
J. Fluid Mech. (2003), vol. 476, pp. 345–356. c© 2003 Cambridge University Press

DOI: 10.1017/S0022112002002975 Printed in the United Kingdom

345

Compressible bubbles in Stokes flow
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The problem of a two-dimensional inviscid compressible bubble evolving in Stokes
flow is considered. By generalizing the work of Tanveer & Vasconcelos (1995) it
is shown that for certain classes of initial condition the quasi-steady free boundary
problem for the bubble shape evolution is reducible to a finite set of coupled nonlinear
ordinary differential equations, the form of which depends on the equation of state
governing the relationship between the bubble pressure and its area. Recent numerical
calculations by Pozrikidis (2001) using boundary integral methods are retrieved and
extended. If the ambient pressures are small enough, it is shown that bubbles can
expand significantly. It is also shown that a bubble evolving adiabatically is less likely
to expand than an isothermal bubble.

1. Introduction
In a recent paper, Pozrikidis (2001) considers the problem of an inviscid two-

dimensional compressible bubble evolving in an ambient Stokes flow. The motivation
is to establish any effects on the size of the bubble induced by the fluid pressures
exerted on the bubble due to the ambient flow. Using dynamical simulations based
on numerical boundary integral calculations, Pozrikidis (2001) finds that in the
case of a bubble placed in pure shear or pure strain, after an initial period of
contraction from a circular initial shape, the bubble eventually settles into a steady
state which has a greater area than that of the initial circular bubble. These numerical
calculations require the computation of certain strongly singular integrals. To test
the code, Pozrikidis (2001) makes use of a class of exact solutions due to Tanveer &
Vasconcelos (1995) which are relevant in the special case when the pressure in the
bubble is assumed to be identically zero.

In this note, it is shown that the theory of exact solutions expounded by Tanveer
& Vasconcelos (1995) can be generalized to include the case of a compressible bubble
evolving according to some equation of state linking the bubble pressure evolution
to the bubble area evolution. In this way, for wide classes of initial conditions, the
problem can be reduced to the integration of a finite system of coupled ordinary
differential equations, the precise form of which depends on the assumed equation
of state. It is shown that the results obtained by Pozrikidis (2001) using boundary
integral calculations can be retrieved by integrating two coupled nonlinear ordinary
differential equations. These two equations must be integrated numerically but the
procedure is straightforward. This reformulation not only provides a useful check on
the boundary integral calculations (which require the computation of hypersingular
integrals Pozrikidis 2001) but enables the problem to be solved much more readily and
with much smaller demands on computational capacity. Using the exact solutions, this
note (a) includes a wider range of calculations to corroborate the conclusion reached
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by Pozrikidis (2001) that significant area changes in the bubbles are only observed
when the ambient pressure is comparable with, or smaller than, the capillary pressure
due to surface tension; (b) assesses the effect of the assumed equation of state inside
the bubble by comparing results obtained assuming an isothermal bubble (as done
by Pozrikidis 2001) with those obtained when the bubble is assumed to change its
area adiabatically.

2. Mathematical formulation
Consider the quasi-steady evolution of an inviscid bubble surrounded by an infinite

expanse of very viscous fluid, with viscosity µ, with surface tension acting on the
bubble boundary. Let the velocity field in the fluid have components u = (u, v).
Introducing a streamfunction ψ(x, y), then

u ≡ (u, v) = (ψy,−ψx), (2.1)

where subscripts denote partial derivatives. Under the assumption of Stokes flow in
the surrounding fluid, it is known that

∇4ψ = 0, (2.2)

everywhere in the fluid. Let p(x, y, t) denote the fluid pressure and pB(t) the uniform
bubble pressure at time t. On the bubble boundary the stress condition is

−pnj + 2µejknk = γκnj − pB(t)nj, (2.3)

where κ is the surface curvature and γ is the surface tension; eij denotes the fluid
strain tensor defined by

eij =
1

2

(
∂ui

∂xj
+
∂uj

∂xi

)
(2.4)

and ni is the ith component of the normal n to the boundary. Under the assumption
of quasi-steady evolution, the kinematic condition is that

u · n = Vn, (2.5)

where Vn is the normal velocity of the interface. Equation (2.5) governs the subsequent
evolution of the interface. Let the initial bubble area be πa2

0. In what follows, velocities
are rescaled by γ/µ, pressures by γ/a0 and length and time with a0 and a0µ/γ
respectively. To complete the formulation of the problem, conditions in the fluid
at large distances from the bubble are required. Following Tanveer & Vasconcelos
(1995), the velocity field at infinity is assumed to have the form

u = Γ · x+ O(1/|x|) (2.6)

as |x| → ∞ where

Γ ≡ 1

2

(
α0 β0 − ω0

β0 + ω0 −α0

)
. (2.7)

In (2.7), ω0 denotes the vorticity of the external flow while α0 and β0 characterize its
strain rate.

2.1. Complex variable formulation

To make progress, the equations above are rewritten in terms of the standard complex
variables z = x+ iy and z̄ = x− iy. The general solution of (2.2) at each instant can
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be written as

ψ = Im[z̄f(z, t) + g(z, t)], (2.8)

where f(z, t) and g(z, t) are functions (to be determined) that are analytic everywhere
in the fluid region D(t). In terms of these Goursat functions, the following relations
can easily be established (cf. Tanveer & Vasconcelos 1995):

p− iω = 4f′(z, t), (2.9)

u+ iv = −f(z, t) + zf̄′(z̄, t) + ḡ′(z̄, t), (2.10)

e11 + ie12 = zf̄′′(z̄, t) + ḡ′′(z̄, t), (2.11)

where ω denotes the fluid vorticity. Let s be the arclength traversed in a clockwise
direction around the bubble boundary. It can be shown that the stress boundary
condition can be written in the form

f(z, t) + zf̄′(z̄, t) + ḡ′(z̄, t) = −i
zs

2
+
pB(t)z

2
(2.12)

while the complex kinematic condition is

Im

[(
zt + 2f − pB(t)z

2

)
z̄s

]
= −1

2
. (2.13)

A time-dependent conformal mapping z(ζ, t) from the unit disk in a parametric ζ-
plane to the fluid region exterior to the bubble is now introduced. The circle |ζ| = 1
maps to the bubble boundary. In terms of this conformal mapping, (2.13) can be
rewritten as

Re

[
(zt + 2f − 1

2
pB(t)z)

ζzζ

]
=

1

2|zζ | , (2.14)

where we have used the fact that

zs =
1

z̄s
=

iζzζ
|zζ | on |ζ| = 1. (2.15)

Using the Poisson integral formula for the unit ζ-disk, then for points ζ inside the
unit ζ-disk,

zt(ζ, t) + 2F(ζ, t)− pB(t)z(ζ, t)

2
= ζ [I(ζ, t) + iC(t)] zζ(ζ, t), (2.16)

where F(ζ, t) ≡ f(z(ζ, t), t) and

I(ζ, t) =
1

4πi

∮
|ζ ′ |=1

dζ ′

ζ ′

[
ζ ′ + ζ

ζ ′ − ζ
]

1

|zζ(ζ ′, t)| . (2.17)

C(t) is constant in space (but is possibly time-dependent) and is determined by the
far-field flow conditions. Equation (2.16) is the generalization of equation (31) of
Tanveer & Vasconcelos (1995). Similarly, defining

G(ζ, t) ≡ g′(z(ζ, t), t), (2.18)

the stress condition becomes

G(ζ, t) = −F(ζ−1, t)− z̄(ζ−1, t)
Fζ(ζ, t)

zζ(ζ, t)
+
z̄

1/2
ζ (ζ−1, t)

2ζz
1/2
ζ (ζ, t)

+
pB(t)z̄(ζ−1, t)

2
. (2.19)



348 D. G. Crowdy

Given that the far-field velocity has the form (2.6), the asymptotic conditions on f(z)
and g(z) as z →∞ are

f(z) ∼ 1
4
(p∞ − iω0)z + O(1), (2.20)

g′(z) ∼ 1
2
(α0 − iβ0)z + O(1), (2.21)

where p∞ is the fluid pressure at infinity. Equation (2.19) is the generalization of
equation (36) of Tanveer & Vasconcelos (1995) to the case where the bubble pressure
is not identically zero but takes some spatially uniform time-evolving value pB(t). It
is important to note that equations (31) and (36) of Tanveer & Vasconcelos (1995)
are the two equations which are manipulated to derive classes of exact solutions.
Tanveer & Vasconcelos (1995) devote § 3.1 of their paper to explaining the general
mathematical reasons underlying the existence of this class of solutions.

For purposes of generalization to the case where the bubble pressure may vary in
time according to some externally specified prescription (i.e. equation of state), the

following observation is crucial. Define a modified Goursat function f̂(z, t) via the
time-dependent transformation

f̂(z, t) ≡ f(z, t)− pB(t)z

4
. (2.22)

f̂(z, t) shares the same analyticity properties as f(z, t) everywhere inside the fluid.
Crucially, its large-z behaviour is also of the same general kind as f(z, t), that is,

f̂(z, t) ∼ 1
4
(p∞ − iω0)z − 1

4
pB(t)z as z →∞. (2.23)

Now define

F(ζ, t) ≡ f̂(z(ζ, t), t). (2.24)

Then, under the transformation (2.22), equations (2.16) and (2.19) become

zt(ζ, t) + 2F(ζ, t) = ζ[I(ζ, t) + iC(t)] zζ(ζ, t), (2.25)

and

G(ζ, t) = −F(ζ−1, t)− z̄(ζ−1, t)
Fζ(ζ, t)

zζ(ζ, t)
+
z̄

1/2
ζ (ζ−1, t)

2ζz
1/2
ζ (ζ, t)

. (2.26)

Equations (2.25) and (2.26) are now isomorphic to (31) and (36) of Tanveer &
Vasconcelos (1995). Moreover, inspection of § 3.1 of Tanveer & Vasconcelos (1995)
in which their equations (31) and (36) are analysed in detail shows that the existence
of the exact solution class depends only on the a priori known analytical structure of
(their) F(ζ, t) and G(ζ, t) inside the unit ζ-circle. The modified functions F(ζ, t) and
G(ζ, t) defined here share exactly the same analyticity structure in the unit ζ-circle as
the functions F(ζ, t) and G(ζ, t) defined in Tanveer & Vasconcelos (1995) (including,
crucially, those at ζ = 0 corresponding to physical infinity). It can thus be concluded
that exact solutions to the compressible bubble problem also exist and can be derived
using the methods expounded in Tanveer & Vasconcelos (1995) while taking care to
make the transformation embodied in (2.22). This transformation affects the far-field
asymptotic flow conditions (and thus the relevant equations governing the motion)
but the analytic structure of the conformal mapping solutions established in Tanveer
& Vasconcelos (1995) persists. The exact solutions are given by rational-function
conformal mappings depending on a finite set of time-evolving parameters.

To derive the evolution equations for a given rational-function conformal mapping,
the procedure is to substitute forF(ζ, t) from (2.25) into (2.26). The right-hand side of
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the resulting equation then depends only on the conformal mapping function (and its
conjugate function) while the left-hand side is simply G(ζ, t). The evolution equations
for the conformal mapping parameters are obtained by ensuring that G(ζ, t) has the
correct analyticity structure inside the circle |ζ| 6 1. This procedure will be illustrated
in the context of the examples of § 3.

3. Compressible bubbles in a linear flow
Pozrikidis (2001) considers the example of compressible bubbles in pure shear flow

and pure straining flows. For purposes of comparison with the boundary integral
calculations of Pozrikidis (2001) the same class of flows, and initial conditions will
be examined. In the following calculations, the initial bubble is taken to be purely
circular of unit radius. The initial bubble pressure is given by the Young–Laplace
formula for a circular bubble in equilibrium under the effects of surface tension with
no external flow, i.e.

pB0
= p∞ + 1. (3.1)

Two different equations of state will be considered. Under the assumption that the
bubble is an ideal gas, pB(t) is related to bubble area AB(t) via the formula

pB(t)AB(t) = pB0
π = π(p∞ + 1). (3.2)

If the bubble is assumed to change its area adiabatically so that p/ργ = constant, the
equation of state is

pB(t)[AB(t)]γ = pB0
πγ = πγ(p∞ + 1), (3.3)

where, for definiteness, we here take γ = 1.4.
The resulting systems of ordinary differential equations are solved using a simple

forward Euler method with time step 10−3. Any integral quantities appearing in the
equations are evaluated using a trapezoidal rule taking 512 sample points on the
unit ζ-circle. Since the trapezoidal rule gives super-algebraic convergence for periodic
functions on smooth domains, we expect the dominant numerical error to be the
O(10−3) global error associated with the forward Euler scheme. This method gives
adequate accuracy for present purposes. The results are checked by recalculating with
time step equal to 10−4 and 1024 points in the trapezoidal rule.

3.1. Compressible bubble in pure shear flow

Let the far-field flow be

u = (ky, 0), (3.4)

where the shear rate k is some positive constant. The compressible bubble will evolve,
and adjust its area, both as a result of the imposed ambient flow field and the pressure

at infinity. The far-field form of f̂(z) and g′(z) are given by

f̂(z) ∼ 1
4
(p∞ − pB(t) + ik)z + O(1) as z →∞, (3.5)

g′(z) ∼ − 1
2
ikz + O(1) as z →∞. (3.6)

The initial conformal map z0(ζ) from the unit ζ-circle to the initial bubble is

z0(ζ) =
1

ζ
. (3.7)
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Figure 1. Evolution of the reduced area of a compressible bubble in simple shear flow;
k = 0.5 and p∞ = 1, 2, 5 and 8.

By the results of § 2, under evolution the time-dependent conformal map has the form

z(ζ, a(t), b(t)) =
a(t)

ζ
+ b(t)ζ, (3.8)

where a(t) can be assumed real (by a rotational degree of freedom in the Riemann
mapping theorem) and b(t) is complex in general. By comparison of (3.7) and (3.8)
the initial conditions are a(0) = 1 and b(0) = 0. For convenience, the dependence of
a(t) and b(t) on time will be suppressed. The ordinary differential equations for a and
b are found to be

ȧ = −aI(0, a, b)−
(
p∞ − pB(a, b)

2

)
a, (3.9)

ḃ = −bI(0, a, b) +

(
p∞ − pB(a, b)

2

)
b+ ik(a− b), (3.10)

where

I(0, a, b) =
1

4πi

∮
|ζ|=1

dζ

ζ

1

|zζ(ζ, a, b)| , (3.11)

and the bubble pressure, now denoted pB(a, b) (instead of just pB(t)), is

pB(a, b) =
(p∞ + 1)

(a2 − |b|2) (3.12)

in the case of an ideal gas, and

pB(a, b) =
(p∞ + 1)

(a2 − |b|2)γ (3.13)

when the bubble evolution is assumed to be adiabatic. Equations (3.12) and (3.13)
follow from (3.2) and (3.3) respectively, together with the fact that, for bubbles
described by the conformal map (3.8), AB(t) = π(a2 − |b|2). Details of the derivation
of (3.9)–(3.10) using the fundamental equations (2.25) and (2.26) are given in the
Appendix.
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Figure 2. Reduced rate of expansion Q of a compressible bubble in simple shear flow;
k = 0.5 and p∞ = 1, 2, 5 and 8.

Pozrikidis (2001) defines the initial capillary number Ca0 as

Ca0 =
µka0

γ
. (3.14)

where a0 is the initial bubble radius. In the present notation, and with the initial
bubble taken to be circular with unit radius, the parameter k corresponds exactly
to the Ca0 parameter of Pozrikidis (2001). For purposes of comparison with the
results of the boundary integral calculations, in figures 1 and 2 the graphs plotted
in figures 7(a) and 7(b) of Pozrikidis (2001) are recalculated by integration of the
equations (3.10) for a and b. These graphs show the bubble area AB(t) (rescaled by the
initial bubble area AB0) and the reduced rate of expansion Q plotted against reduced
time kt. Q is determined using the formula

Q =
ȦB(t)

ka2
0

=
π

ka2
0

(2aȧ− b˙̄b− b̄ḃ), (3.15)

combined with the equations in (3.10). Here the bubble is assumed to be isothermal,
the capillary number is such that k = 0.5 and four values of p∞ = 1, 2, 5 and 8 are
considered. The graphs show good agreement with the boundary integral calculations.
For example, the value obtained for the net percentage increase in bubble area at
steady state as calculated by the method above (with p∞ = 1 and k = 0.5) is 4.4%
while that reported by Pozrikidis (2001) using the boundary integral method is just
under 4%. The net percentage increase in bubble area at steady state is greatest for
the case p∞ = 1 and appears to decrease as the ambient pressure increases. In order
to examine how this overall expansion amount varies as a function of the ambient
pressure p∞, figure 3 shows a graph of reduced bubble area at steady state, for fixed
capillary number k = 0.5, as a function of p∞ for a range of positive p∞-values. The
relative simplicity of the numerical calculations (compared with the boundary integral
methods) facilitates rapid calculation of the overall expansion rate for a wide range
of p∞ values. As p∞ draws closer to zero, the net expansion at steady state can reach
up to 12.5%. This is much more significant than the value of about 4% in the case
p∞ = 1. Also shown in figure 3 are the same results in the case where the bubble
is taken to change its area adiabatically. In this case, the overall expansion effect is
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Figure 3. Relative change in area at steady state for a compressible bubble in pure shear with
k = 0.5 for different values of the ambient pressure p∞. Results are shown for the two different
equations of state.

significantly reduced (by comparison with the isothermal case) at all values of the
ambient pressure p∞. In particular, the maximum percentage change observed for
positive ambient pressures in this case is about 7.5% (when p∞ = 0). The equation
of state of the compressible bubble can therefore make a significant difference in any
expansion effects induced by the ambient flow.

The exact solution structure persists regardless of the choice of the equation of
state used to determine pB(t) at each instant. Exact solutions also exist if the shear
rate k is taken to be a time-dependent function, i.e. k = k(t). It is also emphasized that
large classes of different initial conditions where the initial fluid region maps from
the unit ζ-disk via a rational-function conformal map can also be studied using exact
solutions. The conformal map remains a rational function under evolution, its poles
and zeros evolving in time according to a system of first-order ordinary differential
equations.

3.2. Compressible bubble in pure strain flow

The case of a bubble in a pure strain flow is also considered by Pozrikidis (2001). Let
the far-field flow now be given by

u = (kx,−ky), (3.16)

where the strain rate k is again taken to be a positive constant. In this case, we expect
the bubble to retain a reflectional symmetry about both the x- and y-axes which
implies that b(t) will be real. The initial conformal map is again given by (3.7) while,
for times t > 0, the results of § 2 imply that the conformal map will retain the form
(3.8) under evolution. The ordinary differential equations for a and b are now

ȧ = −aI(0, a, b)−
(
p∞ − pB(a, b)

2

)
a, (3.17)

ḃ = −bI(0, a, b) +

(
p∞ − pB(a, b)

2

)
b+ 2ka, (3.18)

with I(0, a, b) and pB(a, b) given by (3.11) and (3.12) respectively. These equations are
obtained in a similar way to the derivation of (3.9)–(3.10).
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Figure 4. Evolution of a compressible bubble in pure strain with k = 0.3 and p∞ = 1.

With k = 0.3 and p∞ = 1 (corresponding to the calculations performed by Pozrikidis
2001) the bubble is found to have expanded by over 8% by the end of the simulation
at kt = 3. This is in contrast with the value of just under 5% reported by Pozrikidis
(2001). Figure 4 shows the evolution of D, Q and (AB − AB0)/AB0 with time; the
same graph is plotted by Pozrikidis (2001) with D denoting the Taylor deformation
parameter, Q the mass flux while AB0 and AB denote the initial bubble area and
the bubble area at time t. The graph of Q given in figure 10 of Pozrikidis (2001)
shows a much less smooth evolution than that shown in the present figure 4. This
is presumably due to numerical errors in the boundary integral simulation. The 3%
difference in the overall change in bubble areas as calculated by the two separate
methods is presumably a result of the accumulation of these numerical errors in
the boundary integral calculation. As remarked in Pozrikidis (2001), in this case the
expansion of the bubble has raised the capillary number so that it is barely outside
the regime where a steady-state shape exists. This is evinced by the graph of Q in
figure 4 which tends to zero at large times but never quite reaches it.

It is again of interest to examine how the ambient pressure affects the overall
expansion at steady state in the case of a bubble in a strain flow. However, as just
seen, the existence of a steady state in straining flow is no longer guaranteed but
depends on the values of k and p∞. The choice k = 0.25 is made and it is found,
by direct integration of the ordinary differential equations (3.17)–(3.18), that steady
states exist at least for 1 6 p∞ 6 8 in both the ideal and adiabatic cases. Figure 5
therefore shows the reduced area at steady state for this particular range of ambient
pressures. Results are plotted for both equations of state. Again, maximum expansion
occurs for the lowest value of the ambient pressure considered (that is, p∞ = 1) where
an isothermal bubble is found to have expanded by about 6.7%, while a bubble
evolving adiabatically expands by just 4.1%. As in the case of a pure ambient shear,
isothermal bubbles in a strain flow are found to be more susceptible to expansion at
all values of the ambient pressure than bubbles whose area changes adiabatically.

4. Final remarks
It has been seen that, when an ambient flow is initiated, a circular bubble disturbed

from a Laplace–Young equilibrium expands in the process of adjusting to a modified
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Figure 5. Relative change in area at steady state for a compressible bubble in pure strain with
k = 0.25 for a range of ambient pressures p∞ where steady solutions are found to exist. Results are
shown for the two different equations of state.

elliptical equilibrium. This adjustment has been shown here to take place via a
sequence of intermediate purely elliptical shapes. The results herein imply the existence
of many other non-trivial exact solutions to this free boundary problem in addition
to those within the class of time-evolving ellipses.

It is worth mentioning a potential application of the present results. The problem
of the evolution of inviscid compressible enclosures (i.e. pores or bubbles) in slow
viscous flows has previously been considered by Mackenzie & Shuttleworth (1952).
Their study was motivated by the industrially important manufacturing process
known as viscous sintering (cf. Kuiken 1990). In the sintering process, a compact
of touching particles is heated to a sufficiently high temperature that the particles
become mobile. It is then appropriate to model them as regions of very viscous fluid.
Once mobile, the driving force of the motion is surface tension which generally leads
to densification of the compact as the pores or bubbles close up. Thus, the application
naturally leads to a situation where it is of interest to examine the effects of an ambient
Stokes flow (i.e. the motion of the surrounding compact) on the size of an enclosed
compressible bubble/pore. This is the problem considered here, albeit in the planar
case. The observed shrinking of the pores is not in conflict with the present results
where the ambient flow is seen to induce an overall bubble/pore expansion. This
is because the relevant initial conditions in each case are different. In the sintering
application, it is not appropriate to assume an initial Laplace–Young equilibrium as
in (3.1) but rather to assume that pB0 = p∞ at the initial instant. Hopper (1990) has
considered the shrinkage rate of an isolated constant-pressure bubble, subject to this
initial condition, in the case where the driving mechanism is surface tension alone
and there is no imposed ambient flow.

Although a fully three-dimensional situation is considered, the theoretical approach
of Mackenzie & Shuttleworth (1952) is phenomenological. Two different physical as-
sumptions regarding the pores are considered in detail: the case of pores at constant
uniform pressure and that of pores containing a fixed mass of ideal gas at constant
temperature (i.e. pores containing an isothermal gas). To model the effects on a
given pore of all surrounding pores in the medium, Mackenzie & Shuttleworth (1952)
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employ the phenomenological device of an ‘equivalent’ spherical shell surrounding
the pore. While only the case of a single bubble has been considered here, it would
interesting to examine whether the exact solution methods and/or the boundary inte-
gral methods of Pozrikidis (2001) are extendable to the case of multiple compressible
bubbles. This would help to understand the interaction of compressible bubbles with
a general ambient Stokes flow without the need for phenomenological models of this
kind.

Appendix. Derivation of evolution equations (3.9)--(3.10)
With the conformal mapping of the form (3.8), as ζ → 0, we have

zt(ζ, t) ∼ ȧ

ζ
+ O(1), (A 1)

ζzζ(ζ, t) ∼ −a
ζ

+ O(1), (A 2)

2F(ζ, t) ∼
(

(p∞ − pB(a, b) + ik)

2

)
a

ζ
+ O(1). (A 3)

Substituting these into equation (2.25) and equating coefficients of ζ−1 yields

ȧ+

(
p∞ − pB(a, b) + ik

2

)
a = −a(I(0, a, b) + iC). (A 4)

The real part of (A 4) yields

ȧ = −aI(0, a, b)−
(
p∞ − pB(a, b)

2

)
a, (A 5)

which is precisely the first equation in (3.10), while the imaginary part implies that
C = −k/2.

Now, (2.25) implies that

F(ζ, t) =
1

2

(
− ȧ
ζ
− ḃζ +

(
bζ − a

ζ

)
[I(ζ, a, b)− ik/2]

)
, (A 6)

and

F(ζ−1, t) =
1

2

(
−ȧζ −

˙̄b

ζ
+

(
b̄

ζ
− aζ

)
[−I(ζ, a, b) + ik/2]

)
, (A 7)

where we have used the fact that I(ζ−1, a, b) = −I(ζ, a, b) for points inside |ζ| < 1. As
ζ → 0,

F(ζ, t) ∼ 1
2
(−ȧ− a[I(0, a, b)− ik/2])

1

ζ
+ O(1), (A 8)

F(ζ−1, t) ∼ 1
2
(−˙̄b− b̄[I(0, a, b)− ik/2])

1

ζ
+ O(1), (A 9)

G(ζ, t) ∼ − ika

2ζ
+ O(1). (A 10)

But (2.26) multiplied by zζ(ζ, t) has the form

G(ζ, t)zζ(ζ, t) = −F(ζ−1, t)zζ(ζ, t)− z̄(ζ−1, t)Fζ(ζ, t) +
[zζ(ζ, t)z̄ζ(ζ

−1, t)]1/2

2ζ
. (A 11)
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Substituting (A 10) into (A 11) and equating powers of ζ−3 yields

ika2 = −a˙̄b− ȧb̄− 2ab̄[I(0, a, b)− ik/2], (A 12)

which, on rearrangement and use of (A 5), yields the second equation in (3.10).
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