#### **APS/DFD Seattle 2004**

# Analytical formulas for the Kirchhoff-Routh path function in multiply-connected domains

Darren Crowdy (Imperial College London)

d.crowdy@imperial.ac.uk

(joint work with J. Marshall)

#### **Vortex motion in multiply-connected domains**



geophysical applications
e.g. ocean circulations in
Caribbean

oceancurrent.rsmas.miami.edu



Simmons & Nof, "The squeezing of eddies through gaps",

J. Phys. Ocean., 32, (2002).

#### Vortex motion in doubly-connected domains



Figure 3. Trajectories for a line vortex outside two circular islands each of radius 1 with centres separated by 4. In both cases there is zero inter-island volume flux (m = 0) and the background flow is uniform at infinity, of speed U inclined at an angle  $\pi/4$  to the x-axis. (a) Weak flow,  $4\pi U/\kappa = 0.3$ . The new saddle point due to the background flow is lower than the inter-island saddle point. (b) Strong flow,  $4\pi U/\kappa = 0.5$ . The new saddle point due to the background flow is higher than the inter-island saddle point.

Johnson & McDonald, "The motion of a vortex near two circular cylinders", *Proc. Roy. Soc. A*, 460, (2004).

Q: How to extend this to any finite number of islands?

## Vortex motion through gaps in walls

Phys. Fluids, Vol. 16, No. 2, February 2004



FIG. 3. The paths of a line vortex near a gap. Here, and in all succeeding figures, the figure is the z plane with the  $x = \Re z$  axis horizontal, the  $y = \Im z$  axis vertical; the headlands are bold lines and arrowheads give the direction of motion of a vortex with positive circulation. Negative vortices move in the opposite direction. Vortices that at large |x| are further than half the gap width from the wall jump the gap. Vortices starting closer to the wall at large |x| pass through the gap.

Johnson & McDonald,
"The motion of a vortex
near a gap in a wall",

Phys. Fluids, 16, 2004

Q: How to extend this to any finite number of gaps?

#### **Vortex motion with boundaries: famous results**



**Method of images** 

**Milne-Thomson circle theorem** 

#### **Hydrodynamic Green's function G – Lin (1941a)**

Lin (1941a) proved existence of a special Green's function:

- (a)  $G(\zeta; \alpha)$  has a logarithmic singularity at  $\zeta = \alpha$ ; (corresponds to point vortex at  $\zeta = \alpha$ )
- (b) Let  $C_j$  be interior boundaries of islands.

$$G = 0$$
, on outer boundary

$$G = \beta_j(\alpha), \quad \text{on } C_j, \ j = 1, ..., M$$

(corresponds to streamline conditions at boundaries)

(c)

$$\oint_{C_j} rac{\partial G}{\partial n} ds = 0, \;\;\; j=1,...,M$$

(corresponds to zero-circulation around islands)

#### Kirchhoff-Routh path function or Hamiltonian

Then the Hamiltonian for the motion of N vortices is

$$H^{(\zeta)}(\{\zeta_k\}) = \sum_{k>l} \sum_{k>l} \Gamma_k \Gamma_l G(\zeta_k; \zeta_l) - \frac{1}{2} \sum_k \Gamma_k^2 g(\zeta_k; \zeta_k)$$

where g is function such that

$$G(\zeta; lpha) = -rac{1}{2\pi} \log |\zeta - lpha| - g(\zeta; lpha)$$

Problem: until now, nobody has explicitly constructed G

#### **Conformal mapping (Lin, 1941b)**

Having found  $H^{(\zeta)}$  in a multiply-connected domain  $D_\zeta$ , the Hamiltonian  $H^{(z)}$  in any domain  $D_z$  to which  $D_\zeta$  is conformally mapped by  $z(\zeta)$  is given by

$$H^{(z)}(\{z_k\}) = H^{(\zeta)}(\{\zeta_k\}) + \sum_k rac{\Gamma_k^2}{4\pi} \log|z_\zeta(\zeta_k)|$$

where

$$z_k = z(\zeta_k)$$

#### What needs to be done?

#### **Progress hinges on two questions:**

- can we find explicit formulas for G, and hence  $H^{(\zeta)}$ , in some "canonical" set of multiply-connected domains  $D_{\zeta}$ ?
- can we find useful conformal maps  $z(\zeta)$  from these domains to flow domains of (geophysical) interest?

#### Point vortices in multiply-connected domains

Introduce a *multiply-connected* circular domain  $D_{\zeta}$  with a point vortex



circle centers  $\{\delta_j\}$  circle radii  $\{q_j\}$ 

"canonical multiply-connected domains"
What are the point vortex trajectories?

#### The Schottky-Klein prime function

Given  $D_{\zeta}$ , can construct an associated special function  $\omega(\zeta;\alpha)$  depending on  $\{q_j,\delta_j|j=1,..,M\}$ 



$$\omega(\zeta,\gamma) = (\zeta - \gamma)\omega'(\zeta,\gamma) = (\zeta - \gamma) \prod_{\theta_i \in \Theta''} \frac{(\theta_i(\zeta) - \gamma)(\theta_i(\gamma) - \zeta)}{(\theta_i(\zeta) - \zeta)(\theta_i(\gamma) - \gamma)}$$

## Explicit expression for G

In terms of this prime function, an explicit formula for G is

$$G(\zeta; lpha) = -rac{1}{4\pi} \log \left| rac{\omega(\zeta; lpha) \overline{\omega}(\zeta^{-1}; lpha^{-1})}{\omega(\zeta; ar{lpha}^{-1}) \overline{\omega}(\zeta^{-1}; ar{lpha})} 
ight|$$

Hence, for single vortex at  $\alpha(t)$ , Hamiltonian is

$$H^{(\zeta)}(\alpha, \bar{lpha}) = -rac{\Gamma^2}{8\pi} \log \left| rac{\omega'(lpha, lpha) \overline{\omega}'(ar{lpha}^{-1}, ar{lpha}^{-1})}{lpha^2 \omega(lpha, ar{lpha}^{-1}) \overline{\omega}(lpha^{-1}, ar{lpha})} 
ight|$$

#### Consequence

Up to knowledge of  $z(\zeta)$ , we have explicit formulas for the Hamiltonians in ANY multiply-connected domain

Crowdy & Marshall, Proc. Roy. Soc. A., (submitted)

#### Circular islands in bounded or unbounded oceans

It is well-known that Mobius mappings of the form

$$z(\zeta) = rac{a\zeta + b}{c\zeta + d}$$

where a,b,c and  $d\in\mathbb{C}$  map circles to circles.

Thus, mappings to unbounded oceans with circular islands or islands off a coastline map from  $D_{\zeta}$  using Mobius mappings.

#### **Example 1: two circular islands off a coastline**



critical trajectories

other trajectories

This example uses 
$$z(\zeta) = \frac{1-\zeta}{1+\zeta}$$

## **Example 2: three circular islands off a coastline**





critical trajectories

other trajectories

#### Example 3: more circular islands off a coastline



#### **Example 4: random circular islands**



Crowdy and Marshall, *Phys. Fluids* (submitted)

#### What about vortex motion through gaps in walls?





FIG. 3. The paths of a line vortex near a gap. Here, and in all succeeding figures, the figure is the z plane with the  $x=\Re z$  axis horizontal, the  $y=\Im z$  axis vertical; the headlands are bold lines and arrowheads give the direction of motion of a vortex with positive circulation. Negative vortices move in the opposite direction. Vortices that at large |x| are further than half the gap width from the wall jump the gap. Vortices starting closer to the wall at large |x| pass through the gap.

Johnson & McDonald, "The motion of a vortex near a gap in a wall",

Phys. Fluids, 16, 2004

#### **Conformal mappings to slit domains**

It turns out that the hydrodynamic Green's function G is also relevant to the construction of conformal mappings to multiply-connected slit domains.

[Reference: R. Courant, "Dirichlet's Principle"]

#### **Consequence:**

we can use explicit form for G to both

- produce Hamiltonian;
- generate conformal mapping!

# **Example 5: A wall with two gaps**



Critical vortex trajectories for a wall with two gaps.

#### **Example 6: A wall with three gaps**



Critical vortex trajectories for a wall with three gaps.

# **Modelling geophysical flows**



Simmons & Nof, "The squeezing of eddies through gaps", J. Phys. Ocean., (2002).

## **Example 7: Offshore islands**





**Critical vortex trajectories for two offshore islands** 

## **Example 8: any number of offshore islands....**



4 islands



5 islands

#### **Summary**

- new formulas automatically place image vortices in correct place – new "method of images";
- given a conformal map, can generate Hamiltonians for vortex motion in any other conformally-equivalent domains;
- have constructed new conformal mappings to a class of "slit" domains of geophysical significance.

#### Website

**General information, references + this talk** 

www.ma.ic.ac.uk/~dgcrowdy

Email: d.crowdy@imperial.ac.uk