APS/DFD Chicago 2005

Generalizing the Kutta-Joukowski lift theorem to multiple aerofoils: an analytical approach

Darren Crowdy (Imperial College London)

d.crowdy@imperial.ac.uk

Basic aerodynamics

Circulation κ **+ Uniform flow** U **= LIFT**!

Figure 6.6.1. Streamlines for irrotational flow due to a circular cylinder held in a stream of uniform velocity (-U, o) at infinity, with circulation κ (anti-clockwise positive) round the cylinder.

from Batchelor (1967)

Kutta-Joukowski: lift force = - $\rho \kappa U$ Lift independent of aerofoil shape

Multiple aerofoils?

Single aerofoil case is rather boring! Much more interesting, and non-trivial, is the case of multiple aerofoils

In contrast to single aerofoil case:

- "interference forces" exist between aerofoils
- forces on individual aerofoils depend, in nontrivial way, on global geometry, aerofoil shapes and relative circulations
- forces can exist between aerofoils even without circulations around them

Important to have an analytical theory of multi-aerofoil case

Introduce "circular domains"

Introduce a (canonical) multiply connected circular domain D_{ζ}

circle centers $\{\delta_j\}$ circle radii $\{q_j\}$

Fact: a domain of this type can be conformally mapped to the fluid region outside *any* collection of aerofoils. Let conformal map be $z(\zeta)$. Let $\zeta = \beta$ map to $z = \infty$. Example: $z(\zeta) = \frac{a\zeta+b}{\zeta-\beta}$ maps to the fluid outside <u>circular</u> aerofoils The "Schottky-Klein prime function" $\omega(\zeta, \gamma)$ Associated with such a domain is a special function $\omega(\zeta, \gamma)$ depending on $\{q_j, \delta_j | j = 1, ..., M\}$

$$\omega(\zeta,\gamma) = (\zeta-\gamma)\omega'(\zeta,\gamma) = (\zeta-\gamma)\prod_{\theta_j\in\Theta''}\frac{(\theta_j(\zeta)-\gamma)(\theta_j(\gamma)-\zeta)}{(\theta_j(\zeta)-\zeta)(\theta_j(\gamma)-\gamma)}$$

The maps $\theta_j(\zeta)$ are simply Möbius maps of the form

$$heta_j(\zeta) = rac{a_j \zeta + b_j}{c_j \zeta + d_j}$$
 Note: easy to truncate and compute!

Key result 1: uniform flow past multiple cylinders? The complex potential $W_U(\zeta)$ for uniform flow past any number of *circular* aerofoils can be written in terms of $\omega(\zeta, \gamma)$:

$$z(\zeta) = \frac{a}{\zeta - \beta} \quad (\text{maps circles to circles})$$
$$W_U(\zeta) = \phi + i\psi = Ua\left(e^{i\chi}\frac{\partial}{\partial\bar{\beta}} - e^{-i\chi}\frac{\partial}{\partial\beta}\right)\log\left(\frac{\omega(\zeta,\beta)}{|\beta|\omega(\zeta,\bar{\beta}^{-1})}\right)$$

where U is speed and χ is angle of uniform flow. β maps to $z = \infty$.

In case of a single cylinder, with $\beta = 0$, formulas reduce to

$$z(\zeta)=rac{a}{\zeta}, \quad W_U(\zeta)=Uigl(\zeta+rac{1}{\zeta}igr)$$

and mapping is from unit ζ -disc. This is well-known classic result.

Example streamline distributions:

Contours of $Im[W_U(\zeta)]$ plotted using new formulae But, to get lift, also need to add circulation around aerofoils...

Key result 2: circulation around the aerofoils

To add a non-zero circulation κ_k around the *k*-th island, the required complex potential is

$$W_\kappa(\zeta) = rac{i}{2\pi} \sum_{k=1}^M \kappa_k \log rac{\omega(\zeta,eta)}{\omega(\zeta, heta_k(areta^{-1}))}$$

The total complex potential $W_T(\zeta)$ therefore takes the form

$$W_T(\zeta) = W_U(\zeta) + W_\kappa(\zeta)$$

MAIN RESULT: The complex potential for ANY number of aerofoils can be written in terms of the prime function $\omega(\zeta,\gamma)$

Two (biplane) aerofoils (unstaggered stack)

Two aerofoils with gradually increasing circulation

Note: there is an attractive force between aerofoils even if $\kappa_j = 0$

Two (biplane) aerofoils (in tandem)

Two aerofoils with gradually increasing circulation There is a repelling force between aerofoils even if $\kappa_j = 0$

Some of the "doubly connected" literature:

W.M. Hicks, On the motion of two cylinders in a fluid, Q. J. Pure Appl. Math., (1879)

A. G. Greenhill, Functional images in Cartesians, Q. J. Pure Appl. Math., (1882) M. Lagally, The frictionless flow in the region around 2 circles, ZAMM, (1929).

C. Ferrari, Sulla trasformazione conforme di due cerchi in due profili alari, Mem. Real. Accad. Sci. Torino, (1930)

T. Yamamoto, Hydrodynamic forces on multiple circular cylinders, *J. Hydr. Div, ASCE*, (1976).

E.R. Johnson & N. Robb McDonald, The motion of a vortex near two circular cylinders, *Proc. Roy. Soc. A*, (2004)

Burton, D.A., Gratus, J. & Tucker, R.W., Hydrodynamic forces on two

moving discs, Theor. Appl. Mech., (2004)

No prior analytical results for more than two aerofoils

Three (triplane) aerofoils (unstaggered stack)

Three aerofoils with gradually increasing circulation in uniform flow

Blasius theorem to compute force distribution:

Three (triplane) aerofoils (in tandem)

Three aerofoils with gradually increasing circulation in uniform flow

Crowdy, "Calculating the lift on a finite stack of circular aerofoils", (preprint)

Summary

- There are now analytical formulae for the complex potential for uniform flow past any number of obstacles;
- These potentials can be written in a natural way in terms of a special transcendental function $\omega(\zeta, \gamma)$;
- The complex potentials for adding circulation around the aerofoils can also be written in a natural way in terms of this function;
- The streamline distribution, lift forces, interference forces, torques etc. can now be computed in a straightforward fashion without the need for boundary integral formulations.
- using more complex conformal maps, formulae can be applied to aerofoils of *any* shape.