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Polygonal N-vortex arrays: A Stuart model
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A class of exact planar solutions of the Euler equations representing stationaryN-polygonal arrays
of vortices are found. The solutions are parametrized by two parametersN andVmax. N denotes the
number of vorticity extrema surrounding the origin;Vmax denotes the extremal value of this
vorticity. Except for a point vortex at the origin, the solutions have everywhere-smooth vorticity
distributions and are generalizations of the classic exact solution of Stuart@J. Fluid Mech.29, 417
~1967!# for an infinite row of smooth vortices. In the limituVmaxu→`, the solutions reduce to the
pure point vortex problem considered by Morikawa and Swenson@Phys. Fluids14, 1058~1971!#.
The new solutions can be understood as ‘‘smoothed-out’’ counterparts to this point vortex
problem. © 2003 American Institute of Physics.@DOI: 10.1063/1.1623766#
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I. INTRODUCTION

The study of equilibrium arrays of vortices, sometim
called vortex ‘‘crystals’’ or ‘‘lattices,’’ is a hydrodynamica
problem of perennial interest. A recent monograph
Newton1 provides a modern and comprehensive survey
the N-vortex problem.2 Classical investigations include th
work of Thomson3 and Havelock.4 A resurgence of interest in
N-vortex equilibria occurred when it was discovered that
perfluid helium organizes itself into line-vortex structure5

This even inspired the construction of a catalog of vor
patterns.6 More recently, interest in theN-vortex problem has
been incited by the discovery of a new class ofN-vortex
structures commonly dubbed multipolar vortices.10,11 These
are rotating coherent vortex structures characterized b
central core of one signature surrounded by a~usually sym-
metric! distribution of satellite vortices of opposite signatur
They are found to form as a result of the nonlinear desta
lization of shielded monopolar structures and the high
order structures themselves have near-zero total circula
Crowdy12 has identified a class of exact solutions of the p
nar Euler equations sharing many of the qualitative prop
ties of these multipolar vortices. Beyond hydrodynamics,
fact that vortex lattices also emerge as self-organized st
tures in non-neutral plasmas has added further momentu
the study of such problems.7,8

By far, the problem ofN-polygonal arrays of line vorti-
ces has received the most attention. Since the early wor
Thomson,3 numerous investigations have been carried o
For example, in any effort to model the polar vorte
Morikawa and Swenson9 studied a generalization of Thom
son’s configuration in which an additional line vortex
placed at the center of anN-polygonal array. Work in the
area of planar line vortex equilibria continues~see, for ex-
ample, Aref and Vainchtein13!.

Beyond line-vortex models, much less is known and

a!Electronic mail: d.crowdy@imperial.ac.uk
3711070-6631/2003/15(12)/3710/8/$20.00
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literature is more recent. Dritschel14 employed a vortex-patch
model to generalize the classic line-vortex problem cons
ered by Thomson. Using a numerical method, he compu
the shapes of co-rotating finite-area patches of uniform v
ticity placed in an N-polygonal array. More recently
Crowdy15 has generalized the problem considered
Morikawa and Swenson9 and identified a class of exact so
lutions to the problem where a central vortex patch of d
tributed uniform vorticity is surrounded byN co-rotating line
vortices.

Apart from the Lamb dipole20 and some variants thereo
~see, for example, Meleshko and van Heijst16!, there cur-
rently appear to be no known exact solutions for a gene
planarN-polygonal array of vortices in equilibrium and hav
ing a smooth distribution of vorticity. A famous exact sol
tion of the steady Euler equation whichdoes possess a
smooth vorticity distribution is that of Stuart.17 However, this
solution describes an infinite periodic array of co-rotati
vortices and is more relevant to modeling a shear layer p
file than a finite vortex ‘‘crystal.’’ Mallier and Maslowe18

have generalized Stuart’s solution to an infinite row of vo
tices of alternating sign.

In this paper, new exact solutions representing a gen
N-polygonal array of vortices are constructed using a Stu
model which follows in the spirit of the Stuart solution17 in
assuming an exponential relation between the vorticity a
streamfunction. The solutions are globally smooth except
a single line vortex singularity at the center of th
N-polygonal array.

II. MATHEMATICAL FORMULATION

In 1967, Stuart17 introduced an exact solution of th
steady planar Euler equations which have since beco
well-known to the fluid dynamics community as the ‘‘Stua
vortices.’’ Stuart studied the solution as a model of the fr
shear layer. In this solution, the vorticityv is exponentially
related to the streamfunctionc so that
0 © 2003 American Institute of Physics
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v52¹2c52e22c. ~1!

It is well known1 that a solution of the steady incompressib
Euler equations is obtained if the vorticityv of an ideal fluid
is purely a function of the streamfunctionc, i.e., if

v5h~c!, ~2!

whereh(c) is some differentiable function ofc. Mathemati-
cally, Stuart’s choice of relation~1! between the vorticity and
the streamfunction results in the quasi-linear elliptic par
differential equation forc known as the Liouville equation
Stuart17 devotes a portion of his paper to a discussion
solutions of this equation.

Stuart’s particular solution to~1! consists of an infinite
periodic array of vortices described by the streamfunctio

c5 log~C coshy1AC221 cosx!, ~3!

whereC is a real parameter satisfying 1<C,`. When C
51, the solution represents a homogeneous shear layer
file in which all streamlines are parallel to thex-axis and the
horizontal velocity varies like a hyperbolic tangent functi
with vertical distancey. In the opposite limit,C→`, the
solution reduces to an infinite row of identical point vortic
separated by distance 2p, each of circulation24p. For all
intermediate values 1,C,`, the solution has the structur
of an infinite row of ~Kelvin! cat’s-eyes20 with a smooth
vorticity distribution. The parameterC governs the steepnes
of the vorticity profile.

Adopting the Stuart model,17 we will seek solutions of

]2c

]x2 1
]2c

]y2 5 c̃edc, ~4!

representing a polygonalN-polar array of vortices with a
smooth vorticity distribution surrounding a single vortici
extremum at the center of the array.c̃ and d are real con-
stants to be chosen later. It is convenient to complexify t
equation~i.e., write it in characteristic coordinates! by intro-
ducingz5x1 iy and its complex conjugatez̄. Then~4! can
be written as

czz̄5cedc, ~5!

wherec5 c̃/4 and subscripts denote partial derivatives.
To find vortical solutions within a Stuart model, we e

ploit the fact that the most general solution to~5! is known.
Several forms of solution of~5! are listed in Stuart,17 one of
which is

c~x,y!5
1

d
logF 2 f 8~z! f̄ 8~ z̄!

2cd„11 f ~z! f̄ ~ z̄!…2
G , ~6!

wherecd,0 and wheref (z) is an analytic function. Equa
tion ~6! is the form of solution to be used here. Stuart17 also
records that his solution~3!—corresponding to the choice
d522 andc̃51 ~implying c51/4)—can be retrieved from
~6! by the particular choice

f ~z!5A tan~z/2!, ~7!

where the constantA is related toC. Appendix A gives more
details. Readers interested in a derivation of~6! are referred
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to Crowdy19 where the most general solution of the ellipt
Liouville equation is derived using elementary methods.

For purposes of constructing more general vortical so
tions, we first make two important remarks on the nature
the analytic functionf (z).

~a! If D denotes the domain in which a nonsingular so
tion of the Liouville equation is to be found, the func
tion f (z) need not necessarily be analytic everywhe
in D; rather, it can admit a distribution of isolate
simple pole singularities and still produce a solution
the elliptic Liouville equation~5! that is nonsingular in
D. To see this, note that any simple pole off (z) at a
point ẑPC would produce a double pole off 8(z) at the
same point. However, the denominator in~6! contains
the quantity„11 f (z) f̄ ( z̄)…2 which will also, in general,
possess a second-order pole atẑ. The second-order
poles of both numerator and denominator thus c
spire, in general, to produce a nonzero and nonsing
argument of the logarithm leading to a nonsingular s
lution for c.

~b! The derivativef 8(z) must not vanish anywhere inD if
c is to be a nonsingular solution there. This result
clear by inspection of the formula~6!.

The author has not found these facts stated explicitly
the literature but they prove crucial in the analysis to follo
It therefore seems appropriate to emphasize them here
accordance with the above two remarks, note that the ch
of f (z) given in ~7! and yielding Stuart’s solution has
countable infinity of simple poles inC ~which is the domain
D relevant in this case!. Its derivative, (A/2)sec2(z/2), van-
ishes nowhere inC. Stuart’s solution is therefore a globall
valid solution of the Liouville equation.

From ~6! it is seen that the choice ofd simply rescales
the vorticity everywhere in the plane. Following Stuart,17 we
pick d522. The choice ofc is inconsequential; altering i
simply changesc by a constant which does not alter th
velocity or vorticity fields. However, from~6! it is clear that
c.0. We setc51.

A. N-vortex solutions

To modelN-polar vortices, we choose the functionf (z)
be theNth order polynomial,

f ~z!5ãzN1b̃, ~8!

where ã, b̃PC are complex constants.N>1 is an integer.
The domainD of interest here is the entire complex planeC.
f (z) is analytic everywhere inD and, if N.1, its derivative
has a zero of order (N21) at z50. f (z) also has anNth
order pole at infinity but this singularity is not included inD.
In accordance with the remarks made in the previous sect
the corresponding solution forc will therefore break down at
z50 ~if N.1) but will be valid everywhere else. The sin
gularity atz50 will be examined in detail.

The substitution of~8! into ~6! reveals that the solution
only depends onuãu, ub̃u and arg@ã2b̃#. For this reason, with-
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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out loss of generality, we chooseã to be real, i.e.,ã5a

PR. For the time being,b̃ will be taken to be generally
complex. The streamfunction, valid forzÞ0, is then given
explicitly by

c52
1

2
logS N2a2zN21z̄N21

„11~azN1b̃!~az̄N1bD !…2
D . ~9!

~9! fails to be a valid solution of~6! at z50. However, it is
important to note that

c;2
N21

2
logzz̄1regular, asz→0. ~10!

That is, the singular part is precisely the streamfunction fo
point vortex of circulationG52p(N21) atz50. For a con-
sistent solution of the Euler equation, the Helmholtz laws
vortex motion2 dictate that the non-self-induced compone
of the velocity field atz50 must be zero. However, in thi
instance it is clear that this condition is automatically sa
fied owing to theN-fold rotational symmetry of the stream
function about the origin. It can be verified analytically.

We now examine the solutions in detail. Consider fi
the caseN51. The streamlines are given by

11a2uzu21abD z1ab̃z̄1ub̃u25a, ~11!

wherea is a positive constant labeling streamline. These
clearly circles. This solution is uninteresting even though i
nonsingular everywhere~i.e., it does not have a point vorte
at z50).

The solutions forN.1 are more interesting. Letb̃
5beif whereb>0 andf are real. Sincef (z) has been cho-
sen to be purely a function ofzN, the associated vorticity
distribution has anN-fold rotational symmetry about the or
gin. It is found~either analytically or by plotting the stream
lines! that N vorticity extrema occur along theN rays,

arg@zN#5p1f. ~12!

Owing to the rotational symmetry, it is clear thatf can be
taken equal to zero without loss of generality in the physi
solutions. This means thatb̃5bPR. A solution correspond-
ing to a b̃ with non-zerof would simply correspond to a
rotation of the solution~with f50) through anglef about
the origin.

To examine the vorticity profile along one of the ra
~12!, let z5seip/N wheresPR and letV(s,a,b,N) be the
vorticity along the ray arg@z#5p/N. Note that the parameters
is non-negative. Then,

V~s,a,b,N!52
4N2a2s2N22

~11b222absN1a2s2N!2 . ~13!

To find the distancesmax of the vorticity extremum from the
origin, we seek a solution of

]V~s,a,b,N!

]s U
s5smax

50. ~14!

Some algebra reveals thatsmax satisfies
Downloaded 29 Oct 2003 to 155.198.17.121. Redistribution subject to A
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~N11!a2smax
2N 22absmax

N 2~N21!~11b2!50. ~15!

This yields

smax~a,b,N!5F b

a~N11!
1

b

a~N11!

3S 11~N221!
11b2

b2 D 1/2G1/N

. ~16!

~16! gives the distancesmax of the vorticity extrema as a
function of the three parametersa, b andN. It can be veri-
fied that the second partial derivative ofV(s,a,b,N) with
respect tos is nonzero ats5smax so that a genuine maximum
or minimum exists there.

Given that there is no natural length scale associa
with free vortical motion in the plane, it is natural to stud
the solutions by specifying that the distance of the vortic
extrema from the origin is unity, i.e., we setsmax51. This
implies the following quadratic forb:

b21
2a

N21
b1S 12

~N11!

~N21!
a2D50, ~17!

which yields the explicit solution

b~a,N!52
a

N21
1A N2a2

~N21!2 21. ~18!

The root corresponding to the negative square root bra
has been discarded because it does not yield a non-neg
b. ~18! yields a real and non-negative solution forb when
a>acrit(N) where

acrit~N!5AN21

N11
. ~19!

Solution~18! ceases to be real when the discriminant of~17!
vanishes. This occurs whena5a* (N) where

a* ~N!5
N21

N
. ~20!

Manipulating~19! and ~20! it can be shown that

acrit~N!5
N

AN221
a* ~N! ~21!

so thatacrit(N).a* (N) for all N.1. This means that~18!
gives a real non-negative solution forb for all a>acrit(N).

Sinceb is now a function ofa andN, in our notation we
henceforth drop the explicit appearance ofb so that, for ex-
ample,V(s,a,b,N) is now denotedV(s,a,N). It is conve-
nient to defineVmax(a,N) to be the extremal value of th
vorticity V(s,a,N) in ~13! at smax51, i.e.,

Vmax~a,N![V~1,a,N!. ~22!

There should be no confusion in using the same nota
Vmax to denote the extremal value ofV(s,a,N) whether it be
a maximumor a minimum. Explicitly, using~13!,

Vmax~a,N!52
4N2a2

„11b~a,N!222ab~a,N!1a2
…

2 . ~23!
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



s

e

s

r-

ch
en-
ial
ns
ion-
ex
lf-

lite

t
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A graph of the solution forb is given in Fig. 1 as a function
of a for a>acrit(N) for N52, 3, 4, 5, and 6. A similar graph
of Vmax(a,N) againsta is shown in Fig. 2 for the same value
of N. To characterize the solutions, a more natural~and more
physical! choice of parameter thana ~which has been intro-
duced for purely mathematical reasons! is to parametrize
them by the value ofN andVmax(a,N). In Fig. 2 it is clear
from the monotonicity ofVmax(a,N) as a function ofa that
such parameters specify a unique solution.

B. The limits aÄacrit „N… and a\` for fixed N

It is of interest to examine the two limitsa5acrit(N) and
a→` for fixed values ofN:

FIG. 1. b as a function ofa for N52, 3, 4, 5 and 6. The curves begin a
a5acrit(N) as given in~19! and asymptote to the dotted line asa→`.
Downloaded 29 Oct 2003 to 155.198.17.121. Redistribution subject to A
Limit a5acrit(N): Whena5acrit(N), b50. This means
that c is purely a function ofuzu2 so that the streamlines ar
just circles centered atz50. This is the analog of theC51
limit of Stuart’s solution~3!, which yields a homogeneou
shear layer profile with unidirectional streamlines.

Line vortex limit: a→`: Now fix a value ofN and con-
sider the limita→`. Note from~18! that b→a asa→` so
that

c;2
1

2
logF N2zN21z̄N21

~zN11!2~ z̄N11!2G , as a→`, ~24!

which is irrotational almost everywhere except for line vo
tex singularities atz50 and at theN roots ofzN1150. Let
the circulation of the line vortex atz50 beG0 and that of the
N satellite line vortices beGs ~it is clear from symmetry that
they all have the same circulation!. Then using the fact that a
line vortex atz0 of circulationG is

c52
G

4p
log„~z2z0!~ z̄2 z̄0!…, ~25!

we recognize that

G052p~N21!, Gs524p. ~26!

As a check on the above, Morikawa and Swenson9 have
considered a polygonal array ofN satellite line vortices of
circulation gs with a central line vortex of circulationg0 .
For general values of the ratiog0 /gs , such a configuration is
a relative equilibrium of the planar Euler equations in whi
the polygonal array of satellite vortices rotates about the c
tral line vortex with constant angular velocity. For a spec
choice of the ratio of central-to-satellite vortex circulatio
the angular velocity vanishes and the configuration is stat
ary. A simple exercise in writing down the relevant compl
potential and applying the condition that the local non-se
induced component of the velocity field at any of the satel
FIG. 2. Vmax as a function ofa for N52, 3, 4, 5 and 6.
The curves begin ata5acrit(N) as given in~19!.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 3. The vorticity profileV(s,a,2) along the imagi-
nary axis as a function ofs for various choices ofa.
The profile becomes more peaked about the minim
value Vmax(a,2) with increasing a ~tending to a
d-function distribution asa→`).
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line vortex positions is zero shows that this special ratio
2 (N21)/2. This is consistent with the results~26!. There-
fore, the a→` limit of the smooth Stuart vortex solutio
found here is precisely the stationary case of the point vo
problem considered by Morikawa and Swenson.9

C. General case: acrit „N…ËaË`

For general values ofacrit(N),a,`, the solutions de-
scribe a stationary line vortex of circulation 2p(N21) at the
origin surrounded by an everywhere-smooth distribution
negative vorticity characterized byN vorticity extrema
symmetrically-disposed about the origin. Figure 3 show
graph of V(s,a,2)—the vorticity profile along the ray
arg@z#5p/2—for various choices ofa. It is clear that asa
increases, the vorticity profile becomes more peaked
more concentrated about the extremum. Figures 4–7 s
typical distributions of streamlines~i.e., thec-contours! as-
sociated with thea51 solutions withN52 ~a tripole!, N
53 ~a quadrupole!, N54 ~a pentapole! andN510 ~a ‘‘de-
capole’’!. The Kelvin cat’s-eye patterns, familiar from th
Stuart solution17 for an infinite row of vortices, are clear.

It is natural to consider the total circulation associa
with each satellite vortex relative to the circulationG0

52p(N21) associated with the central point vortex. Giv
theN-polygonal symmetries of the vortex configuration, it

natural to define the circulationG̃s to be the total vorticity in
a sectorSN defined as

SN[H zPCU0<arg@z#,
2p

N
, uzuÞ0J , ~27!

so that

G̃s[E E
SN

vdxdy. ~28!
Downloaded 29 Oct 2003 to 155.198.17.121. Redistribution subject to A
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Here it is understood thatv denotes the smooth vorticity
distribution for pointszÞ0 so that we do not take into ac
count thed-function distribution of vorticity at the origin.
Interestingly, it can be shown that

G̃s524p, ~29!

FIG. 4. Streamlines and iso-vorticity contours of a tripole:N52, a51,
Vmax5213.928~to 3 decimal places!. The vorticity is everywhere smooth
except for a point vortex of circulation 2p at the origin.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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3715Phys. Fluids, Vol. 15, No. 12, December 2003 Polygonal N-vortex arrays
independent of the choice of eithera or N. Thus, changinga
simply adjusts the distribution of vorticity within the sect

SN while maintaining the same total circulationG̃s there.
This result is established in Appendix B. It is consistent w
the point-vortex limit considered in the previous sectio
Stuart17 observed an analogous phenomenon in respect o
solution ~3!: the total circulation inside any period of th
periodic array of vortices is always24p independent of the
value of the parameterC; only the distribution of vorticity
within each period changes withC.

FIG. 5. Streamlines and iso-vorticity contours of a quadrupole:N53, a
51, Vmax5227.416. The vorticity is everywhere smooth except for a po
vortex of circulation 4p at the origin.

FIG. 6. Streamlines and iso-vorticity contours of a pentapole:N54, a51,
Vmax5244.166. The vorticity is everywhere smooth except for a point v
tex of circulation 6p at the origin.
Downloaded 29 Oct 2003 to 155.198.17.121. Redistribution subject to A
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D. The limit N\` for fixed a

There is another interesting limit to consider in resp
of this new class of exact solutions, namelyN→`. It should
be clear that asN is increased, so that the number of vortici
extrema equispaced about the unit circle gets larger, o
length-scale that is small with respect to unity~the radius of
curvature of this circular ring of cat’s-eye vortices! the solu-
tion will locally resemble a periodic street of smooth vortic
in the spirit of Stuart’s original solution17 for an infinite pe-
riodic array of vortices. This asymptotic limit is now exam
ined in detail.

Note first, from~18!, that

b→a, as N→`. ~30!

On a length-scale ofO(1/N) near the pointz51, asN→`
we expect the solution to locally resemble the Stuart vor
solution for an infinite row of vortices extending in a dire
tion parallel to the imaginary axis. For this reason, we int
duce a rescaled complex variablez defined by

z511
i

N
z, ~31!

where thei accounts for the fact that the street of vortic
locally appears parallel to the imaginary axis and the 1N
factor means that the solution~9! will resemble the Stuart
vortex layer forz5O(1). To verify this, note that

lim
N→`

@zN#5 lim
N→`

S 11
i z

N D N

5ei z. ~32!

Similarly,

lim
N→`

@zN21#5ei z. ~33!

t

-

FIG. 7. Streamlines and iso-vorticity contours of a decapole:N510, a
51, Vmax52206.178. The vorticity is everywhere smooth except for
point vortex of circulation 18p at the origin.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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3716 Phys. Fluids, Vol. 15, No. 12, December 2003 Darren Crowdy
Substituting~32! and ~33! into the solution~9! in the limit
N→`, to within constants, the limit of the solution is

c;2
1

2
logF ei ze2 i z̄

„11a2~ei z11!~e2 i z̄11!…2
G1const

5 log@e2 i z/2ei z̄/21a2~ei z/21e2 i z/2!~ei z̄/21e2 i z̄/2!#1const

5 log@~114a2!cos~z/2!cos~ z̄/2!1sin~z/2!sin~ z̄/2!

2 i sin~z/2!cos~ z̄/2!1 i sin~ z̄/2!cos~z/2!#1const. ~34!

By modifying the analysis of Appendix A, it can be show
that, to within an appropriate choice of the inconsequen
constantc, the solution~34! is equivalent to taking

f ~z!5A tan~z/2!1B, ~35!

with A51/2a and B5 i /2a, in ~6!. This is essentially the
Stuart vortex solution, as discussed in Appendix A.

III. DISCUSSION

A class of exact solutions having smooth distributed v
ticity and corresponding to stationary polygonal arrays
vortices with N-fold symmetry has been constructed. T
solutions can be understood to be ‘‘smoothed-out’’ versio
of the stationary line vortex configurations considered
Morikawa and Swenson.9 At the same time, they can alte
natively be understood as finiteN-vortex counterparts to the
`-vortex Stuart layer solution.17

The specific choice of rational functionf (z) given in ~8!
has been shown to correspond to smoothN-polygonal arrays
of vortices centered around a point vortex at the origin. T
configurations have been shown to be equilibria of the Eu
equations. It should be clear that other choices of ratio
function f (z) are possible, in principle. However, care mu
be taken in postulating other choices. In general, arbitr
choices of rational functionf (z), even ones possessing ju
simple pole singularities inC ~which do not result in singula
points of the solution!, will necessarily have a distribution o
zeros off 8(z) in C. Such zeros will yield singularities ofc
corresponding to point vortex singularities. While these
physically admissible, each must be stationary under the
fects of the local non-self-induced velocity field if the sol
tion is to be a consistent global equilibrium of the Eu
equations. Such conditions will impose constraints on
poles and zeros of the rational functionf (z). If and only if a
choice of f (z) can be made at which all such conditions a
satisfied, then a consistent steady solution will result.

Pierrehumbert and Widnall21 have studied the linear sta
bility of the planar Stuart vortex solution. The stability of th
newN-polar solutions found here is of interest but is beyo
the scope of the present paper, requiring a detailed anal
Recall, however, that thea→` limit of the solutions corre-
sponds to the stationary point vortex configurations con
ered by Morikawa and Swenson,9 and Table 1 of Ref. 9 gives
the range of values ofG0 /Gs for which the line-vortex equi-
libria are linearly stable for different values ofN. As previ-
ously discussed, in the limita→` the solutions here corre
spond to the ratioG0 /Gs52(N21)/2. Inspection reveals
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that only in the caseN53, i.e., in the case of ‘‘quadrupola
vortices,’’ does this ratio lie in the linear stability range com
puted by Morikawa and Swenson.9 It will be of interest to
examine whether these linear stability properties are sha
by the smootha,` solutions. It is also worth mentioning
that short-wave instability studies of the planar Stuart vo
ces in a rotating frame have been carried out by Godefo
Cambon, and Leblanc22 ~see also Sipp and Jacquin23! and
such techniques might well be of use in analyzing the sta
ity properties of the present class of solutions.

Given the exact solutions, additional physical effects c
be added either numerically or perturbatively. For example
is reasonable to suggest that there is a smooth connecte
of solutions consisting of vortex arrays with similar vortici
distributions that are rotating. The structure of such rotat
vortex arrays might be studied using a perturbation anal
about the exact solutions found herein.
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APPENDIX A: STUART’S „1967… SOLUTION

Stuart’s solution~3! solves~4! with c̃51, d522 ~note
that this corresponds toc5 c̃/451/4). Stuart17 records that
~3! can be derived from~6! by the particular choice

f ~z!5A tan~z/2!. ~A1!

Then

c5 logS 1

A
cos~z/2!cos~ z̄/2!1A sin~z/2!sin~ z̄/2! D . ~A2!

With the use of

cos~z/2!cos~ z̄/2!5 1
2 ~coshy1cosx!,

sin~z/2!sin~ z̄/2!5 1
2 ~coshy2cosx!, ~A3!

~A2! becomes

c5 logS coshyS 1

2A
1

A

2 D1cosxS 1

2A
2

A

2 D D . ~A4!

Exploiting the fact that if

C[
1

2A
1

A

2
, ~A5!

and 0<A<1 then

1

2A
2

A

2
5AC221, ~A6!

~A4! is precisely Stuart’s solution~3!. It is noted that if the
choice~A1! is modified by the addition of a constant, i.e.,

f ~z!5A tan~z/2!1B, ~A7!
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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the resulting solution is qualitatively the same as the solu
given by Stuart’s particular choice~A1!.

APPENDIX B: CIRCULATION OF SATELLITE
VORTICES

In this appendix, it is shown that the circulationG̃s as-
sociated with each satellite vortex@as defined in~28!# is
24p irrespective of the choice of eitherN or a. With the
use of~28!, ~1! and ~9!, we obtain

v52
4N2a2zN21z̄N21

„11~azN1b!~az̄N1b!…2
. ~B1!

Using the standard wedge product~see, for example, Sec. 7.
of Ref. 24! defined so thatdz∧dz̄522idxdy, we can write
~28! as

G̃s52
1

2i E E
SN

2
4a2~NzN21!~Nz̄N21!dz∧dz̄

„11~azN1b!~az̄N1b!…2
. ~B2!

It is now convenient to change the variable to integration

w[zN. ~B3!

The domain of integration then becomes the entire comp
w-plane, denotedC @this is the image of the domainSN under
the conformal map ~B3!#. Using the fact that dw
5NzN21dz, we obtain

G̃s5
1

2i E E
C

4a2dw∧dw̄

~11~aw1b!~aw̄1b!!2 . ~B4!

Now observe that

]

]w̄ S aw̄1b

~11~aw1b!~aw̄1b!! D
5

a

„11~aw1b!~aw̄1b!…2
, ~B5!

so that~B4! can be written as

Gs5
1

2i E E
C
4a

]

]w̄ S aw̄1b

„11~aw1b!~aw̄1b!…Ddw∧dw̄.

~B6!

The complex form of Green’s theorem~Sec. 7.6 of Ref. 24!
takes the form

E E
D

]F~w,w̄!

]w̄
dw∧dw̄52 R

]D
F~w,w̄!dw ~B7!

whereF(w,w̄) is some nonsingular function in a domainD
and]D is the boundary of this domain. Using this result
~B6! yields that
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G̃s52
2a

i
lim

R→`
F R

uwu5R
S aw̄1b

11~aw1b!~aw̄1b! DdwG
52

2a

i
lim

R→`
F E

u50

2p ~a Re2 iu1b!i Reiu du

11~a Reiu1b!~a Re2 iu1b!G
524p. ~B8!
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