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A simple ‘elliptical-pore model’ of the shrinkage of compressible pores in late-stage
planar viscous sintering is proposed. The model is in the spirit of matched asymptotics
and relies on splitting the flow into an ‘inner’ and ‘outer’ problem. The inner problem
in the vicinity of any given pore involves solving for its free-surface evolution exactly
using complex-variable methods. The outer flow due to all other pores is assumed to be
given by an assembly of point sinks/sources. As a test of the model, the evolution
of a singly infinite periodic row of compressible pores is considered in detail. The
effectiveness of the simple model is tested by comparison with a full numerical simula-
tion. A novel boundary integral method based on Cauchy potentials and conformal
mapping is used. In the case of pores with constant pressure, it is found that pores
shrink faster than if in isolation. Compressible pores obeying the ideal gas law are also
studied and are found to tend to a quasi-steady non-circular state. A higher-order
model is also presented and compared with numerical simulations of the viscous
sintering of a doubly periodic array of pores in Stokes flow.

1. Introduction
Viscous sintering is a process in which a granular compact of particles (e.g. metal or

glass) is raised to a sufficiently high temperature that the individual particles become
mobile and release surface energy in such a way as to produce inter-particulate bonds
(Brinker & Scherer 1990). At the start of a sinter process, any two particles which
are initially touching develop a thin neck which, as time evolves, grows in size to
form a more developed bond. As the necks grow in size, the sinter body densifies and
any enclosed pores between particles eventually close up. The macroscopic material
properties of the compact at the end of the sinter process depend heavily on the
degree of densification. In industrial application, it is important to be able to obtain
accurate estimates of the time taken for pores to close (or reduce to a sufficiently
small size) within any given initial sinter body in order that industrial sinter times
are optimized without compromising the macroscopic properties of the final densified
material.

While there is an extensive engineering literature on sintering, comparatively few
theoretical studies exist and those that do are either phenomenological in nature (e.g.
Mackenzie & Shuttleworth 1952) or are approximate, being based on energy balance
arguments with no detailed resolution of the flow fields (e.g. Frenkel 1945). In an
attempt to develop a more detailed theory, a sensible first step is to consider the case
of planar viscous sintering. A first model of the sintering process is afforded by a
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planar viscous flow in the Stokes regime driven by surface tension effects on the free
boundaries between the fluid and the constant-pressure pores.

Numerical methods to compute the evolution of a bounded region of fluid in two-
dimensional Stokes flow have been devised by Kuiken (1990), Van de Vorst (1993),
Pozrikidis (1998) and Primo, Wrobel & Power (2000). A more realistic model of an
extended compact is a doubly periodic array of pores covering the plane. Van de Vorst
(1995) and Pozrikidis (2000) have separately devised boundary integral formulations
to compute the evolution of such configurations. Formulating the doubly periodic
problem presents a number of difficulties. For example, it is natural to restrict com-
putations to a single period cell of the repeated lattice but then the question that
immediately arises is how to numerically incorporate the effect of an imposed far-field
ambient pressure. Some technical mathematical issues also arise because it is necessary
to write the relevant integral representations in a computationally convenient form
using Ewald summation techniques (Pozrikidis 2003; Van de Vorst 1993).

There has also been recent interest in the more general problem of computing the
pressure in constant-pressure bubbles evolving quasi-steadily in a region of slow,
viscous fluid in the Stokes regime (Pozrikidis 2000, 2003). The question of how a
constant-pressure enclosure (i.e. a bubble or ‘pore’) is affected by an ambient viscosity-
dominated flow arises finds natural application in viscous sintering.

At the same time, an increasing number of exact solutions are known for time-
evolving surface-tension-driven Stokes flows. Hopper (1990) found an exact solution
for the time-dependent coalescence of two equal near-circular cylinders. Richardson
(1992) later generalized this to two unequal coalescing cylinders. Extension of
Hopper’s solutions (Hopper 1990) to multiply connected configurations involving
more complicated cylindrical packings has been performed by (Crowdy 2002, 2003a)
based on a theory originally presented in Crowdy & Tanveer (1998, 2001) (see
also Richardson 2000 for an alternative approach to this problem). In the case of
unbounded flows, Antanovskii (1994) and Tanveer & Vasconcelos (1995) have studied
the evolution of an isolated constant-pressure bubble in Stokes flow. These authors
find broad classes of exact solutions, including a solution for a constant-pressure,
constant-area elliptical bubble evolving in an ambient straining flow with constant
strain rate.

Recently, Crowdy (2003b) has extended the exact solutions of Tanveer &
Vasconcelos (1995) to the case of an isolated compressible bubble in an ambient Stokes
flow. These results reveal that the exact elliptical solutions of Tanveer & Vasconcelos
(1995) and Antanovskii (1994) can be extended to a compressible elliptical bubble,
with non-constant area and pressure, evolving in a straining flow with time-dependent
strain rate. These extended solutions form the basis of the model presented in this
paper.

The known exact solutions to free-surface Stokes flow problems driven by surface
tension usually involve relatively simple flow geometries and their usefulness in
studying flows in more complicated geometries has not yet been established. At
the same time, full numerical simulations of more complicated flow situations are
computationally expensive and frequently hard to formulate. It would therefore seem
important to establish whether, and to what extent, simple exact solutions can be
harnessed to derive useful and workable models for sintering in complicated flow
geometries thereby obviating the need for full numerical investigation. It is the
purpose of this paper to propose and test such a model.

The ideas of this paper have been motivated by the elliptical vortex approximation
for studying the interaction of vortex patches (Melander, Zabusky & Styczek 1986;
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Dritschel & Legras 1991; Saffman 1992; Newton 2001). In two-dimensional vortex
dynamics, the elliptical pore approximation assumes that all interacting vortices are
ellipses evolving in a time-dependent strain field induced by the other ellipses. This
model is predicated on the convenient fact that, according to the dynamics of the Euler
equations, an elliptical vortex patch remains elliptical when placed in an ambient,
time-dependent straining flow. Such an exact solution was found by Kida (1981)
based on extensions of the steady exact solutions of Moore & Saffman (1971). The
present ‘elliptical-pore approximation’ is predicated on the fact that exactly the same
mathematical structure exists in the case of compressible elliptical pores in Stokes
flow: a compressible elliptical pore remains elliptical when placed in an ambient
time-dependent straining flow, a fact established by Crowdy (2003a).

An elliptical pore approximation is proposed and tested herein. The test-bed problem
considered is the shrinkage of an infinite singly periodic row of identical compressible
pores equispaced along the x-axis. Owing to the nature of the anisotropy of this
configuration in the x- and y-directions, it is to be expected that initially circular
pores will become ‘ellipse-like’ in shape under evolution. This makes it an ideal
case study with which to compare the model. To the best of our knowledge, this
configuration has not been considered before by other workers. Consequently, no
exact solution to this problem is currently known, nor has it been previously studied
numerically.

A second contribution of this paper is to present a novel numerical approach to
this class of problems based on ideas frequently employed in plane elasticity but
seldom used in the mathematically related problem of Stokes flow. The method relies
on a complex-variable reformulation of the problem. The streamfunction is written in
terms of two analytic Goursat functions. Integral representations for these functions
in terms of Cauchy integrals are then found using techniques from conformal mapping
theory to take account of the periodic nature of the flow. The method possesses a
number of conceptual advantages over previously employed methods; in particular, it
clearly demonstrates the effect on the free-surface dynamics of an imposed (possibly
time-dependent) ambient pressure p∞(t) as well as the effect of making different
assumptions for the equation of state in the compressible pore.

While the elliptical pore model is the most generic case, if the pore arrangement
has a high degree of spatial symmetry then a ‘higher-order model’ may be more
appropriate. This is the case of a doubly periodic array of pores, for example.
In § 7, some higher-order models are also presented and compared with numerical
simulations of square and hexagonal arrays performed recently by Pozrikidis (2003).

2. The elliptical-pore model
In ‘early-stage sintering’ the sinter compact consists of a packing of near-circular

particles joined by thin interparticle necks. These early-stage processes are modelled
well by the various exact solutions of Hopper (1990), Richardson (1992, 2000), and
Crowdy (2002, 2003a). Here we are interested in ‘late-stage sintering’ where the com-
pact has developed into a contiguous region of fluid containing a number of enclosu-
res or ‘pores’. A well-known model of late-stage sintering is that of Mackenzie &
Shuttleworth (1952) who propose a phenomenological model where all pores are
assumed spherical. Hill (2001) has also considered the problem of the sinter kinetics
of a collection of interacting pores during the late stages of viscous sintering. In the
latter model, the pores are again assumed to remain spherical under evolution.
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Figure 1. Schematic illustrating the ‘elliptical pore model’ of late-stage viscous sintering. Each
pore is modelled as an elliptical bubble in an ambient Stokes flow. For any given pore, the
leading-order effect of the presence of all other pores is a local straining flow produced by a
distribution of point sinks.

Here, a different model for late-stage pore shrinkage in two-dimensional sintering is
presented based on ideas from matched asymptotics. The idea is that close to any given
pore, an ‘inner problem’ is solved using as a far-field boundary condition the inner
limit of an appropriate ‘outer problem’. At the same time, microstructural information
on pore shrinkage rates obtained from the solution to each inner problem gives the
required macroscopic parameters for the outer flow approximation. Antanovskii (1996)
adopted a similar approach based on matched asymptotic expansions in considering
the free-surface evolution of a single constant-pressure bubble in the flow field of
Taylor’s four-roller mill.

Consider a collection of N pores as shown schematically in figure 1. Assume that,
at time t , the pores are all initially elliptical in shape, with possibly different areas
and aspect ratios, and with centroids at the points

{zj (t) = xj (t) + iyj (t)| j = 1, . . , N}. (2.1)

Consider the nth pore and introduce a parametric ζ -plane. Assume that the spatially
uniform pressure inside the nth pore is p

(n)
B (t). The conformal mapping from the

interior of the circle |ζ | =1 to the region exterior to the nth pore takes the form

zn(ζ, t) = zn(t) +
αn(t)

ζ
+ βn(t)ζ (2.2)

where αn(t) ∈ R while zn(t), βn(t) ∈ C. The αn(t) can be chosen to be real without
loss of generality owing to a rotational degree of freedom of the Riemann mapping
theorem. In the same way, N such conformal maps (2.2) are introduced – one to
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describe each of the N pores. The state of the system is then fully described by the
parameters

{zj (t), αj (t), βj (t)| j = 1, . . , N}. (2.3)

These parameters encode all information regarding the position of the centroid of
each ellipse, its area, orientation and eccentricity.

The outer flow seen by the nth pore due to the presence of the other N − 1 pores
is modelled by an irrotational flow with complex potential

g(z, t) =

N∑
j=1
j �=n

mj (t)

2π
log

(
1 − z

zj (t)

)
. (2.4)

The source/sink strength mj (t) is given by the rate of change of area of the j th
pore yielding the following relationship between mj (t) and its associated conformal
mapping parameters:

mj (t) =
d

dt
(π(αj (t)

2 − |βj (t)|2)). (2.5)

Taylor expanding the derivative of (2.4) about zn(t) yields

g′(z, t) = −
N∑

j=1
j �=n

mj (t)

2π(zj (t) − zn(t))
−




N∑
j=1
j �=n

mj (t)

2π(zj (t) − zn(t))2


 (z − zn(t)) + . . . . (2.6)

The nth pore is now assumed to be evolving in a far-field flow given by the near-field
approximation (2.6) truncated at the linear term as shown. Exploiting the results of
Crowdy (2003a), it is known that under evolution the conformal map continues to
have the form (2.2) with time-evolving parameters zn(t), αn(t), βn(t). First, we ensure
that the centroid of the nth pore moves with the local non-self-induced velocity so
that

dz̄n

dt
= −

N∑
j=1
j �=n

mj (t)

2π(zj (t) − zn(t))
. (2.7)

Next, the evolution of αn(t) and βn(t) is that relevant to a compressible elliptical pore
evolving in a straining flow with strain rate kn(t) given by

kn(t) = −
N∑

j=1
j �=n

mj (t)

2π(zj (t) − zn(t))2
. (2.8)

From Crowdy (2003a), the evolution equations are then

α̇n = −αnI (0, αn, βn) −
(

p(n)
∞ (t) − p

(n)
B (t)

2

)
αn, (2.9)

β̇n = −βnI (0, αn, βn) +

(
p(n)

∞ (t) − p
(n)
B (t)

2

)
βn + 2k̄n(t)αn, (2.10)

where

I (0, αn, βn) =
1

4πi

∮
|ζ ′ |=1

dζ ′

ζ ′
1

|znζ (ζ ′, t)| , (2.11)
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Figure 2. A singly periodic row of identical pores. The size of a typical period cell is a.

and where p(n)
∞ (t) is the ‘inner limit’ near zn(t) of the pressure field associated with the

irrotational flow (2.6). However, this is zero in Stokes flow. The evolution equations
for αn(t) and βn(t) are then (2.9) and (2.10) with p(n)

∞ (t) = 0. Also, p
(n)
B (t) will be some

function of αn(t) and βn(t) determined by the specified equation of state for the gas
in the pores.

The equations above provide a closed system of coupled nonlinear ordinary differen-
tial equations for the parameters {zj (t), αj (t), βj (t)|j =1, . . , N} describing the current
state of the system of interacting elliptical pores.

3. Test problem: singly periodic row of pores
As a test problem for the model, consider a periodic array of identical pores placed

along the x-axis. See figure 2 for a schematic. It will be assumed that the initial pores
are circular. We isolate a particular period cell in the z-plane and refer to this as the
principal period cell. This period cell is taken to be the region 0 � x � a where a is a
positive constant. Given the initial shapes and the symmetries of the configuration, it
is expected that subsequent pore shapes will have reflectional symmetry with respect
to horizontal and vertical axes through the centre-point zc(t). Given these symmetries,
it is to be expected that at all times in the evolution

Re[zc(t)] =
a

2
. (3.1)

That is, the centre of the pore is constant in time and coincides with the centre of the
principal period cell.

Let the velocity field of the planar fluid region outside the pores be u = (u, v) and
let the associated fluid pressure be p. The flow is incompressible, so a streamfunction
ψ can be introduced such that

u = (u, v) = (ψy, −ψx) (3.2)
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where subscripts denote partial derivatives. The fluid vorticity ω is related to ψ by
ω = − ∇2ψ , and ψ satisfies the biharmonic equation

∇4ψ = 0, (3.3)

the general solution of which can be written in terms of the two functions f (z, t) and
g(z, t) (Langlois 1964) as follows:

ψ = Im[z̄f (z, t) + g(z, t)]. (3.4)

If there are no singularities in the flow, f (z, t) and g(z, t) are analytic everywhere in
the flow region.

In terms of the Goursat functions, the physical field variables can be written as
follows (Langlois 1964):

p

µ
− iω = 4f ′(z, t), (3.5)

u + iv = −f (z, t) + zf̄ ′(z̄, t) + ḡ′(z̄, t), (3.6)

e11 + ie12 = zf̄ ′(z̄, t) + ḡ′(z̄, t) (3.7)

where

eij =
1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
(3.8)

is the fluid rate-of-strain tensor; f̄ (z, t) is defined as f (z̄, t).
On each pore interface the tangential component of the fluid stresses must vanish

while the normal component must be balanced by surface tension. This can be written
as

−pni + 2µeijnj = σκni (3.9)

where ni denotes the ith component of the normal vector to the interface, κ is the
curvature and σ is the surface tension. It is convenient to non-dimensionalize lengths
with respect to r0 (a typical length scale associated with the pore), times with respect
to r0µ/σ , velocities with respect to σ/µ and pressure with respect to σ/r0. Having
done this, (3.9) can be written in complex form using the relations (3.5)–(3.7). If
s denotes arclength around the pore boundary, it can be shown that the resulting
equation can be integrated (with respect to the arclength s) to give

f (z, t) + zf̄ ′(z̄, t) + ḡ′(z̄, t) = −i
zs

2
+

pB(t)

2
z + C(t) (3.10)

where C(t) is some function of time arising from the spatial integration. The kinematic
condition at the interface is that the normal velocity of the interface equals the normal
fluid velocity. This can be written

Im[zt z̄s] = Im[(u + iv)z̄s], on the interface. (3.11)

4. Application of the elliptical-pore model
The general elliptical pore model in § 2 was presented for a finite collection of

pores; however it is easily extendible to a singly periodic array of pores. Assume
all pores evolve through a sequence of ellipses. By the periodicity it is then enough
to consider the pore in the principal period cell where the effect of all other pores
is modelled by an infinite line of sinks, each of strength m(t), equispaced along the
x-axis. In this section, it is convenient to assume that the pore of interest is centred
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between −a/2 < x � a/2. By the assumed symmetries of the flow, the centroids of
the pores are expected to remain fixed in time. Correspondingly, let the sinks – each
of strength m(t) – be at fixed positions ± na where n � 1. This is the model ‘outer
flow’ which will provide the far-field boundary conditions to an ‘inner flow’ near the
elliptical pore.

The irrotational outer flow model described above is given by

g(z, t) =
m(t)

2π

∞∑
n=1

log

(
1 − z2

n2a2

)
, f (z, t) = 0. (4.1)

Taking a derivative and expanding this about the origin, g′(z, t) has a local expansion

g′(z, t) ∼ k(t)z + . . . (4.2)

where the (real) strain rate k(t) is given by

k(t) ≡ −
(

m(t)

πa2

∞∑
n=1

1

n2

)
. (4.3)

The map z(ζ, t) from the interior of a unit ζ -circle to the fluid exterior to the pore
takes the form

z(ζ, t) =
α(t)

ζ
+ β(t)ζ. (4.4)

The initially circular bubble of radius a0 corresponds to the initial conditions

α(0) = a0, β(0) = 0. (4.5)

The evolution equations for α(t) and β(t) for a bubble of spatially uniform pressure
pB(t), with ambient pressure p∞(t) in the presence of a pure time-dependent straining
flow with strain rate k(t) are given by

α̇ = −αI (0, α, β) −
(

p∞(t) − pB(t)

2

)
α, (4.6)

β̇ = −βI (0, α, β) +

(
p∞(t) − pB(t)

2

)
β + 2k(t)α, (4.7)

where

I (0, α, β) =
1

4πi

∮
|ζ ′ |=1

dζ ′

ζ ′
1

|zζ (ζ ′, t)| . (4.8)

Taking

p∞(t) = pB(t) = 0 (4.9)

(for the case of pure sintering driven solely by surface tension with no pressure
differential between the bubble and the surroundings) and

m(t) =
d

dt
(π(α2 − β2)) = 2π(αα̇ − ββ̇), (4.10)

we obtain a closed system of coupled nonlinear ordinary differential equations for
α(t) and β(t) given, after some rearrangement, by

α̇ = −αI (0, α, β), (4.11)

β̇ = −I (0, α, β)

(
βa2 + 2Γ α3

a2 + 2Γ αβ

)
, (4.12)
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Figure 3. Schematic of the conformal mapping from the interior of a unit circle in a para-
metric ζ -plane to the interior of the pore (in the principal period cell) in the physical plane.

where the constant Γ is

Γ = −2

∞∑
n=1

1

n2
. (4.13)

Note that the model takes into account both the surface tension effects on the pore
boundary (which leads to shrinkage) as well as interaction effects with the other pores.

The simplicity of the model prompts an examination of its range of validity by
comparison with numerical simulations of the full system.

5. Boundary integral simulation
The evolution of a singly periodic row of pores has not been treated by previous

authors and a numerical method to tackle it has not been formulated in the literature.
One possibility is to adapt the methods devised by Van de Vorst (1993) and Pozrikidis
(2003) to study a doubly periodic array of pores. However, here we choose to present
a new numerical method based on analytic functions.

5.1. Tracking the interface: conformal mapping

Once the instantaneous velocity field has been determined (i.e. once f (z, t) and g(z, t)
are known), (3.11) can be used to update the pore interface position. One method is
to use a distribution of Lagrangian markers on the interface; however we elect to use
a spectral method based on conformal mapping.

Let z(ζ, t) be a time-dependent conformal mapping from the interior of a unit
ζ -circle to the interior of the pore in the principal period cell. See figure 3 for a
schematic. If zc(t) denotes the centre-point of the principal period cell on the real axis
then, using a degree of freedom of the Riemann mapping theorem, it can be assumed
that

z(0, t) = zc(t); (5.1)
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z(ζ, t) is also analytic everywhere in the unit ζ -circle and therefore has a Taylor
expansion of the form

z(ζ, t) = zc(t) +

∞∑
n=1

an(t)ζ
n. (5.2)

The numerical method will track the evolution of the interface by computing the
evolution of the time-dependent Taylor expansion coefficients in (5.2). Truncating this
series at order N implies that the set of coefficients to be determined is

{an(t)|n = 1, . . , N}. (5.3)

The reflectional symmetries of the configurations in the horizontal and vertical axes
through zc imply that the coefficients (5.3) will be real and that an = 0 for n even.

On the pore interface, simple geometrical considerations can be used to show that

zs = − iζzζ (ζ, t)

|zζ (ζ, t)| . (5.4)

Using this, and combining the stress condition (3.10) with the expression given in
(3.6) for the velocity implies that (3.11) takes the form

Re

[
zt

ζ zζ

]
= − 1

2|zζ (ζ, t)| + Re

[
−2f (z) + pB(t)z/2 + C(t)

ζzζ

]
. (5.5)

Equation (5.5) will be used to update the coefficients in the Taylor expansion of
the conformal map. Only the function f (z, t) is needed for this. The calculation of
f (z, t) is discussed in the next two subsections.

5.2. Properties of f (z, t)

At each instant, f (z, t) and g′(z, t) satisfy (3.10) which determines each function up
to an additive constant. Finding these functions is identical to a problem arising in
the theory of plane elasticity (cf. Mikhlin 1957; Greengard, Kropinski & Mayo 1996).
Despite the a-periodicity of the physical flow quantities, f (z, t) and g′(z, t) are not
necessarily a-periodic. The purpose of this subsection is to establish a decomposition
of each in terms of a-periodic functions.

By (3.5) and the fact that both the fluid pressure p and ω are a-periodic functions,
it is deduced that

f ′(z + a, t) = f ′(z, t), (5.6)

i.e. f ′(z) is a-periodic. By integration with respect to z,

f (z + a, t) = f (z, t) + β(t) (5.7)

where β(t) is some (complex) function of time. Suppose that the pressure at infinity
tends to some function of time p∞(t) while the vorticity decays to zero. From (3.5),

f ′(z, t) ∼ p∞(t)

4
as z → ∞. (5.8)

Equivalently,

f (z, t) ∼ p∞(t)

4
z + O(1) as z → ∞. (5.9)

Now define a new function f0(z, t) via

f (z, t) ≡ p∞(t)

4
z + f0(z, t). (5.10)
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Then, f (z, t) satisfies the necessary condition (5.7) provided we choose

β(t) =
p∞(t)a

4
, (5.11)

and provided f0(z, t) satisfies

f0(z + a, t) = f0(z, t), (5.12)

that is, provided f0(z, t) is an a-periodic function (that is bounded at infinity).
Next, (3.6) and the fact that the velocities are a-periodic means that

−f (z + a, t) + (z + a)f̄ ′(z̄ + a, t) + ḡ′(z̄ + a, t) = −f (z, t) + zf̄ ′(z̄, t) + ḡ′(z̄, t). (5.13)

This implies that g′(z, t) must satisfy

g′(z + a, t) = g′(z, t) + β(t) − af ′(z, t). (5.14)

Now define g′
0(z, t) via

g′(z, t) = g′
0(z, t) − zf ′(z, t) +

p∞(t)

4
z. (5.15)

Using (5.11), then the necessary condition (5.14) is satisfied provided

g′
0(z + a, t) = g′

0(z, t), (5.16)

i.e. provided that g′
0(z, t) is also a-periodic. Finally, using conditions (5.7), (5.12) and

(5.14) in (3.7) it then follows that the fluid stresses e11 + ie12 are also a-periodic.
Substituting the expressions (5.10) and (5.15) into (3.10) we obtain a boundary

value problem for the two a-periodic functions f0(z, t) and g′
0(z, t). This takes the

form

f0(z, t) + (z − z̄)f̄ ′
0(z̄, t) + ḡ′

0(z̄, t) = − i

2
zs +

(
pB(t) − p∞(t)

2

)
z + C(t). (5.17)

Equation (5.17) is a boundary value problem to be solved for the two a-periodic
functions f0(z, t) and g′

0(z, t). Once f0(z, t) is known, f (z, t) follows from (5.10).

5.3. Integral equation for f0(z, t)

It is convenient to introduce a conformal mapping to facilitate the computation of
f0(z, t). This second conformal mapping is not related to that already introduced in
§ 3.1 to track the interface. To solve (5.17) for f0(z, t), we first map the domain in the
z-plane to a τ -plane via a conformal mapping

τ = exp

(
2πiz

a

)
(5.18)

which maps the strip 0 � x � a to the τ -plane cut along the positive real τ -axis.
Figure 4 shows a schematic. This maps the pore boundary to some closed contour L

in the τ -plane. Under evolution, this contour evolves in time; however, for brevity, we
suppress the explicit time-dependence of this contour. Note also that any two points
(shown as A and B in figure 4) that are at equal y-stations map to the same point on
the real τ -axis.

Defining Φ(τ, t) and Ψ (τ, t) as

Φ(τ, t) ≡ f0(z(τ, t), t), Ψ (τ, t) ≡ g′
0(z(τ, t), t), (5.19)
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Figure 4. Schematic illustrating conformal mapping from the principal period cell of the
physical z-plane to the τ -plane. The pore boundary maps to a contour L. The two sides of the
period cell both map to the positive real τ -axis.

the boundary condition (5.17) assumes the form

Φ(τ, t) − 2τ̄ log |τ |Φτ (τ, t) + Ψ (τ, t) = R(τ, t) +

(
pB(t) − p∞(t)

2

)
z + C(t) (5.20)

where R(τ, t) denotes the quantity − 1
2
izs written as a function of τ . It is satisfying that

the inhomogeneous forcing term on the right-hand side of (5.20) depends only on the
difference pB(t) − p∞(t) because, physically, we expect the evolution to depend only
on the difference between the bubble pressure and the ambient pressure at infinity.

Spencer & Meiron (1994), who were interested in calculating steady stress-induced
deformations of a two-dimensional elastic interface, derived the following non-singular
integral equation for Φ(τ0, t):

Φ(τ0, t) +
1

2πi

∮
L

Φ(τ, t) d

[
log

τ − τ0

τ̄ − τ̄0

]
+

1

πi

∮
L

Φ(τ, t) d

[
τ log |τ | − τ0 log |τ0|

τ − τ0

]

+
1

2πi

∮
L

Φ(τ, t)

τ̄ − c̄
dτ̄ − 1

2πi
τ̄0Re

[∮
L

Φ(τ, t)

(τ − c)2
dτ

]
= A(τ0, t) (5.21)

where

A(w0, t) =
1

2πi

∮
L

(
R(τ, t) + C(t) +

pB(t) − p∞(t)

2
z̄

)
dτ

τ − w0

. (5.22)

5.4. Numerical method

The main steps of the method are as follows. The integral equation (5.21) is solved
for Φ(τ, t). This implies that f0(z, t) is known on the interface. From (5.10), f (z, t) is
then known on the interface. This is then used in (5.5) to time-advance the conformal
mapping coefficients {an(t)}.
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To solve (5.21) for Φ(τ, t), we pick N points on the unit ζ -circle with arguments
equally spaced between 0 and 2π, convert all integrals to integrals with respect to
θ and discretize them using the trapezoidal rule. The solution is found by direct
inversion. The principal part integrals involved in evaluating A(τ0, t) are computed
using the alternate-point trapezoidal rule. The point c is picked, arbitrarily, to be

c(t) = 1
2
[z(i, t) − z(−i, t)]. (5.23)

Equation (5.21) is first solved by setting C(t) = 0. For pore shapes with the reflectional
symmetries described above, we expect the corresponding solution for f (z, t) to be
symmetric with respect to the z-origin so that, having computed a solution Φ(τ, t)
with C =0, we then let

Φ̃(τ, t) = Φ(τ, t) − 1

N

N∑
j=1

Φ(τj , t), (5.24)

which is equivalent to taking

C(t) =
1

N

N∑
j=1

Φ(τj , t) (5.25)

in (5.20). Under this transformation, the solution (5.24) is found to have the required
symmetry properties with respect to the z-origin.

Once the solution for f0(z, t) satisfying all the required symmetry properties is
determined, the right-hand side of (5.5) can be evaluated on the unit circle; (5.5) takes
the form

Re

[
zt − [pB(t) − p∞(t)] z/2 − C(t)

ζzζ

]
= − 1

2|zζ (ζ, t)| − Re

[
2f0(z)

ζzζ

]
, (5.26)

where we have used (5.10). The function in the square brackets on the left-hand side
of (5.26) is analytic everywhere in the unit ζ -circle provided

żc(t) −
[
pB(t) − p∞(t)

]
zc

2
− C(t) = 0. (5.27)

The Poisson integral formula can then be used to deduce that, for |ζ | < 1,

zt (ζ, t) = ζzζ (ζ, t)I (ζ, t) + [pB(t) − p∞(t)]
z

2
+ C(t) (5.28)

where

I (ζ, t) =
1

2πi

∮
|ζ ′ |=1

dζ ′

ζ ′

(
ζ ′ + ζ

ζ ′ − ζ

)[
− 1

2|zζ (ζ ′, t)| − Re

[
2f0(z(ζ

′, t), t)

ζ ′zζ (ζ ′, t)

]]
(5.29)

is an analytic function in |ζ | < 1. Note that, once C(t) is known, (5.27) provides an
evolution equation for zc(t). Any imaginary part of C(t) is discarded; it generates
an inconsequential (time-dependent) translation of the pore in the y-direction. Such
translations do not affect the shape evolution. It is found that with the real part of
C(t) obtained from (5.25) then (5.27) implies żc = 0. This is as expected; zc(t) = 1

2
a

under evolution, as anticipated in (3.1).
To compute I (ζ, t) on the unit circle, the Plemelj formula is used to write I (ζ, t) as a

half-residue contribution plus a principal part integral which is computed numerically
using the alternate-point trapezoidal rule. Having evaluated the right-hand side of
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(5.28) at N points (equally spaced in arclength) on the unit ζ -circle, a discrete
Fourier transform is used to determine its Taylor series coefficients. In order to
avoid unacceptable aliasing errors, N was taken to be at least 8N . Comparison of
coefficients in (5.28), yields the time derivatives of the expansion coefficients of z(ζ, t).
These expansion coefficients are updated using a simple forward Euler scheme.

5.5. Checks on the numerical procedure

Several checks on the numerical procedure are possible. First it is checked that, for
sufficiently large N and N, the solution obtained does not depend on the choice
of c(t) (cf. (5.23)). It is also checked that the solution does not change significantly
as N and N are independently increased. To provide a non-trivial check on the
numerical solution for Φ(τ, t), an exact solution of Chiu & Gao (1993) to a problem
in plane elasticity is employed. This exact solution is also used by Spencer & Meiron
(1994). The solution of Chiu & Gao (1993) involves a periodic cycloidal interface.
However, such a geometry involves a very simple adaptation of the numerical method
described here (see Spencer & Meiron 1994 for a discussion). Making these simple
adaptations to the above code permits comparison of the numerical solution with the
exact solution. For a cycloidal surface described parametrically by

z = x + iy = θ + iα e−iθ (5.30)

for any fixed α � 1, the elastic strain energy is known to be

S(θ) =

(
1 − α2

1 + 2α cos θ + α2

)2

. (5.31)

Moreover, in terms of the solution Φ , the value of S(θ) at any point θ = θj , i.e.
Sj = S(θj ), is given as

Sj =

[
1 + 4Re

(
iτj

dΦ

dθ

∣∣∣∣
j

(
dτ

dθ

∣∣∣∣
j

)−1)]2

. (5.32)

Comparison of (5.32) – computed numerically – with the analytical formula (5.31)
provides a check on the numerical solution.

Another check on the code is afforded by the known rate of shrinkage of a single
isolated bubble, which should be retrieved in the limit that the bubble is small
compared to the width of the period cell. Hopper (1990) showed that the radius of
an isolated circular bubble whose internal pressure is equal to the ambient pressure
at infinity shrinks at a constant rate. With the present non-dimensionalization, this
rate of decrease is 0.5.

The contour L in the τ -plane is typically found to be a cardioid-like shape centred
on the negative τ -axis. Initial pores with larger radius are expected to have a greater
interaction with their nearest neighbours. This is manifested in the τ -plane by the
near-cuspidal region of the cardioid-like shape developing a larger curvature for initial
pores with larger radius. A convenient feature of the conformal mapping approach
is that it is found to naturally crowd points at the high-curvature regions of the
cardioid-like L where they are needed most.

It is worth mentioning that the numerical method proposed here to study the
singly periodic array of pores could be combined with the fast multipole methods of
Greengard et al. (1996) which also use a decomposition of the streamfunction (in two-
dimensional Stokes flow) in terms of two Goursat functions. At present, however, the
theory of Greengard et al. (1996) is restricted to domains of finite connectivity and
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Figure 5. Superposition of the results of the full numerical simulation (solid lines) and the
model approximation (dashed lines) for initial pores of radius (a) r0 = 0.5 and (b) r0 = 0.75.
The time interval between successive plots is 0.2.

generalization to the domains with infinite connectivity considered here has yet to be
made. Furthermore, minor modification of the numerical method presented here can
be used to compute the periodic Jeong–Moffatt flow considered by Pozrikidis (1997)
using different methods. The modification required is similar to that considered in
Spencer & Meiron (1994) who compute the periodic stress distribution in a semi-
infinite elastic solid.

6. Calculations
6.1. Pure sintering

Mackenzie & Shuttleworth (1952) discuss the influence on sintering of the enclosed
gas in the pores. They consider two cases in detail: the case where the pressure inside
the pores is constant and the case where there is a constant mass of (ideal) gas inside
each pore. Both will now be considered here.

In this section we set pB(t) = p∞(t) and, without loss of generality, we take both
to be zero. One physical situation to which this corresponds is ‘open-pores’ sintering
where the motion is driven purely by surface tension and not by any differentials in
pressure between the bubble and its surroundings. The pores can be thought of as
being open to the atmosphere. Another physical situation in which it is reasonable to
assume that the pressure inside the pores is constant is when the gas in the pores can
dissolve in the compact in such a way that equilibrium is maintained between the gas
in the pores and that in the fluid.

In all calculations which follow, we take a = 3. The initial radius of the circular
pores is denoted r0. To compare with the model, figure 5 features a superposition of
the successive pore shapes, at time intervals of 0.2, for pores of initial radii r0 = 0.5
and 0.75. These calculations are performed with N =32 and N = 16N . The aspect
ratio of the pore is found to decrease from unity under evolution so that the pore
becomes more ellipse-like in shape. This is due to interaction effects with neighbouring
pores since an isolated pore would simply shrink via a sequence of circles. In the case
r0 = 0.5, the shapes given by the full numerical simulation and by the elliptical pore
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Figure 6. Evolution of initially circular pores with radius= 1: (a) the evolution as given by
the full numerical simulation, (b) that given by the model. Times shown are t = 0, (0.2), 1.8.

model are almost indistinguishable. The case r0 = 0.75 is critical in the sense that the
pore diameter exactly equals the minimum distance between neighbouring pores and
it is here that we expect the accuracy of the model to begin to break down. While the
disparity between the model and the simulation indeed starts to become apparent, the
model continues to provide a convincing approximation to the full shape evolution.

To further examine the validity of the model, a juxtaposition of the full numerical
simulation and the model prediction is shown in figure 6 in the case where r0 = 1.
In this case, it should not be expected that the model will give particularly good
agreement with the full simulation because the pore separation in this case is half the
(initial) pore diameter. Nevertheless, at least to the eye, the respective evolutions in
figure 6 are in good agreement.

As a more quantitative comparison, we follow Van de Vorst (1993) in defining the
aspect ratio to be x2/x1 where x1 and x2 are the points at which the pore intersects
the positive x- and y-axes respectively. Figure 7 shows the evolution of this aspect
ratio for pores of initial radii r0 = 0.5, 0.75 and 1. The graph shows the results as
computed both by the full numerical simulation and the elliptical pore model. For
r0 = 0.5, the model gives excellent agreement with the full simulation. This is to be
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Figure 7. Evolution of aspect ratio x2/x1 for infinite row of circular pores with initial radii
r0 = 0.5, 0.75 and 1 and with period a = 3. The solid lines are the results given by the numerical
simulation, the dashed lines are the results given by the elliptical pore model. As expected, the
accuracy of the model deteriorates as r0, and hence the ratio of pore diameter to minimum
distance between pores, increases.

expected because, in this case, the ratio of pore diameter to the minimum distance
between pores is 1/2, leading to a good separation of ‘inner’ and ‘outer’ length scales –
the primary assumption underlying the model. In the ‘critical’ case r0 = 0.75 the model
again provides a convincing approximation to the evolution of the aspect ratio of
the pores. The disparity between the graphs becomes more apparent for r0 = 1, as
expected since there is now no well-defined separation of inner and outer length scales.
The model overestimates the rate of decrease of aspect ratio but nevertheless gives the
correct qualitative trend. The pore with r0 = 0.5 has little interaction with its nearest
neighbours and displays an approximately linearly decreasing aspect ratio. This is in
agreement with the calculations of Van de Vorst (1993) who found that an initial
ellipse placed well inside a finite circular blob of fluid has little interaction with the
outer boundary and its aspect ratio decreases in a near-linear fashion. Initially larger
pores interact more strongly with their neighbours and have a more rapidly decreasing
aspect ratio that evolves in a much less linear fashion. This is also consistent with the
results of Van de Vorst (1993); indeed figure 7 should be compared to figures 6 and 8
of Van de Vorst (1993). At large times, the pores are well-separated and have shapes
that are close to ellipses. Since an isolated ellipse is known to shrink with constant
aspect ratio (Hopper 1990) it is not surprising that the graphs of aspect ratio against
time tend to level off at large times.

While we do not expect the model to be accurate for r0 much greater than 0.75, it
is of interest to use the boundary integral formulation to investigate the shrinkage of
much larger pores. Figure 8 shows numerically computed time sequences for r0 = 1.4.
Larger pores are seen to interact strongly with their nearest neighbours thereby
exhibiting more dramatic departures from their initial circular shapes, and even from
ellipse-like shapes. The calculation in figure 8 was performed at an increased resolution
with N = 64 and N = 16N . This is because the cardioid-type figure in the τ -plane
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Figure 8. Evolution of initially circular pores with radius= 1.4. Times shown are
t = 0, (0.2), 1.8, 1.95.

corresponding to initial radius equal to 1.4 (so that the minimum distance between
pores is just 0.2) displayed a region of very high curvature and, for initially circular
pores of even larger radius, the number of grid points used in the calculation would
have to be large in order to cope with the high degree of nonlinearity associated with
pore interactions.

In industrial applications, it is important to predict the time to densification, or
the total pore shrinkage times. The shrinkage time for a number of initially circular
pores of differing initial radius is computed: figure 9 shows the shrinkage time t∗

against initial radius. The values of t∗ reported in this graph are the times taken for
the typical length scale of the pore to shrink to the order of 10−3 where the accuracy
of the numerical method is found to deteriorate and the calculations are terminated.
Also shown in figure 9 is the (theoretically predicted) time to full densification of the
same pores under the assumption that they are isolated. This linear graph follows
from the fact that the radius of an isolated circular bubble decreases at a constant
rate equal to 0.5 (cf. Hopper 1991). For small initial radii, the differences in the
time to densification of the periodic case from the isolated case are negligible –
as might be expected if interaction effects between nearest neighbours are small.
However, for larger initial radii, the interaction effects with neighbouring pores are
found to decrease the time to full densification. Figure 9 shows that departures from
the isolated-pore shrinkage times begin to occur for r0-values above approximately
0.75, i.e. when the pore diameter is of the same order as the pore separation, as might
be expected. Figure 9 also shows that the elliptical pore model tends to overestimate
the pore shrinkage times as the initial pores draw closer together. Nevertheless, it
gives the correct qualitative behaviour that shrinkage times are reduced relative to
the isolated case. Indeed, it provides a more accurate model than a more simplistic
one based on assuming that pore shrinkage rates in a multi-pore system are the same
as those for pores in isolation.
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Figure 9. Graph of shrinkage times t∗ for an infinite row of initially circular pores with
differing initial radii. The solid straight line, with slope equal to 2, gives the result for isolated
pores. The circles show the results given by the full numerical simulation, the plus signs give
the results predicted by the elliptical pore model.

6.2. Sintering with compressible pores

If an inert gas is trapped in, say, a metal compact it will not dissolve appreciably
during sintering and the mass of gas inside a pore can be considered constant. Here
only the hydrostatic effects of the pressure of this trapped gas will be taken into
account. The pressure of the gas in the pore will obey some equation of state relating
it to the pore area. Pozrikidis (2000, 2003) and Crowdy (2003b) have considered the
problem of computing the evolution of isolated compressible bubbles in Stokes flow.
These studies are now extended to the case of a singly infinite row of pores containing
a fixed amount of compressible gas.

Assume that the pores contain a compressible gas obeying a pressure–area relation
given by the ideal gas law. The gas is taken to be isothermal so that if AB(t) denotes
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Figure 10. Evolution of pores containing ideal gas at constant temperature. Initial radius
is 1.0. Times shown are 0, (0.3), 3.0.

the area of one of the pores, then pB(t) is related to AB(t) via

pB(t)AB(t) = pB(0)AB(0). (6.1)

It is necessary to make some assumption about the ambient pressure. Motivated by
the sintering application, it is assumed that p∞(t) is constant in time and equal to the
initial bubble pressure, i.e.

p∞(t) = pB(0). (6.2)

Physically, this means that at the initial instant there is no pressure differential
between the pore and the surroundings. The initial bubble radius is taken to be unity.

The pore area AB(t) is easily computed using the formula

AB(t) =
1

2
Im

[∮
|ζ |=1

z̄(ζ −1, t)zζ (ζ, t) dζ

]
= π

N∑
j=1

ja2
j . (6.3)

Figure 10 shows the evolution of three representatives of an infinite row of initially
circular pores of unit radius. Again, the aspect ratio of the pores decreases initially.
As time evolves, it is found that the configuration evolves to what appears to be
a quasi-steady state. This occurs because the initially unbalanced capillary pressure
causes the pore area to decrease. This, in turn, causes the hydrostatic pressure exerted
by the gas to increase until it becomes commensurate with the capillary pressure.
Figure 11 shows the evolution for a row of slightly larger circular pores of radius
1.2. A quasi-steady state is again reached, the greater interaction with neighbouring
pores leading to quasi-steady pores with a more distorted shape. In the general case
of compressible pores involving a fixed mass of insoluble gas, the sintering would
tend asymptotically to some equilibrium density depending on the initial pore size
and initial pressure difference (here assumed to be zero) between the pore and the
imposed pressure at infinity.
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Figure 11. Evolution of pores containing ideal gas at constant temperature. Initial radius
is 1.2. Times shown are 0, (0.3), 3.0.

7. Higher-order models
The basic idea underlying the elliptical pore model is rather general and can be

extended to higher-order models. Consider now the scenario of a doubly periodic
array of pores. Such a configuration is a natural model of an array of gaseous pores in
a sintering medium. Pozrikidis (2003) has recently considered precisely such a problem
involving doubly periodic arrays of gaseous inclusions in both square and hexagonal
packings. This conveniently affords us the opportunity to pose our higher-order model
and immediately test its effectiveness against the recent numerical boundary integral
calculations of Pozrikidis (2003).

A schematic of the configuration in the case of a square packing is shown in
figure 12. The size of each square unit cell is time-dependent, with the length of each
side given by a(t). A new feature of this situation is that the evolution of a(t) must
now also be determined as part of the solution.

A schematic of the generalized model for the square packing is shown in figure 13.
Any given pore is modelled, in an inner asymptotic sense, as a single isolated pore
in a polynomially singular (i.e. fourth-order) irrotational straining flow due to the
outer flow assumed to be generated by a doubly periodic array of equal point sinks
of strength m(t). It is easy to deduce that the irrotational outer flow is given by

u − iv = g′(z, t) ∼ kN (t)zN−1 as z → ∞ (7.1)

where kN (t) is the appropriate strain rate and N =4 (for the square packing) or N =6
(for the hexagonal packing). A formula for kN (t) is given below.

The inner problem can be solved exactly by generalizing the exact solutions of
Antanovskii (1994) to the case of an arbitrarily compressible bubble. This can
be done in the same way that Crowdy (2003b) generalized the exact solutions of
Tanveer & Vasconcelos (1995) to the case of compressible bubbles. We omit the
details and simply state the final governing equations. It can be shown that, with
far-field conditions given by (7.1) and with an initially circular pore, the conformal
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Figure 12. Schematic of a doubly periodic square array of pores. The length of each side
of the unit cell is a(t).

Figure 13. Schematic of a ‘higher-order’ model of a doubly periodic square array of pores.
The bold dots indicate point sinks. Any given pore evolves as if placed in a fourth-order
polynomial straining flow.

map from the interior of the unit circle to the exterior of the pore is of the following
generalized form under evolution:

z(ζ, t) =
α(t)

ζ
+ β(t)ζN−1 (7.2)

where N = 4 (square) or N = 6 (hexagonal); α(t) and β(t) are real parameters. The
evolution equations following from the generalized model are as follows. The sink
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strength m(t) is equal to the rate of change of bubble area so that

m(t) =
d

dt
(π(α2 − (N − 1)β2)). (7.3)

By conservation of mass, the rate of change of area of each unit cell must equal m(t)
so that

ȧ =
m

2a(t)
if N = 4, ȧ =

m√
3a(t)

if N = 6. (7.4)

Equations (7.4) give evolution equations for a(t). The strain rate kN (t) is given by

kN (t) = − m(t)N

2πa(t)N

∞∑
n=1

∞∑
l=0

1(
n + l e2πi/N

)N
. (7.5)

The evolution equations for α(t) and β(t) are then

α̇ = −αI (0, α, β) −
(

p∞(t) − pB(t)

2

)
α, (7.6)

β̇ = −(N − 1)βI (0, α, β) +

(
p∞(t) − pB(t)

2

)
β + 2kN (t)αN−1. (7.7)

Using (7.3) and (7.5) in (7.7), combined with (7.4), now leads to a coupled system of
three ordinary differential equations for the evolution of the parameters a(t), α(t) and
β(t).

In the case of pure sintering, we make the choice

pB(t) = p∞(t) = 0. (7.8)

The governing ordinary differential equations are then given explicitly as

α̇ = −αI (0, α, β), (7.9)

β̇ = −I (0, α, β)

(
(N − 1)βaN + NΓNαN+1

aN + N(N − 1)ΓNαN−1β

)
, (7.10)

ȧ = −δNπ

a
I (0, α, β)

[
α2 − (N − 1)β

(
(N − 1)βaN + NΓNαN+1

aN + N(N − 1)ΓNαN−1β

)]
, (7.11)

where

ΓN = −2

∞∑
n=1

∞∑
l=0

1(
n + l e2πi/N

)N
, (7.12)

and where δN = 1 if N = 4 and δN =2/
√

3 if N = 6.
Figure 14 shows the evolution, according to this model, of initially circular pores in

which the initial pore radius is 0.45 of the initial half-lattice size, a(0)/2. This choice
is made to facilitate comparison with the numerical simulations of Pozrikidis (2003)
who considered exactly this problem using numerical boundary integral methods.
Figure 14 should be compared with figure 8 of Pozrikidis (2003). The figures are
in close agreement suggesting that the above ordinary differential equations provide
a good model of pore shrinkage in such doubly periodic configurations. Figure 15
shows the evolution of the liquid fraction calculated according to the model. As
noted by Pozrikidis (2003), there is significantly more shape distortion in the square
array than in the hexagonal array – a probable result of the greater degree of spatial
anisotropy in the square case. This explanation is consistent with the even greater
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Figure 14. Evolution (according to the model) of shrinking constant-pressure pores on (a) a
square and (b) hexagonal lattice. The initial pore radius is 0.45 of the initial half-lattice size
a(0)/2 and τ is a dimensionless time. These figures should be compared with those computed
using full numerical simulations by Pozrikidis (2003, figure 8).

Figure 15. Evolution (according to the model) of the liquid fraction during densification due
to shrinkage of constant-pressure pores. The solid and dashed lines correspond, respectively,
to the square and hexagonal calculations shown in figure 14. The dotted line corresponds to a
square lattice with initial liquid fraction equal to 0.35. This figure should be compared with a
similar graph plotted using full numerical simulations by Pozrikidis (2003, figure 9).

degree of shape distortion in the singly periodic case where there is more spatial
anisotropy than in the square doubly periodic configuration. In all calculations, it is
also observed that the pores become more circular as their area shrinks. Compressible
pores, with non-zero pB(t), can be modelled in the same way.
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8. Discussion
A model, based on exact solutions, for the interaction of multiple pores (or bubbles)

in planar Stokes flows has been presented and tested by comparison with full
numerical simulations in some example cases. The basic idea is to split a multi-
pore system into a collection of ‘inner problems’ in the neighbourhood of any given
pore of interest, all other pores being modelled by an assembly of point sinks.
Assuming the pores are not too close together, the net effect of all other pores in the
‘inner’ region close to any given pore is to induce an irrotational, time-dependent,
straining flow which can affect both the rate of pore shrinkage and the evolution of
its shape. The advantage of this lies in the fact that a wide class of exact solutions for
an isolated compressible pore in a polynomially singular, time-dependent, potential
straining flow are known (Crowdy 2003b; Tanveer & Vasconcelos 1995; Antanovskii
1994) which can be used to exactly solve the ‘inner problem’ for the free-surface
evolution of the pore. At the same time, microstructural information (such as the
rate of pore area shrinkage) derived from solution of the inner problem gives the
macroscopic parameters needed in the outer flow approximation.

The generic situation is the ‘elliptical-pore model’ which is relevant when the pore
configuration is devoid of any spatial symmetries. It is also relevant in the case
of a singly periodic array of pores and the validity of the model has been tested
by devising a novel numerical method based on Cauchy potentials and conformal
mapping. The simple model provides a good description of both the pore shrinkage
time and the shape evolution provided the typical pore separation is larger than (or
of the order of) the typical pore size. For pores that are too close together, the model
is found to slightly over-estimate the pore shrinkage times. Full numerical simulations
of more closely packed pores reveal that the pores disappear faster than predicted by
the model and can shrink to near-zero area in up to 80% of the time needed if the
pore were in isolation. Interaction with neighbouring pores therefore has the effect of
decreasing the pore shrinkage times, these effects being more pronounced for pores
that are initially closer together. Nevertheless, when the pores are close together – so
that one does not expect the model to be accurate – it gives closer agreement to the
actual pore shrinkage times than an alternative model that assumes the pores simply
remain circular and shrink at a constant rate.

A well-known model of late-stage sintering is that of Mackenzie & Shuttleworth
(1952). They have proposed a phenomenological model in three dimensions where all
pores are assumed spherical. Every pore of radius r1 is assumed to be surrounded by
a spherical shell, out to some radius r2 of the real incompressible material making
up the compact. Beyond r2, it is assumed that the real material is replaced by an
‘equivalent homogeneous medium’ which models the combined effects of all other
pores. Although our model applies only to the two-dimensional case, it is superior
to that of Mackenzie & Shuttleworth (1952) in two ways: first, it allows for non-
trivial shape evolution while still being described by just a small set of time-evolving
parameters whose evolution equations can be written down explicitly; second, it
employs a more realistic model of the effects of other pores by using a distribution of
point sinks. Extension of the basic model to the more realistic three-dimensional case
is also under investigation and the viability of an analogous ‘ellipsoidal-pore model’
for late-stage viscous sintering is being examined. The present two-dimensional results
suggest that such a model is worth investigating. Finally, the planar model presented
herein has been motivated by the ‘elliptical vortex approximation’ used to model
interacting vortical regions. It is interesting to note that the elliptical approximation
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for vortical interactions has recently been extended to a three-dimensional ellipsoidal
model (Dritschel, Reinaud & McKiver 2004).

The author is grateful to Professors C. Pozrikidis and C. Lawrence for insightful
discussions. This work is supported by EPSRC Grant GR/R40104/01 and the
Nuffield Foundation.
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