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A new method for solving the biharmonic equation in an arbitrary convex polygon
with arbitrary linear boundary conditions is applied to a class of mixed boundary-
value problems involving a semi-infinite strip. Emphasis is placed on boundary-value
problems for which an explicit solution can be constructed. A variety of mixed
boundary-value problems are shown to admit explicit solutions. This class includes,
but is not limited to, the canonical problems of the elastostatic semi-strip. New inte-
gral representations of generalizations of these canonical problems are derived where
the sidewall boundary conditions are inhomogeneous.
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1. Introduction

A new method for solving linear partial differential equations in a plane convex
polygon is presented in Fokas (2001). Examples of the partial differential equations
considered include evolution equations as well as elliptic-type equations such as the
Laplace (Fokas & Kapaev 2003) and modified Helmholtz equations (Antipov & Fokas
2004; ben-Avraham & Fokas 2001). Applications of the method to physical prob-
lems include solutions of the modified Helmholtz equation in triangular regions—a
problem of relevance to the study of diffusion-limited coalescence (ben-Avraham &
Fokas 2001). Recently, Crowdy & Fokas (2004) have shown how this method can be
implemented for problems involving the biharmonic equation in a convex polygon
with linear boundary conditions. The latter mathematical problem appears in a wide
range of physical applications, such as plane elastostatics and slow viscous flows of
Newtonian fluids.

Although the new method applies to biharmonic problems in an arbitrary simply
connected convex polygon, various elastostatics problems involving the semi-infinite
strip have received such wide and varied attention over the last century that it
seems appropriate to present, in detail, the application of the new general method
to this particular class of problems. Boundary-value problems for the elastostatic
semi-strip are relevant to the bending of plates, the stretching, bending and flexure
of cantilever beams, and the estimation of boundary-layer effects in plate and shell
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Figure 1. Domain and boundary conditions: (i) sin β2qx + cos β2qxx = f2(y), sin B2qxxx +
cos B2qyy = F2(y); (ii) cos β3qxx + sin β3qyy = f3(y), cos B3qyx + sin B3qyyy = F3(y); (iii)
cos β1qxx + sin β1qyy = f1(y), cos B1qyx + sin B1qyyy = F1(y).

theories. Previous treatments of this general class of problem can be found in the
literature (Benthem 1963; Bogy 1975; Gregory 1979, 1980; Gupta 1973; Johnson &
Little 1965; Joseph & Sturges 1978; Smith 1952; Spence 1978, 1982, 1983; Vorovich
& Kopasenko 1966; Williams 1952).

The new method presented here involves the following.

(1) Given an arbitrary convex polygon in the complex z-plane, construct an integral
representation in the complex k-plane of the solution q(z, z̄) of the biharmonic
equation. The representation involves certain functions ρ(k) and ρ̃(k), which
we call the spectral functions.

(2) The spectral functions are expressed as integrals in the complex z-plane over
the boundary of the polygon involving derivatives of q.

(3) The spectral functions are not independent but they satisfy two relations known
as the global relations.

It is emphasized that the construction is valid for an arbitrary polygon and for
arbitrary linear boundary conditions. However, for a given boundary-value problem
only a subset of the derivatives of q on the boundary are known. Thus, to compute
{ρ(k), ρ̃(k)} one must analyse the global relations in order to express the unknown
part of {ρ(k), ρ̃(k)} in terms of the given boundary conditions. This analysis is, in
general, complicated and leads to a matrix differential Riemann–Hilbert problem.
However, for some simple polygons and boundary conditions this Riemann–Hilbert
problem can be solved in closed form. In the present paper, to illustrate the new
method in its simplest form, we concentrate on precisely this class of ‘exact’ elasto-
static problems in the case where the polygon is the semi-infinite strip.

In § 2, we review the key elements of the general method presented in Crowdy
& Fokas (2004). In § 3, we review some elements of the theory of plane elasticity
and describe certain classes of boundary-value problems arising therein. A typical
class of such problems is illustrated in figure 1, where {βj , Bj | j = 1, 2, 3} are
arbitrary constants and {fj , Fj | j = 1, 2, 3} are arbitrary functions with appropriate
smoothness and decay. In § 4, we show how the general method described in § 2 can
be applied to this class of problems. In particular, we demonstrate how to compute
the associated spectral functions.
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Figure 2. Boundary-value problem for proposition 1.1: (i) qx = f2(y), qxxx = F2(y); (ii)
cos βqxx + sin βqyy = f1(y), cos Bqyx + sin Bqyyy = −F1(y); (iii) cos βqxx + sin βqyy = f1(y),
cos Bqyx + sin Bqyyy = F1(y).

Finally, § 5 isolates a particular subclass of the boundary-value problems considered
in § 3 having the special property that the spectral functions can be determined in
closed form. An explicit integral representation of the solution can then be derived.
The main result of § 5 is summarized in the following proposition.

Proposition 1.1. Let q(x, y) be a real-valued function satisfying the biharmonic
equation in x > 0 and |y| � l and let q(x, y) decay sufficiently fast as x → ∞.
Let q(x, y) satisfy the boundary conditions depicted in figure 2, where B and β are
constants, f1(x) and F1(x) decay sufficiently fast as x → ∞ and f2(y) and F2(y) are
even functions of y. Then

qzz = Q1(z) + z̄Q2(z), (1.1)

where Q1(z) and Q2(z) are defined by

Q1(z) = 1
8

∫ ∞

−∞

g(k)
E(k)

Φ1(ik)eikz

sinh kl
dk +

∫
l1

eikzG̃1(k) dk +
∫

l3

eikzG̃3(k) dk

+
∫

l2

eikz(G2(k) − (Ḡ1(k) + Ḡ2(k) + Ḡ3(k))) dk,

Q2(z) =
∫

l1

e−kl+ikzR1(k) dk +
∫

l3

ekl+ikzR3(k) dk

+
∫

l1

eikzG1(k) dk +
∫

l2

eikzG2(k) dk +
∫

l3

eikzG3(k) dk,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1.2)

where an overbar denotes complex conjugation and the complex conjugate function
f̄ of a given function f(k) is defined as

f̄(k) = f(k̄). (1.3)

Note that

(i) the contours lj are the rays given in figure 3;

(ii) the functions {Gj ,Gj} can be computed in terms of the given boundary con-
ditions to within a finite set of unknown parameters, which, however, do not
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l2

l1l3

Figure 3. Rays of integration

contribute to the solution (expressions for these functions are given in § 5 using
functions defined in the appendix);

(iii) the function Φ1(ik) solves the following scalar Riemann–Hilbert problem:

(a) Φ1(ik) is holomorphic for Im[k] > 0;
(b) Φ1(ik) = O(k) as k → ∞;
(c) Φ1(ik) satisfies

Ē(k)Φ1(ik) − E(k)Φ1(−ik) = G6(k), k ∈ R, (1.4)

where

E(k) ≡ C(k) + iD(k)
(

ᾱ(k)
k∆

)
coth kl, (1.5)

with

C(k) ≡ −(kl sin B + il cos B) sinh kl + 2 sinB cosh kl,

D(k) ≡ −iΣ sinh kl − ikl∆ cosh kl,

}
(1.6)

and

Σ = cos β + sinβ, ∆ = cos β − sin β, α(k) = k sin B − i cos B;
(1.7)

(iv) the functions R1(k) and R3(k) are given by

R1(k) =
(

2i sinBĒ(k) − ΣF(k)
4E(k)

− ilA1(k)
8

− iA′
1(k)
8

− i sinB

2

)
Φ1(ik)

− iA1(k)
8

dΦ1(ik)
dk

,

R3(k) =
(

2i sinBĒ(k) + ΣF(k)
4E(k)

+
iA3(k)l

8
− iA′

3(k)
8

− i sinB

2

)
Φ1(ik)

− iA3(k)
8

dΦ1(ik)
dk

,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(1.8)

where

A1(k) = (1 + coth kl)
g(k)
E(k)

, A3(k) = (1 − coth kl)
g(k)
E(k)

, (1.9)
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with
g(k) = α(k)C(k) − ᾱ(k)C(k) (1.10)

and
F(k) = − ig(k) coth kl

k∆
. (1.11)

2. The new method

Let the real-valued function q(x, y) satisfy the biharmonic equation

∇4q = 0, (2.1)

in a domain D ⊂ R
2. If z = x + iy and z̄ = x − iy, then (2.1) becomes

∂4q

∂z2∂z̄2 = qzzz̄z̄ = 0, (2.2)

where subscripts denote differentiation. Let W (z, z̄, k) be the following differential
1-form,

W (z, z̄, k) = e−ikz(qzzz̄ + λ(qzz − z̄qzzz̄)) dz, k ∈ C, (2.3)
where λ is an arbitrary constant. Then

dW = e−ikz[qzzz̄ + λ(qzz − z̄qzzz̄)]z̄ dz̄ ∧ dz. (2.4)

Therefore, if q satisfies the biharmonic equation (2.2), then dW = 0, i.e. W is a
closed 1-form.

Suppose D is a simply connected domain. Then because W is a closed form,∮
∂D

W = 0, (2.5)

where ∂D denotes the boundary of D. Therefore, since λ is arbitrary, it follows that∮
∂D

e−ikzqzzz̄ dz = 0, k ∈ C, (2.6)

and ∮
∂D

e−ikz(qzz − z̄qzzz̄) dz = 0, k ∈ C. (2.7)

Equations (2.6) and (2.7) will be referred to henceforth as the global relations.
We now concentrate on the case where D is a bounded, convex polygon with corners

at the points z1, z2, . . . , zn+1 = z1. The straight line segment joining zj and zj+1 will
be called side j (see figure 4). The global relations (2.6) and (2.7) become

n∑
j=1

ρj(k) = 0,
n∑

j=1

ρ̃j(k) = 0, k ∈ C, (2.8)

where

ρj(k) =
∫ zj

zj+1

e−ikzqzzz̄ dz, ρ̃j(k) =
∫ zj

zj+1

e−ikz(qzz − z̄qzzz̄) dz. (2.9)

The functions {ρj(k), ρ̃j(k)} will be called the spectral functions.
Since the global relations involve the spectral functions, it is desirable to express

the solution q(x, y) in terms of {ρj(k), ρ̃j(k)} (j = 1, 2, . . . , n). Such an expression is
given in proposition 2.1.
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zj

side j

zj+1

Figure 4. Definition of the jth side.

Proposition 2.1. Let q be a real, biharmonic function in an arbitrary convex
bounded n-sided polygon D. Then, qzz ≡ Q1(z) + z̄Q2(z), where Q1(z) and Q2(z)
are given explicitly as functions of z by the integral representations

Q1(z) =
1
2π

n∑
j=1

∫
lj

eikzρ̃j(k) dk, Q2(z) =
1
2π

n∑
j=1

∫
lj

eikzρj(k) dk, (2.10)

where lj , j = 1, . . . , n, are the rays in the complex k-plane

lj = {k ∈ C : arg(k) = − arg(zj − zj+1)}, zn+1 = z1, (2.11)

oriented from zero to infinity.

In essence, the result stated in proposition 2.1 is obtained by employing a general-
ized form of the standard Fourier transform (usually applied to functions analytic in
an infinite strip) applied to the case of functions which are analytic in a more general
convex polygon. Details of the derivation of this generalized Fourier transform can
be found in Fokas (2001), where a transform method for functions harmonic in a
simply connected convex polygon is derived. Proposition 2.1 generalizes this result
to the case of functions which are biharmonic in a convex polygon (see also Crowdy
& Fokas 2004).

The integral representation for qzz contains explicit dependence on z. Thus, if
qzz is known, q can be obtained by direct integration with respect to z, where all
the unknown functions of z̄ can be specified by the requirement that q is real. This
determines q up to an inconsequential arbitrary real linear function which does not
affect the physical stresses (which are given by second derivatives of q) and simply
corresponds to an arbitrary uniform displacement of points in the elastic material.

3. Elastostatics in a semi-infinite strip

The boundary-value problems for the semi-infinite strip considered in this paper have
been motivated by various mixed boundary-value problems arising in plane elasticity.
Two such problems are that of plane strain (Spence 1983) and the bending of a thin
plate (Smith 1952). For additional background material on what follows, we refer
the reader to Love (1944). It is assumed that q is a real function in the semi-infinite
strip x > 0, |y| < l, where l is some positive real constant. In plane strain, q(x, y)
corresponds to the Airy stress function, the physical stresses σij being given by

σ11 = qyy, σ12 = −qxy, σ22 = qxx. (3.1)
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In the bending problem, the biharmonic function q(x, y) is the deflection. In either
application, two boundary conditions are required on each of the sidewalls and on
the end-strip. The two sidewall conditions are usually taken to be identical and
homogeneous. Two common choices are clamped and traction-free sidewalls. In plane
strain, these correspond respectively to

(1 − ν)qyy − νqxx = 0, (1 − ν)qyyy + (2 − ν)qxxy = 0, on y = ±l (3.2)

(here ν is a material parameter (Love 1944)) and

qxy = qyy = 0 on y = ±l. (3.3)

In the bending problem, the clamped and traction-free sidewall conditions correspond
to

q = qy = 0 on y = ±l (3.4)

and
qyy + νqxx = 0, qyyy + (2 − ν)qxxy = 0, on y = ±l, (3.5)

respectively.
Motivated by these, we now present the particular class of boundary conditions to

be considered in detail in this paper.

Sidewall boundary conditions. The sidewall boundary conditions on the two
semi-infinite boundaries y = ±l, x > 0, are taken to be

cos β1 qxx + sinβ1 qyy = f1(x),

cos B1 qyx + sinB1 qyyy = F1(x),

}
on y = −l, x > 0, (3.6)

where β1 and B1 are real constants and f1(x), F1(x) are given real functions which
decay appropriately as x → ∞, and

cos β3 qxx + sinβ3 qyy = f3(x),

cos B3 qyx + sinB3 qyyy = F3(x),

}
on y = +l, x > 0, (3.7)

where β3 and B3 are real constants and f3(x), F3(x) are given real functions which
decay appropriately as x → ∞.

End-strip boundary conditions. The end-strip boundary conditions we con-
sider are

sin β2 qx + cos β2 qxx = f2(y),

sin B2 qxxx + cos B2 qyy = F2(y),

}
on x = 0, |y| < l, (3.8)

where β2 and B2 are real constants and f2(y), F2(y) are given real functions.
To examine these choices, consider first the sidewall conditions. Observe that the

choices βj = π/2, Bj = 0 and fj(x) = Fj(x) = 0 (j = 1 and 3) yield the traction-
free sidewall conditions in the case of plane strain. Furthermore, with the choices
βj = Bj = 0 and fj(x) = Fj(x) = 0 (j = 1 and 3) we retrieve the case of clamped
sidewalls in the bending problem since (3.6) reduces to

qxx = 0, qxy = 0, (3.9)

which are relevant when conditions (3.4) hold.
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The following end-strip boundary conditions have a particular importance:

qyy = f2(y), qxx = F2(y), on x = 0, |y| � l, (3.10)

and
qx = f2(y), qxxx = F2(y), on x = 0, |y| � l. (3.11)

The two special cases (3.10) and (3.11) are associated with two particular boundary-
value problems, which will be referred to as problems I and II, respectively.

Problem I. βj = Bj = 0; β2 = B2 = 0; fj(x) = Fj(x) = 0, j = 1, 3.

Problem II. βj = Bj = 0; β2 = B2 = π/2; fj(x) = Fj(x) = 0, j = 1, 3.

In the elastostatics literature, problems I and II are referred to as canonical (see, for
example, Spence 1983) because the general solutions can be written down explicitly
by exploiting certain biorthogonality relations between the Papkovich–Fadle eigen-
functions of the strip. This fact appears to have been first discovered by Smith
(1952) in his consideration of the bending problem where the sidewalls are clamped
and the end-strip is loaded by moments—a problem that is mathematically identical
to problem I. Problems for which the biorthogonality conditions are not sufficient to
determine the solution in closed form are called non-canonical.

Given the nature of the sidewall conditions (3.2) and (3.5), it would seem natural
to consider the class of generalized sidewall conditions given by

cos βj qxx + sinβj qyy = fj(x),

cos Bj qxxy + sinBj qyyy = Fj(x),

}
on y = +l, x > 0, (3.12)

for j = 1 and 3. The general method to be presented here certainly applies to the
choice (3.12). However, it is our aim here to show that when the two choices of
end-strip conditions (3.10) and (3.11) are made, there are large classes of sidewall
boundary conditions which admit explicit solutions. If, instead, the class of side-
wall conditions (3.12) is considered, then inspection reveals that the mathematical
problem is invariant to the transformation x �→ −x, which implies that a combina-
tion of standard transform methods (e.g. a cosine transform) could be applied to
obtain closed-form solutions. While we might have used the new method presented
here to retrieve these solutions, we would have presented nothing new mathemati-
cally. Therefore, to illustrate the mathematical possibilities associated with the new
method, a deliberate modification of the second boundary condition in (3.12) is
made. The qxxy term has been replaced by qxy, thus leading to our choice of side-
wall conditions (3.7). This choice eliminates the invariance of the problem under the
transformation x �→ −x and thus precludes use of standard transform techniques
such as the cosine transform. Nevertheless, when the new method is applied to this
problem (explicit details are given later) it is found that the problem admits closed-
form solutions. Since the purpose of this paper is to present a new mathematical
method, we do not here offer details of any specific physical problems in which these
modified mathematical problems might arise.

In writing down all the above boundary conditions, it is assumed that the physical
problem has been suitably non-dimensionalized. For example, suppose that a physical
problem gives rise, on the sidewall, to

γqx̃ỹ + δqỹỹỹ = g̃(x̃), 0 < x̃ < ∞, (3.13)
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side 2

side 3

side 1
−l

l

Figure 5. Semi-infinite strip and definition of sides 1, 2 and 3.

where x̃ and ỹ are dimensional coordinates. For dimensional consistency, it is clear
that at least one of the parameters γ and δ must be dimensional. However, by non-
dimensionalizing, (3.13) can be written

qxy + ηqyyy = g(x),

where η is some non-dimensional parameter and x and y are non-dimensional lengths.
Now letting

1√
1 + η2

= cos β,
η√

1 + η2
= sinβ,

g(x)√
1 + η2

≡ f(x),

we produce the general form of the boundary conditions given above.
The authors are not aware of any general theorems on existence and uniqueness

for general boundary-value problems in the semi-strip. Another concern is that in the
case of general boundary-value problems involving a semi-strip, the solution q can
be singular at the corners. A general methodology for treating corner singularities is
described in respect of the Laplace equation in Fokas & Kapaev (2003). There exist
two ‘sources’ of singularities: one is ‘external’ and is due to a lack of smoothness
of the given boundary conditions; the other is ‘internal’ and depends on the angle
of the corner and on the type of boundary conditions given on the neighbouring
edges. For example, in the case of the Laplace equation it is known that if Dirichlet
or Neumann boundary conditions are prescribed on both sides of a corner of angle
φ, then an ‘internal’ singularity is possible only if φ � π (which cannot happen for
a convex polygon). However, if a Neumann condition is applied on one edge and a
Dirichlet condition on the other, then an internal singularity is possible if φ � π/2.
The occurrence and nature of the singularities can be determined by a local analysis,
but the coefficients of the leading terms depend on the global analysis. The situation
with the biharmonic equation is expected to be similar and, in this paper, we assume
that there exists no such corner singularities.

Since the purpose of this paper is to present an example of a new constructive
method, in what follows it is assumed that a solution to any particular boundary-
value problem considered here exists and is unique. An advantage of the new method
is that it can both address the question of existence and provide an algorithmic
approach to characterizing the coefficients of the leading terms in the expansion of
the solution at the singularities. For the special class of problems considered in § 5,
any global information deriving from the corners cancels out in the final solution.
It is therefore not necessary to perform any local analysis at the corners in order to
derive the solution representations. This is consistent with our a priori assumption
that no such corner singularities arise in the class of problems considered here.
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4. Application of the method to the semi-strip

Consider the case of the semi-infinite strip depicted in figure 5. Let the corners of
the polygon be given by z1 = −∞ − il, z2 = −il, z3 = il and z4 = ∞ + il, so that
sides 1, 2 and 3 are defined as in figure 5. Although the results of proposition 2.1 are
stated for the case of a bounded polygon, a similar result is valid for an unbounded
polygon with z4 = z1 = ∞. For the semi-infinite strip shown in figure 5, (2.10) yields
the following integral representation of the solution

qzz =
z̄

2π

3∑
j=1

∫
lj

eikzρ̃j(k) dk +
1
2π

3∑
j=1

∫
lj

eikzρj(k) dk, (4.1)

where lj are the rays depicted in figure 3.

Spectral functions. Equations (2.9) yield

ρ1(k) =
∫ −il+∞

−il
(qzz − z̄qzzz̄)e−ikz dz,

ρ2(k) =
∫ −il

il
(qzz − z̄qzzz̄)e−ikz dz,

ρ3(k) =
∫ il

il+∞
(qzz − z̄qzzz̄)e−ikz dz,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.2)

and

ρ̃1(k) =
∫ −il+∞

−il
qzzz̄e−ikz dz,

ρ̃2(k) =
∫ −il

il
qzzz̄e−ikz dz,

ρ̃3(k) =
∫ il

il+∞
qzzz̄e−ikz dz.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.3)

It is noted that {ρ2(k), ρ̃2(k)} are entire functions of k, while {ρ1(k), ρ̃1(k)} and
{ρ3(k), ρ̃3(k)} are analytic in Im[k] < 0.

Using the facts that z̄ = z + 2il on side 1, z̄ = −z on side 2 and z̄ = z − 2il on
side 3, equations (4.2) and (4.3) imply the following differential relations

ρ1(k) =
∫ −il+∞

−il
qzze−ikz dz − i

dρ̃1(k)
dk

− 2ilρ̃1(k),

ρ2(k) =
∫ −il

il
qzze−ikz dz + i

dρ̃2(k)
dk

,

ρ3(k) =
∫ il

il+∞
qzze−ikz dz − i

dρ̃3(k)
dk

+ 2ilρ̃3(k).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.4)

Boundary conditions. Let q(x, y) satisfy the following boundary conditions.

Side 1. cos β1qxx + sinβ1qyy = f1(x), cos B1qxy + sinB1qyyy = F1(x).

Side 2. sin β2qx + cos β2qxx = f2(y), sinB2qxxx + cos B2qyy = F2(y).
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Side 3. cos β3qxx + sinβ3qyy = f3(x), cos B3qxy + sinB3qyyy = F3(x).

With this choice of boundary conditions, it is convenient to define some associated
functions which will greatly facilitate the subsequent analysis of the global relations.
We consider each boundary separately.

Side 1. The first boundary condition on side 1 is

cos β1qxx + sinβ1qyy = f1(x), (4.5)

which involves the unit vector (cosβ1, sin β1). To this boundary condition it is natural
to associate the unknown function q1(x) given by

q1(x) = − sin β1qxx + cos β1qyy, (4.6)

involving the orthogonal vector (− sin β1, cos β1). Solving (4.5) and (4.6) for qxx and
qyy, we obtain

qxx = cos β1f1(x) − sin β1q1(x), qyy = sinβ1f1(x) + cos β1q1(x). (4.7)

Similarly, associated with the second boundary condition on side 1 we define the
unknown function Q1(x),

Q1(x) = sinB1qxy + cos B1qyyy, (4.8)

which implies the following relations for qxy and qyyy:

qxy = cos B1F1(x) − sin B1Q1(x), qyyy = sinB1F1(x) + cos B1Q1(x). (4.9)

Side 2. In the same way, we introduce unknown functions q2(y) and Q2(y) by
means of the relations

qxx = cos β2f2(y) − sin β2q2(y), qx = sinβ2f2(y) + cos β2q2(y). (4.10)
qyy = cos B2 F2(y) − sin B2Q2(y), qxxx = sinB2 F2(y) + cos B2Q2(y). (4.11)

Side 3. Similarly to the treatment of side 1, we introduce q3(x) and Q3(x) by
means of

qxx = cos β3 f3(x) − sin β3 q3(x), qyy = sinβ3 f3(x) + cos β3 q3(x), (4.12)
qxy = cos B3 F3(x) − sin B3 Q3(x), qyyy = sinB3 F3(x) + cos B3 Q3(x). (4.13)

Spectral functions for the given boundary conditions. The spectral func-
tions (4.2) and (4.3) involve the quantities qzz and qzzz̄, which are

qzzz̄ = 1
8(qxxx + qxyy − iqyyy − iqxxy),

qzz = 1
4(qxx − qyy − 2iqxy).

}
(4.14)

Consider first side 1. The values of qxx, qyy, qxy and qyyy on side 1 are given by
(4.7) and (4.9). Also, on this side qxxx = ∂x(qxx), qxyy = ∂x(qyy) and qxxy = ∂x(qxy).
Therefore, using integration by parts and equations (4.7) and (4.9), all the boundary
values needed for the determination of the spectral functions can be expressed in
terms of f1(x), F1(x), q1(x) and Q1(x). Side 3 can be analysed similarly.

Now consider side 2. The boundary values of qx, qxx, qyy and qxxx are given by
(4.10) and (4.11). Also, on this side, qxy = ∂y(qx), qxyy = ∂2

y(qx) and qyyy = ∂y(qyy).
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Thus, using (4.10) and (4.11) as well as integration by parts, the spectral functions
can be written in terms of f2(y), F2(y), q2(y) and Q2(y).

In this way, the spectral functions can be written as follows:

ρ̃1(k) = 1
8e−kl(−(k sin B1 + i cos B1)Φ1(−ik) + ik(cos β1 − sin β1)φ1(−ik))

+ G1(k),

ρ̃2(k) = 1
8((k sin B2 + i cos B2)Φ2(k) + k(sin β2 + ik cos β2)φ2(k)) + G2(k),

ρ̃3(k) = 1
8ekl(−(k sin B3 + i cos B3)Φ3(−ik) + ik(cos β3 − sin β3)φ3(−ik))

+ G3(k),

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭
(4.15)

and

ρ1(k) = 1
4e−kl(−(sin β1 + cos β1)φ1(−ik) + 2i sinB1Φ1(−ik))

− i
dρ̃1(k)

dk
− 2ilρ̃1(k) + g1(k),

ρ2(k) = 1
4(i sinB2Φ2(k) − (2k cos β2 + i sinβ2)φ2(k)) + i

dρ̃2(k)
dk

+ g2(k),

ρ3(k) = 1
4ekl(−(sin β3 + cos β3)φ3(−ik) + 2i sinB3Φ3(−ik))

− i
dρ̃3(k)

dk
+ 2ilρ̃3(k) + g3(k),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.16)

where the unknown functions {φj , Φj} are given by

φ1(−ik) ≡
∫ ∞

0
q1(x)e−ikx dx, Φ1(−ik) ≡

∫ ∞

0
Q1(x)e−ikx dx,

φ2(k) ≡
∫ −l

l

q2(y)eky dy, Φ2(k) ≡
∫ −l

l

Q2(y)eky dy,

φ3(−ik) ≡
∫ 0

∞
q3(x)e−ikx dx, Φ3(−ik) ≡

∫ 0

∞
Q3(x)e−ikx dx,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(4.17)

and the functions {gj(k)} and {Gj(k)} are given explicitly in the appendix. The
latter functions are known (from the given boundary conditions) to within a finite
set of real parameters q(0,±l), qx(0,±l), qxx(0,±l), qyy(0,±l) and qxy(0,±l).

For unbounded polygons the global relations (2.8) are not valid for all k ∈ C but
are valid in the region of the complex k-plane for which ρj and ρ̃j are defined. In the
case of the semi-infinite strip, the global relations are

ρ̃1(k) + ρ̃2(k) + ρ̃3(k) = 0,

ρ1(k) + ρ2(k) + ρ3(k) = 0,

}
Im[k] � 0. (4.18)

Substituting (4.15) and (4.16) into the above equations provides two equations for the
six unknown functions Φj(k) and φj(k). For arbitrary choices of Bj and βj , the equa-
tions obtained can be manipulated to yield a matrix differential Riemann–Hilbert
problem for the unknown spectral functions. In what follows, we will concentrate on
those particular choices of boundary conditions for which it is possible to solve this
Riemann–Hilbert problem in closed form.
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5. A class of problems with explicit solutions

We now consider a subclass of the above class of boundary-value problems for which
the spectral functions can be found explicitly. In many physical applications the
sidewall boundary conditions on y = ±l are of the same type, i.e.

β3 = β1 ≡ β, B3 = B1 ≡ B, (5.1)

where these equations define the new constants β and B. In such a situation, it
is natural to restrict attention to solutions to the problem which are even or odd
with respect to reflection in the x-axis. Indeed, any set of end-strip data can be
decomposed into a sum of parts which are even and odd with respect to reflection in
the x-axis. We now assume that we seek solutions which are symmetric with respect
to reflection across the x-axis, or, equivalently, solutions which are even functions
of y. It will further be assumed that any inhomogeneous functions appearing in the
boundary conditions are compatible with solutions possessing such symmetries. This
implies

q(x,−l) = q(x, l), qy(x,−l) = −qy(x, l),

qyy(x,−l) = qyy(x, l), qyyy(x,−l) = −qyyy(x, l).

}
(5.2)

Using these facts, together with the definitions of qj(x) and Qj(x), it can be deduced
that

φ3(−ik) = −φ1(−ik) and Φ3(−ik) = Φ1(−ik). (5.3)

(a) Analysis of global relations

Using (5.3), the global relations (4.18) reduce to the pair of equations

− cosh kl(k sin B + i cos B)Φ1(−ik) − ik sinh kl(cos β − sin β)φ1(−ik)

+ 1
2(k sin B2 + i cos B2)Φ2(k) + 1

2(sin β2 + ik cos β2)kφ2(k) = G4(k) (5.4)

and

C(k)Φ1(−ik) + D(k)φ1(−ik) + sinB2Φ2(k) + 2ik cos β2φ2(k)

+ 1
2(k sin B2 + i cos B2)

dΦ2(k)
dk

+ 1
2k(sin β2 + ik cos β2)

dφ2(k)
dk

= G5(k), (5.5)

both valid for Im[k] � 0, where the coefficient functions C(k) and D(k) are defined
by

C(k) ≡ −(kl sin B + il cos B) sinh kl + 2 sinB cosh kl,

D(k) ≡ −i(cos β + sinβ) sinh kl − ikl(cos β − sin β) cosh kl,

}
(5.6)

and the functions G4(k) and G5(k) by

G4(k) ≡ −4(G1(k) + G2(k) + G3(k)), (5.7)

G5(k) ≡ 2i(g1(k) + g2(k) + g3(k)) + 4l(G1(k) − G3(k)) − 4
dG2(k)

dk
. (5.8)

Note that in deriving (5.4) and (5.5) we have used the fact that

d(ρ̃1(k) + ρ̃3(k))
dk

= −dρ̃2(k)
dk

. (5.9)
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Expressions for G4(k) and G5(k) are given explicitly in the appendix. G4(k) and
G5(k) are again known up to a finite set of parameters.

Equations (5.4) and (5.5) are two differential equations, valid in the lower-half
k-plane, relating the lower analytic functions Φ1(−ik) and φ1(−ik) and the entire
functions Φ2(k) and φ2(k).

It is noted that D(k) satisfies the following relation:

D(k) = −D(k). (5.10)

(b) Case β2 = B2 = π/2

This choice corresponds to taking the end-strip boundary conditions of canonical
problem II. In this case, (5.4) and (5.5) become

− cosh kl(k sin B + i cos B)Φ1(−ik) − ik sinh kl(cos β − sin β)φ1(−ik)

+ 1
2k(Φ2(k) + φ2(k)) = G4(k), Im[k] � 0, (5.11)

and

C(k)Φ1(−ik) + D(k)φ1(−ik) + Φ2(k) + 1
2k

d
dk

(Φ2(k) + φ2(k))

= G5(k), Im[k] � 0. (5.12)

The definitions of the spectral functions (4.15) and (4.16), equation (5.3) and the fact
that cos β2 = cos B2 = 0, sinβ2 = 1, sinB2 = 1, imply that the spectral functions
depend on

{Φ1(−ik), φ1(−ik)}, k ∈ R and {Φ2(k) + φ2(k), Φ2(k) − φ2(k)}, arg[k] = π/2.
(5.13)

By analysing the global relations (5.4) and (5.5) it will be shown that the unknown
functions (5.13) can be determined in closed form.

Proposition 5.1. Let the functions Φ1(−ik), φ1(−ik), Φ2(k), φ2(k) satisfy (5.4)
and (5.5). Then these functions can be determined in closed form as follows.

(1) The sectionally holomorphic function {Φ1(ik), Φ1(−ik)} satisfies the scalar
Riemann–Hilbert problem:

(i) Φ1(ik) is holomorphic in Im[k] > 0;
(ii) Φ1(ik) ∼ O(k−1) as k → ∞;
(iii)

Ē(k)Φ1(ik) − E(k)Φ1(−ik) = G6(k), k ∈ R, (5.14)

where E(k), ∆ and α(k) are defined in (1.5) and (1.7) and

G6(k) ≡ Ḡ5(k) − G5(k) +
iD(k)

k∆ sinh kl
(G4(k) − Ḡ4(k)). (5.15)

(2) The sectionally holomorphic functions {φ1(ik), φ1(−ik)} satisfies the scalar
Riemann–Hilbert problem

(i) φ1(ik) is holomorphic in Im[k] > 0;
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(ii) φ1(ik) ∼ O(k−1) as k → ∞;

(iii)
E(k)[φ1(ik) + φ1(−ik)] = F(k)Φ1(ik) + G7(k), k ∈ R, (5.16)

where F(k) is defined in (1.11) and

G7(k) ≡ G6(k)C(k)
D(k)

+
E(k)
D(k)

(G5(k) − Ḡ5(k)). (5.17)

(3) The entire functions {Φ2(k), φ2(k)} satisfy the algebraic relations

Φ2(k) + φ2(k) = −2i∆ sinh klφ1(ik) +
2α(k)

k
cosh klΦ1(ik) + 2

Ḡ4(k)
k

(5.18)

and

Φ2(k) − φ2(k) = 2i∆ sinh klφ1(ik) − 2iΣ sinh klφ1(ik) + 2ik∆ sinh kl
dφ1(ik)

dk

−
(

4 sin B cosh kl + 2 cosh kl
dα(k)

dk

)
Φ1(ik)

− 2α(k) cosh kl
dΦ1(ik)

dk
+ G8(k), Im[k] � 0, (5.19)

where Σ is defined in (1.7) and

G8(k) = 2Ḡ5(k) − 2
dḠ4(k)

dk
. (5.20)

Proof . Taking the complex conjugates of (5.11) and (5.12) and using (5.10) we
find

− cosh kl(k sin B − i cos B)Φ1(ik) + ik sinh kl(cos β − sin β)φ1(ik)

+ 1
2k(Φ2(k) + φ2(k)) = Ḡ4(k), Im[k] � 0, (5.21)

and

C(k)Φ1(ik) − D(k)φ1(ik) + Φ2(k) + 1
2k

d
dk

(Φ2(k) + φ2(k))

= Ḡ5(k), Im[k] � 0. (5.22)

Subtracting (5.21) from (5.11), and (5.12) from (5.22), we obtain

cosh kl[(k sin B − i cos B)Φ1(ik) − (k sin B + i cos B)Φ1(−ik)]

− i(cos β − sin β)k sinh kl[φ1(ik) + φ1(−ik)] = G4(k) − Ḡ4(k), (5.23)

and

C(k̄)Φ1(ik) − C(k)Φ1(−ik) − D(k)[φ1(ik) + φ1(−ik)] = Ḡ5(k) − G5(k), (5.24)

both valid only for k ∈ R.
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This case is distinguished in that both (5.23) and (5.24) contain the same com-
bination φ1(ik) + φ1(−ik). Eliminating this combination between (5.23) and (5.24)
yields (5.14). Then (5.24) and (5.14) imply (5.16). Using the notation (1.7), (5.21)
becomes (5.18). Finally, replacing Φ2(k) + φ2(k) in (5.22) by the right-hand side
of (5.18), multiplying the resulting equation by two and subtracting (5.21) we find
(5.19). �

Proposition 5.1 shows that the spectral functions can be expressed in terms of the
solution of two scalar Riemann–Hilbert problems with the jump conditions (5.14)
and (5.16). It turns out that the function φ1(ik) does not contribute to the solution
qzz. Thus, it is possible to avoid solving the Riemann–Hilbert problem for φ1(±ik).

With this observation in mind, it is seen from (5.15) that G6(k) depends on a
combination of known functions as well as G4(k) and G5(k). In the appendix, explicit
formulae for G4(k) and G5(k) are given. It is important to note that these functions
are completely determined from the boundary data. In particular, from the formulae
in the appendix it is seen that only the quantities qx(0, l) and qxy(0, l) appear. With
β2 = B2 = π/2, the function qx(0, y) (and hence qx(0, l)) is known explicitly from
the given boundary conditions, as is qxy(0, y) (and hence qxy(0, l)) by differentiation.
The function Φ1(ik) is therefore completely determined by the boundary data.

(c) The computation of Q1(z)

Q1(z) depends on the spectral functions ρ̃j(k), j = 1, 2, 3, defined in (4.15) with
φ3(−ik) = −φ1(−ik) and Φ3(−ik) = Φ1(−ik) with β2 = B2 = π/2. ρ̃2(k) involves
Φ2(k) + φ2(k); thus, using (5.18), we find

ρ̃2(k) = e−kl(1
8 ik∆φ1(ik) + 1

8α(k)Φ1(ik))

+ ekl(−1
8 ik∆φ1(ik) + 1

8α(k)Φ1(ik))

+ 1
4Ḡ4(k) + G2(k), Im[k] � 0. (5.25)

The function ρ̃1(k) involves Φ1(−ik) and φ1(−ik) but using (5.14) and (5.16) these
can be rewritten in terms of Φ1(ik) and φ1(ik). The coefficient of φ1(ik) is −1

8 ik∆e−kl

while the coefficient of Φ1(ik) is

−e−kl

8

(
ᾱ(k)Ē(k) − ik∆F(k)

E(k)

)
. (5.26)

The expression in brackets in (5.26) can be simplified using the definition of E(k)
and F(k). Indeed,

E(k) − C(k)
ᾱ(k)

=
E(k) − C(k)

α(k)
, (5.27)

so that
ᾱ(k)E(k) = E(k)α(k) − g(k), (5.28)

where g(k) is defined in (1.10). It follows that the term in brackets in (5.26) equals

α(k) − (1 + coth kl)
g(k)
E(k)

. (5.29)
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Thus ρ̃1(k) is given by

ρ̃1(k) = −e−kl(1
8 ik∆φ1(ik) + 1

8α(k)Φ1(ik)) + 1
8A1(k)e−klΦ1(ik) + G̃1(k) (5.30)

for k ∈ R, where

A1(k) = (1 + coth kl)
g(k)
E(k)

(5.31)

and

G̃1(k) = G1(k) +
e−kl

8E(k)
(ik∆G7(k) + ᾱ(k)G6(k)). (5.32)

Similarly,

ρ̃3(k) = ekl(1
8 ik∆φ1(ik) − 1

8α(k)Φ1(ik)) + 1
8A3(k)eklΦ1(ik) + G̃3(k) (5.33)

for k ∈ R, where

A3(k) =
(1 − coth kl)

E(k)
g(k) (5.34)

and

G̃3(k) = G3(k) +
ekl

8E(k)
(−ik∆G7(k) + ᾱ(k)G6(k)). (5.35)

Equations (5.25), (5.30) and (5.33) provide the equations needed for the computation
of Q1(z). It is remarkable that all the terms involving φ1(ik) as well as some of the
terms involving Φ1(ik) give zero contribution to Q1(z). Indeed, consider first the
terms in the brackets on the right-hand side of the expression for ρ̃1(k) in (5.30)
as well as the corresponding term on the right-hand side of (5.25). These terms,
multiplied by eikz, are analytic and bounded in the first quadrant of the complex
k-plane and thus by Cauchy’s theorem these terms give zero contribution. Similar
considerations apply in the second quadrant of the complex k-plane for the terms in
the bracket on the right-hand side of (5.33) and the corresponding terms of ρ̃2(k) in
(5.25). Thus, the only terms which give a non-trivial contribution are those involving
the forcing functions Gj(k), and A1(k) and A3(k).

(d) The computation of Q2(z)

Q2(z) depends on {ρj(k)} defined by (4.16) with φ3(−ik) = −φ1(−ik) and
Φ3(−ik) = Φ1(−ik) with β2 = B2 = π/2. The functions {ρj(k)} depend on {ρ̃j(k)}
as well as φ1(−ik), Φ1(−ik) and the particular combination Φ2(k) − φ2(k). The aim
is to write the functions {ρj(k)} purely in terms of Φ1(ik) and φ1(ik). The functions
{ρ̃j(k)} are given by (5.25), (5.30) and (5.33) in terms of Φ1(ik) and φ1(ik); the
combination Φ2(k) − φ2(k) is given by (5.19) in terms of Φ1(ik) and φ1(ik) and the
functions Φ1(−ik) and φ1(−ik) are readily expressed in terms of Φ1(ik) and φ1(ik)
using (5.14) and (5.16). In this way, straightforward algebraic manipulations yield
the following expressions for {ρj(k)} in terms of Φ1(ik) and φ1(ik):

ρ1(k) = e−kl(R̃1(k) + R1(k)) + G1(k), k ∈ R, (5.36)

ρ2(k) = −e−klR̃1(k) − eklR̃3(k) + G2(k), Im[k] � 0, (5.37)

ρ3(k) = ekl(R̃3(k) + R3(k)) + G3(k), k ∈ R, (5.38)
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where

R̃1(k) =
(

Σ

4
− ∆kl

8
− ∆

8

)
φ1(ik) − ∆k

8
dφ1(ik)

dk

+
(

ilα(k)
8

+
i
8

dα(k)
dk

+
i sinB

2

)
Φ1(ik) +

iα(k)
8

dΦ1(ik)
dk

,

R̃3(k) =
(

−Σ

4
− ∆kl

8
+

∆

8

)
φ1(ik) +

∆k

8
dφ1(ik)

dk

+
(

− ilα(k)
8

+
i
8

dα(k)
dk

+
i sinB

2

)
Φ1(ik) +

iα(k)
8

dΦ1(ik)
dk

,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.39)

while R1(k) and R3(k) are defined in (1.8) and

G1(k) = g1(k) − e−kl

4E(k)
(ΣG7(k) + 2i sinBG6(k)) − iG̃′

1(k) − 2ilG̃1(k), (5.40)

G2(k) = g2(k) +
iG8(k)

4
+ i

d
dk

(
Ḡ4(k)

4
+ G2(k)

)
, (5.41)

G3(k) = g3(k) − ekl

4E(k)
(ΣG7(k) − 2i sinBG6(k)) − iG̃′

3(k) + 2ilG̃3(k). (5.42)

Using arguments identical to those used to find Q1(z), it follows that R̃1(k) and
R̃3(k) do not contribute to Q2(z). Substituting these expressions into the integral
formulae (2.10) yields the results of proposition 1.1.

The Riemann–Hilbert problem for Φ1(±ik) is completely determined by the bound-
ary data so Φ1(ik) can be found explicitly. The index of the Riemann–Hilbert problem
(5.14) can be determined in the standard way (Ablowitz & Fokas 1997) by consider-
ing the function

E(k)
Ē(k)

=
C(k) + iD(k)(ᾱ(k)/k∆) coth kl

C̄(k) − iD̄(k)(α(k)/k∆) coth kl
. (5.43)

It can be shown that this expression tends to unity as k → ∞ so the Riemann–
Hilbert problem is continuous at infinity. As an example, assume the parameters of
the problem are such that the index is zero. Then Φ1(ik) can be written in the form
of the Cauchy integral

Φ1(ik) =
X(ik)
2πi

∫ ∞

−∞

G6(k′)
X(ik′)Ē(k′)

dk′

k′ − k
, (5.44)

where X(ik) is the solution of the homogeneous RH problem

X(ik) =
E(k)
Ē(k)

X(−ik). (5.45)

The solution of this problem is given by

X(ik) = eΓ (ik), X(−ik) = eΓ (−ik) (5.46)

where

Γ (ik) =
1

2πi

∫ ∞

−∞
log

(
G6(k′)
Ē(k′)

)
dk′

k′ − k
. (5.47)
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C1

Figure 6. The contour C1.

The integral expressions for Q1(z) and Q2(z) also depend on Gj(k), which, in turn,
can be seen from (A 2)–(A 4) to depend on the constants qxx(0,±l) and qyy(0,±l),
which are not known from the boundary conditions (note that qx(0,±l) and qxy(0,±l)
can be determined from the boundary conditions as pointed out earlier). However,
their contribution to the final solution is zero. Indeed, consider first the integral
expression (1.2) for Q1(z). It is found that the terms in the expression for Q1(z)
involving the unknown constants qxx(0,±l) and qyy(0,±l) has the form

(qxx(0,−l) + qyy(0,−l))
[
−

∫
l1

e−kl+ikz

8
dk +

∫
l2

e−kl+ikz

8
dk

]

− (qxx(0, l) + qyy(0, l))
[
−

∫
l2

ekl+ikz

8
dk +

∫
l3

ekl+ikz

8
dk

]
. (5.48)

However, the first integral term in square brackets is an integral around the closed
contour C1 shown in figure 6 of a function analytic everywhere in the first quadrant.
It is therefore zero by Cauchy’s theorem. A similar argument applies to the second
integral term in square brackets.

Now consider the integral expression for Q2(z). The functions Gj(k) depend on
gj(k) (which by inspection of the defining formulae in the appendix are found to
be completely determined from the boundary data), the functions G4(k), G6(k),
G7(k) and G8(k) (which, by inspection of the defining formulae are also seen to
be completely determined by the given boundary data) and finally the functions
G1(k), G2(k) and G3(k), which are not completely determined by the boundary
data because they depend on the unknown constants qxx(0,±l) and qyy(0,±l). The
contributions from G1(k), G2(k) and G3(k) in the integral expression for Q2(z) is

∫
l1

eikz(−iḠ′
1(k) − 2ilḠ1(k)) dk +

∫
l2

eikziḠ′
2(k) dk

+
∫

l3

eikz(−iḠ′
3(k) + 2ilḠ3(k)) dk. (5.49)

Using the formulae (A 2)–(A 4) for G1(k), G2(k) and G3(k), it is straightforward to
show that the premultiplying terms of the unknown quantities qxx(0,±l)+qyy(0,±l)
are again integrals which turn out to be zero. In summary, Q1(z) and Q2(z) are
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completely determined by the given boundary data and the solution does not depend
on any a priori unknown corner data.

6. The canonical problems of elastostatics

The class of explicitly solvable boundary-value problems just described includes (but
is not restricted to) the two canonical problems of plane elastostatics. In these canon-
ical problems, the sidewalls are assumed to be clamped so that

qx(x,±l) = qy(x,±l) = 0. (6.1)

In our notation, this corresponds to the choice B = β = 0 with the homogeneous
choice F1(x) = f1(x) = 0. The only forcing terms in this case are the specified end-
strip functions f2(y) and F2(y). It is well known (Smith 1952) that this problem
can be solved using infinite sums of Papkovich–Fadle eigenfunctions which automat-
ically satisfy the homogeneous sidewall conditions. Proposition 1.1 generalizes this
result and shows that explicit solutions of this general class of end-strip problems
are also possible when the sidewall boundary conditions are inhomogeneous. Physi-
cally, this corresponds to making arbitrary specifications of the displacements on the
sidewalls of the elastostatic strip. Such solutions are not captured by a series expan-
sion of Papkovich–Fadle eigensolutions. The new method produces explicit integral
representations for the solutions and thus generalizes the Papkovich–Fadle solution
method.

It is instructive to examine how to retrieve the Papkovich–Fadle eigenfunction
expansions from our integral representations. This also provides an important check
on the preceding analysis. With B = β = 0,

C(k) = −il sinh kl,

D(k) = −i sinh kl − ikl cosh kl,

E(k) =
i(cosh kl sinh kl + kl)

k sinh kl
.

⎫⎪⎪⎬
⎪⎪⎭ (6.2)

It can also be shown that g(k) = 0, which means that A1(k) = A3(k) = R1(k) =
R2(k) = 0. Thus, all contributions to the integral representations of Q1(z) and Q2(z)
which depend on Φ1(ik) vanish and the integral representations (1.2) become explicit
and do not require the solution of a scalar Riemann–Hilbert problem.

Note that E(k) vanishes when

sinh kl cosh kl + kl = 0, (6.3)

or, letting iλ = kl, this becomes sin λ cos λ + λ = 0, which is the well-known eigen-
value condition for the even Papkovich–Fadle eigenfunctions of the semi-infinite strip
(Spence 1983). In the case of homogeneous sidewall conditions (and ignoring the cor-
ner contributions which are known to give zero total contribution to the integrals),
we have

G1(k) = g1(k) = G3(k) = g3(k) = 0, (6.4)
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while the functions G2(k) and g2(k) can be seen to be entire functions of k. All other
functions arising in the analysis depend only on these two entire functions. Indeed,

G4(k) = −4G2(k),

G5(k) = 2ig2(k) − 4G′
2(k),

G6(k) = −4ig2(k) + 8G′
2(k) − 8G2(k)

k
(1 + kl coth kl),

G7(k) = (−4ig2(k) + 8G′
2(k))

coth kl

k
− 8G2(k)l

k
,

G8(k) = −2iḡ2(k) + 4Ḡ′
2(k).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.5)

To within unimportant corner contributions, g2(k) and G2(k) are given in terms of
the end-strip data as follows:

g2(k) = −k

2

∫ −l

l

ekyf2(y) dy,

G2(k) =
i
8

∫ −l

l

ekyF2(y) dy +
ik2

8

∫ −l

l

ekyf2(y) dy.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(6.6)

It also follows that α(k) = −i, ∆ = 1 = Σ, Ḡ2(k) = −G2(k) and Ḡ5(k) = −G5(k).
Using all the above known functions in the expressions (1.2) we find explicit inte-

gral representations for the solution. For example, consider Q1(z). Some algebra
reveals that

G̃1(k) = −G2(k) +
sinh2 klG2(k)

kl + sinh kl cosh kl
− G5(k)k

4(kl + sinh kl cosh kl)
,

G̃3(k) = −G2(k) − sinh2 klG2(k)
kl + sinh kl cosh kl

+
G5(k)k

4(kl + sinh kl cosh kl)
,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(6.7)

so that substituting these into the integral expression (1.2) for Q1(z) gives

Q1(z) =
∫ ∞

0
eikz

(
−G2(k) +

sinh2 kl G2(k)
kl + sinh kl cosh kl

− G5(k)k
4(kl + sinh kl cosh kl)

)
dk

+
∫ i∞

0
eikzG2(k) dk +

∫ i∞

0
eikzG2(k) dk

+
∫ −∞

0
eikz

(
−G2(k) − sinh2 kl G2(k)

kl + sinh kl cosh kl
+

G5(k)k
4(kl + sinh kl cosh kl)

)
dk,

(6.8)

or, equivalently,

Q1(z) = −
∮

C1

eikzG2(k) dk +
∮

C2

eikzG2(k) dk

+
∫ ∞

−∞
eikz

(
sinh2 kl G2(k)

kl + sinh kl cosh kl
− G5(k)k

4(kl + sinh kl cosh kl)

)
dk, (6.9)

where C1 is the contour shown in figure 6 and C2 is the contour shown in figure 7. A
straightforward exercise in residue calculus reveals that this integral representation
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C2

Figure 7. The contour C2.

can be reduced to a pure residue sum over the Papkovich–Fadle zeros in the upper
half-plane, as indeed can the integral representation for Q2(z).

7. Discussion

The detailed analysis above has shown that the second canonical problem (prob-
lem II) of elastostatics is but one of a much wider class of mixed boundary-value
problems which are solvable in closed form. The solutions to this class of problems
have been derived in the form of explicit integrals. This broader class of boundary-
value problems has the same end-strip boundary conditions as the first canonical
problem but allows more general sidewall conditions. To the best of our knowledge,
it has not previously been demonstrated (e.g. by use of previously known methods)
that this particular class of problems is explicitly solvable.

By an analogous analysis, the first canonical problem of elastostatics can also be
shown to be but one of a much broader class of explicitly solvable problems. This
generalized class of problems possesses the same end-strip conditions as problem I
but allows for the same non-trivial sidewall conditions considered above.

It is interesting that Spence (1982) used a special Fourier integral form for the even
solutions of canonical problem I of elastostatics (with homogeneous sidewall condi-
tions) to prove the long-conjectured completeness of the Papkovich–Fadle eigenfunc-
tion expansion. This Fourier integral form of the solution was originally constructed
in Spence (1978). The Papkovich–Fadle expansion was shown to be equivalent to a
residue sum of this Fourier integral and this fact proved crucial in Spence’s com-
pleteness proofs. An essentially equivalent, but substantially different, integral form
of the solution to the same problem can be constructed using a similar analysis to
that shown above. This method is very different to that employed by Spence (1978).
It is expected that the integral representations will similarly provide a valuable tool
for future analysis of the solutions.

Finally, even in problems where an explicit solution is not available, the general
method of Crowdy & Fokas (2004) provides a systematic way of producing integral
representations of the solutions which are explicit in the physical variables but where
the spectral data are the solution of a differential matrix Riemann–Hilbert problem.
This Riemann–Hilbert problem is essentially the global relation and this can be
constructed algorithmically. The same general method (Crowdy & Fokas 2004) is
applicable not just to the semi-strip but to arbitrary polygons.
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Appendix A. Expressions for inhomogeneous functions

g1(k) ≡ e−kl

4

(
(cos β1 − sin β1)

∫ ∞

0
e−ikxf1(x) dx − 2i cos B1

∫ ∞

0
e−ikxF1(x) dx

)
,

g2(k) ≡ 1
4

(
(i cos β2 − 2k sin β2)

∫ −l

l

ekyf2(y) dy − i cos B2

∫ −l

l

ekyF2(y) dy

)

+
[
qxeky

2

]−l

l

,

g3(k) ≡ ekl

4

(
(cos β3 − sin β3)

∫ 0

∞
e−ikxf3(x) dx − 2i cos B3

∫ 0

∞
e−ikxF3(x) dx

)
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A 1)

G1(k) ≡ e−kl

8
[iqxy(0,−l) − qxx(0,−l) − qyy(0,−l)]

+
ike−kl

8
(cos β1 + sinβ1)

∫ ∞

0
e−ikxf1(x) dx

+
e−kl

8
(k cos B1 − i sinB1)

∫ ∞

0
e−ikxF1(x) dx, (A 2)

G2(k) ≡ 1
8 [(qxx + qyy + iqxy − ikqx)eky]−l

l

+
(i sinB2 − k cos B2)

8

∫ −l

l

ekyF2(y) dy

+
(ik2 sin β2 − k cos β2)

8

∫ −l

l

ekyf2(y) dy, (A 3)

G3(k) ≡ −ekl

8
[iqxy(0, l) − qxx(0, l) − qyy(0, l)]

+
ikekl

8
(cos β3 + sinβ3)

∫ 0

∞
e−ikxf3(x) dx

+
e−kl

8
(k cos B3 − i sinB3)

∫ 0

∞
e−ikxF3(x) dx, (A 4)

G4(k) ≡ −4(G1(k) + G2(k) + G3(k))
= −2iqxy(0, l) cosh kl + ikqx(0, l) sinh kl

− ike−kl

2
(cos β1 + sinβ1)

∫ ∞

0
e−ikxf1(x) dx

− e−kl

2
(k cos B1 − i sinB1)

∫ ∞

0
e−ikxF1(x) dx

− (i sinB2 − k cos B2)
2

∫ −l

l

ekyF2(y) dy
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1308 D. G. Crowdy and A. S. Fokas

− (ik2 sin β2 − k cos β2)
2

∫ −l

l

ekyf2(y) dy

− ikekl

2
(cos β3 + sinβ3)

∫ 0

∞
e−ikxf3(x) dx

− e−kl

2
(k cos B3 − i sinB3)

∫ 0

∞
e−ikxF3(x) dx,

G5(k) ≡ 2i(g1(k) + g2(k) + g3(k)) + 4l(G1(k) − G3(k)) − 4
dG2(k)

dk

= −iqx(0, l)(3 sinh kl + kl cosh kl) + 2ilqxy(0, l) sinh kl

+
ie−kl

2

[
[(1 + kl) cos β1 − (1 − kl) sin β1]

∫ ∞

0
e−ikxf1(x) dx

+ [k cos B1 − i sinB1 − 2i cos B1]
∫ ∞

0
e−ikxF1(x) dx

]

− (cos β2 + 2ik sin β2)
∫ −l

l

ekyf2(y) dy + cos B2

∫ −l

l

ekyF2(y) dy

+
iekl

2

[
[(1 − kl) cos β1 − (1 + kl) sin β1]

∫ 0

∞
e−ikxf3(x) dx

+ [−k cos B1 + i sinB1 − 2i cos B1]
∫ 0

∞
e−ikxF3(x) dx

]

−
(

i sinB2 − k cos B2

2

) ∫ −l

l

ekyyF2(y) dy

−
(

ik2 sin β2 − k cos β2

2

) ∫ −l

l

ekyyf2(y) dy. (A 5)

Note that in (A 5) symmetry has been used to reduce the number of unknowns,
e.g. q(0, l) = q(0,−l), etc. It is important to note that G4(k) and G5(k) depend only
on the two unknowns qxy(0, l) and qx(0, l).
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