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Abstract. This article provides an overview of the properties and uses of the
Schottky-Klein prime function on the Schottky double of multiply connected
planar domains. Simple expressions are offered for the conformal mappings
from a multiply connected circular domain to canonical multiply connected
slit domains. It is argued that these basic functions can be used as “building
blocks” for the construction of more complicated functions in a variety of
circumstances. As an example, a new geometrical interpretation of a recently-
derived formula for multiply connected Schwarz-Christoffel mappings is given.
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1. Background

The fundamental theorem of algebra states that any N -th degree polynomial
PN(ζ), with N ≥ 1, can be uniquely factorized into a product of simpler functions
of the form

(1) PN(ζ) = ζN + aN−1ζ
N−1 + · · ·+ a1ζ + a0 =

N∏
k=1

(ζ − γk)

where {γk|k = 1, . . . , N} are the roots of the polynomial. It is then natural to
define the simple monomial function of two variables, ω(ζ, γ) ≡ (ζ − γ), to be
a prime function since, in analogy with being able to factorize any integer into
a unique product of prime integers, any polynomial can be uniquely factorized
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into a product of such prime functions, as evinced by (1), so that we can write

PN(ζ) =
N∏
k=1

ω(ζ, γk).

By extension, any rational function R(ζ) (a function whose only singularities are
poles) can be written in the form

(2) R(ζ) =
N∏
k=1

ω(ζ, αk)

/ N∏
k=1

ω(ζ, βk),

where {αk|k = 1, . . . , N} are the zeros and {βk|k = 1, . . . , N} the poles of the
function. The Schottky-Klein prime function (henceforth, S-K prime function)
is the name given to the function which replaces the simple monomial function
(ζ−γ) when the underlying compact Riemann surface has higher genus than the
Riemann sphere (i.e., when the Riemann sphere has handles). Any meromorphic
function R(ζ) on such a surface then also has a representation in terms of its
zeros and poles very much akin to (2). The prime function for general compact
Riemann surfaces was first considered by Schottky [30] and Klein [26]. It is
discussed in the paper by Burnside [5] and reported on in a special chapter of the
classic monograph by Baker [1] on abelian functions. It has close mathematical
connections with the notion of a prime form [21] on the Jacobi variety associated
with a compact Riemann surface and prime forms have, over the years, found
abundant application in, for example, algebraic geometry, mathematical physics
and integrable systems. The S-K prime function within the Schottky model of
algebraic curves has, by contrast, been used much less often.

Hejhal [25] returns to the S-K prime function in his discussion of the classical
kernel functions of planar domains and it is on the particular application of
the prime function to planar domains that this article will focus. It is possible
to associate with any multiply connected planar domain a compact symmetric
Riemann surface called its Schottky double. The S-K prime function on such
symmetric Riemann surfaces has certain special properties which will be reviewed
here. As a result, a large number of results associated with the function theory of
planar domains can be conveniently expressed in terms of the S-K prime function
on the Schottky double of the domain.

2. The prime function on a torus

The S-K prime function for the Riemann sphere is simple. The prime function for
a sphere with one handle, or torus, is more interesting. A mathematical model of
a torus is to consider the two neighbouring annuli ρ < |ζ| < 1 and 1 < |ζ| < ρ−1

where 0 < ρ < 1 is a real parameter. These two annuli already meet at the
circle |ζ| = 1 but we also want them to be associated at the two other boundary
circles |ζ| = ρ and |ζ| = ρ−1. A holomorphic identification of these two circles
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is provided by the Möbius mapping ζ 7→ ρ2ζ. A meromorphic function F (ζ) on
this torus can be defined as a function satisfying the functional relation

(3) F (ρ2ζ) = F (ζ)

and having only poles in the annulus ρ ≤ |ζ| < ρ−1. Such functions have been
dubbed loxodromic functions [31].

But how do we construct functions satisfying (3)? Consider P (ζ) defined by the
infinite product

(4) P (ζ) ≡ (1− ζ)
∞∏
k=1

(1− ρ2kζ)(1− ρ2kζ−1).

Using standard methods for infinite products [31] the function (4) is known to
be convergent for all ζ 6= 0 and for all 0 < ρ < 1. It is easy to confirm, directly
from this definition, that P (ζ) satisfies the functional relation

(5) P (ρ2ζ) = −ζ−1P (ζ).

The function P (ζ) does not itself satisfy (3), but the ratio of products

(6) R(ζ) ≡
N∏
k=1

P (ζα−1
k )

/ N∏
k=1

P (ζβ−1
k )

does satisfy (3) provided the parameters in (6) satisfy the single condition

N∏
k=1

αk =
N∏
k=1

βk.

This, again, is a simple exercise based on use of (5). R(ζ) can also be seen to
have only poles in the annulus ρ ≤ |ζ| < ρ−1 and is therefore meromorphic on
the torus. On comparing (6) with (2) it is natural to identify the function P (ζ)
with the prime function for the torus and, up to normalization, this is indeed
the case.

It is worth noting that since P (ζ) is analytic in the annulus ρ < |ζ| < 1 then, in
addition to the infinite product expression (4), it also has a convergent Laurent
series there. It is given by the rapidly convergent series

(7) P (ζ) = A

∞∑
n=−∞

(−1)nρn(n−1)ζn,

where

A =
∞∏
n=1

(1 + ρ2n)2

/ ∞∑
n=1

ρn(n−1).
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The Laurent series (7) converges everywhere in the annulus ρ ≤ |ζ| < ρ−1. These
two representations of the same function furnish the identity

(8) (1− ζ)
∞∏
k=1

(1− ρ2kζ)(1− ρ2kζ−1) = A
∞∑

n=−∞

(−1)nρn(n−1)ζn,

which relates an infinite product to an infinite sum. The reader might recognize
this as the Jacobi triple product identity [33]. We will refer back to this identity
later.

3. The Schottky double of a domain

From the theory of conformal mapping [23] it is known that any doubly connected
domain is conformally equivalent to some annulus ρ < |ζ| < 1. On the other
hand, in the previous section a torus was built by identifying the boundary circles
|ζ| = ρ and |ζ| = ρ−1 of the larger annulus ρ < |ζ| < ρ−1. Note that, given the
smaller annulus ρ < |ζ| < 1, the larger annulus ρ < |ζ| < ρ−1 can be constructed
by reflection of ρ < |ζ| < 1 in the unit circle.

In the same way, it is known [23] that any M -connected domain (for M ≥ 1) is
conformally equivalent to the unit ζ-disc with M smaller circular discs excised.
Let such a domain be denoted Dζ . One can then reflect the circular boundaries
of these discs in the unit circle to produce M additional circles in |ζ| > 1 (by
this antiholomorphic reflection, one produces a precise copy, or “backside”, of
the original multiply connected domain outside the unit ζ-disc). Then, following
the example of the torus, we can identify each circle in |ζ| < 1 with its reflection
in |ζ| > 1 by means of a holomorphic Möbius transformation. For an (M + 1)-
connected domain there will be M such Möbius transformations. The basic idea
of this construction lies at the heart of the Schottky model of algebraic curves
and, by forming the union of Dζ with its backside and identifying the boundary
circles as just described, we produce a model of the so-called Schottky double of
the original multiply connected circular domain. Gustafsson [24] and Varchenko
& Etingof [32] have discussed the so-called Hele-Shaw free boundary problem in
a multiply connected domain by considering the Schottky double of the domain.

More specifically, consider a multiply connected circular domain Dζ consisting
of the unit ζ-disc with M smaller circular discs excised having centres located at
{δj|j = 1, . . . ,M} and radii {qj|j = 1, . . . ,M}. The data {δj, qj|j = 1, . . . ,M}
will be called the conformal moduli of Dζ . Let the unit circle be denoted C0

and let the M interior circular boundaries be denoted {Ck|k = 1, . . . ,M}. For
k = 1, . . . ,M let C ′k denote the reflection of Ck in C0. Figure 1 shows a schematic
in the triply connected case M = 2. Now, for k = 0, 1, . . . ,M , we introduce the
Möbius transformation φk(ζ) defined by

(9) φk(ζ) = δk +
qk

2

ζ − δk
, k = 0, 1, . . . ,M.
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It is straightforward to check that for points on the circle Ck

φk(ζ) = ζ.

We define the reflection of a point ζ in the circle Ck by φk(ζ). Then for
k = 1, . . . ,M introduce the Möbius transformation θk(ζ) defined by

(10) θk(ζ) = φk(ζ
−1

), k = 1, . . . ,M.

It follows from (10) and (9) that

(11) θk(ζ) = δk +
qk

2ζ

1− δkζ
, k = 1, . . . ,M.

It is straightforward to show that θk(ζ) maps C ′k onto Ck as illustrated in Figure 1.

C
1

C
2

C
1
′

C
2
′

θ
1
(ζ)

θ
2
(ζ) C

0

Figure 1. The circles {Cj, C ′j|j = 1, . . . ,M} and the maps
{θj(ζ)|j = 1, . . . ,M} identifying them. C0 is the unit circle. The
case M = 2 is shown.

Consider the maps {θk(ζ)|k = 1, . . . ,M}. Then the set Θ consisting of all func-
tional compositions of these maps and their inverses is an example of a classical
Schottky group [1, 2]. We refer to the maps {θk(ζ)|k = 1, . . . ,M} and their in-
verses as the generators of the group Θ. A fundamental region of Θ is a connected
region whose images under all maps in Θ tessellate the whole of the plane. Let
us define F as the region consisting of Dζ and its reflection in C0, i.e., the 2M -
connected region bounded by {Ck, C ′k|k = 1, . . . ,M}. Then F is a fundamental
region for the group Θ.

To return to the genus-1 case, if the previous construction is applied to the case
in which Dζ is the annulus 0 < ρ < |ζ| < 1 then the Schottky group is generated
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by θ1(ζ) = ρ2ζ and its inverse. The Schottky group Θ in this case can be written
explicitly as

(12) Θ ≡
{
θj(ζ) = ρ2jζ|j ∈ Z

}
.

A fundamental region F is the annulus ρ ≤ |ζ| < ρ−1.

4. The Schottky-Klein prime function

Associated with the Schottky double of the domain Dζ are M functions known
as integrals of the first kind which we denote {υk(ζ)|k = 1, . . . ,M}. These are
analytic, but not single-valued, in F . Indeed, for j, k = 1, . . . ,M we have [1]

(13) [υk(ζ)]Cj
= −[υk(ζ)]C′

j
= δjk,

where [υk(ζ)]Cj
and [υk(ζ)]C′

j
denote respectively the changes in υk(ζ) on travers-

ing Cj and C ′j with the interior of F on the right. δjk denotes the Kronecker
delta function. Furthermore, for j, k = 1, . . . ,M ,

(14) υk(θj(ζ))− υk(ζ) = τjk

for some {τjk|j, k = 1, . . . ,M} which are constants (independent of ζ). The func-
tions {υk(ζ)|k = 1, . . . ,M} are uniquely determined (up to an additive constant)
by their periods given by (13) and (14).

It is established in [25] that there exists a unique function X(ζ, α) defined by the
properties:

(i) X(ζ, α) is single-valued and analytic in F .
(ii) X(ζ, α) has a second-order zero at each of the points θ(α), θ ∈ Θ.

(iii)

lim
ζ→α

X(ζ, α)

(ζ − α)2
= 1.

(iv) If θk(ζ) (for k = 1, . . . ,M) is one of the generators of Θ, then

(15) X(θk(ζ), α) = exp(−2πi(2υk(ζ)− 2υk(α) + τkk))
dθk(ζ)

dζ
X(ζ, α).

The Schottky-Klein prime function is then defined as the square root of X(ζ, α).
There is a similar characterization for the prime function itself subject only to an
ambiguity in sign (a matter which has recently been discussed by Bogatyrev [4]).

5. Computing the S-K prime function

How can the S-K prime function be evaluated in practice? One possibility is
to use a classical infinite product formula for it as recorded, for example, in
Baker [1]. It is given by

(16) ω(ζ, α) = (ζ − α)
∏
θk

(θk(ζ)− α)(θk(α)− ζ)

(θk(ζ)− ζ)(θk(α)− α)
,
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where the product is over all compositions of the maps generating the group Θ
excluding the identity and all inverse maps. It has not yet been proven that
this product converges for all choices of the parameters {qj, δj|j = 1, . . . ,M}
and, even if it does, its convergence rate can be so slow as to make use of (16)
impractical in many circumstances. The product must, of course, be truncated
in some fashion and one way to do this is to truncate at a certain level of com-
position of the Möbius mappings generating the group. This can quickly become
numerically expensive but it can be safely used in some cases, especially of small
connectivity.

For a torus, if the group (12) is used in the definition (16), the result is the infinite
product (4) which, as already mentioned, is the relevant S-K prime function (to
within a normalization factor). It has already been pointed out that the Jacobi
triple product identity (8) provides an alternative method of computing the S-K
prime function in that case: instead of truncating the infinite product (4) one
can alternatively truncate the much more rapidly convergent infinite sum (7).
This idea of trading of a slowly convergent infinite product for a more rapidly
convergent infinite sum is the motivation behind a recently-devised numerical
algorithm for computing the S-K prime function (on the Schottky double of
planar domains) presented by Crowdy & Marshall [13]. They devised a novel
numerical algorithm for computing the S-K prime function based on Laurent
series representations of the function. It can be used to evaluate ω(ζ, α), with
great speed and accuracy, for broad classes of domains. The algorithm works by
writing

X(ζ, α) = (ζ − α)2X̂(ζ, α),

where X(ζ, α) = ω2(ζ, α) and then computing the coefficients in a truncation of

the following Laurent expansion of X̂(ζ, α):

(17) X̂(ζ, α) = A

(
1 +

M∑
k=1

∞∑
m=1

cm
(k)qk

m

(ζ − δk)m
+

M∑
k=1

∞∑
m=1

dm
(k)Qk

m

(ζ − δ′k)m

)
.

where Qk and δ′k are, respectively, the radius and centre of C ′k. The coefficients

{c(k)m , d
(k)
m } are determined numerically using the transformation properties (15)

[13]. It is important to note that the algorithm in [13] does not depend on a sum
or product over a Schottky group. This feature renders it a much faster practical
method of evaluating the prime function than methods based on use of (16).
Freely downloadable Matlab codes have been prepared, based on the algorithm
described in [13], and they are available for general use at the website [10].

6. The Schwarz conjugate function

The symmetry of the Schottky double (the fact that it comprises two copies of
the planar domain – the domain itself together with a backside) furnishes another
functional relation involving the S-K prime function that proves to be invaluable
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in applications. Indeed the Schwarz conjugate function to the S-K prime function
can, in this case, be usefully related to the S-K prime function itself. Defining
the Schwarz conjugate of the prime function by

ω(ζ, γ) = ω(ζ, γ),

it can be shown that the following functional relation holds:

ω(ζ−1, γ−1) = −ζ−1γ−1ω(ζ, γ).

A proof of this result, based on the infinite product definition of the prime
function, is given in an appendix to Crowdy & Marshall [11]. It can alternatively
be established by simply making use of the definition of the prime function and
the symmetry of the underlying Schottky group.

7. Slit mappings as building blocks

We now give evidence that conformal slit mappings can provide useful “building
block” functions from which more complicated function theoretic objects can be
constructed. The theoretical importance of conformal slit maps is well-known:
Schiffer [29], for example, has elucidated a number of useful connections between
conformal slit mappings and the fundamental objects of potential theory (Green’s
functions, modified Green’s functions, harmonic measures). It is a remarkable
(and useful) fact that conformal mappings of multiply connected circular domains
to all the canonical slit domains [28, 3] can be expressed explicitly, by means of
compact formulae, in terms of the S-K prime function. Full details can be found
in Crowdy & Marshall [12] and those relevant to the remainder of this article
will now be reviewed.

7.1. Circular slit domains. Pick a point α in the interior of some multiply
connected circular domain Dζ as shown in Figure 2 for the case M = 2. Consider
the function

(18) η1(ζ) =
ω(ζ, α)

|α|ω(ζ, α−1)
.

As a conformal mapping this takes C0 to a unit circle L0 and the point ζ = α
to the centre of L0. Meanwhile the circles C1 and C2 are mapped to circular arc
slits L1 and L2 concentric with the circle L0. The image is therefore a circular
slit domain that is recognized as being one of the canonical multiply connected
slit domains [28, 3].

7.2. Half-space slit domains. Consider the function defined by

η2(ζ) =
ω(ζ, α1)

ω(ζ, α2)
,

where the two parameters α1 and α2 are both taken to be on the same boundary
circle of a multiply connected circular domain Dζ . Figure 3 shows the case with
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Figure 2. Circular slit domain. C0 maps to a unit circle L0 while
C1 and C2 map to concentric circular arc slits inside L0. α maps
to the centre of L0.

M = 2 and where α1 and α2 are both chosen to be on C0. α1 maps to the origin
and α2 maps to infinity in such a way that C0 maps to a infinite straight line
through the origin. C1 and C2 each map to radial slits of finite length. The image
will be referred to as a half-space slit domain. Actually, such slit domains are
not explicitly discussed in Crowdy & Marshall [12] but can be viewed as special
cases of the radial slit mappings to be presented next.
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Figure 3. Half-space slit domain. C0 maps to a infinite straight
line through the origin and infinity. C1 and C2 map to radial slits
of finite length.



510 D. Crowdy CMFT

7.3. Radial slit domains. Pick two points α and β inside a multiply connected
circular domain Dζ and consider the function

η3(ζ) =
ω(ζ, α)ω(ζ, α−1)

ω(ζ, β)ω(ζ, β
−1

)
.

As a conformal mapping it takes ζ = α to the origin and ζ = β to the point at
infinity. It also maps all the circles {Cj|j = 0, 1, . . . ,M} to radial slits.

C
0

C
1

C
2

α

β

η
3
(α)

Figure 4. Radial slit domain. C0, C1 and C2 all map to radial
slits of finite length. α maps to the origin, β maps to infinity.

There are similarly convenient expressions (in terms of the S-K prime function)
for the so-called parallel slit domain and the domain consisting of a concentric
annulus with enclosed concentric circular arc slits (details are omitted but can
be found in Crowdy & Marshall [12]).

8. Schwarz-Christoffel formula

It is interesting that all three of the conformal slit mappings in Sections 7.1–7.3
can be written so compactly in terms of the S-K prime function. All three will
now be used to give a geometrical interpretation of the key steps in the construc-
tion of a multiply connected Schwarz-Christoffel formula derived by Crowdy [7].
This geometrical interpretation is implicit in the derivation of [7] but here we
render it more explicit by emphasizing that the so-called “building-block func-
tions” of that paper are none other than the conformal slit maps discussed in
Section 7. The monograph by Driscoll & Trefethen [20] gives a presentation of
the theory of Schwarz-Christoffel mappings (in the simply and doubly connected
situations) from a geometrical viewpoint (see also DeLillo, Elcrat & Pfaltzgraff
[18] for a discussion of the doubly connected case). The conformal slit maps are
themselves, of course, examples of multiply connected Schwarz-Christoffel maps
but the polygons involved, with boundaries consisting just of finite length slits,
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are degenerate. The construction that follows shows how to take these mappings
to degenerate polygons and build mappings to more elaborate ones. Indeed, the
final result will be a formula for the most general mapping to a bounded polygon
of any (finite) connectivity and with any (finite) number of sides.

C
0

C
1

C
2

γ
1
(1)γ

2
(1)

γ
1
(2)

γ
2
(2) α

L
0

L
1

L
2

Figure 5. Conformal mapping from the circular domain Dζ to
the circular-slit domain Dη. The case shown is a triply connected

domain. The points γ
(1)
1 and γ

(1)
2 on C1 map to the two ends of

the circular arc L1; γ
(2)
1 and γ

(2)
2 on C2 map to the two ends of the

circular arc L2.

The objective is to find the functional form, up to a finite set of accessory pa-
rameters, for the conformal map z(ζ) from a multiply connected circular domain
Dζ to a given bounded (M + 1)-connected polygonal region P . Let the outer

boundary be denoted P0, let it have turning angles [20] {πβ(0)
j |j = 1, . . . , n0} and

let the prevertices on C0 be at {a(0)
j |j = 1, . . . , n0} (a prevertex is the name given

to the preimage point that maps to a given vertex [20]). A necessary condition
that the polygon is closed is that

(19)

n0∑
j=1

β
(0)
j = −2.

The M internal polygonal boundaries are denoted {Pk|k = 1, . . . ,M}. Suppose

that Pk has nk edges with turning angles {πβ(k)
j |j = 1, . . . , nk} then a necessary

condition is that

(20)

nk∑
j=1

β
(k)
j = 2.

Let the vertices on Pk be at {z(k)
j |j = 1, . . . , nk} and let the prevertices on Ck be at

{a(k)
j |j = 1, . . . , nk}. Then, following the usual arguments for Schwarz-Christoffel
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mappings [20], in order that z(ζ) has the correct branch point behaviour it is

necessary that, for ζ near a
(k)
j ,

dz

dζ
=
(
ζ − a(k)

j

)β(k)
j

h
(k)
j (ζ),

where h
(k)
j (ζ) is some function that is analytic at a

(k)
j .

For clarity, we present details of the geometrical construction in the triply con-
nected case M = 2. It will be clear how the ideas are extendible to any connec-
tivity. The role of the three slit maps discussed in Sections 7.1–7.3 will be made
clear.

8.1. Role of circular slit mapping. First, it is expedient to make use of the
circular slit mapping given in Section 7.1. Suppose such a mapping takes Dζ

to a circular slit domain in a complex η-plane and denote the mapping by η(ζ)
with inverse function ζ(η). Some chosen point α in Dζ will map to η = 0. Let
the image of Ck be labelled Lk for k = 0, 1, . . . ,M . There will be two points on
each circle Ck (for k = 1, . . . ,M) mapping to the endpoints of the corresponding

circular arc slit Lk. Let these be denoted γ
(k)
1 and γ

(k)
2 (for k = 1, . . . ,M).

Figure 5 shows an example for M = 2 with the preimage points clearly indicated.

Now introduce the pullback of the conformal mapping z(ζ) to the η-plane given
by

Z(η) = z(ζ(η)).

As a conformal mapping, Z(η) takes the circular-slits {Lk|k = 0, 1, . . . ,M} in the
η-plane to the boundaries {Pk|k = 0, 1, . . . ,M} of the polygon in the z-plane.
Furthermore, because the chain rule implies

(21)
dZ
dη

=
dz/dζ

dη/dζ
,

dZ/dη inherits branch points at the images under the mapping η(ζ) of all the
prevertices on the boundary of Dζ . Note, however, that it also has two first-order

poles at γ
(k)
1 and γ

(k)
2 on Ck for each k = 1, . . . ,M (we assume throughout that

none of these poles coincides with any of the branch points — this can always
be arranged by a different choice of α).

Now the complex tangent on the k-th boundary Pk of the polygon is

dz

ds
= ±i ηZ

′(η)

rk|Z ′(η)|
,

where Z ′(η) = dZ/dη, rk denotes the radius of Lk and s denotes arclength.
Clearly, since the argument of the tangent vector is piecewise constant on the
boundaries of the polygon we require the argument of the function

(22) ηZ ′(η)

to be piecewise constant on all the boundaries of the polygon P .
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π β
j
(k)

Figure 6. Geometrical effect of the functions (23) and (24). To
the left is the image of Dζ as shown in Figure 5 under the mapping
(23). To the right is its image under the mapping (24) and shows
that a corner with the required turning angle has been introduced.

8.2. Role of half-plane slit mapping. In order to construct the multiply
connected Schwarz-Christoffel formula we need to be able to add “corners” to
the polygon — and hence branch points of dz/dζ — while ensuring that the
quantity (22) continues to have piecewise constant argument on all boundaries.

To do this we pick one of the prevertices a
(k)
j and consider the half-plane slit map

(described in Section 7.2) given by

(23)
ω(ζ, a

(k)
j )

ω(ζ, γ(k))
,

where γ(k) is an arbitrarily chosen point on Ck. This maps Dζ to the region shown

in the left-most diagram in Figure 6 and, in particular, maps the prevertex a
(k)
j

to the origin in this plane. Since all boundary circles map to radial lines the
function

(24)

(
ω(ζ, a

(k)
j )

ω(ζ, γ(k))

)β
(k)
j

introduces precisely the required branch point behaviour at the prevertex a
(k)
j

but retains the property that its argument on all boundaries of Dζ is constant.
The image of Dζ under the mapping (24) is shown in the right-most diagram
in Figure 6 and shows that a corner of the appropriate turning angle has been
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introduced at the origin. It is therefore natural to consider the product

(25)
M∏
k=0

nk∏
j=1

(
ω(ζ, a

(k)
j )

ω(ζ, γ(k))

)β
(k)
j

.

This function, by construction, has all the required branch points together with
the property that its argument is piecewise constant on the boundaries of Dζ .

Since the boundaries of Dζ correspond to the boundaries of Dη we can contem-
plate equating some multiple of the specially constructed product (25) with the
required function (22). This cannot be done directly because, owing to condi-
tion (20), the product (25) has M unwanted second order poles at the points

{γ(k)|k = 1, . . . ,M}. We also know that ηdZ/dη has simple poles at γ
(k)
1 and

γ
(k)
2 on Ck for each k = 1, . . . ,M in contrast to the product (25). We can adjust

the positions of the poles of (25) by multiplying it by the product of half-plane
slit mappings (from Section 7.2) given by

M∏
k=1

(
ω(ζ, γ(k))

ω(ζ, γ
(k)
1 )

)(
ω(ζ, γ(k))

ω(ζ, γ
(k)
2 )

)
.

This multiplicative operation does not affect the piecewise constancy of the prod-
uct (25) on any of the boundaries of Dζ . It removes the unwanted second order
poles of (25) at {γ(k)|k = 1, . . . ,M} and replaces them with simple poles at

{γ(k)
1 , γ

(k)
2 |k = 1, . . . ,M}. The product is now given by

(26)

(
ω(ζ, γ(0))2∏M

k=1 ω(ζ, γ
(k)
1 )ω(ζ, γ

(k)
2 )

)
M∏
k=0

nk∏
j=1

ω(ζ, a
(k)
j )β

(k)
j .

8.3. Role of radial slit mapping. Since the circular slit map η(ζ) vanishes
at ζ = α, ηdZ/dη also has a simple zero at the point ζ = α in contrast to the
product (26). Moreover, owing to the condition (20), the product (26) has an
unwanted second order zero at the arbitrarily chosen point γ(0). These remaining
problems can be fixed by multiplying (26) by the radial slit mapping (as described
in Section 7.3)

ω(ζ, α) ω(ζ, α−1)

ω(ζ, γ(0))ω(ζ, γ(0))
.

This multiplicative operation does not affect the piecewise constancy of the prod-
uct (26) on any of the boundaries of Dζ . It also removes the unwanted second-
order zero at γ(0) and replaces it with simple zeros at α and 1/α.

8.4. The final formula. Putting all these together gives us a candidate func-
tion having all the properties required of the function ηZ ′(η). Some additional
arguments (based on Liouville’s theorem or using Riemann-Hilbert methods) can
be used to show that ηZ ′(η) is, in fact, proportional to this candidate function.
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Finally, use of (21) together with the explicit expression (18) for the circular slit
map η(ζ) can be combined to deduce that the Schwarz-Christoffel mapping from
a bounded (M+1)-connected circular region Dζ to a bounded (M+1)-connected
polygonal region is

(27) z(ζ) = A+B

∫ ζ

SM(ζ ′)

n0∏
j=1

[
ω(ζ ′, a

(0)
j )
]β(0)

j
M∏
k=1

nk∏
j=1

[
ω(ζ ′, a

(k)
j )
]β(k)

j

dζ ′

where S0(ζ) = 1 (the simply connected case), S1(ζ) = 1/ζ2 (the doubly connected
case) and, for all M ≥ 2,

(28) SM(ζ) =
ωζ(ζ, α)ω(ζ, α−1)− ωζ(ζ, α−1)ω(ζ, α)∏M

k=1 ω(ζ, γ
(k)
1 )ω(ζ, γ

(k)
2 )

where ωζ(·, ·) denotes the derivative of the prime function with respect to its first
argument. Until recently, only the formulae for M = 0 and M = 1 were known
[20]. (27) incorporates these as special cases. From its representation (28) the
function SM(ζ) appears to depend on the choice of the (arbitrary) point α. How-
ever a demonstration that it is, in fact, independent of α is given in Crowdy [9].

The construction just described is readily extendible to the case of mappings to
unbounded polygonal domains [8]. In this case, DeLillo et al. [17] have given an
alternative formula for the Schwarz-Christoffel mapping (not expressed in terms
of the S-K prime function) using reflection arguments based on consideration
of a pre-Schwarzian function. DeLillo [15] has shown how to relate the latter
approach to the function theoretic approach of Crowdy [7] based on use of the
S-K prime function. Other ideas on how to compute the accessory parameters
appearing in these formulae have been discussed by DeLillo et al. [16] but much
further work on the numerical implementation of the formula remains to be done.

9. Discussion

The Schottky-Klein prime function on the Schottky double of planar domains
provides an important linchpin in the function theory associated with planar
multiply connected domains. It has many applications in this area and it is
only recently that many of these have been identified. With new numerical
techniques for its evaluation [13] (and downloadable Matlab files available at
[10]) it is hoped that future workers will incorporate it as an important theoretical
and computational tool in their investigations of problems in multiply connected
domains.

Acknowledgement. This article surveys some of the ideas presented in a ple-
nary lecture delivered by the author at the conference CMFT 2009 in Ankara,
Turkey in 2009.
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