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We derive a family of exact time-evolving solutions for the the evolution of a
finite blob of fluid confined to a channel in a Hele–Shaw cell. We show rigor-
ously that, for large fluid volume, there are solutions for which one of the inter-
faces approaches the steady Saffman–Taylor finger solution of arbitrary width
l ¥ (0, 1). On the basis of this, we argue that the far-field effects of a displaced
second interface do not provide a selection mechanism for the formation of a
width- 1

2 finger when surface tension, or any other regularization, is ignored.

KEY WORDS: Saffman–Taylor fingers; selection; pattern formation; Hele–
Shaw flow; distant interface effects.

1. INTRODUCTION

Viscous fingering in a Hele–Shaw cell has been the subject of numerous
investigations in the literature following the seminal experiment of Saffman
and Taylor (1) which showed that a steady finger with width approximately
one-half the width of the channel is formed when a less viscous fluid
displaces a more viscous one (except in the case of small displacement rate).
The reviews by Saffman, (2) Bensimon et al., (3) Homsy, (4) Kessler et al., (5)

and Pelce (6) cite much of the existing literature in the mid-eighties. An
important aspect of the theoretical development is the notion that it is
crucial to include some regularizing effect such as surface tension to explain
experimental findings. For a model that ignores three dimensional effects,
numerical (7–10) formal asymptotic calculations(11–17) as well as recent rigorous



mathematical analysis (18, 19) support this contention. Work on more realistic
models also suggest the same (see Tanveer (20) for a more comprehensive
review of the selection literature).

However, the notion that the zero surface tension solution does not
select a finger of a specific width has recently been challenged. (21) Based on
some calculations of a special exact solution in the finite-fluid problem for
which the relative finger width l=1

2 , it has been argued that the infinite-
fluid limit is singular and that l=1

2 can be the only limiting Saffman–
Taylor solution as the amount of viscous fluid in the cell tends to infinity.
Further, based on a linear stability analysis, it is suggested that if the
energy fed into the system is controlled appropriately, this solution would
be stable and therefore experimentally relevant. The possibility of finiteness
providing a selection mechanism was first suggested by Feigenbaum et al. (22)

In the present paper, we show that there is a class of time-evolving
exact zero-surface tension solutions involving a finite region of fluid that
behave differently from the solution found by Feigenbaum. (21) This inclu-
des solutions that, in the limit of infinite fluid volume, tend to the well-
known steady solutions due to Zhuravlev (23) and Saffman and Taylor (1)

with any relative finger-width l ¥ (0, 1). ( These steady solutions are
popularly known as the Saffman–Taylor finger solutions and will be
referred to henceforth in this paper as the ZST solutions.) Further, we
show that with an appropriate choice of parameters, the initial fluid
domains are close to those of Feigenbaum for sufficiently large fluid
volume. More specifically, the new class of solutions derived here are given
explicitly by a time-evolving conformal mapping of the form (81), where
N \ 1 is some positive integer. If the distance between the two interfaces
is L, which is assumed finite but large, then the initial shape of the fluid
domain described by a properly chosen N=1 solution in (81) is within
O(e− p

2
L) of the initial fluid domain of Feigenbaum (21) (see (103) for precise

bounds on the difference). We also find that in the special case with N=2,
when the fluid volume tends to infinity, the solutions (81) reduce to the
family of exact solutions for a single interface found by Howison; (30) these
are known to result in the ‘‘tip-splitting’’ of a finger. Thus, since the initial
fluid domain with N=2 can be made arbitrarily close to that of an N=1
solution, it follows that a finger-like solution close to the ZST steady shape
will be unstable to tip-splitting instabilities.

The mathematical method used here to derive exact solutions is related
to methods used in other contexts. Using elliptic function conformal
maps from a rectangular pre-image region, Richardson (26, 27) has considered
various problems of Hele–Shaw flow in channels involving two free sur-
faces, but his results do not encompass any finger-like solutions. In this
paper, to derive finger-like exact solutions for an evolving finite blob of
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fluid, we devise a method which is an adaptation of that used previously by
Crowdy (25) to study the flow of a fluid annulus in a rotating Hele–Shaw
flow. The formulation is based on conformal maps from an annular pre-
image region. This is particularly convenient for the specific purposes of
this paper because the time-evolving finger-solutions of Saffman, (24) rele-
vant in the infinite-fluid case, are retrieved in a simple and natural way as a
parameter r, arising in the present analysis, tends to zero. This fact will
prove crucial in our analysis of the infinite-fluid limit.

2. MATHEMATICAL FORMULATION

Let the fluid region D(t) be the finite fluid region in the (x, y)-plane
trapped between a channel − 1 [ y [ 1 and having two free interfaces,
denoted L (for the left-most interface) and R (for the right-most interface).

The velocity potential f satisfies

N2f=0, in D(t), (1)

so that the fluid velocity u=Nf. f is proportional to the fluid pressure
which is taken to be constant on L and R. Thus,

f=fL(t) on L, f=fR(t) on R (2)

where fL(t) and fR(t) are functions of time (but not space). Without loss
of generality, we set fL=0. The kinematic condition on each interface is
that the normal velocity of the interface equals the normal fluid velocity.
This can be written

Im[zt z̄s]=Im[(u+iv) z̄s], on L, R (3)

where s is the physical arc-length that increases when the boundary of D(t)
is traversed in the positive counter-clockwise sense.

Let the complex potential associated with the flow be w(z, t). Define
W(z, t) — w(z(z, t), t), then

W(z, t)=−
2V(t)

p
log z (4)

where

−
2V(t)

p
log r(t)=fR(t). (5)
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(5) relates the flow-rate V(t) to the imposed pressure fR(t) on the right-
most interface. As pointed out by Feigenbaum, (21) two physical problems
can be considered: either fR(t) is held fixed in time so that the pressure
difference across the fluid region is some specified constant, or the flow-
rate V(t) is fixed to be some constant. In either case, r(t) is a parameter
that must be determined as part of the solution.

Introduce a time-dependent conformal map z(z, t) from the upper-half
annulus in the z-plane given by r(t) < |z| < 1, Im[z] > 0 to the finite fluid
domain D(t). Let the semi-circle |z|=1 in the upper half-plane map to L
and the semi-circle |z|=r(t) in the upper half-plane map to R. A schematic
is shown in Fig. 1.

It can be deduced that z(z, t) has the general form

z(z, t)=i −
2
p

log z+f(z, t) (6)

where f(z, t) must be analytic in the annulus r < |z| < 1 and such that
z(z, t) is a univalent conformal map from the upper-half annulus
r < |z| < 1, Im[z] > 0 to the physical fluid domain. The real interval [r, 1]
in the z-plane will map to the part of the upper-wall between L and R,
while the real interval [ − 1, −r] will map to the part of the lower wall
between the two interfaces. Note that this will require that Im[f(z, t)]=0
for z real which implies that

f̄(z, t)=f(z, t) (7)

and so z̄z=zz. (We adopt the standard definition of ḡ(z) to be that ana-
lytic function of z which is the complex conjugate of g(z) on the real
z-axis). By the Schwarz reflection principle, (7) can be used to deduce that
f(z, t) is analytic in the entire annulus r < |z| < 1 and is real on that part of

Fig. 1. Conformal mapping regions: the map z(z, t) maps the upper-half annulus r < |z| < 1,
Im[z] > 0 in a z-plane (left) to the physical fluid domain D(t) (right). The fluid domain has
two interfaces labelled L and R. Points labelled with the same letter map to each other under
z(z, t).
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the real axis where |z| ¥ (r, 1). As long as the extended interface, obtained
by reflection in the two side-walls, is analytic then it follows that the corre-
sponding conformal map z(z, t) is analytic in r [ |z| [ 1.

On |z|=1,

zs=
izzz(z, t)
|zz(z, t)|

, (8)

while on |z|=r,

zs=−
izzz(z, t)

r |zz(z, t)|
, (9)

where the arclength s increases from A to B on the left interface L and
from C to D on the right interface R. It is to be noted that using (8), (9)
and the fact that

wz=
Wz

zz

=u − iv, (10)

it can be deduced that

Re 5 zt

zzz

6=˛ −
2V(t)
p |zz |2 , on |z|=1,

−
2V(t)

pr2 |zz |2 −
ṙ

r
, on |z|=r.

(11)

At this point, note that if we replace t in the above equation by a non-
linearly scaled ‘‘time’’ y=> t

0 V(t) dt and redefine ṙ= d
dy

r, then the problem
becomes mathematically equivalent to choosing V(t)=1. Henceforth,
without any loss of generality, we set V(t)=1.

The function in square brackets on the left hand side of (11) is single-
valued and analytic everywhere in the upper-half z-annulus. It is also real
on the real z-axis. By the Schwarz reflection principle it must be single-
valued and analytic in the entire annulus r < |z| < 1. This can only be true
provided a compatibility condition is satisfied by the data on the right
hand side of (11). This condition is that the average of the given data over
the circle |z|=1 equals the average of the data over |z|=r. This takes the
form

1
2pi

G
|z|=1

dz

z
5−

2
p |zz |2

6=
1

2pi
G

|z|=r

dz

z
5−

2
pr2 |zz |2 −

ṙ

r
6 . (12)
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(12) provides an evolution equation for r, i.e.,

ṙ=
r

p2 F
2p

0

5 1
|zz(e in, t)|2 −

1
r2 |zz(re in, t)|2

6 dn. (13)

If (13) is enforced, then

zt(z, t)=zzz(z, t) I(z, t) (14)

where I(z, t) is single-valued and analytic in the annulus r < |z| < 1. The
Villat formula for an annulus can be used to deduce an explicit expression
for I(z, t). Using a convenient version of this formula given in Crowdy, (25)

we obtain

I(z, t)=I+(z, t) − I−(z, t)+C(t) (15)

where

I+(z, t)=
1

2pi
G

|zŒ|=1
K(z/zŒ, r) 5−

2
p |zz(zŒ, t)|2

6 dzŒ

zŒ
, (16)

I−(z, t)=
1

2pi
G

|zŒ|=r

K(z/zŒ, r) 5−
2

pr2 |zz(zŒ, t)|2 −
ṙ

r
6 dzŒ

zŒ
, (17)

C(t)=−
1

2pi
G

|zŒ|=r

5−
2

pr2 |zz(zŒ, t)|2 −
ṙ

r
6 dzŒ

zŒ
, (18)

and the kernel function K(z, r) is given by

K(z, r)=1 − 2z
PŒ(z, r)
P(z, r)

. (19)

P(z, r) is defined by the infinite product expansion

P(z, r)=(1 − z) D
.

k=1
(1 − r2kz)(1 − r2kz−1). (20)

PŒ(z, r) denotes the derivative of P(z, r) with respect to its first argument.
P(z, r) will be used again later in the construction of the conformal map
solutions.
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With use of the infinite product representation, it is clear that

P(r2z, r)=−
P(z, r)

z
, K(r2z, r)=K(z, r)+2,

P(z−1, r)=−
P(z)

z
, K(z−1, r)=−K(z, r).

(21)

These properties will be useful later. In particular from (21), a change of
integration variable zŒ=e inŒ to z̃=e−inŒ in I+, a switch from zŒ=re inŒ to
z̃=re−inŒ in I− and the symmetry condition (7), we deduce

|zz(e−in)|−2=|zz(e in)|−2, |zz(re−in)|−2=|zz(re in)|−2, (22)

so that

I+(z−1, t)=−I+(z, t),

I−(z−1, t)=−I−(z, t) − 2C(t),

I(z−1, t)=−I(z, t).

(23)

In the case where z(z, t) is a conformal mapping function, another property
of I(z, t) follows. If 1

zz(z, t) is free of singularities in the ring domain Dd

defined as

Dd — {z: (1 − d) r [ |z| [ (1+d)}

for some d > 0, then there exists constants C1 and C2 independent of any of
the parameters so that for 1 [ |z| [ r−1,

|zI+
z | [

C1

d2
1 1

inf|z|=1 |zzz |2
2+C2 sup

1 [ |z| [ 1+d

: d
dz

1 1
zz(z) zz(z−1)

2: , (24)

|zI−
z | [

C1

d2
1 1

inf|z|=r |zzz |2
2+

C2

r2 sup
(1 − d) [ |z| [ 1

: d
dz

1 1
zz(rz) zz(rz−1)

2: . (25)

Consider (24). For |z| \ 1+d

2 the proof follows from differentiating I+ and
using a simple estimate on the integrand. When 1 < |z| [ (1+d

2), we deform
the contour to |zŒ|=1+d. In the process, we collect the residue at z=zŒ,
noting that the analytic continuation of |zz |2 off |z|=1 equals zz(z) zz(z−1).
We obtain an estimate for the integral part in the same way as before,
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the estimate on the residue gives the second term in the inequality above.
Similar estimates for I−

z results in (25). In this case, it is convenient to use
the alternative representation that follows from the property K(z/(rzŒ))=
K(rz/zŒ) − 2:

I−(z, t)=−
1

p2ir2 G
|zŒ|=1

K 1rz

zŒ
, r2 1

zz(rzŒ, t) zz(r/zŒ, t)
dzŒ

zŒ
+Constant

which follows from (21) and the fact that the analytic continuation of |zz |2

off |z|=r is zz(z) zz(r2z−1).

3. RESULTS FOR THE SINGLE-INTERFACE PROBLEM

The Hele–Shaw problem in a channel with just one interface has been
well-studied since the work of Saffman and Taylor. (1) In this section, we
summarize well-known results for the zero-surface-tension single-interface
problem that will be needed in the present paper. Two separate single-
interface problems are considered: the case with a single left-most interface
L in the limit where the right-most interface R has advanced to +., and
the case of the single interface R when L has receded to − ..

3.1. The Single Left-Interface Problem

Consider first the case of the evolution of L when R is at +.. This
corresponds to r=0 in the equations of Section 2 which leads to a single
equation valid for |z| < 1,

zt(z, t)=zzz(z, t) I0[z(.)](z) (26)

where the operator I0 is defined through the expression:

I0[w(.)](z) —
1

2pi
G

|zŒ|=1

dzŒ

zŒ

z+zŒ

zŒ − z
5−

2
p |wz(zŒ)|2

6 . (27)

Saffman (24) found a family of time-evolving exact solutions that exist for all
times for which the conformal mapping function from the interior of the
upper-half semi-circle to the flow region on the right of interface L is given
by

z(z, t)=i+d −
2
p

log z+
2
p

(1 − l) log(1 − z2c−2
S ) — zS(z, t; cS) (28)
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where parameters cS > 1 and d are functions of t determined by the trans-
cendental equations:

log cS+
p

2
t+l(1 − l) log(1 − c−2

S )=log c0+l(1 − l) log(1 − c−2
0 ), (29)

d(t)=
2

lp
(1 − l) log

cS

c0
+

t
l
+d0. (30)

Saffman (24) found that cS Q 1+ exponentially in t as t Q . and that, in this
limit, d ’ t

l
. Therefore, as t Q+.,

zS(z, t; cS) Q zST — i+
t
l

−
2
p

log z+
2
p

(1 − l) log(1 − z2) (31)

where zST is the steady solutions found by Zhuravlev (23) and, indepen-
dently, by Saffman and Taylor. (1) In this way, time-dependent solutions
exist that evolve from a near planar interface (for c0 chosen sufficiently
large) to the Zhuravlev–Saffman–Taylor (ZST) solution with relative
finger width l for any l ¥ (0, 1). Further, it is known that the zeros of zS

z

stay away from |z|=1 for all time so that

inf
|z|=1

|zzS
z (z, t; cS)| > m > 0 (32)

for some constant m that is independent of t and c but which depends on l.
It is also known (see Tanveer (28)) that the analytic continuation of (26)

to the region |z| > 1 is of the form:

zt=q1zz+q2 (33)

where

q1(z, t)=zI0[z(. , t)](z), q2(z, t)=−
4z

pzz(z−1, t)
. (34)

If w satisfies the property |wz(e−in)|=|wz(e in)| (as is the case for w(z)=
z(z, t)) then a simple change of integration variable yields the useful prop-
erty that

I0[w(.)](1/z)=−I0[w(.)](z). (35)
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Since Re I0[w(.)](z) is a harmonic function of (Re(z), Im(z)), it follows (28)

from the maximum principle that for |z| > 1,

inf
|z|=1

2
p |wz |2 < Re[I0[w(.)](z)] < sup

|z|=1

2
p |wz |2 . (36)

More generally, following similar arguments, it also follows that for two
different functions u and v, for |z| > 1:

inf
|z|=1

5 2
p |uz |2 −

2
p |vz |2

6 < Re[I0[u(.)](z) −I0[v(.)](z)]

< sup
|z|=1

5 2
p |uz |2 −

2
p |vz |2

6 . (37)

Further, it is known (28) that any singularity zs(t) of z in the region |z| > 1
must move in accordance to the ordinary differential equation

żs=−q1(zs(t), t)=−zsI0[z(. , t)](zs(t)). (38)

Letting w(z)=z(z, t) in (36), we obtain Re[q1/z] > 0 and hence all sin-
gularities of z continually approach |z|=1 from |z| > 1.

Applying (38) to the Saffman solution, the solution cS(t) of the trans-
cendental equation (29) satisfies

ċS=−cSI0[zS(. , t; cS(t))](cS(t)). (39)

Since the functional form of zS
z is relatively simple, it is possible to use

contour integration to calculate

I0[zS(. , t; c)](z)=
p

2
(1 − 2l+3c4 − 2c4l − 3z2c2 − z2c6+4z2c2l)

(z2c2+1 − 2l)( − c4+1 − 4l+4l2)
, (40)

which will be useful for later estimates.
Many other exact solutions for the single-interface problem are known,

including some that exist for all times. Howison (30) found extensions of the
solutions of Saffman, including those of the form

zH(z, t)=i+d0(t) −
2
p

log z+
2
p

C
N

n=1
an log(1 − z2c−2

n ) (41)

where {|cn(t)| > 1 | n=1,..., N} evolve in accordance with (38) and
approach the unit circle. In particular, with the choice of initial conditions
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given by N=2, a1=(1 − l), a2 > 0, with c2(0) on the imaginary axis and
c1(0) on the positive real axis such that |c2(0)| ± c1(0) > 1, the solution
can be shown to develop a nearly steady ZST finger of width l before ‘‘tip-
splitting’’ over a longer time-scale. This demonstrates the nonlinear insta-
bility of interface L when R is at+. and surface tension is ignored. This is
not surprising because the initial value problem is ill-posed. (30) Later, it will
be shown that the two-interface problem admits solutions which asymptote
to the solution (41) of Howison for the left interface in the limit of fluid
volume going to .. In this way, we will demonstrate that the ZST solution
approached over an intermediate time scale for the two-interface problem
cannot be stable in any sense.

3.2. The Single Right-Interface Problem

Consider now the second single-interface problem for the evolution of
R in the limit when L has receded to − .. This single-interface problem is
similar to the single-interface problem just studied, with an important dif-
ference; now, the viscous fluid is displacing a less viscous fluid. Except for a
180° rotation of the geometry, this is equivalent to the previous problem
with time reversed.

Consider the conformal map from the upper-half unit ẑ semi-circle
into the flow domain left of the interface R (with L assumed to be at − .)
with ẑ=± 1 corresponding to the intersection points of the interface R with
the lower and upper walls respectively. ẑ=0 maps to z=−.. There is then
a time-reversed Saffman solution with a single interface, for which the
relevant conformal mapping function is given by the following expression,
once we account for the 180° rotation:

z(ẑ, t)=−i − d̂+
2
p

log ẑ −
2(1 − l)

p
log(1 − ẑ2b−2

R )=−zS(ẑ, t; bR) (42)

with parameters bR(t) > 1 and d̂ determined from

log bR −
p

2
t+l(1 − l) log(1 − b−2

R )=log b0+l(1 − l) log(1 − b−2
0 ). (43)

d̂(t)=
2

lp
(1 − l) log

bR

b0
−

t
l
+d̂0. (44)

Here b0 > 1 and d̂0 are the initial values of bR and d̂ respectively. The sin-
gularity bR(t) evolves in accordance to

ḃR=bRI0[zS(. , t; bR)](bR) (45)
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where we have reversed the sign on the right of (38). Hence bR(t), deter-
mined from (43), satisfies (45). ( This fact will be used later in our discus-
sion of the limit of two interfaces far apart.) It is known from an analysis
of (43) that bR continually increases with t and as t Q+., while bR ’

const. ept/2. Therefore, as t Q+.,

− zS(ẑ, t, bR) Q − i − t+
2
p

log ẑ (46)

which corresponds to a steadily propagating planar front. From the point
of view of stability, this makes sense because the planar interface between a
more viscous fluid displacing a less viscous one is known to be stable, even
with zero surface tension.

For the purposes of the next section, it will be useful to make a trans-
formation of the ẑ-plane formulation of the single right-interface problem
just considered to a z-plane formulation where the interior of the unit
ẑ-circle maps to the exterior of a |z|=r circle in the z-plane. To do this,
introduce the change of variable

ẑ=e ip r

z
, (47)

and the mapping of parameters given by

bR=g−1
R r−1. (48)

Then, the single interface R is determined parametrically (x(n), y(n))
through the following equation on z=re in:

x(n)+iy(n)=−zS(−rz−1, t; bR)

=−d̂+
2
p

log r+i −
2
p

log z −
2
p

(1 − l) log(1 − z−2r4g2
R). (49)

For later convenience, we also define a time-dependent parameter

rSR — r0
1cSbR

c0b0

2 (1 − l)/l

(50)

where cS and bR are the time-dependent parameters arising in the left and
right one-interface problems above, and r0 is some constant. Further, define

zR(z, t; r, gR)=−zS(−rz−1, t; bR) −
2
p

log 1 r

rSR

2 . (51)
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We now choose the initial condition for the parameter d̂(t) (i.e., d̂0) in (44)
so that

d̂0=
2
p

log r − d0.

Then, it follows from (30), (44), and (50) that

zR(z, t; r, gR)=d(t) −
2
p

log z −
2
p

(1 − l) log(1 − z−2r4g2
R). (52)

Using (51) and the fact that bR continually increases with time, it is easy to
show that on |z|=r,

inf
|z|=r

|zzR
z (z, t; gR, r)| > m > 0 (53)

where m is a time-independent constant.

4. ANALYSIS OF THE TWO-INTERFACE PROBLEM

In this section, we give analytical arguments for the existence of exact
solutions to the full two-interface problem described in Section 2 and
outline certain properties of these solutions. The arguments of this section
provide the rationale for the form of the conformal maps posed in Sec-
tion 5.

Using the results from more general obstacle problems (31–34) to the
specific case of Hele–Shaw zero-surface tension evolution, it follows that
for a doubly-connected Hele–Shaw domain, as for a simply-connected one,
if the initial extended-interface shape is analytic (by ‘‘extended’’ we refer to
the shape obtained after reflection about each side-wall), a unique solution
of the zero-surface tension Hele–Shaw problem exists for small enough t
for which the interface shapes remain analytic. Hence z(z, t) is analytic on
|z|=1 as well as on |z|=r for small enough time. Thus, at least over the
time-interval of existence of an analytic solution, the analytic continuation
of Eq. (14) is possible into the annulus 1 < |z| < r−1. Through standard use
of Plemelj formulae (or contour deformation of integrals) this results in

zt(z, t)=zzz(z, t) I(z, t) −
4z

pzz(z−1, t)
, (54)
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while its continuation into the annulus r2 < |z| < r is given by

zt(z, t)=zzz(z, t) I(z, t) −
4z

pr2zz(r2z−1, t)
−

2ṙ

r
zzz(z, t). (55)

It should be emphasized that while the same formal expression (15)–(18)
define I in the annular regions 1 < |z| < r−1, r < |z| < 1, and r2 < |z| < r,
they are actually different analytic functions (in the sense that they are not
the analytic continuations of each other).

Now consider the quantity H(z, t) defined by

H(z, t) — z(r2z, t) − z(z, t). (56)

Pick a value of z in the annulus 1 < |z| < r−1. (54) will hold. The quantity
r2z will be in the annulus r2 < |z| < r so that (55) will also hold with
argument z W r2z. That is,

zt(r2z, t)+2ṙrzzz(r2z, t)=r2zzz(r2z, t) I(r2z, t) −
4z

pz(z−1, t)
. (57)

Now, subtracting (54) from (57) produces

zt(r2z, t)+2ṙrzzz(r2z, t) − zt(z, t)

=r2zzz(r2z, t) I(r2z, t) − zzz(z, t) I(z, t). (58)

However, on using the property from (21) that K(r2z, t)=K(z, t)+2, it
can be shown directly from (15) that

I(r2z, t)=I(z, t), (59)

so that, using (56), (58) becomes

Ht(z, t)=zI(z, t) Hz(z, t). (60)

(60) holds for all z in 1 < |z| < r−1.
If we choose initial condition so that H(z, 0)=c for some constant c,

then it follows that

H(z, t)=c. (61)

This means that the mapping satisfies the functional equation

z(r2z, t) − z(z, t)=c (62)
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at all times for which a solution exists. This general property in the context of
a two interface Hele–Shaw problem was first realized by Richardson,(26, 27)

though in a differing formulation, and found exact solutions in terms of
elliptic functions. Crowdy (25) also exploited this result in a formulation
similar to the present in the context of a fluid annulus in a rotating
Hele–Shaw cell. Note that although we have only established that (62)
holds for points z in the annulus 1 < |z| < r−1, by the continuation prin-
ciple, it also holds everywhere. The arguments above prove the following
lemma:

Lemma 1. As long as solution exists for which the (extended)
interface shapes are analytic, if the associated conformal map z(z, 0) satis-
fies (62) for some constant c, then z(z, t) satisfies the same condition for
t > 0.

Equation (62) furnishes the analytic continuation of z(z, t) into the
annulus 1

r [ |z| [ 1
r2 . Indeed, as long as an analytic solution (as far as

extended shapes are concerned) exists, the corresponding conformal
maping function z(z, t) is free of singularities in the region r [ |z| [ 1. It
follows from (62) that it is also free of singularities in 1

r [ |z| [ 1
r2 . From (14)

it follows that for 1
r < |z| < 1

r2 ,

zt(z, t)=12ṙ

r
+I(z, t)2 zzz (63)

which is consistent with the absence of singularities of z because I(z, t) is
analytic in this ring-domain.

In the region 1 < |z| < r−1, (54) can be written

zt(z, t)=q1(z, t) zz(z, t)+q2(z, t) (64)

where we define

q1(z, t) — zI(z, t), q2(z, t) — −
4z

pzz(z−1, t)
. (65)

q1(z, t) and q2(z, t) are analytic everywhere in 1 < |z| < r−1. Taking the
derivative of (64) yields

“

“t
zz(z, t)=q1(z, t)

“

“z
zz(z, t)+q1z(z, t) zz(z, t)+q2z(z, t). (66)
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(66) has the form of a first-order linear partial differential equation for
zz(z, t) with coefficients that are known a priori to be analytic in region

R={z: 1 < |z| < r−1}.

So, all the known properties of such differential equations are valid,
including the fact that singularities cannot spontaneously arise and that
any singularity zs in this region R retains its form and must move with
characteristic speed, i.e.,

żs=−q1(zs(t), t)=−zs(t) I(zs(t), t). (67)

Further, for initial conditions for which z(r2z, 0) − z(z, 0)=c, as long as
solutions exist with analytic interfacial shapes, zz is free of singularities in
the adjoining regions r [ |z| [ 1 and r−1 [ |z| [ r−2 and hence singularities
cannot enter or leave R from these adjoining regions. We are naturally led
to the following lemma:

Lemma 2. As long as solutions exist with analytic (extended) inter-
face shapes, if z(r2z, 0) − z(z, 0)=c for some constant c and zz(z, 0) has
only a finite number (N) of poles in R, then zz(z, t) remains analytic in R,
except at N poles, each of which move in accordance to (67).

By integration, z(z, t) is deduced to have a finite number of (time-
evolving) logarithmic singularities in R.

Suppose a typical logarithmic singularity is at the point c(t) in R so
that

z(z, t)=a(t) log(z − c(t))+analytic, as z Q c(t). (68)

On direct substitution into (54) and comparison of singularities, it can be
deduced that a(t) and c(t) satisfy the ordinary differential equations

ȧ(t)=0, ċ(t)=−c(t) I(c(t), t). (69)

Note that a(t)=a(0) is a conserved quantity.

5. A CLASS OF EXACT SOLUTIONS

Consider the initial condition

z(z, 0)=i −
2
p
1 log z+(1 − l) log 5P(z/g0, r0) P(−z/g0, r0)

P(z/c0, r0) P(−z/c0, r0)
62 (70)
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where r0 > 0 and r−1
0 > c0, g0 > 1 are chosen appropriately so that z(z, 0) is

univalent in the domain r0 < |z| < 1 and zz(z, 0) ] 0 for r0 [ |z| [ 1. That
such a choice is possible will be obvious later in Section 6 for sufficiently
small r0. In that case z(z, 0) is a conformal mapping function from the half-
ring region {z: r0 < |z| < 1, Im[z] > 0} to a domain in the z-plane shown
in Fig. 1. Further, from examination of the conformal map (70), it is clear
that the corresponding interface shapes are symmetric about the channel
centerline. Further, from the properties (21) of P(z), it is clear that in the
domain 1 < |z| < r−1

0 , zz(z, 0) has just four poles at z=± c0, ± g0.

z(r2
0z, 0) − z(z, 0)=c — −

2
p
1 log [r2

0]+log 1g0

c0

22(1 − l)2 . (71)

Uniqueness of solutions and the symmetry of the equations and initial
conditions guarantee that the interfaces remain symmetric, corresponding
to the the positive imaginary-z-axis, for t > 0. In particular, this implies
that

|zz(re ip/2+in)|−2=|zz(re ip/2 − in)|−2, |zz(e ip/2+in)|−2=|zz(e ip/2 − in)|−2. (72)

Using Lemmas 1 and 2, it follows that as long as a solution with ana-
lytic interfaces exists, the corresponding conformal map z(z, t) will satisfy

z(r2z, t) − z(z, t)=c (73)

where r(t) evolves according to (13), and zz(z, t) will have four poles at
c(t), c̃(t), g(t), and g̃(t) in the annular region 1 < |z| < r−1 where each pole
(generically represented by zs) evolves according to (67) with respective
initial conditions c(0)=c0, c̃(0)=−c0, g(0)=g0, and g̃(0)=−g0.

Note that the symmetry condition (72), together with symmetry about
the real z axis as expressed in (7), imply that

|zz(−zŒ, t)|−2=|zz(zŒ, t)|−2

on both |zŒ|=1 and |zŒ|=r. From the integral expressions in (15)–(17),
it follows that I(−z, t)=I(z, t). Hence if zs=c(t) satisfies (69), so does
zs=−c(t), the latter satisfying the same initial condition as c̃. Therefore,
by the uniqueness of the solutions of the ordinary differential equation
(which follows from the fact that I has bounded derivatives in R, at least
for the interval of time when a zero of zz stays away from |z|=1 and
|z|=r—see (24)) it follows that c̃(t)=−c(t). Similar arguments show that
g̃(t)=−g(t). Thus, the only singularities of the analytically-continued
conformal mapping function z(z, t) in the annular region R (corresponding
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to the unique analytic interfacial solution) are poles at z=± c(t) and
z=± g(t), where

dc

dt
=−c(t) I(c(t), t),

dg

dt
=−g(t) I(g(t), t), (74)

with initial conditions c(0)=c0, g(0)=g0.
Now we define Z(z, t) through the decomposition

z(z, t)=i −
2
p
1 log z+(1 − l) log 5P(z/g, r) P(−z/g, r)

P(z/c, r) P(−z/c, r)
62+Z(z, t)

(75)

where l ¥ (0, 1) is constant, c(t) and g(t) evolve according to (74) and r

evolves according to (13). We will take |g0 | > |c0 | > 1. From the initial
condition (70), it follows that Z(z, 0)=0.

Since zz(z, 0) has simple poles at z=± c0, ± g0, with residues equalling
− 2

p (1 − l) at ± c0 and 2
p (1 − l) at ± g0, it follows from Lemma 2 that

zz(z, t) will have simple poles at ± c(t) and ± g(t) with time-invariant resi-
dues. Since the z-derivative of the first term on the right of (75) has simple
poles at these points (and only these points in R) with the same residues, it
follows that Z(z, t) is free of singularities in R. It is also single-valued in R

since z+2
p log z and terms other than log z and Z on the right of (75) are

known to be single-valued in R. Further, the condition

z(r2z, t) − z(z, t)=z(r2z, 0) − z(z, 0)

=−
2
p
1 log [r2

0]+log 1g0

c0

22(1 − l)2=c (76)

implies

Z(r2z, t) −Z(z, t)=g(t) —
2
p
1 log 1r(t)

r0

22

+log 1g(t) c0

g0c(t)
22(1 − l)2 . (77)

Thus, zZz is a doubly-periodic function of log z with no singularities in
the fundamental cell r [ |z| < 1

r , 0 [ arg[z] < 2p. It therefore equals some
constant k(t) (by Liouville’s theorem for elliptic functions). This implies
that Z(z, t)=d(t)+k(t) log z where, from symmetry about the real z-axis,
d(t) and k(t) must be real functions of time. However, since we know that
z(z, t) necessarily has a logarithmic singularity at z=0 of the known form
− 2

p log z (which has already been explicitly included in the decomposition
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(75)) it follows that k(t)=0. Thus, Z(z, t)=d(t). In summary, the con-
formal mapping function corresponding to the unique analytic Hele–Shaw
interfacial solution must remain of the form

z(z, t)=d(t)+i −
2
p
1 log z+(1 − l) log 5P(z/g, r) P(−z/g, r)

P(z/c, r) P(−z/c, r)
62 (78)

where r(t), g(t), and c(t) are determined from (13) and (74). An ordinary
differential equation for d(t) can be derived by evaluating Eq. (14) at an
arbitrary point in the annulus r < |z| < 1.

We have proved the following theorem:

Theorem 1. If the initial Hele–Shaw shape corresponds to the con-
formal map z(z, 0) given by (77) with r0 > 0 and 1 < c0 < g0 < r−1

0 chosen
so as to ensure that the z(z, 0) is appropriately univalent and the corre-
sponding (extended) interface shapes are analytic, then, over the time interval
0 [ t [ T for which a unique interfacial solution exists, the corresponding
conformal mapping function z(z, t) is of the form (75) where c(t), g(t), and
r(t) are determined from (13) and (74). Also, such a solution must satisfy
(76) with 1 < c, g < r−1.

Since Z(z, t)=d(t), it follows from (77) that g(t)=0 and therefore
for any t > 0,

c=−
2
p
1 log r2+log 1g

c
22(1 − l)2 . (79)

Instead of determining c(t), g(t), and r(t) from (13) and (74), it is clearly
possible to replace any one of the three equations by (79). For instance,
given c from the initial configuration, (79) provides an algebraic equation
for g, i.e.,

g=c 1e−pc/2

r2
2

1
2(1 − l)

. (80)

From the arguments above, use of (80) is equivalent to solving the second
equation in (74) for g provided we use (74) to determine r. (80) is a non-
linear algebraic relation between the conformal mapping parameters. Of
course, parameters c and l must be chosen carefully to ensure that g0, like c0,
is in the annulus 1 < |z| < r−1. Note that, although the map depends on the
four parameters l, r, c, and g, there are two conserved quantities asso-
ciated with the motion, namely, l and c.
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Using the same methods as above, it is not difficult to prove that one
can construct more general classes of exact solution with zz possessing 4N
poles in 1 < |z| < r−1. The generalized conformal maps take the form

z(z, t)=i+d(t) −
2
p
1 log z+(1 − l) log 5<N

j=1 P(z/gj) P(−z/gj)
<N

j=1 P(z/cj) P(−z/cj)
62 (81)

where each cj and gj evolve in accordance with (67) as before. Generaliza-
tion for solutions that correspond to shapes that are not necessarily sym-
metric about the channel centerline is of the form:

z(z, t)=i+d(t) −
2
p
1 log z+(1 − l) log 5<N

j=1 P(z/g (1)
j ) P(z/g (2)

j )
<N

j=1 P(z/c (1)
j ) P(z/c (2)

j )
62 (82)

where each c (1)
j , c (2)

j and g (1)
j and g (2)

j evolve in accordance with (67) as
before.

6. THE INFINITE-FLUID LIMIT: r0 Q 0

We will now consider the solution (75) in the asymptotic limit of
parameters r0 Q 0+ when c0=O(1) and g0 r0=O(1), with parameters
constrained by the inequality

1 < c0 ° g0 < r−1
0 . (83)

In this limit, the amount of viscous fluid in the Hele–Shaw cell becomes
infinite and this is clear from Eq. (5) since fR Q . (for V=1).

It is convenient to define

b=
1

rg
. (84)

On use of (79), r can be expressed in terms of c and b as:

r=r0
1 bc

b0c0

2 (1 − l)/l

. (85)

Using (74) and the fact that I(g−1, t)=−I(g, t) (see (23)), it follows that b

evolves in accordance to

ḃ=−b 5I(g−1, t)+
ṙ

r
6 . (86)

Given the restriction on g, it is clear that b > 1.
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We now wish to consider the limit of r0 Q 0+, with c0, b0=O(1). This
will be done in the next subsection using formal arguments. A mathemati-
cally rigorous treatment of the same arguments is given in Section 6.2.

6.1. Formal Results

We look at the form of some approximations to the exact solutions
when r is small. Clearly, if r0 is small, from the continuity of the solutions
in time, there will be an interval of time for which r remains small and each
of c=O(1) and b=O(1). On |z|=1, we note that

|log[P(zg−1) P(−zg−1)]| [ C0 r2b2,

: log[P(zc−1) P(−zc−1)] − log 11 −
z2

c2
2: [ C0 r2

(87)

while for |z|=r,

|log[P(zc−1) P(−zc−1)]| [ C0 r2c2,

: log[P(zg−1) P(−zg−1)] − log 11 −
r4g2

z2
2: [ C0 r2

(88)

for some constant C0 independent of any of the parameters. These results
mean that on the left interface corresponding to |z|=O(1),

|z(z, t) − zS(z, t; c)| [ K1 r2b2,

|zzz(z, t) − zzS
z (z, t; c)| [ K2 r2b2

(89)

while on the right interface, |z|=r,

|z(z, t) − zR(z, t; r, g)| [ K3 r2c2,

|zzz(z, t) − zzR
z (z, t; r, g)| [ K4 r2c2.

(90)

In (89) and (90), K1 through K4 are constants independent of r, g, c, and t.
The evolution of parameters c(t) and g(t) can be simplified. We note

that

K(z, r)=
1+z

1 − z
+2 C

.

j=1

1 r2jz

(1 − r2jz)
−

r2j

z(1 − r2jz−1)
2 . (91)
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For all z in the annulus 1 < |z| [ |c| and for |zŒ|=1,

:K(z/zŒ, r) −
zŒ+z

zŒ − z
: [ C1 r2, (92)

while for |zŒ|=r,

|K(z/zŒ, r)+1| [ C2 r. (93)

It follows that for 1 < |z| [ |c|,

|I(z, t) −I0[z(. , t)](z)| [ C1 r 1 1
inf|z|=1 |zzz |2+

1
inf|z|=r |zzz |2

2 (94)

where I0 is defined in (27). Using (32) and (89), (94) implies that for small
enough r with c=O(1), b=O(1)

|I(z, t) −I0[z(. , t)](z)| [ C1 r (95)

for some constant C1, independent of any of the parameters.
From (89) and (95), we obtain

|I(c(t), t) −I0[zS(. , t; c(t))](c(t))| [ C1(r+r2b2) (96)

and hence for small r,

ċ=−cI(c(t), t) ’ − cI0[zS(. , t; c(t))](c(t)). (97)

We note from the expression (40) that I0[zS(. , t; c)](c) is a continuous
function of c. Therefore, as long as r remains small and b and c remain
order 1, c ’ cS, where cS satisfies (39) and hence is determined by (29).
Thus the left interface L shape will approach the Saffman-solution shape as
r Q 0.

On the other hand, for r < |z| [ g−1, using similar approximations to
K(z/zŒ, r) and lower bounds on |zzz | for z=r that derive from (53) and
(90), it follows that

:I(z, t)+
ṙ

r
−IR[z(. , t)](z) : [ C1 rb (98)
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where

IR[z](z) —
1

p2i
G

|zŒ|=r

dzŒ

zŒ

z+zŒ

zŒ − z
5 1

|zŒzz(zŒ, t)|2
6

=−
1

p2i
G

|zŒ|=1

dzŒ

zŒ

zŒ+rz−1

zŒ − rz−1
5 1

r2 |zz(rzŒ
−1, t)|2

6 . (99)

On use of (51), and using |zS
z (z, t; b)|−2=|zS

z (−z, t; b)|−2 which follows
from the symmetries about the real and imaginary z-axes (the latter corre-
sponding to channel-centerline),

IR[zR(. , t; r, g)](g−1)=I0[zS(. , t; (rg)−1)](rg)

=−I0[zS(. , t; (rg)−1)]((rg)−1) (100)

where the latter equality follows from property (35) with w=zS. On use of
(86), it follows that over the interval of time [0, T] when r remains small
and b, c=O(1),

ḃ=−b 5I(g−1, t)+
ṙ

r
6 ’ bI0[zS(. , t; b)](b). (101)

Using the continuity of I0[zS(. , t; b)](b) with respect to b, as is evident
from (40), it follows that b ’ bR, where bR satisfies (45) and is therefore
determined by the transcendental equation (43). Therefore, over this inter-
val of time, the right interface stays close to a time-reversed Saffman solu-
tion zR(z, t; rSR, gR), which is a solution to the single interface problem
when L has receded to − ..

To estimate T, the length of the time interval for which the solution
is close to the Saffman single-interface solution, we plug approximations
b=bR, c=cS into (85) to obtain

r ’ rSR(t) (102)

where rSR(t) is given by (50). cS is known to decrease monotonically to 1
and bR increases monotonically and approaches an ept/2 growth. Thus r

remains small over the time interval [0, T] when T ° − log r0. Another
way to interpret this result is that once T is chosen, there exists r0 small
enough so that the assumptions r ° 1 and c, b=O(1) are self-consistent
and the left interface shape L stays close to the Saffman solution. When
1 ° t ° − log r0 the left interface approaches the Zhuravlev–Saffman–
Taylor (ZST) steady solution of width l, without any restriction on l,
aside from being in the interval (0, 1). This steady shape propagates with
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speed 1
l
. The right interface, corresponding to zR, will then approach a

planar front propagating with speed 1. However, the asymptotic approach
of the ZST steady solution is only over an intermediate time-scale.
Regardless of the amount of fluid, i.e., no matter how small r0 is, even-
tually, at times of O(−log r0) or larger, the left interface L, which is
moving faster, will catch up with the right interface R. No steady solution
is possible when the two interfaces interact strongly.

Also, it is to be noted that the mathematics does not prevent the
choice c0=1, in which case c(t)=1 for later time. In this case, the left
interface extends to − . and the corresponding left-interface shape as
r0 Q 0, with g0=O(1/r0) is that of the steady ZST solution of arbitrary
width l even when t is not large. In this case, the left interface shape devia-
tes from the ZST steady shape only when t=O(−log r0). In the special
case where we chose l=1

2 , c0=1, g0=r−1/2
0 in the initial condition (70) for

the solution (78), we can be more precise about the difference between the
initial shapes and that described in ref. 21. The conformal map for the
solution of Feigenbaum can be written, in the present formulation, as

zF(z)=i −
2
p

ln z+
1
p

ln (1 − z2).

Using the property that for r0 < 1
2

: ln 1P(z, r0) P(−z, r0)
1 − z2

2: [ 5
3

r4
0(|z|2+|z|−2),

it is not difficult to deduce rigorously that

sup
|z|=1, |z|=r0

|z(z, 0) − zF(z, 0)| [ 5
3 r0 [ 2e− p

2
L (103)

where

L=|zF(i) − zF(ir0)|=−
2
p

ln r0+
1
p

ln 11+r2
0

2
2

is the non-dimensional distance from the tip of the finger to the right inter-
face.

Now, if we carry out similar arguments for the solution (81) for N=2,
with g1(0) and c1(0) \ 1 real and with g2(0), c2(0) each imaginary with the
ordering

1 [ c1(0) ° |c2(0)| ° |g2(0)| ° g1(0)
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then it is possible to show that, for small enough r0 , the left interface
asymptotes to a Howison solution zH given by (41) for N=2, which for
1 ° t ° − log r0 will result in tip-splitting of the left interface. Since at
the initial time, with c1(0)=1, the left interface shape is an arbitrarily
small deviation from a ZST shape when r0 tends to zero, it follows that
the left interface, corresponding to a ZST solution, is unstable in this
nonlinear sense for any l (including l=1

2 ). In every case, at least within
the family of solutions shown, the limit where the amount of viscous fluid
tends to infinity results in the recovery of the single-interface dynamics
over an intermediate time-scale—and the latter problem is known to be ill-
posed. (30)

6.2. Rigorous Results for r0 Q 0

The arguments in the last subsection, as far as the Saffman-type solu-
tion is concerned, can be put on a rigorous foundation. We will prove the
following theorem:

Theorem 2. For any choice of c0, b0 > 1 and time interval [0, T],
there exists r0 small enough, with − log r0 sufficiently large compared to T,
such that c(t), b(t) satisfy the following inequalities:

: c2

c2
S

− 1: [ C1 rSR(T) bR(T),

: b2

b2
R

− 1: [ C1 rSR(T) bR(T),

: r

rSR
− 1: [ C1 rSR(T) bR(T)

(104)

for constant C1 independent of any parameters. Also,

sup
|z|=1

|z(z, t) − zS(z, t; cS)| [ C1 rSR(T) bR(T)

sup
|z|=r

|z(z, t) − zR(z, t; r, gR)| [ C1 r2
SR.

(105)

The proof of this theorem will follow after some preliminary lemmas.
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Definitions. We introduce the following definitions:

T0(t) — I0[zS(. , t; c(t))](c(t)) −I0[zS(. , t; cS(t))](cS(t)),

T1(t) — I(c(t), t) −I0[zS(. , t; c(t))](c(t)),

S0(t) — I0[zS(. , t; b(t)](b(t)) −I0[zS(. , t; bR(t)](bR(t)),

S1(t) — I(g−1(t), t)+
ṙ

r
−IR[zR(. , t; r(t), g(t))](g−1(t)),

(106)

and

a —
c2

c2
S

− 1, b —
b2

b2
R

− 1. (107)

Note that a, for example, gives a measure of the difference between the
parameter c in the full two-interface exact solution and the parameter cS

in the single left-interface solution. Similarly, b measures the difference
between b and bR.

On use of (40), and the definition of T0 and a, it follows that

T0(t)=
2pl(1 − l) a(2+a)

c4
S[(1+a)2 − (2l − 1)2 c−4

S )][1 − (2l − 1)2 c−4
S ]

. (108)

It is convenient to break up T0(t) as follows:

T0(t)=T00(t)+T01(t)

where

T00(t)=
4pl(1 − l) a

c4
S[1 − (2l − 1)2 c−4

S ]2 .

Note that T00/a is a known positive function of t, bounded from above and
below, that asymptotes to a constant for large t. Also, it is to be noted that
T01 — T0 − T00=O(a2) for small a, i.e., there exists constant C1, independent
of t so that |T01 | < C1a2 for small enough a. Also, from (40) and the defini-
tion of S0 and b,

S0(t)=
2pl(1 − l) b(2+b)

b4
R[(1+b)2 − (2l − 1)2 b−4

R )][1 − (2l − 1)2 b−4
R ]

. (109)
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As before, it is convenient to break up S0 as

S0=S00+S01

where

S00(t)=
4pl(1 − l) b

b4
R[1 − (2l − 1)2 b−4

R ]2 .

Then, from the asymptotic exponential growth of bR, it is clear that
|S00/b| < C1 e−2pt and |S01 | < C1 e−2pt |b|2.

Lemma 3. a and b, as defined above, satisfy the following set of
integral equations

a=−2 F
t

0
dtŒ e−w(t)+w(tŒ)[T1(1+a)+T01(1+a)+T00a](tŒ) dtŒ — N1[a, b](t)

b=2 F
t

0
dtŒ ea(t) − a(tŒ)[ − S1(1+b)+S01(1+b)+S00b](tŒ) dtŒ — N2[a, b](t)

where r occurring in T1, S1 is determined from

r=rSR([1+a][1+b])(1 − l)/(2l)

and

w(t)=2 F
t

0
[T00/a](tŒ) dtŒ,

a(t)=2 F
t

0
[S00/b](tŒ) dtŒ.

Proof. We know from (39) and (74) that

ċ

c
−

ċS

cS
=−(T0+T1).

This implies

ȧ=−2(1+a)(T0+T1)

with initial condition a(0)=0. Inverting the operator L1, defined by
L1[a]=ȧ+2T00, we obtain the integral equation for a, as in the lemma.
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Similarly, using (45) and (86), we obtain

ḃ

b
−

ḃR

bR
=(S0 − S1)

which implies

ḃ=2(1+b)(S0 − S1).

Inverting the linear operator L2 defined by L2[b]=ḃ − 2S00, with initial
condition b(0)=0, we obtain the integral equation for b stated in the
lemma. On use of (50), we note

r=rSR
1 c2b2

c2
Sb2

R

2 (1 − l)/(2l)

,

implying

r

rSR
=[(1+a)(1+b)](1 − l)/l.

This determines r in terms of a and b in the integral equations of the
lemma.

Lemma 4. If we define the operator L as

L[q](t)=2 F
t

0
e−w(t)+w(tŒ)q(tŒ) dtŒ

for t ¥ [0, T], then in the sup norm over this interval,

||L[q]|| [ > q
T00a−1

> .

Similarly, if we define the operator L1 as

L1 [q](t)=2 F
t

0
ea(t) − a(tŒ)q(tŒ) dtŒ

and ||e−Ltq(t)|| is bounded independent of T for some L, then for L > 0,

||L1 [q]|| [
C0

L
||e−Ltq|| eLT
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while for L < 0,

||L1 [q]|| [
C0

|L|
||e−Ltq||

for some constant C0 independent of T.

Proof. For the first part, note that

L[q](t)=F
1

exp[ − w(t)]
d[e−w(t)+w(tŒ)]

q(tŒ)
w −(tŒ)

.

Since w −=2 T00
a and w(t) is a positive function, the first part of the lemma

follows from a simple estimate on the term on the right hand side.
For the second part, we note the same type of estimate is not helpful,

since unlike w −(t), which is bounded below by a non-zero constant, a − tends
to zero, as t Q+.. In this case, we note that because of the exponential
growth in t of bR(t), a(t) asymptotes to a constant and so ea(t) − a(tŒ) is
bounded above by a constant independent of T. Then a simple estimate
shows

|L1 [q](t)| [ C0 ||qe−Lt|| F
t

0
eLtŒ dtŒ,

which gives the desired result.

Lemma 5. Consider the space S of continous functions of t,
(a(t), b(t)), in the interval [0, T], with ||(a, b)||=supt ¥ [0, T] |a(t)|+|b(t)|.
S is clearly a Banach space. Consider the ball Br0 , T where

||(a, b)|| [ K̃rSR(T) bR(T) — A(T) r0

for a suitable constant K̃, independent of T. Then, the mapping N: SQS,
defined by

N[(a, b)]=(N1[a, b], N2[a, b])

is a contraction map from Br0 , T to itself when r0 is small enough so that
− log r0 is sufficiently large compared to T. Therefore, there exists a unique
solution (a, b) to the integral equations in Lemma 3 in the ball Br0 , T for
sufficiently small r0.
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Proof. Note that for (a, b) ¥ Br0 , T, r0 can be chosen small enough to
ensure rST(T) bR(T), ||a|| and ||b|| sufficiently small. This will ensure c, b,
and r will remain close to cS, bR and rST. Using (96),

|T1 | [ C1{rSR[(1+a)(1+b)](1 − l)/l+r2
SRb2

R `1+b [(1+a)(1+b)]2(1 − l)/l}.
(110)

From (98) and an equality similar to (37) for IR applied to (90), it follows
that

|S1 | [ C1{bR rSR(1+b)1/2 [(1+a)(1+b)](1 − l)/l

+r2
SRc2

S(1+a)1/2 [(1+a)(1+b)]2(1 − l)/l}. (111)

Also, note that

|T01(1+a)| [ C1a2, |T00a| < C1a2

|S01(1+b)| [ C1b−4
R b2, |S00b| < C1b−4

R b2.
(112)

It follows that

> a
T00

(T1(1+a)+T01(1+a)+T00a)> [ 2C2[||T1 ||+||a||2].

From Lemma 4, it is clear that

||N1[a, b]|| < 2C2{rSR(T) bR(T)+||a||2}.

Again,

| − S1(1+b)+S01(1+b)+S00b| [ 2C1bR rSR+2C1 r2
SR+2C2b2e−2pt.

Using Lemma 4, with L= p
2l

in the first term, L=p(1 − l)
l

in the second
L=−2p for the last term on the right hand side of the above equation, we
obtain

||N2[a, b]|| < Ĉ2[rSR(T) bR(T)+[rSR(T)]2+||b||2]

< C2[rSR(T) bR(T)+||b||2]. (113)

If we choose r0 small enough so that

C2 rSR(T) bR(T) < 1
4
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and we choose K̃=4C2, then it is clear from the inequalities above that N
maps Br0 , T to itself. Using similar calculations, the boundedness of Iz and
I0z

, IRz
which follows from the fact that the zeros of zz, zS

z , and zzR
z stay

away from the boundary over the time interval [0, T], and the facts that

“

“c
(zz − zS

z )

on |z|=1 and

“

“b
(zz − zR

z )

on |z|=r are small, it is not difficult to show that N is a contraction map.
Hence, from the well-known contraction mapping theorem, there is a
unique fixed point of N in this ball. The proof is complete.

Finally, the proof of Theorem 2 follows easily from Lemma 5.

7. CALCULATIONS OF THE TWO-INTERFACE SOLUTIONS

This section presents some numerical calculations of the exact solu-
tions to the two-interface problem in an effort to illustrate the results
of the preceding rigorous analysis. They are performed as follows. Three
(arbitrary) choices of l=0.3, 0.5, and 0.7 are considered. In all cases, the
initial parameter values r0=10−4 and c0=1.1 are chosen. Then, a value
of c is picked so that the corresponding value of g0 is consistent with the
theoretical condition

g0 ± c0. (114)

The values of c used are, respectively, c=4.25, 6.5, and 8.5 leading to
values of g0 of the order of 5000 (which, it is noted, is much greater than c0

but less than r−1
0 ). The very small choice of r0 can be expected to lead to

initially well-separated interfaces.
The evolution of the conformal mapping parameters is computed as

follows. ṙ is computed using (13) while ċ is calculated using (74). A trape-
zoidal rule is used to compute all integrals arising in these two equations
because this method gives super-algebraic convergence for periodic
integrands on periodic domains, which is the case here. The corresponding
value of g is found from the algebraic condition (80). A backward Euler
method is used to advance the parameters in time.
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Figures 2–4 show the evolution for the three distinct values of l.
A clearly-defined finger in the left-most interface is seen to develop having
width l specified a priori. By the time the left-most interface has deformed
into a well-developed finger with well-defined asymptotic width, the right-
most interface is still well-separated from the tip of the finger and is still
ostensibly flat.

0 1 2 3 4 5 6 7
1

–0.5

0

0.5

1

Fig. 2. Evolution of a finite blob of fluid in a Hele–Shaw cell. Times shown are t=0, 0.25,
0.5, 0.75, 1, 1.25. Initial conditions are l=0.7, c0=1.1, r0=10−4, c=8.5.

0 1 2 3 4 5 6 7
1

–0.5

0

0.5

1

Fig. 3. Evolution of a finite blob of fluid in a Hele–Shaw cell. Times shown are t=0, 0.25,
0.5, 0.75, 1, 1.25. Initial conditions are l=0.5, c0=1.1, r0=10−4, c=6.5.

0 1 2 3 4 5 6 7
1

–0.5

0

0.5

1

Fig. 4. Evolution of a finite blob of fluid in a Hele–Shaw cell. Times shown are t=0, 0.25,
0.5, 0.75, 1, 1.25. Initial conditions are l=0.3, c0=1.1, r0=10−4, c=4.25.
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These calculations of the exact solutions to the two-interface problem
are consistent with the rigorous analysis and conclusions presented in pre-
vious sections.

8. DISCUSSION

The preceding results demonstrate rigorously the existence of a large
family of time-dependent solutions involving a finite amount of fluid in a
Hele–Shaw channel; these evolve rather differently from the translationally
invariant solution of Feigenbaum. (21) As the fluid volume becomes pro-
gressively larger, we prove that that there is an intermediate time scale, far
smaller than the time it takes for left interface to catch up with the right
interface, where the above N=1 family of solutions approaches a ZST
(or Saffman–Taylor) steady solution of relative finger width l, without any
restriction on l. Further, we have shown that there exist more general
solutions (the N=2 solution, for instance) that can be made close to the
N=1 solution initially, but which subsequently evolve into multiple fingers
by a tip-splitting instability over an intermediate time scale. We therefore
conclude that the N=1 solutions are unstable.

Since experimental observation of steady fingers is always under con-
ditions in which the two interfaces are well-separated, our overall conclu-
sion is that a zero-surface tension theory, even with a finite volume of fluid,
cannot explain the experimentally-observed finger selection.

If a zero-surface tension model were to be physically relevant (a con-
tention which we do not support), it is difficult to argue that the particular
translationally invariant solution due to Feigenbaum (21) is any more rele-
vant than those found above in explaining experimentally observed steady
fingers when the two interfaces are still far apart. Further, we have found
precise upper bounds (103) on the differences between the the initial shape
described by a particular solution in our family of solutions and that of
Feigenbaum. This difference, which is less than 2e−pL/2 (=0.00016 for
L=6) is beyond experimental precision even at this moderate value of L,
the initial distance between the left finger tip and the right interface.

In addition, within the above class of exact solutions, one recovers, in
the asymptotic limit where the fluid volume tends to infinity, the class of
solutions found earlier by Howison. (30) This latter class includes one where
a ZST solution exhibits ‘‘tip-splitting.’’ Thus the l=1

2 ZST solution is
nonlinearly unstable—a result that is not at all surprising in view of the ill-
posed dynamics, which we now briefly discuss.

Even when there is a finite, but large, amount of viscous fluid in
the channel the initial value problem can be expected to be ill-posed. If
ṙ/r > 0—as is the case for the special Saffman-like solution (since ṙ/r
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closely tracks ṙSR/rSR) and is surely the case for many other solutions—
it is clear that Re[I(z, t)] on the boundary of the ring R: 1 < |z| < r−1 is
positive since

Re[I(z, t)]=−Re[I(z−1, t)]=
2

p |zz(z−1, t)|2 > 0 on |z|=1,

and on the outer boundary of R,

Re[I(z, t)]=−Re[I(z−1, t)]=
2

pr2 |zz(z−1, t)|2+
ṙ

r
> 0 on |z|=r−1,

while Re[I(z, t)] is a harmonic function of (Re[z], Im[z]) in R. Applying
the maximum principle for harmonic functions, any singularity zs in R will
move according to the property:

Re 5żs

zs

6=−Re[I(zs, t)] < 0.

Stated differently, singularities will continuously move inwards towards
|z|=1, corresponding to the left interface L. For a single left-interface
problem, it has been argued (28) how this fundamental property is charac-
teristic of the ill-posedness of the initial value problem when the interface
shape is specified to some finite precision. We expect similar dynamics to
occur in the case of a large finite amount of fluid.

Given the ill-posed nature of the dynamics and the expected structural
instability of the zero-surface tension problem (in the sense that the solu-
tion set is not continuous in the surface tension parameter at exactly zero
surface-tension), we believe one should not attach physical significance to
any one particular solution of the zero-surface tension problem. Explicit
simple examples have been given (20) to show the limitations of using physi-
cal intuition to make assertions about a structurally unstable, or even a
nearly structurally unstable, system. Even within the context of Hele–Shaw
flows, there are explicit examples where the spectrum of the linear stability
operator is discontinuous at exactly zero surface tension. (35)

Thus, it is our belief that physical arguments for selection based on the
energetics of any solution of the zero-surface tension Hele–Shaw model are
precarious since the behavior of such solutions is not exhibited by the phy-
sical system in the limit as surface tension tends to zero. A real physical
system always has some surface tension (or some other appropriate
regularizing effect) that is ignored in the zero-surface tension model. Such
effects are known to change the expected behavior of the system (based
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on a zero-surface tension model) in surprising ways. This explains, for
instance, why regularization in the form of arbitrarily small anisotropic
surface tension can lead to selection of narrow fingers (much narrower
than the celebrated l=1

2). Different types of small regularization lead
to different types of selection mechanism; an unregularized model (e.g. ,
the zero-surface tension Hele–Shaw model) cannot possibly explain the
dependence of selection on the type of small regularization introduced.
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