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Stuart vortices on a sphere
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The exact steady two-dimensional solutions of the Euler equations due to Stuart
(1967) are generalized to the surface of a sphere. The solutions are parametrized by
three parameters N , θ0 and Ωmax; the integer N > 1 denotes the number of smooth
vorticity extrema, with extremal vorticity Ωmax, that are equally spaced in longitudinal
angle around a latitude circle at latitudinal spherical polar angle θ0. The solutions
have two equal point-vortex singularities at the north and south spherical poles.
Like Stuart’s, the solutions are exact and explicit. The solutions are expected to
be useful in geophysical and astrophysical applications where curvature effects are
important.

1. Introduction
In 1967, Stuart introduced an exact solution of the steady two-dimensional Euler

equations which have since become well-known to the fluid dynamics community as
the ‘Stuart vortices’. Stuart studied the solution as a model of the free shear layer.
In this solution, the vorticity ω is exponentially related to the streamfunction ψ so
that

ω = −∇2ψ = −e−2ψ. (1.1)

Mathematically, the relation (1.1) between the vorticity and the streamfunction results
in the quasi-linear elliptic partial differential equation known as the Liouville equation.
Stuart (1967) devotes a portion of his paper to a discussion of some general solutions
of this equation.

Stuart’s solution to (1.1) consists of an infinite periodic array of vortices described
by the streamfunction

ψ = log(C cosh y +
√

C2 − 1 cos x) (1.2)

where C is a real parameter satisfying 1 � C < ∞. When C = 1, the solution represents
a homogeneous shear layer profile in which all streamlines are parallel to the x-axis
and the horizontal velocity varies like a hyperbolic tangent function with vertical
distance y. In the opposite limit, C → ∞, the solution reduces to an infinite row of
identical point vortices separated by distance 2π, each of circulation −4π. For all
intermediate values 1 <C < ∞, the solution has the structure of an infinite row of
(Kelvin) cat’s-eyes (Lamb 1932) with a smooth vorticity distribution. The parameter
C governs the steepness of the vorticity profile.

Stuart’s solution is one of a small group of known exact solutions of the planar
Euler equations for distributed vortical equilibria. Several others are known (see, for
example, Saffman 1992 or Newton 2001 for references) but the majority of these
are ‘weak’ solutions in the sense that they involve vortex patches. Examples include
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the celebrated Kirchhoff ellipse (Lamb 1932), the Moore–Saffman vortices (Moore
& Saffman 1975) and the recently derived equilibria found by the present author
(Crowdy 1999, 2002). Apart from Stuart’s solution, another famous solution with a
smooth vorticity distribution is the Lamb dipole (Lamb 1932). Meleshko & van Heijst
(1994) survey a number of related smooth-vorticity solutions.

With regard to vortex equilibria on the sphere, much less is known. By far, the study
of point vortex motion on the sphere has received the most attention. Newton (2001)
is a good source of references. Bogomolov (1977) was one of the first to formulate the
mathematical study of point-vortex dynamics on a sphere. Subsequent work ranges
from that of Kimura & Okamoto (1987), Kidambi & Newton (1998, 2000), Lim,
Montaldi & Roberts (2001) to Souliere & Tokieda (2002). Hally (1980) considered
streets of vortices on surfaces of revolution (such as a sphere). Regarding distributed
vorticity, Dritschel & Polvani (1992) and Polvani & Dritschel (1993) have studied
vortex patches on a sphere using numerical methods (e.g. contour surgery). The only
exact solutions for distributed vortex equilibria on a sphere known to the author
are those of Verkley (1984, 1993) (on a rotating sphere) and the recently derived
solutions of Crowdy & Cloke (2003) which involve hybrid vortex-patch/point-vortex
combinations modelling multipolar vortices on a non-rotating sphere.

The ubiquity of large-scale vortex structures as well as organized vortex layers
and vortex streets/rows in the atmospheres of planets and in geophysical flows is
well-known (e.g. Marcus & Kundu 2000). Many of these vortical structures exist on
a planetary scale and so the curvature of the planet must be expected to play a
non-trivial role in both the structure and stability of the vortex configurations. For
theoretical purposes, it is therefore of interest to examine whether it is possible to
generalize the smooth Stuart-vortex solution to the surface of a sphere. This paper
presents such a generalization. It is expected that the solutions might find application
in geophysical and astrophysical contexts. Here, however, attention is restricted to a
detailed derivation and characterization of the new mathematical solutions.

Mathematically, in Stuart’s solution (1.2), there is an accumulation point of vortices
at infinity but this does not cause any problems in terms of a physical interpretation of
the solution because the plane is not a closed compact surface and the point at infinity
is not part of the surface. The sphere, however, is a closed compact surface. Any
physically meaningful generalization of Stuart’s solution might therefore be expected
to have a finite collection of vorticity extrema distributed over the spherical surface.
One reason to suspect this is that if there are infinitely many and if, in analogy to the
planar Stuart vortex solution, there is a corresponding limit in which these extrema
tend to point vortices, then, owing to the compactness of the sphere, the solution
would necessarily exhibit an accumulation point of point vortices on the spherical
surface. This would constitute an unphysical singularity.

Another complication in generalizing Stuart’s solution to the sphere arises from
the fact that the surface of a sphere is closed. If there are no solid boundaries
present (which we assume in order that our results might be used as a basic model
for planetary atmospheres) then any vorticity distribution on the sphere must satisfy
the condition that the integral of the vorticity over the entire spherical surface is
zero.

The generalizations of Stuart’s solution presented here have a relation between the
streamfunction and the vorticity given by

ω = −∇2
Σψ = cedψ +

2

d
(1.3)
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where c and d are real constants. ∇2
Σ is the Laplace–Beltrami operator on a unit-radius

sphere defined by

∇2
Σ ≡ 1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2
(1.4)

where θ and φ are the usual angle variables in spherical polar coordinates. General
solutions of (1.3) are derived in this paper.

Once the general solution of (1.3) is determined, the specific choice corresponding
to generalized Stuart vortices is then identified. The solutions are parametrized by
an integer N . For N = 1, the solution of (1.3) is globally valid everywhere on the
sphere but corresponds to an uninteresting solution having streamlines which are
simply latitude circles. For all integers N > 1, the solutions are generally non-trivial
and correspond to Stuart vortex layers consisting of N smooth vorticity extrema
equally spaced around some (specified) latitude circle. The solutions satisfy (1.3)
everywhere on the sphere except at the north and south poles where the solution
exhibits point-vortex singularities with identical circulations (which, significantly, are
physically acceptable steady solutions of the Euler equations provided they do not
move under the influence of the non-self-induced flow).

2. Vortex motion on a sphere
Consider vortex motion on the surface S of a sphere. The sphere is non-rotating.

Without loss of generality assume it has unit radius. In terms of standard spherical
polar coordinates (r, θ, φ) with the latitude angle θ measured from the axis through
the north pole, the velocity vector has the form

u = (0, v, u) (2.1)

where u and v are the zonal and meridional components of the velocity field res-
pectively. The incompressible nature of the flow allows the introduction of a scalar
streamfunction ψ(θ, φ) via

u = ∇ψ ∧ er (2.2)

where er is the radial unit vector. It is then possible to define a scalar vorticity field
ω(θ, φ) such that

ω er = ∇ ∧ u (2.3)

where

ω = −∇2
Σψ. (2.4)

∇2
Σ is the spherical Laplace–Beltrami operator defined in (1.4). In terms of the stream-

function ψ , u and v are given by

u = −∂ψ

∂θ
, v =

1

sin θ

∂ψ

∂φ
. (2.5)

In the steady case, the material conservation of vorticity is expressed by(
u

sin θ

∂

∂φ
+ v

∂

∂θ

)
ω = 0. (2.6)

With use of (2.5), (2.6) becomes

1

sin θ

(
−∂ψ

∂θ

∂ω

∂φ
+

∂ψ

∂φ

∂ω

∂θ

)
= 0. (2.7)
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Thus, as in the planar case, a solution of (2.7) is clearly obtained when the vorticity
ω is purely a function of the streamfunction ψ , i.e.

ω = h(ψ) (2.8)

for some differentiable function h. The choice of h determines the vorticity–
streamfunction relation. The equations above are isomorphic to the steady barotropic
vorticity equation for a non-rotating sphere (see, for example, Polvani & Dritschel
1993).

In the spherical case, there exists a global constraint on the vorticity distribution.
Gauss’s theorem dictates that only vorticity fields which integrate to zero over the
sphere are permitted, i.e. ∫

S

ω dσ = 0 (2.9)

where dσ denotes the area element on a spherical surface. Equation (2.9) will be
referred to as the Gauss constraint.

3. The vorticity–streamfunction relation
A natural proposal for extending the Stuart solution to the sphere is to suggest

the same vorticity–streamfunction relation as chosen in the planar case, ω = −cedψ ,
thereby leading to the generalized partial differential equation

∇2
Σψ = cedψ (3.1)

where c and d are real constants. Equation (3.1) differs from (1.1) in that ∇2 has been
replaced by ∇2

Σ . However, unless the solution has integrable singularities at certain
points on the sphere, such a solution cannot satisfy the Gauss constraint (2.9) because
the integral of the right-hand side of (3.1) over the spherical surface cannot equal
zero.

At this point, it is worth remarking that when generalizing the notion of a planar
point vortex to a spherical surface, exactly the same obstruction occurs. If x denotes
a point on S, there can exist no solution of the equation

∇2
Σψ = δ(x) (3.2)

satisfying the Gauss constraint (2.9). To overcome this, it is conventional (Bogomolov
1977; Kimura & Okamoto 1987) to add a constant to the right-hand side of (3.2)
and instead seek solutions to the modified equation

∇2
Σψ = δ(x) + g. (3.3)

In this case, it is clear that we must take

g = − 1

4π
, (3.4)

so that

∇2
Σψ = δ(x) − 1

4π
. (3.5)

The right-hand side of (3.5) then satisfies (2.9). The solution of (3.5) yields the
standard solution for an isolated point vortex on a sphere – apparently first derived
by Bogomolov (1977).
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Stereographic
projection

�-plane

Figure 1. Schematic illustrating stereographic projection from the sphere to
a complex ζ -plane.

Motivated by this, the right-hand side of equation (3.1) is similarly modified to
form the equation

∇2
Σψ = cedψ + g (3.6)

where c, d and g are real constants. Equation (3.6) will be referred to here as a
modified Liouville equation. It will be shown in what follows that in the special case
where the parameters d and g are related by

g =
2

d
(3.7)

then the general solution of (3.6) can be written in closed form. To find these explicit
solutions, we employ a combination of transformations of both independent and
dependent variables. In the next section, a change of independent variables induced
by stereographic projection is introduced. The angular variables (θ, φ) are replaced
by the complex variables (ζ, ζ̄ ) in a stereographically projected plane. Then, in § 5,
a special transformation of the dependent variable ψ will be presented that reduces
equation (3.6) to the solution of the standard Liouville equation in this plane of
projection.

4. Stereographic projection
The surface of a sphere can be endowed with a complex analytic structure obtained

by stereographic projection. A projection in which the north pole maps to infinity
in a projected ζ -plane is performed. Figure 1 shows a schematic illustrating this
projection onto a complex ζ -plane through the equator. Stereographic projection has
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been applied to problems of vortex dynamics on a sphere by several previous authors,
e.g. Kidambi & Newton (2000), Newton (2001) and Crowdy & Cloke (2003).

In polar form,

ζ = r̃eiφ (4.1)

where

r̃ = cot

(
θ

2

)
. (4.2)

The origin ζ = 0 corresponds to the south pole of the sphere. It is convenient to
observe that

cos θ =
ζ ζ − 1

ζ ζ + 1
, sin θ =

2
√

ζ ζ

ζ ζ + 1
. (4.3)

It can be verified that

∂

∂θ

∣∣∣∣
φ

= − ζ

sin θ

∂

∂ζ

∣∣∣∣
ζ

− ζ

sin θ

∂

∂ζ

∣∣∣∣
ζ

, (4.4)

and
∂

∂φ

∣∣∣∣
θ

= iζ
∂

∂ζ

∣∣∣∣
ζ

− iζ
∂

∂ζ

∣∣∣∣
ζ

. (4.5)

With use of (4.4) and (4.5), simple algebraic manipulations reveal that

∇2
Σψ = (1 + ζ ζ )2ψζζ (4.6)

where subscripts denote partial differentiation.

5. Transformation of the dependent variable
On the stereographically projected ζ -plane, (3.6) becomes

(1 + ζ ζ̄ )2ψζζ̄ = cedψ + g. (5.1)

Now, introduce the change of dependent variable

φ(ζ, ζ̄ ) ≡ ψ(ζ, ζ̄ ) − 2

d
log(1 + ζ ζ̄ ). (5.2)

Then

edφ =
edψ

(1 + ζ ζ̄ )2
. (5.3)

Differentiation of (5.2) yields

φζ ζ̄ = ψζζ̄ − 2

d

1

(1 + ζ ζ̄ )2
. (5.4)

Substitution of (5.3) and (5.4) into (5.1) implies

φζ ζ̄ +
2

d

1

(1 + ζ ζ̄ )2
= cedφ +

g

(1 + ζ ζ̄ )2
. (5.5)

Now choose

g =
2

d
, (5.6)
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then the equation to solve for φ is

φζ ζ̄ = cedφ. (5.7)

This is precisely the standard Liouville equation for φ in the projected plane.
It is interesting to remark that, in the stereographic plane, the streamfunction

ψ(ζ, ζ̄ ) =
2

d
log(1 + ζ ζ̄ ) + φ(ζ, ζ̄ ) (5.8)

is a linear superposition of a contribution corresponding to uniform vorticity (the
first term on the right-hand side of (5.8)) and a ‘Stuart vortex’ contribution given by
the φ portion of the right-hand side of (5.8) where φ satisfies the standard Liouville
equation (5.7).

6. Mathematical solutions
These combined changes of independent and dependent variables have reduced

the problem to that of solving the elliptic Liouville equation (5.7) for φ in a stereo-
graphically projected ζ -plane. Once a solution for φ is found, ψ can be reconstructed
using (5.2). In § 6.1, we briefly discuss some general solutions of the elliptic Liouville
equation; in § 6.2 the particular solutions that lead to generalized Stuart vortices on
the sphere are presented.

6.1. General solutions of the Liouville equation

Many general solutions to the elliptic Liouville equation have been reported. Stuart
(1967) lists several. One form of general solution to (5.7) given in Stuart (1967) (see
also Liouville 1853) is

φ(ζ, ζ̄ ) =
1

d
log

(
2f ′(ζ )f̄ ′(ζ̄ )

−cd(1 + f (ζ )f̄ (ζ̄ ))2

)
(6.1)

when cd < 0 and where f (ζ ) is an analytic function in the domain D in which the
equation is to be solved. Equation (6.1) is the form of general solution to be exploited
here; however we first make two important remarks on the nature of the analytic
function f (ζ ):

(a) The function f (ζ ) need not necessarily be analytic everywhere in the domain
D; rather, it can admit a distribution of isolated simple pole singularities and still
produce a solution of the elliptic Liouville equation (5.7) that is non-singular in D. To
see this, note that any simple pole of f (ζ ) at a point ζ̂ would produce a double pole
of f ′(ζ ) at the same point. However, the denominator in (6.1) contains the quantity
(1 + f (ζ )f̄ (ζ̄ ))2 which will also, in general, possess a second-order pole at ζ̂ . The
second-order poles of both numerator and denominator thus conspire, in general, to
produce a non-zero and non-singular argument of the logarithm, leading to a solution
for φ which is non-singular at ζ̂ .

(b) The derivative f ′(ζ ) must not vanish anywhere in D if φ is required to be
non-singular there. This result is clear by inspection of the formula (6.1).

The author has not found these facts stated explicitly in the literature but they are
crucial in the analysis to follow. It therefore seems appropriate to emphasize them
here.

Stuart (1967) records that the solution (1.2) can be derived from (6.1) by the
particular choice

f (z) = A tan(z/2) (6.2)



388 D. G. Crowdy

where the constant A is related to the constant C in (1.2) and z is the usual complex
variable with real and imaginary parts equal to the x and y Cartesian coordinates of
the plane. Of course, in the planar Stuart vortex solution, the domain D of interest is
the complex plane, i.e.

D = �. (6.3)

Note that, consistent with remarks (a) and (b) above, the choice of f (z) given in (6.2)
has just simple pole singularities in D. Moreover, f ′(z) = (A/2) sec2(z/2) vanishes
nowhere in D. This means that the solution ψ is non-singular everywhere in D. It
should be noted, however, that f (z) has an accumulation point of simple poles at
infinity which is therefore a singular point of the solution, but this point is not part
of the domain D and causes no problems in terms of a physical interpretation of the
solution.

For a derivation of the solution (6.1), the reader is referred to Crowdy (1997)
where the most general solution of the elliptic Liouville equation is derived using
elementary methods. This solution subsumes all other known solutions and can easily
be manipulated to retrieve the form of solution given in (6.1). The general solution
presented in Crowdy (1997) depends on two arbitrary analytic functions and is closely
related to the general solution described in equations (5.7)–(5.9) of Stuart (1967) and
attributed there to E. Varley.

It is tempting, now that the equation for φ is just the standard Liouville equation
in the projected plane, to postulate that the choice

f (ζ ) = A tan(ζ/2) (6.4)

will yield the desired generalizations of the planar Stuart solution to the sphere. But
things are not so simple. In the present case, D is the extended (or compactified)
complex ζ -plane, i.e.

D = � ∪ {∞}. (6.5)

The choice (6.4) has a cluster point of simple pole singularities at ζ = ∞ which is now
part of the domain D and corresponds to the spherical north pole. It is not clear
how to assign any physical interpretation to such a mathematical singularity in φ

(and hence in ψ) at the north pole which is why the initially tempting choice (6.4) is
discarded.

6.2. Generalized Stuart-vortex solutions

It is clear from (6.1) that altering d just rescales the strength of the vorticity everywhere
on the sphere. Following Stuart (1967), we set d = −2 so that g = − 1 from (5.6). The
choice of constant c is inconsequential; changing it corresponds to changing ψ by an
additive constant which does not alter the velocity or vorticity fields. However, from
(6.1), it must be positive if d is negative. We set c = 1.

Consider the rational function f (ζ ) given by the Nth-order polynomial

f (ζ ) = ãζ N + b̃ (6.6)

where ã, b̃ ∈ �. This function has an Nth-order pole at ζ = ∞. Substituting (6.6) into
(6.1), it is seen that the solution depends only on |ã|, |̃b| and arg[ã − b̃]. Therefore,
without loss of generality, ã can be assumed real and positive, i.e. we take ã = a where
a ∈ �. For the time being, b̃ will be taken to be generally complex.
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Substitution into (6.1) implies that the streamfunction ψ is then given explicitly as

ψ = −1

2
log

(
N2a2ζN−1ζ̄ N−1(1 + ζ ζ̄ )2

(1 + (aζN + b̃)(aζ̄ N + b̃))2

)
. (6.7)

First, note that this choice of ψ is invariant under the transformation ζ �→ ζe2πi/N

which means that it will yield an associated flow field which has an N-fold rotational
symmetry about both the north and south poles. Recalling remarks (a) and (b) in
§ 6.1, when N > 1 (6.7) will fail to be a solution of (5.7) at ζ = 0 (where there is a
zero of f ′(ζ )) or at ζ = ∞ (where f (ζ ) has a pole of order N > 1). These points
correspond to the south and north poles of the sphere respectively. However, it is
crucial to note that at both of these points the streamfunction (6.7) is locally that
associated with a point-vortex singularity on a spherical surface. To see this, recall
that the streamfunction ψpv associated with an isolated point vortex of circulation Γ

at a point on a unit-radius sphere corresponding to the projected point ζs is given by
(see Newton 2001; Crowdy & Cloke 2003)

ψpv = − Γ

4π
log

(
(ζ − ζs)(ζ̄ − ζ̄s)

(1 + ζ ζ̄ )(1 + ζs ζ̄s)

)
. (6.8)

This means that as ζ → ζs ,

ψpv ∼ − Γ

4π
log ((ζ − ζs)(ζ̄ − ζ̄s)) + regular. (6.9)

This observation is significant because such singularities are physically admissible.
Given their presence, it is a requirement of the Helmholtz laws of vortex motion
(Saffman 1992) that, for a consistent steady solution of the Euler equations, both
point vortices must be stationary under the effects of the local non-self-induced
velocity field. The constant term in the local expansion of the non-self-induced
velocity field must therefore vanish at both the north and south pole. However it
should be clear, by the N-fold rotational symmetry of the streamfunction (6.7), that
this condition is automatically satisfied. It can be verified analytically.

7. The Gauss constraint
We now verify that the solutions (6.7) satisfy the Gauss constraint (2.9). The total

vorticity on the spherical surface will consist of a sum of the circulations of the two
(equal) point vortices at the north and south pole plus the contribution from the
smooth Stuart-type vorticity on the rest of the spherical surface associated with the
streamfunction in (6.7).

Consider first the two point vortices. As ζ → 0, the streamfunction (6.7) has local
behaviour

ψ ∼ − (N − 1)

2
log(ζ ζ̄ ) + regular. (7.1)

By comparison with (6.8) the circulation ΓS of the point vortex at the south pole is

ΓS = 2π(N − 1). (7.2)

To compute the circulation of the point vortex at the north pole, it is necessary
to rewrite the streamfunction (6.7) in terms of the local complex coordinate η, say,
associated with the second chart in the atlas of the spherical surface (i.e. the coordinate
obtained by stereographic projection through the south pole). It is easy to show that η
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is conformally related to ζ by η = ζ −1. Rewriting (6.7) in terms of this local coordinate
reveals that, as η → 0, ψ has the local behaviour

ψ ∼ − (N − 1)

2
log(ηη̄) + regular, (7.3)

from which we deduce that the circulation ΓN of the point vortex at the north pole is

ΓN = 2π(N − 1) = ΓS. (7.4)

Thus the circulations of the two antipodal point vortices are equal. It should be
noted that in the case N =1 the solution (6.7) is globally valid (i.e. there are no point
vortices at the spherical poles).

It turns out to be possible to analytically compute the integral over the sphere of
the smooth vorticity distribution associated with the streamfunction (6.7). Consider
the quantity ∫ ∫

S

e−2ψ dσ =

∫ ∫
S

(
f ′(ζ )f̄ ′(ζ̄ )(1 + ζ ζ̄ )2

(1 + f (ζ )f̄ (ζ̄ ))2

)
dσ (7.5)

where f (ζ ) is given in (6.6). If x and y denote the real and imaginary parts of ζ , so
that ζ = x + iy, then it can be shown that the area element dσ is given by

dσ =
4dx dy

(1 + ζ ζ̄ )2
(7.6)

which implies∫ ∫
S

e−2ψ dσ = −4

∫ ∫
S

∂

∂ζ̄

(
f ′(ζ )

f (ζ )

1

1 + f (ζ )f̄ (ζ̄ )
− f ′(ζ )

f (ζ )

)
dx dy

= − lim
R→∞

4

2i

∮
|ζ |=R

(
f ′(ζ )

f (ζ )

1

1 + f (ζ )f̄ (ζ̄ )
− f ′(ζ )

f (ζ )

)
dζ

= lim
R→∞

4

2i

∮
|ζ |=R

f ′(ζ )f̄ (ζ̄ )

1 + f (ζ )f̄ (ζ̄ )
dζ

= lim
R→∞

4

2i

∫ 2π

0

NaRN−1ei(N−1)θ (aRNe−iNθ + b̃)iReiθ dθ

[1 + (aRNeiNθ + b̃)(aRNe−iNθ + b̃)]2

= 4πN (7.7)

where we have used the complex form of Green’s theorem and the definition (6.6) of
f (ζ ). The integral of the vorticity due to the streamfunction ψ given in (6.7) over the
surface of the sphere is

−
∫

S

(e−2ψ − 1) dσ (7.8)

which, using the result (7.7) and the well-known value of the surface area of a
unit-radius sphere, equals

−4π(N − 1). (7.9)

The total vorticity on the spherical surface is the sum of (7.2), (7.4) and (7.9). This
sum is zero. The solutions (6.7) therefore satisfy the Gauss constraint (2.9) for any
choices of the parameters a, b̃ and N .
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8. Characterization of the solutions
In this section, the solutions are studied in more detail. The choice of integer N � 1

is arbitrary. Consider first the case N = 1. From (6.7), the streamlines, or ψ-contours,
are given by

a2ζ ζ̄ + ab̃ζ + ab̃ζ̄ + 1 + |̃b|2 + α(1 + ζ ζ̄ ) = 0 (8.1)

where α is any negative constant (which labels the streamlines). These streamlines are
circles. This solution is uninteresting. However, as pointed out earlier, it is non-singular
everywhere on the sphere with no point vortices at the spherical poles.

The solutions for N > 1 are more interesting. To examine them, let b̃ = beiφ where
b � 0 and φ are real parameters. It is found that the extrema of vorticity occur on the
N rays (in the stereographically projected plane) for which

arg[ζN ] = π + φ. (8.2)

By the N-rotational symmetry of the configuration about the south (or north) pole,
it is clear that φ can be taken to be zero without loss of generality in the physical
solutions. From now on, we therefore take b̃ = b ∈ �. A solution corresponding to
a b̃ with non-zero φ simply corresponds to a rotation of the sphere (displaying the
φ = 0 solution) through angle φ about an axis through the north and south poles.

Setting ζ = seiπ/N where s ∈ �, we define Ω(s) to be the vorticity profile along the
ray arg[ζ ] = π/N . Substitution yields the formula

Ω(s) =

(
1 − N2a2s2N−2(1 + s2)2

(1 + b2 + a2s2N − 2absN )2

)
. (8.3)

The vorticity extrema occur at that value of s (smax, say) satisfying

Ω ′(smax) = 0. (8.4)

After some algebra, this condition reduces to(
(N +1)s2

max +(N −1)
)(

1+b2 +a2s2N
max −2absN

max

)
=2NasN

max

(
1+s2

max

)(
asN

max −b
)
. (8.5)

To study the solutions, it is natural to fix the latitude angle θ0 at which the N vorticity
extrema occur; smax then follows from this specification because

smax = cot(θ0/2). (8.6)

We assume 0 < θ0 � π/2 so that the layer of vorticity extrema is situated in the northern
hemisphere. This is done without loss of generality because the circulations of the
two antipodal point vortices are identical. Solutions corresponding to π/2 � θ0 < π can
be obtained from those corresponding to 0 <θ0 � π/2 simply by turning the sphere
upside-down.

Suppose now that N, a and θ0 are given. This means that N, a and smax are known.
Equation (8.5) then becomes a nonlinear equation for the parameter b. It turns out
that this nonlinear condition can be rewritten as the quadratic

c2(a, smax, N)b2 + c1(a, smax, N)b + c0(a, smax, N ) = 0 (8.7)

where

c2(a, smax, N) = (N + 1)s2
max + (N − 1), (8.8)

c1(a, smax, N) = 2asN
max

(
1 − s2

max

)
, (8.9)

c0(a, smax, N) = (N − 1) + (N + 1)s2
max − (N + 1)a2s2N

max − (N − 1)a2s2N+2
max , (8.10)
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leading to explicit solutions for b given by

b =
−c1(a, smax, N) ±

√
c1(a, smax, N)2 − 4c2(a, smax, N )c0(a, smax, N )

2c2(a, smax, N )
, (8.11)

whenever these formulas yield b-values that are real and non-negative.
Let Ωmax be the extremal value of the vorticity at smax. With b given by (8.11), an

explicit formula for Ωmax can be derived using (8.3) and the definition Ωmax = Ω(smax).
There should be no confusion in our notational choice of using Ωmax to denote the
extremal value of Ω(s) at s = smax irrespective of whether it is a maximum or a
minimum.

With the positive sign taken in (8.11) it is easily shown that

b ∼ sN
maxa as a → ∞. (8.12)

This means that the positive-square-root branch in (8.11) always leads to a solution
with real non-negative b for sufficiently large a. For given smax and N , the vanishing
of the discriminant in (8.11) gives a lower bound on the admissible values of a for
which a corresponding real non-negative b can be found. Denote this lower bound
by acrit(smax, N). Algebraic manipulations lead to the formula

acrit(smax, N) =
(N − 1) + (N + 1)s2

max

NsN
max

(
1 + s2

max

) . (8.13)

Note that when θ0 = 1
2
π, so that smax =1, then acrit = 1 for all values of N . In general,

acrit is a function of both smax and N . Thus, for given θ0 and N , at least one real
non-negative solution for b is found to exist in the range

a ∈ [acrit, ∞). (8.14)

We now explore whether the negative branch of the square root in (8.11) can provide
a second real positive solution for b. For large values of a, the solution (8.11) with the
negative-square-root branch is negative but becomes zero at a second critical value
of a, which will be denoted a∗(smax, N) since it will generally be a function of both
smax and N . This occurs when c0(a, smax, N) = 0 so that the equation satisfied by a∗ is

c0(a∗, smax, N) = 0. (8.15)

This leads to the explicit formula

a∗(smax, N) =
1

sN
max

√
(N − 1) + (N + 1)s2

max

(N + 1) + (N − 1)s2
max

. (8.16)

If a∗ > acrit then there will exist a range of a-values for which there are two possible
real non-negative b-values. Using (8.13) and (8.16), it is found that

a∗ =


 N

(
1 + s2

max

)
√

(N2
(
1 + s2

max

)2 −
(
s2
max − 1

)2


 acrit. (8.17)

Hence a∗(smax, N ) >acrit(smax, N) for all N if smax �= 1. In the special case smax =1, the
vorticity extrema are situated at the equator. In this case,

acrit(1, N) = a∗(1, N ) = 1 (8.18)

so that there is a single branch of solutions for real non-negative b for a in the range

a ∈ [1, ∞). (8.19)
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Figure 2. Solutions for b as a function of a with N = 2 and the three choices of θ0 =
π/2, π/3, π/4. Note that in the case θ0 = π/2 there is only one solution for each a. The solid
line denotes the solution for b corresponding to the negative-square-root branch in (8.11), the
dotted line to the positive-square-root branch. The two solutions join smoothly when a = acrit

forming a continuous branch of solutions.

A graph of the generic solution structure for b is given in figure 2 for the case N =2
and θ0 = π/4, π/3 and π/2. In the two cases θ0 = π/4 and π/3 it is important to note
that what appears at first sight to be two possible solution branches is, in fact, a
single continuous branch of solutions. In the terminology of bifurcation theory, with
a as the order parameter, there is a saddle-node bifurcation at a = acrit.

It is instructive to examine the graph of Ωmax against a. Figure 3 shows this graph
in the case N = 2 and for θ0 = π/4, π/3 and π/2. The behaviour shown is typical.
Note that Ωmax is a function that is monotone-decreasing as one follows the complete
branch of solutions starting at a∗. That is, those a-values having two possible values
of b yield solutions with different values of Ωmax. This suggests that a more natural,
and more physical, choice of parameters than a and b (which were introduced for
purely mathematical reasons) is to characterize the solutions by the three parameters
N, θ0 and Ωmax. In this way, the solutions are characterized by the number N of
vorticity extrema, with extremal vorticity Ωmax, situated on the latitude circle at angle
θ = θ0. Such parameters specify a unique solution.

The streamlines of the flow on the projected ζ -plane are the contours ψ = constant.
These are straightforward to plot using the explicit formula (6.7). Given the set of
points ζ on a given ψ-contour in the projected ζ -plane, the following equations can
be inverted for θ and φ for any point on the contour:

cot(θ/2) = |ζ |, φ = arg[ζ ]. (8.20)

Given θ and φ, the corresponding point (X, Y, Z) on the physical sphere can be
calculated using

X = sin θ cosφ, Y = sin θ sinφ, Z = cos θ. (8.21)

Here we make an observation. In the ζ -plane of projection, it is seen from (6.7) that
the streamlines are real algebraic curves. In their studies of point-vortex dynamics
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Figure 3. Ωmax as a function of a with N = 2 and the three choices of θ0 = π/2, π/3, π/4.
The solid line denotes the value of Ωmax derived using the solution for b corresponding
to the negative-square-root branch in (8.11), the dotted line to that computed using the
positive-square-root branch.

(specifically, ‘twisters’) on a sphere, Souliere & Tokieda (2002) make some similar
observations on the fact that the trajectories of point vortices are algebraic curves.
Similarities between the streamline patterns shown here and those in figure 3 of
Souliere & Tokieda (2002) are clear.

It is natural to examine the nature of the two limiting cases when Ωmax tends to its
minimal and maximal value. Ωmax assumes its maximal value when a = a∗ as is seen
from figure 3. There is no lower bound on the value of Ωmax and it becomes infinite
as a tends to infinity. We now examine these two cases separately.

8.1. The case a = a∗

When a = a∗, b = 0. Inspection of (6.7) reveals that the solution for ψ then depends
only on |ζ | so that the streamlines in this case are all latitude circles (that is, concentric
circles centred on ζ = 0 in the stereographically projected plane). This is analogous to
the C =1 case of Stuart’s planar solution (1.2) where it becomes a hyperbolic-tangent
shear layer profile with straight streamlines aligned with the x-axis. Owing to the
spherical geometry, the analogous streamlines here are concentric latitude circles.

8.2. Point vortex limit, a → ∞
In the limit a → ∞, Ωmax → ∞. Moreover, it is known that b also tends to infinity
according to the asymptotic relation (8.12). From (6.7) this means that, asymptotically,

ψ ∼ −1

2
log

(
N2

a2

ζN−1ζ̄ N−1(1 + ζ ζ̄ )2(
ζN + sN

max

)2(
ζ̄ N + sN

max

)2

)
. (8.22)

To within constants, (8.22) can be rewritten

ψ ∼ −N − 1

2
log

(
ζ ζ̄

1 + ζ ζ̄

)
+

N∑
j=1

log

(
(ζ − ζj )(ζ̄ − ζ̄j )

(1 + ζ ζ̄ )(1 + ζj ζ̄j )

)
− N − 1

2
log

1

1 + ζ ζ̄

(8.23)
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Figure 4. Solution for N = 2, a = 1 and θ0 = π/3 shown in orthographic (a) and stereographic
projection (b). The corresponding values of b and Ωmax are 2.78 and −173.93 respectively.
There are point vortices, each of circulation 2π, at both the north and south poles.

where

ζj = smaxe
iπ(1+2(j−1))/N , j = 1, 2, . . , N. (8.24)

Comparison of (8.23) with (6.8) reveals that the first term on the right-hand side of
(8.23) corresponds to a point vortex at the south pole (i.e. ζ = 0), the second term to N

identical point vortices at positions {ζj |j = 1, . . , N}, while the third term corresponds
to a point vortex at the north pole. The circulations of the point vortices at the north
and south pole are equal and are given by 2π(N − 1) as previously determined. The
circulations of the point vortices at {ζj |j = 1, 2, . . . , N} are all equal and are given
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Figure 5. Graph of Ω(s) against s for N = 2, θ0 = π/3 and a = 0.5, (0.1), 1. The respective
values of Ωmax are −27.93, −50.09, −75.51, −104.55, −137.35 and −173.93. As a increases,
the vorticity profiles become more concentrated about the extremal value Ωmax which itself
increases in magnitude with increasing a.

by −4π. This limit is analogous to the point-vortex limit C → ∞ of Stuart’s planar
solution (1.2).

To check this limiting solution, in the Appendix a pure point-vortex problem on the
sphere is examined. In general, if two equal point vortices of strength γ0 are placed at
the north and south spherical poles while N equal point vortices of circulation γs are
equally spaced around some latitude circle, the configuration will constitute a relative
equilibrium of the Euler equations in which the point vortices off the spherical poles
rotate about the axis through the poles at constant angular velocity while the vortices
at the spherical poles remain stationary. At a critical ratio of circulations the entire
configuration is stationary (i.e. the angular velocity of the off-pole vortices is zero).
In the Appendix, this ratio is found to be

γ0

γs

= − (N − 1)

2
(8.25)

which is precisely the ratio of circulations in the point-vortex limit of the generalized
Stuart vortices.

8.3. General case: a∗ <a < ∞
Like the planar solutions (1.2) of Stuart, all intermediate cases a∗ <a < ∞ are found
to correspond to smooth vorticity distributions displaying a distinctive cat’s-eye
pattern. In figure 4, a typical streamline distribution both on the sphere and on the
stereographically projection ζ -plane is shown in the case N = 2 with θ0 = π/3 and
a =1. The corresponding b is calculated to be 2.78 (correct to 2 decimal places)
while the corresponding Ωmax is −173.93. Figure 5 features a graph of Ω(s) as a
function of distance s along the rays in the ζ -plane on which the vorticity extrema are
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Figure 6. Solution for N = 4, a =0.15 and θ0 = π/3 shown in orthographic (a) and
stereographic projection (b). The corresponding values of b and Ωmax are 0.81 and −92.74
respectively. There are point vortices, each of circulation 6π, at both the north and south poles.

located. In this case where N = 2, this corresponds to the vorticity distribution along
the imaginary ζ -axis. Graphs are shown for several different values of a in order to
illustrate that, as a increases, the distribution of vorticity becomes more concentrated
about the extremal (negative) value Ωmax which also increases in magnitude with
increasing a. As mentioned above, as a → ∞, the vorticity distribution tends to a
δ-function distribution with the off-pole vortices having negative circulation. Figure 5
is consistent with this.

Figure 6 shows a typical streamline distribution in the case N = 4, θ0 = π/3 and
a =0.15. The corresponding value of b is 0.81 while the value of Ωmax is −92.74.
Figure 7 shows superposed graphs of Ω(s) against s for several values of a. Again,
the profiles steepen with increasing a. Figure 8 shows the streamline distribution with
N = 10 and θ0 = π/3. Now the distinctive cat’s-eye patterns typically associated with
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Figure 7. Graph of Ω(s) against s for N = 4, θ0 = π/3 and a = 0.135, 0.15, 0.16, 0.17 and
0.18. The respective values of Ωmax are −58.77, −92.74, −115.70, −139.56 and −164.53. As
a increases, the vorticity profiles become more concentrated about the extremal value Ωmax

which itself increases in magnitude with increasing a.

the planar Stuart vortex solution become more apparent. As the number of vortices
N is taken even larger, greater numbers of cat’s-eyes congregate around the given
latitude circle. Figure 9 shows a street of sixteen smooth vortices equally spaced
around the equator.

9. Discussion
The general solution to a particular modified Liouville equation on a sphere has

been found. This equation is (3.6) with g = 2/d . A particular class of solutions to
this equation has then been identified sharing all the features of the well-known
planar Stuart vortex solution. For this reason, the solutions have been interpreted as
generalizations of the planar Stuart vortex solution to the sphere.

It is worth pointing out that the planar analogue of (5.1) is

∇2ψ = cedψ + g (9.1)

which is precisely the Poisson–Boltzmann equation. It is not known whether the
general solution to this equation in the plane can be written in closed form. It is
interesting that the Poisson–Boltzmann equation, generalized to a sphere by replacing
the planar Laplacian by the Laplace–Beltrami operator, does admit a closed-form
general solution, as we have shown.

It is intriguing that the (apparently special) choice g = 2/d has led both to the
possibility of finding an explicit representation for the general solution of (3.6) and
to a special class of those solutions satisfying the Gauss constraint (2.9). While this
might be coincidence, it is easier to believe that the condition g = 2/d is a ‘solvability
condition’ for finding solutions of (1.3) on a sphere, in the same way that the constant
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Figure 8. A row of 10 Stuart vortices at latitude π/3 shown in orthographic (a) and
stereographic projection (b). The solution parameters are N = 10, a = 0.01, b = 2.203 and
θ0 = π/3. There are point vortices, each of circulation 18π, at both the north and south poles.

on the right-hand side of (3.3) cannot be arbitrary but must equal −1/4π if the
sphere has unit radius and the coefficient of the δ-function is unity. In the case of
the modified Liouville equation, however, it is not obvious why the choice g = 2/d is
relevant. This remains an open mathematical issue. Will other choices of g also lead
to solutions satisfying the Gauss constraint?

Only those solutions deemed to be the most natural generalizations of the planar
Stuart solution have been presented in this paper. These correspond to the special
choice (6.6). It is clear that other choices of rational function f (ζ ) in our scheme
will potentially lead to other classes of physically admissible solutions consisting of a
smooth Stuart-type vorticity distribution punctuated by a finite distribution of point
vortices. However, in constructing more general solutions, care must be taken; the
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Figure 9. A row of 16 Stuart vortices at the equator. The solution parameters are
N = 16, a = 1.05, b = 0.320 and θ0 = π/2. There are point vortices, each of circulation 30π,
at both the north and south poles.

zeros of f ′(ζ ) and the poles of f (ζ ) that are of order two or higher will, in general,
induce point-vortex singularities in the solution for ψ which, while being physically
admissible, must be stationary according to the Helmholtz laws of vortex motion
if the solution is to be a consistent equilibrium of the Euler equations. This will
place constraints on the choice of rational function f (ζ ). Nevertheless, the problem
of finding equilibria can be reduced to the solution of a finite set of purely algebraic
nonlinear equations.

The Stuart vortices have been generalized to a row of counter-rotating vortices by
Mallier & Maslowe (1993). It would be of interest to examine whether the methods
presented here, i.e. the combination of stereographic projection with a strategic
change of dependent variable, might similarly lead to explicit solutions of a modified
sinh–Gordon equation on the sphere, i.e.

∇2
Σψ = c sinh dψ + g, (9.2)

perhaps with some special choice of g. It is also worth mentioning that Haslam &
Mallier (2003a, b) have considered various types of smooth vorticity distributions on
other surfaces, including the cylinder and the sphere, although their approach is quite
different from that presented here.

Pierrehumbert & Widnall (1982) have analysed the stability properties of the planar
Stuart vortex solution. The stability properties of the generalized spherical solutions
remain to be investigated. Such a study is likely to be interesting: Dritschel &
Polvani (1992) have found that, owing to curvature effects absent in the planar case,
distributions of vorticity on the sphere can have very different stability properties to
their planar counterparts.

The simplicity and physical importance of the planar Stuart model has made it
the basis of many theoretical investigations where, for example, additional physical
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effects (such as viscosity, rotation) have been added perturbatively or numerically.
For a small sample of such investigations see Mallier (1995), Godeford, Cambon &
Leblanc (2001), Meiron, Moore & Pullin (2000) and Tio et al. (1993). It is hoped that
the new solutions herein will similarly constitute a basic model for inviscid vortex
layers when curvature effects are important, as is the case for many planetary-scale
geophysical and astrophysical flows.

This research was carried out while the author was a Visiting Associate Professor in
the Mathematics Department at MIT during the Spring semester 2003 on sabbatical
from Imperial College, London. It is supported in part by a grant from EPSRC in the
United Kingdom. The author acknowledges useful discussions with Professor Noel
Corngold of the California Institute of Technology and Dr Thomas Peacock of MIT.

Appendix. A point-vortex problem
Consider a configuration of point vortices on the surface of a sphere where there

are two equal point vortices of circulation γ0 at the north and south poles and N

equal point vortices of circulation γs at points corresponding to the stereographically
projected points

ζk = re2πi(k−1)/N , k = 1, 2, . . , N, (A 1)

where r is some real number. The instantaneous streamfunction is given by

ψ = − γ0

4π
log

(
ζ ζ̄

1 + ζ ζ̄

)
− γs

4π

N∑
k=1

log

(
(ζ − ζk)(ζ̄ − ζ̄k)

(1 + ζ ζ̄ )(1 + ζkζ̄k)

)
− γ0

4π
log

(
1

1 + ζ ζ̄

)
(A 2)

where the first and third terms on the right-hand-side correspond to point vortices at
the south and north pole respectively. For general values of γ0 and γs , the vortices off
the spherical poles will rotate with constant angular velocity about the axis through
the poles. However, using (A 2) and applying the condition that the point vortex at
ζ1 is stationary under the effects of the non-self-induced components of the local
velocity field, it can be shown that the condition for this point vortex to be steady
requires that

γ0

γs

= − (N − 1)

2
. (A 3)

This is done using the fact (derivable from (2.5)) that

u − iv =
2ζ

sin θ
ψζ . (A 4)

By the rotational symmetry of the configuration about the axis through the poles, it
is clear that if (A 3) is satisfied then the other N − 1 vortices at (projected) positions
{ζj |j = 2, .., N} will also be steady. The steadiness of the point vortices at the north
and south poles is also obvious from symmetry considerations.
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