn (4.71)

2mi Jiy1=1 Go(n) + Co(n)2Co(1/n)

1 1 <
2w fyen Q) (1 + Co(n)fo(l/n))QCon(n)g(n’t)dn'

4.4.7 Kinematic boundary condition

The patch boundary is convected with the local low. We express this through

Re [Ct(n,t)én(l/n,t)] (u +iv)Cn(1/n,t)]
" "

—Re [ (4.72)
—Re [(u — 1)y (1, t)n]

Expanding, and recalling O(e’) term are identically zero, as the the base state is a

steady solution, (4.72) consists only of order € terms,

Re

Con@/mCmt) | _
n

A ) (4.73)
¢(1/n,) ¢(n,t)Gg (1/n)

L+ Co(m)o(1/n) (14 Co(n)Co(1/m))?

B Co¢(1/n) s
T+ omawmee ”’”)] ‘

After taking the real part, coefficients of i can be equated on the left and right hand
side to provide N' — 3 equations in the perturbation coefficients and the pre-images

of the line vortices.
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4.4.8 Line Vortex Equations

We require
dz. (
dt

U—iV)|osy, (4.74)

enforcing the requirement that the line vortices move with the local non-self-induced

flow. U — ¢V, the non-self-induced velocity, is given by

U—z’V:(u—iv)—iZ—j<C_1Cj—1_ECC> (4.75)

at a line vortex with pre-image (; in the ¢-plane, and strength x;

Hence we can derive the following equations.

Central Line Vortex

ol =57 | =0l = 3 G - o) + B (4.76)
k
Satellite Line Vortices
t . .
UCJ ( + Giodoo) Z( ((CEO)— Cko()Q)) (Gjo jOCoo)2 (CO(t) - Cj(t)>
k3 (4.77)
=)o (rs L F . 1= o)
Granr (8 +G) + et + Y

The satellite and central line vortex equations, together with their complex con-
jugates, provide another 2N + 2 equations in a,, a;,, 7 and 7). Together with
the equations from the kinematic boundary conditions (4.72), there is a total of
N + 2% N — 1 equations in N/ + 2 * N — 1 unknowns, in the form of a generalised
eigenvalue problem,

Ax = 0Bx. (4.78)

MATLAB was used to produce A and B, and hence to find the associated eigenvalues

{0} and eigenvectors {x}.
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4.4.9 Numerical results

The code written to find the stability of these results was checked in a variety of
manners. For extremely cusped configurations, the method breaks down. Hence
numerical runs were repeated with different N’ and M until stability results had
stabilised over increasing N' and M. Results which did not stabilise were near
cusped patches, and are not shown. Typically the minimum N was required to be
N = 256, with M = 1024, although specific examples were found with lower and
higher requirements. As on the plane, the presence of a number of zero eigenvalue
modes are expected in the spherical stability analysis. These will correspond again
to bifurcations to neighbouring steady states. Neighbouring states are present with
altered patch area, and vortex centroid shifted in either of the local Cartesian co-
ordinates. The alteration of the patch area corresponds to altering R, and is not
allowed under the formulation as it corresponds to a change in total vorticity. Modes
which are found to possess a nonzero change in area, angular momentum or or vortex

centroid are not considered.

4.4.10 Checks

As discussed in section §4, the stability of these distributions is expected to follow

certain behaviour in the following limit.

Firstly, as the patch area tends to 4w, the boundary modes and point vortex modes
should decouple. As a result, the eigenvalues are expected to behave as +0.5¢ in
boundary modes, following the example of the shielded rankine vortex on the sphere
and separate point vortex modes, the stability of which mirror that of the Morikawa

and Swenson distribution on a sphere.

Also, it is feasible to expect, as with the planar results, the eigenmodes to represent
zero perturbation to the patch area, except for seven exhibiting non-zero perturba-

tions.
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4.4.11 Results

Results are presented here for the linear stability of the multipolar structures on a
sphere. For various values of n, the order of the multipoles, and colatitude 6y, the

angle of the satellite vortices, the largest real part of eigenmodes is plotted.

Recall that for fixed n, as the angle of the ring of vortices, 6y — 0, i.e. the vortices
tend to the north pole, the lowest values of the area A for which solutions exist
increases. This is due to the patch becoming cusped “around” the line vortices. As
0y — =, however, this lowest A decreases. The limit A — 4 is always admissible

however.

There are two general points to be noted. Firstly, the stability of the structures for
A — 47 is found in each case to be the same as the corresponding point of the w = 0
curve in the Morikawa and Swenson type point vortex model. As noted previously,
this is to be expected, as the patch of vorticity is now close to covering the whole
sphere. Hence it is seen by the (non-rotating) vortex patch as a uniform patch of
vorticity covering the whole sphere. The problem therefore decouples into the point
vortex problem, and a patch boundary, which will, for 6y sufficiently close to ,
be approximated by the shielded Rankine vortex problem. Indeed, as predicted by
this, as the patch area tends to 47, the eigenvalues associated purely with the patch
boundary tend to £i/2. This is seen in Fig. 4.16. Note firstly that the eigenvalues
occur in complex conjugate quartets, as expected as the system is Hamiltonian. As
the patch area increases from 4.4718 to 4, it can be seen that multiple eigenvalues
begin to cluster around +i/2. In the final picture, the eigenvalues have separated
into clusters at o, = £i/1, a cluster at o, = 0, with isolated other points. These
isolated values include the unstable eigenvalues at approximately £3. The mode
of instability also corresponds to that observed in the point vortex model, i.e. the

instability is purely satellite vortex modes.

We now examine specific stability behaviour.
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Fig. 4.16: Plot of eigenvalues for n = 5, @ = 135. Top left: area = 4.4718, top right:
area = 95.1503, middle left: area = 5.9393, middle right: area = 6.7073, bottom left:
area = 7.7628, bottom right: area = 12.4441.
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Fig. 4.17: Plot of maximum real part of eigenvalues against patch area for n = 2,
0 =135

25K

Largest real part of Eigenvalue

Stability of n = 2 solutions

The case n = 2 is, for all #; in our multipolar solutions, unstable. As with the planar
results, this is at odds with other observations. However, we comment that the class
of solutions considered here is a small sub-class of possible multipolar solutions, with
strong constraints placed to allow them to be represented in a mathematically exact
form. Hence it is not entirely infeasible that stability behaviour be different from
physical cases. Figures 4.17, 4.18 and 4.19 show the largest unstable eigenvalue for
0y = 135, 8y = 160 and Oy = 177 respectively. The instability is universally at a
maximum when A — 4, corresponding to the purely point vortex case, which is un-
stable, and is unstable in the central point vortex, as expected. As A decreases, and
hence the boundary approaches the point vortices, the instability becomes smaller
in magnitude. Note that as 6y decreases the direction of inflection of the graph
changes. This reflects some change in the balance between the effects of the point
vortex interactions and the point vortex to patch interactions. As the patch is neu-
trally stable, the increasing proximity of the patch boundary appears to lessen the

unstable point vortex to point vortex interactions.
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Fig. 4.18: Plot of maximum real part of eigenvalues against patch area for n = 2,

0 = 160

Fig. 4.19: Plot
9 =177
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Stability of n = 3 solutions

The n = 3 case is instructive, as it differs radically from the planar stability be-
haviour. Figures 4.20, 4.22 and 4.23 show the largest unstable eigenvalue for 6y = 90,
0y = 135 and 6y = 160. Figure 4.21 shows the limit A — 47 with 8 = 90. Recall
that in that in Chapter 2, it was found that the planar quadrupole is uniformly
stable, in agreement with experimental and numerical results on patch vortex mod-
els, which are generally robust for most parameter values. On the sphere, however,
exact multipolar behaviour is different from that on the plane. For the 6, which
admit multipolar solutions, while the distribution is stable for the A — 4x limit
(again in agreement with the point vortex model), as A decreases the point vortices
become unstable as the patch draws closer to the vortex distribution. As the patch
distortion increases, the multipole becomes unstable in the patch vortex modes. It is
important to separate the instability due to curvature effects from instability which
is an artifact of the numerical method. This is achieved by ensuring the results are
steady with A/. There is a change in largest eigenmode can be seen clearly in Fig.
4.24. At around A = 1.322, the boundary mode (dashed line) becomes dominant
over the satellite vortex mode (dotted line). The base solution at A = 1.322 can
be seen in Fig. 4.25, and is seen to be distorted from circular but not cusped. In
general, the patch itself is unstable only in configurations distorted from circular. As
this mechanism does not exhibit itself in the tripolar case or shielded Rankine vortex
on the sphere, or at all on the plane, it is suggested that the degree of symmetry

combined with the curvature are crucial to the instability.

There are 6, values at which the stabilising effects of the patch balance the growing
instability of central line vortex before the patch boundary itself becomes unstable.

This is shown in figure 4.23.
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Fig. 4.20: Plot of maximum real part of eigenvalues against patch area for n = 3,
0 =90
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Fig. 4.21: Large area plot of maximum real part of eigenvalues against patch area
forn=3,60=90
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Fig. 4.22: Plot of maximum real part of eigenvalues against patch area for n = 3,
0 =135
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Fig. 4.23: Plot of maximum real part of eigenvalues against patch area for n = 3,
0 =160
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Fig. 4.24: Zoomed plot of maximum real part of eigenvalues against patch area for
n=3,60=160
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Fig. 4.25: Base state solution for n = 3, 6y = 160, patch area = 1.322
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Fig. 4.26: Plot of maximum real part of eigenvalues against patch area for n = 4,
0 =90
05-
0.4}
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Stability of n =4 solutions

In the n = 4, pentapolar case, the range of 6y for which multipolar solutions are
admissible fall with in the unstable region of the w = 0 curve in the point vortex
model. Hence for all solutions, as A — 4w, the solutions are unstable. Figures
4.26, 4.27 and 4.29 show the largest unstable eigenvalue for 6y = 90, 6y = 135
and 6y = 160. The instability for high A is in the eigenmodes associated with the
satellite vortex. The size of the real part of these unstable eigenvalues decreases as
A decreases, and hence the patch boundary becomes closer to the ring of vortices.
As with the n = 2 case, this is taken to be caused by a stabilising effect in the patch
to point vortex interactions. However, before the unstable satellite vortex modes
become stable, the patch boundary modes exhibit an instability, as it approaches
the cusped configuration. This boundary instability then increases as the boundary

becomes more cusped.
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Fig. 4.27: Plot of maximum real part of eigenvalues against patch area for n = 4,
0 =135
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Fig. 4.28: Plot of maximum real part of eigenvalues against patch area for n = 4,
0 = 160
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Fig. 4.29: Zoomed plot of maximum real part of eigenvalues against patch area for
n=4,0=160
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Fig. 4.30: Plot of maximum real part of eigenvalues against patch area for n = 5,
0 = 0.7 radians.
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Stability of n =5 solutions

Figures 4.30, 4.31 and 4.32 show the largest unstable eigenvalue for 6y = 0.7, 8y = 45
and 6y = 135. The sextapolar case exhibits two distinct behaviours. For distribu-
tions such that A — 4 is stable, the behaviour is dominated by the growth of the
instability associated with the boundary mode. For 6y where A — 4x is unstable,
through satellite mode instabilities, this instability decreases as A decreases, until

it is overtaken by boundary instabilities, as in the pentapolar solutions.
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Fig. 4.31: Plot of maximum real part of eigenvalues against patch area for n = 5,

0 = 45.

Fig. 4.32: Plot of maximum real part

0 =135
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4.4.12 Discussion

In general, the stability behaviour of the multipolar solutions on the sphere is dom-
inated by two effects. Firstly, the point vortex stability, which is the major effect
for solutions with the patch covering a large area of the sphere. Here the stability
behaviour can be largely predicted by the point vortex model of Section 4.1. Then,
as the patch boundary draws closer to the point vortices, it becomes distorted from
circular. For all » > 2, this distortion results in the patch boundary becoming

unstable. Hence the general behaviour can be divided into 3 cases.

1. n = 2. Here the stability of the tripole behaves in a similar manner to the
plane, due to the absence of boundary instability. Hence for A — 4m, which
corresponds to a large in the planar results of Section 2.7, the distribution is

unstable , with this instability decreasing as the area of the patch decreases.

2. m > 2, point vortex model stable. Here, for A < 4w, the stability is dominated
by any point vortex instability which arises (this occurs in n = 3, but not for
n = 5), and then for sufficiently low A, by the boundary instability. Hence

these structures are stable only for the limit A = 4~.

3. m > 2, point vortex model unstable. In these cases, as area decreases from 4,
there is a decreasing vortex mode instability, the patch boundary approach
stabilising the satellite vortex instability. For some area, this is overtaken by
the boundary instability, which then increases as area decreases. Hence these

cases are unstable for all patch areas.

The main difference in stability behaviour on the sphere as compared to the plane is
the instability induced in the patch boundary as it becomes more distorted. In [28],
Polvani and Dritschel find that curvature effects on the sphere have a destabilising
effect on point vortex arrays. A similar destabilising effect seems present with the
multipolar solutions presented here, if the boundary is sufficiently asymmetric. For
the n = 2, and indeed circular shielded Rankine vortex case, the high degree of
symmetry prevents the curvature effects destabilising the patch boundary even when

distorted around the point vortices.
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CHAPTERD

Singly periodic vortex equilibria
combining patch vorticity and

point vortices

5.1 Introduction

We now present a class of solutions to the two-dimensional Euler equations using
the methods of [3], which are singly period. Each period will consist of a symmetric
region of constant vorticity, with either one or three line vortices superposed on the

real axis.

Singly periodic point vortex distributions of have long been used to model fluid
phenomena. The most well known of these is the Karman vortex street [46, 47],
which models the laminar wake of a circular cylinder in a moderately viscous fluid.
Lamb [39] also presents an infinite row of point vortices and examines the stability.
Distributions with more than one point vortex per period are examined in [48].
Singly periodic finite area vortices have also been presented. Inviscid models include
the model of Saffman and Schatzman [49], which has a finite area core. In common
with the multipolar work, contour dynamics have also been used to create and

examine finite area equilibria [50, 51].

Again, the point vortex model is more tractable analytically, while the finite area
patch models are physically more realistic. The combination of patch and point
vorticity therefore again captures some of the more complex shape characteristics

while allowing exact solutions to be obtained.

123
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5.2 Exact solutions with one vortex per period 124

z-plane

Fig. 5.1: Conformal map from (-plane annulus to the z-plane. A, B, C and D mark
the boundaries in each plane.

5.2 Exact solutions with one vortex per period
As in [3], we wish for a velocity field of form

oz 7J%S(z), zeD

U — 1V = 2
0, z¢ D

(5.1)

where S(z) is the Schwarz function. D has previously been some simply connected
region. We now replace this D with a more complex domain. We previously used a
conformal map from the unit circle in the (-plane to the z-plane to define D. We
now replace this map from the unit circle in the (-plane with a map from some
annulus. We will present a conformal map which takes this annulus to an infinite
band in the z-plane. As before, we require that singularities in S(z) are in the form
of simple poles with real residues, and that the line vortices corresponding to these

poles are stationary.

5.2.1 The conformal map

A meromorphic function f(¢) on the annulus p < [(] < 1/p is loxodromic if

F(p*¢) = £(Q). (5.2)
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Hence the annulus p < || < 1/p is the fundamental domain of f(¢), and f is

periodic radially.

A meromorphic function f(¢) on the annulus p < [(] < 1/p is quasi-lozodromic if

Fo*Q) = F(O+C, (5.3)

where C' € C is some constant.

Define a function P((; p) such that

o

P(¢Gp) = (1=0) [T =0 = p*/0). (5.4)

k=1
We take p < 1. Then the following properties can be derived:

P(p*¢;p) = —%P(C;p),
P p) = —%P(c;p). (5.5)

Additionally, define a function K ((;p) such that

P'(¢;p)
K(C;p) = . 5.6
Then, using the properties (5.5), it can be shown that
K(p*Cp) = K(C5p) = 1, (5.7)

and hence K ((; p) is a quasi-loxodromic function. In addition within the fundamen-

tal domain p < |¢| < 1/p, K((;p) has only a simple pole at the point ¢ = 1.

5.2.2 A periodic solution with one line vortex

Using these two function, we form the conformal map

A llog ¢ + Ry (0) K (Cy/. p) + Ralp)] (5.8)

1
s

2(¢) =
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where A, p € R are parameters of the map, and R;(p), R2(p) € R are constants. p is
taken such that 0 < p < 1. z({) maps from the annular domain D = {(;p < |¢| < 1}
to the complex z-plane (see Fig. 5.1). The domain D is defined to occupy the same
Riemann surface as log(¢), due to the branch cut in the log function. Define also
D = {z(¢);( € D} as the image of the domain. We restrict attention from now on
to the specific Riemann sheet on which arg(¢) € [—m,n]. We take the branch cut
of log(¢) to be from the origin to —oo, and no other functions in z(¢) have branch
cuts. Then for ( € D, the z-plane image of the top of the branch cut will map to
the right hand edge of the domain D. The bottom of the branch cut will map to the
left-hand edge, and the boundaries |(| = p and || = 1 will map to the upper and
lower boundaries of D respectively. A is the length of the domain in the z-plane. R;

and Rs are to be set to satisfy the physical conditions.

We form again a velocity field

1wz 1wy

U — 1 = 2
0, z¢ D

(5.9)

However the domain D considered now has two boundaries, corresponding to {z(¢); |¢| =

1}, and {z({);|¢| = p}. We define two Schwarz functions, one for each boundary,

S1(z) = z(1/¢) (5.10)
Sa(2) = 2(p* /<), (5.11)

equal to z({) on the top and bottom z-plane boundaries respectively. We require
that S1(z) and S2(z) be equal, thus guaranteeing continuity of velocity across both

patch boundaries. Then

$160) = o {lou g+ RDKT )+ ol | (5.12)

; 2
S.60) = g {og + REL i) -1 R} (519

after applying (5.7). As S1(2(¢)) and S3(z(¢)) must be equal, this sets that

Ri(p) = 2logp. (5.14)
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Next, by requiring that the pre-image of the physical origin is the point /p, i.e. that
z(y/p) = 0, it can be seen that

1
Ry(p) = —5logp. (5.15)

Hence the conformal map is given by

0) = ~ v |Iog¢ + 2108 pK (¢ ) ~ 3 o). (5.16)

This map is a function only of the parameter p and the wavelength, A, and the

corresponding Schwarz function by

SG(0) = o {~owc 4 2108 oK (L)~ Jlogp) ). Ga)

Examining S(z(({)), we see that the term K(,/p/() has a simple pole at ¢ = /p,
and hence there is a line vortex in the corresponding velocity field. We now find
the residue of this simple pole, and hence find the strength of the point vortex, and

show it is stationary.

5.2.3 Point vortex strength

The K function will be singular at zeros of the P function. Write

P(¢,p) =1 =P, p), (5.18)

where .
P(¢,p) = [ = o)1 = p*/0). (5.19)

k=1

13(( ,p) has zeros only at ¢ = p™2* which are outside the fundamental domain.

Hence, in our fundamental domain, the function K (u() has only a simple pole at

¢ =1/u.

Write
K(() ==, (5.20)
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so K (¢) is analytic at ¢ = 1. In the velocity field, (5.9) the Schwarz function contains
terms of form K (,/p/(), singular at ¢ = \/p. Then near ¢ = /p,

Y _ A )
K< C)_C—\/ﬁ+AO+A1(C \/ﬁ)-l- (5.21)

Then

€ () = < (¢) =

: _C\/ﬁf{ (%) : (5.22)

where (K (v/p/¢) is analytic near ¢ = y/p, and hence has a Taylor series,

k() -k g (& ()} e o
AL = VRK() (5.24)
b= gelaed} 629

However, to find the strength of the line vortex at ¢ = |/p, we must expand in the

z-plane. For z(C) near z(y/p), recalling that z(,/p) is mapped to the origin,

S(=(¢)) =%+bo+... (5.26)

The conformal map can itself be expressed as a Taylor series manipulation of which
gives

0= - v {vm+ T2 - v+ (527
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We hence transform (5.22) to the z-plane, giving

A 1z Az
K <@) L AnEle) Azdve) (5.28)
¢ 2(¢) 22¢(V/P)
by
~ —+by+ .. 5.29
o) T (5.29)
(5.30)
Hence
b_1 = A_lzg(\/ﬁ) (5.31)
A_
by = M + Ajp. (5.32)
2z¢(/p)
Recalling the definition of a point vortex with strength 'y at z = 2y to be
. 1Ly
—=———. 5.33
- 27 (z — 2p) (5-33)
Examining (5.9), we see the most singular term is
. —)\wo A,1ZC(\/ﬁ)
—w = 1 e .34
u— v 5, 08P ) + (5.34)
Hence, the strength of the line vortex at { = |/p is given by
T = —iwoAlog(p)y/pK (1)zc(v/p). (5.35)

5.2.4 Stationarity condition

We must enforce the stationarity condition on this solution, which is clearly that
the constant term in the Laurent expansion of (5.9) for z(¢) near z(,/p) is equal to

zero. This is true if

¢

This is found by numerical means to be true for 0 < p < 1.

VPK(Wzee(Vp) | 0 [ o (VP _ log(\/p)
2c(Jp) 0 [CK( )L_ﬁ‘ logp (536)
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5.2.5 Solutions

We find a range of solutions for p varying from 0 to 1. This forms a one parameter
family of solutions. We consider however the more physical quantity, area of uniform

vorticity per period, where

1. ([ .
Area = 53 [7{9@ zzgdg] . (5.37)

The area is found numerically to be a monotonically decreasing function of p.

As the structure has zero circulation per period, it is again true that

. = wA. (5.38)

We fix A = 1, wg = 1. Then we find two limits which are of interest. Firstly,
for p — 1, the patch boundary tends to a circle with radius » = 1/2. Then the
distribution tends to an infinite row of touching shielded Rankine vortices, each
with area /4. In this limit the solutions become cusped. This limiting case of
the shielded Rankine vortex is seen also in both the planar and spherical multipolar
solutions, and highlights the role of the shielded Rankine vortex as the simplest form
of this combined point and patch vorticity. The left hand panel of Fig. 5.2 shows

this limit.

As p — 0,the patch tends to a band with height z(1) — z(p) — 2.8614. This is shown
in the left hand panel of Fig. 5.3.

The right hand panel of Fig. 5.2 shows an intermediate solutions, possessing a
symmetric boundary of variable curvature. In the right hand panel of Fig. 5.3, the
vortex circulation I' is plotted against p. As expected, in the p — 1 limit this tends
to /4, in the p — 0 limit to 2.8614. The graph of I' against area is not shown, as

from (5.38), I' is linear with area.
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Fig. 5.2: Singly periodic patch solutions with a single point vortex. Left panel shows
p = 1075 area = 2.8614. Right panel shows p = 0.01, area = 0.8696.
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Fig. 5.3: Singly periodic solutions with a single point vortex. Left panel shows
p = 0.1, area = 0.7866. Right panel shows the vortex circulation I'. against p.
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5.3 Exact solutions with three vortices per period

We wish to add extra line vortices to our model. To this end, we postulate the form

of the conformal map to be

N

() = —% [log ¢ + A2 K (v/p¢) + AsK (u1€) + As K (u2C) + As), (5.39)

where Ay, Az, Ay, A5 € R are constants, and u; , uy are the pre-images in the (-plane
of the extra line vortices. We shall map from the same annulus,D = {(;p < [¢| < 1}

to the complex z-plane, and form a velocity field using the Schwarz function method.

To be a physically admissible solution, this must again satisfy the following condi-

tions:

1. §1 = 855, i.e. the two boundaries must have the same Schwarz function;

3. Any line vortices must be stationary;

4. The conformal map must be univalent.

Applying condition (1), we require that z(1/¢) = z(p?/¢). This reduces to the

condition
2logp = Ay + A3 + Ay (540)
Condition (2) gives
log p
A5 - — D) - A3K(U1\/ﬁ) - A4K(U2\/ﬁ) (54:].)

The line vortex circulations will be given by

T.= —iwAlog(p)/pK(1)zc(1/p) (5.42)
I = —Zw20>\A3u1f((1)Z<(u1) (5.43)
Iy = —iw20>\A4u2f((1)z€(u2), (5.44)
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where I, is the circulation of the vortex at z = 0, and I'y, 'y the circulations of the
vortices at z = u; and z = ug respectively. Recall also that the strength x. of each

vortex is related to the circulation by x =T'/27.

We now consider two specific distributions.

5.3.1 Extra line vortices on the real axis, equal strengths

Suppose we place two extra line vortices with equal circulations on the real axis, an
equal distance either side of the central line vortex. Initially, we will have the two

line vortices with equal vorticity, I'g.

We expect a relation to exist between 6 and ['s. For this case, we set

U = \/ﬁew Uy = \/ﬁe_w =y, (5.45)

and

As = Ay (5.46)

We then derive the condition

A
Az =logp — 72 (5.47)

from the Schwarz function requirement (5.40), that the Schwarz functions on the

two boundaries are equal. Note this has no 6 dependence.

Condition (5.41) gives that

A5 = 3 logp— (logp — 52) [K(ypur) + K (/). (5.48)

Note that as § — 0, we recover As = —% log p, since K(p) = 0.

The stationarity condition for the satellite vortex at { = u; is given by

AQK(&) + (log p — %)K(p—z) + 245 + A2 K (\/—ﬁ> +
Ul uy Ul
(=uy
(5.49)
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after recalling that K (,/p) = 0. The equation for ¢ = uy is the complex conjugate

of this. The central line vortex has the stationarity condition

A 3/2 A 3/2 A
(logp — HK(E—) + (log p = THE(E—) + 245 + (log p - K (=) +
U1 2 u9 2 \/ﬁ

ooy (RO 8 [ (B)] oo

(5.50)

Then given A and w;, we set p and use Newton iteration on A, and 6y to solve the
stationarity conditions. Although these are complex equations, the imaginary part

is found to be identically zero, and hence the problem is tractable.

5.3.2 Results

Results are shown for A = 1 and wy = 1. Figure 5.4 shows solutions with varying
area. As with the single vortex case, we consider area rather than p as it is a
physically interpretable quantity. With fixed A = 1, wg = 1, and A3 = A4, we find a
single parameter family of exact steady solutions, parameterised by the patch area
in a single period. The strengths of the line vortices are given by (5.42). Due to the

zero circulation of the solutions,
L.+2I's=A, (5.51)
where A is the patch area.

As might be expected from comparison with the single vortex solutions, in the limit
p — 1 the patch tends to two touching shielded Rankine vortices, separated at the
point where the boundary would touch at z = 0, by a central line vortex. The
strength of the central line vortex in this limit tends to zero. As p decreases and
hence the patch area increases, the boundary becomes less curved, and as p — 0,
tends to a band of constant vorticity with height z(1) — z(p). The positions of the

satellite vortices remain at roughly +0.25.
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Fig. 5.4: Singly periodic patch solutions with three point vortices on the real axis,
Q = 1. Top left panel shows the solution with area 0.4, k. = 107°,k, = 0.2. The
x-coordinates for the line vortex are given by z = £0.25. Top right panel shows
the solution with area 0.6,Q = 1,k. = —0.025119, k1 = 0.31256, ko = 0.31256. The
x-coordinates for the line vortex are given by x = £0.2339. Middle left panel shows
the solution with area 0.7,Q = 1,x, = —0.030407, 51 = 0.3652, ko = 0.3652. The
x-coordinates for the line vortex are given by © = £0.2345. Middle right panel shows
the solution with area 0.8,Q = 1,x, = —0.032017,x; = 0.41601, k2 = 0.41601.The
x-coordinates for the line vortex are given by x = £0.2373. Bottom panel shows

© 2004 Uniygraity O Le8S8 with area 0.95,Q = 1, k. = —0.072082, k1 = 0.51104, r = 0.5710F4HAoke
x-coordinates for the line vortex are given by x = +0.2302.
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(-plane z-plane

Fig. 5.5: Conformal mapping from (-plane annulus to the z-plane, with three line
vortices on the real axis.

5.4 Real axis, unequal vortex strengths

Suppose that the strength of the two satellite vortices in (5.39) are no longer equal.
Then we postulate now that the pre-images of the satellite line vortices will be given

by (5.42)

uy = /pe?t, uy = N/ (5.52)

If we now define some ratio, A4/A3 = @, then the condition 2logp = Ay + A3 + Ay

implies that

2logp — Ag
Ay = —————, 5.53
N (s) (5.53)
with the case () = —1, i.e. satellites of opposite polarity, excluded.
Then requiring that z(,/p) = 0, we see that
log p
A5 = — 9 - A3K(U1\/ﬁ) - QAgK(UQ\/ﬁ) (554)
The stationarity condition for the central line vortex is given by
3/2 3/2
AsK(E—) + QK (P—) + A3k (ﬂ> + A4K (ﬂ>
“ u2 ve ve (5.55)

A\ g R e g [k (D) f -
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For the satellite line vortex at z(u;), we have

3/2 2 2
Ao K (p—> AsK (%) T QAsK (p—) ALK (\:—1’3) T QAsK (Z—f) 1245

U]_ 1 'U/]_'U/Q
ulk(l)zgg(ul) 8 ~ U1
o W*a—c{“(—)}

and for the satellite at z(ug) that

3/2 2 2
A K (”—> A3 K (p—> L QA3K (”—2> 245 40K (—p> + A3K (ﬂ>
U9 U1U2 u2 U2

¢
ou kit 2 (e ()] Lo

22( (UQ) 8C
(5.57)

We here have only three real unknowns, Ay, 61 and 65, and three complex equations
to be satisfied. However, numerical examination shows that the imaginary part of
(5.55), (5.56) and (5.57) are zero uniformly, although no analytic proof of this seems
apparent. The three unknowns, As, 61 and 6y are then sufficient for a well posed

problem, which is solved using a 3-d Newton iteration scheme.

5.4.1 Results

Results are presented for Q > 1, ) < 1 being the reflection in the imaginary
axis. Point vortex circulations and strengths are again obtained using (5.42). These
solutions form a two parameter family, parameterised by the patch area and the
ratio of vortex strengths, (). Initial parameter values for iteration by the three
dimensional Newton routine were obtained from the ) = 1 limit. A solutions for
Q = Q1 = Qo + € was then increased, and the parameters obtained for the @,
solution then provided initial estimates for (),41 parameters. Figure 5.6 presents
solutions with a range of patch area, for fixed ratio (). It can be seen that, as with the
equal outer vortex case, ( = 1, decreasing area is accomplished through the patch
becoming more circular. Due to the strengths of the outer vortices being equal in

this case, the symmetry of the pair of almost joined shielded Rankine vortices is not
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achieved. As the area increases, the patch boundary becomes less curved, and tends
to some distortion of the channel observed with () = 1. Due to the asymmetry of

the vortex strengths, the limiting straight boundary limit was not observed.

Figure 5.7 shows, for fixed area, the effects of increasing (). An asymmetry in the
boundary is created , which increases in size until, for large ), the boundary is close
to a series of co-joined circles, with a centre displaced from the origin, so that a
single circle spans more than one period. The relatively large strength of the left

hand vortex here prevents the boundary pinching at the point where the circles join.

Figure 5.8 plots graphs of vortex strength against the ratio Q. As @ increases, the
equilibria for all areas have a weak central vortex and one weak outer vortex. Recall
that the aggregate strength of the line vortices is a constant (as area is held constant).
The rearrangement of the patch shape as @ increases from the symmetric Q = 1
configuration is initially accompanied by an the negative strength of the central
vortex becoming more negative. As (@ increases, and the patch tends towards a
circle with the centre to the right of the origin (see Fig. 5.7), the central and right-
hand vortices become weak and approach each other. An isolated pair of opposite
signed point vortices would translate upwards, but the effects of the large positive

left hand line vortex and vortices present in the other periods prevents this.

It has not been possible to find solutions of this form with point vortices placed away
from the real axis. In [40], it is noted that non-zero circulation singly periodic point
vortex arrays containing three vortices per period are constrained in the positioning
of the point vortex. It is possible that a similar constraint exists when a patch is
superposed also. Zero circulation point vortex arrays are not of interest in this case,
as we require the circulation of the total period, including the patch, to be equal to

Zero.
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Fig. 5.6: Singly periodic patch solutions with three point vortices on the real axis,
with varying area, Q = 1.65. Top left panel shows the solution with area 0.4,
,Q = 1.65, k., = —0.015878, k1 = 0.20364, ke = 0.2122. z; = 0.2159, zo = —0.2248.
Top right shows the solution with area 0.5, Q = 1.6667, k., = —0.04773,k1 =
0.24909, ke = 0.29864.z1 = 0.1914, x5 = —0.2231. Bottom panel shows the solution
with area 0.95, Q = 1.65, kg = —0.12264, k1 = 0.41543, ko = 0.65721. 1 = 0.1626,
xo = —0.2344.
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shows plot for area = 0.5. Middle graph shows area
area = 0.95.
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Fig. 5.8: Singly periodic patch solutions with three point vortices on the real
axis, with varying (), area = 0.6. Top left panel shows the solution with area
0.6, = 1.65,k9 = —0.067418, k1 = 0.28621, k9 = 0.3812. The z-positions are

given by z; = 0.1813, x9 = —0.2277. Top right panel shows the solution with
area 0.6,QQ = 2.7,kp = —0.10459,k; = 0.23413,k2 = 0.47046. x; = 0.1295,
To = —0.2197. Middle left panel shows the solution with area 0.6,Q = 4.7, k9 =
—0.10062, k7 = 0.1541,k9 = 0.54653. x; = 0.0704, zo = —0.2115. Middle
right panel shows the solution with area 0.6,Q = 12.5,k9p = —0.051834,x; =
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solution with area 0.6,Q) = 20,xk9 = —0.034293, k1 = 0.037696, k2 = 0.5966.

o = 0.0148, z; = —0.2061.



CHAPTERGOD

Conclusion and further work

The intention of the preceding chapters has been to develop the techniques pre-
sented by Crowdy [3] for the creation of vortical equilibria of the two dimensional
Euler equations combining patch and point vorticity. This combination has not
been considered on the plane before [3], although we argue that it can be moti-
vated by the form of point vorticity on the sphere. To this end, Chapter 2 reviews
the methods of [3] before presenting a stability analysis of Crowdy’s planar multi-
polar solutions. Apart from the tripolar distribution, stability results are shown to
correspond to the observed atmospheric, laboratory and numerical multipolar distri-
butions of other researchers in both linear and non-linear perturbations. The linear
results are also found to indicate the stability under non-linear perturbations. The
quadrupolar results are found to be neutrally stable for the whole range of param-
eter a. The tripolar case is suggested to be unstable due to the twin requirement
of zero circulation and being non-rotating. It is to be remembered however, that
this is an exact class of solutions, and does not cover the whole class of possible
multipolar vortical equilibria. Hence the fact that stability of this particular case
does not correspond to the more general observations is not completely surprising.

However, the remaining cases do indeed mirror other observed stability.

Chapter 3 examines fluid flow on the surface of the sphere. Isolated point vortices on
the sphere are required to be combined with a patch of vorticity, to ensure that the
integral of vorticity over the surface is equal to zero. The form of the equations of
motions utilising the stereographic are derived. Using this, the spherical equivalent
of the class of multipolar solutions presented in [3] is presented. This new class is
shown to be a two-parameter family, as opposed to the one-parameter family on the
plane. Solutions are presented for a range of satellite ring latitude and the area of
the sphere covered by the patch of constant vorticity. In the case where the patch

covers the whole surface of the sphere, the point vortex strengths are shown to tend
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to that of a purely point vortex model.

Chapter 4 examines the linear stability of two fundamental spherical vortex equilib-
ria, before examining the stability of the full multipolar solutions on the surface of
the sphere. The first model to be examined is the ring of N point vortices of identi-
cal strength around a central line vortex, an extension of the planar Morikawa and
Swenson distribution. The spherical geometry is found to be a destabilising effect on
the ring of satellite vortices, and a stabilising effect for the central vortex, until the
satellites are far enough from the south pole for the motion to decouple. When the
ring of point vortices is near the north pole, then, the stability is identical to a ring
of vortices with no central vortex. Subsequently, the stability of a generalisation of
the shielded Rankine vortex is studied. This is found to be neutrally stable for all 8y,
the latitudinal angle of the patch boundary. As the patch boundary approaches the
north pole, and hence covers the whole surface of the sphere, eigenvalues +i/2 are
recovered, as with the planar case. The final part of this chapter is concerned with
the linear stability of the full multipolar solutions. For the tripole, stability results
are qualitatively the same as on the plane. For solutions with greater numbers of
points vortices, however, it can be seen that the patch boundary begins to exhibit
instabilities when sufficiently deformed from the circular limit. These dominate the
stability behaviour as the patch approaches the line vortices, whereas when the patch
is far from the point vortices, stability is dominated by the stability behaviour of the
point vortex limit. In general then, we find that for n > 2, the curvature effects of

the sphere provide a destabilising influence on the patch to point vortex interactions.

In conclusion then, the study here of stability on the surface of the sphere suggests
two main instability procedures. With the purely point vortex model, for n > 3
the ring of vortices is less stable on the sphere than on the plane. This is due to
the potentially stabilising effect of the central line vortex being shielded by the cur-
vature. So in this case the greater instability is effectively caused by a stabilising
influence becoming masked. In the full multipolar solutions, the increased insta-
bility is conjectured to be caused by interactions of the shape modes forming the

deformation.

In Chapter 5, we present a class of singly periodic solutions to the Euler equations
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with both patch and point vorticity. Solutions are found with one vortex per period,
three vortices per period with identical circulation of the outer vortices, and three
vortices per period with differing circulation outer vortices. All of these cases possess
a limit which tends to a band of constant vorticity. The single point vortex per period
case also has a limit in which the distribution tends to an infinite series of touching
shielded Rankine vortices. For the case of three vortices per period with equal
circulation outer vortices, there exists a limit which tends to two almost touching
shielded Rankine vortices per period, with a single very weak line vortex between
them. It is noted that this limiting case of the shielded Rankine vortex is achieved
in each of the three classes of solution considered. This emphasizes the important

nature of this as the simplest example of combined point and patch vorticity.

6.1 Further work

There are a number of extensions to the work presented here which could be under-
taken, of which a couple are presented. Contour dynamics routines on the sphere
or an infinite periodic region could have point vortex equations of motion added,
which could be used to examine the non-linear stability of the presented solutions.
Previous work, both here, and in [34] suggest that the nonlinear stability boundaries

of this type of distribution is closely related to linear stability.

The linear stability of the singly periodic solutions could also be examined. Fol-
lowing the method of §2.5, this would involve replacing the Schwarz function term
with the expression for point vortices placed in the relevant positions, and some
irrotational correction to the flow. Hence for the single point vortex case per period,

the expression

0 zZ € Dupper
u—iv =21 2i(z— 8 cot(rz/N) — F(z)) zeD - (6.1)
0 2z € Dioper

would be formed, the cot term representing the infinite row of vortices. The confor-

mal map would then be perturbed, and a Riemann-Hilbert problem then be formed,
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to allow the unknown perturbations to the upper and lower flows to be expanded in
terms of the perturbation coefficients. Two kinematic boundary conditions would

then results, as well as the line vortex equations of motion.
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APPENDIX A

Patch Area

In spherical polars, we have that
do = sinfdfd¢ (A.1)

If z, y are coordinates on the stereographically projected plane such that { = x + 4y,

then 2(6.4)
dody = ‘G(x 0 ‘ dzdy
(1 —cosh)? (A.2)
- sin 6 '
L
(1+¢¢)*
using (3.3).
Thus

A = / /D do
e

- // ac(1+<<> oy

Then applying the complex form of Greens Theorem,
1 4¢
2i Jop (14 ¢¢)

A

d¢

(A4)
)
2 Jo 1+ ()

Note that for our conformal map, the integrand occur only at the positions of the

point vortices, and the sum of the residues is NI'y + I,
woA =4n(NTs +T',), (A.5)
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where I'y and I'. are given by (3.62).
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