
J. Nonlinear Sci. Vol. 9: pp. 615–640 (1999)

© 1999 Springer-Verlag New York Inc.

Exact Solutions for Steady Capillary Waves on a Fluid
Annulus

D. G. Crowdy
Department of Mathematics, Massachusetts Institute of Technology 2-335, 77 Massachusetts
Avenue, Cambridge, MA 02139, USA

Received February 9, 1998; revised November 5, 1998
Communicated by A. Fokas

Summary. Exact solutions for steady capillary waves on an annulus of swirling irro-
tational fluid are presented. The solutions have an intimate mathematical connection
with the finite amplitude waves on fluid sheets identified by Kinnersley [8]. This mathe-
matical connection is made explicit by first retrieving the solutions of Kinnersley using
an extension of a new approach to free surface potential flows with capillarity recently
devised by the present author (Crowdy [3]). A much-simplified representation of Kinner-
sley’s original solutions results from the reformulation. The method is then generalized
to identify the exact solutions for steady capillary waves on an annulus.

1. Introduction

The fundamental problem of understanding the interaction of inviscid hydrodynamic
pressure forces with capillary effects on a free surface is classical—Lord Rayleigh, for
example, studied the small amplitude oscillations of a spherical globule of fluid in a
dynamically inactive ambient and zero gravity held together by surface tension [9]. The
literature concerned with the study of the free surface dynamics of free blobs and bubbles
is extensive (see [4] for a list of references). Recently, the author [4] considered some
mathematical models of the physical problem of finding the steady-state equilibria of free
drops (in zero gravity, surrounded by a dynamically inactive ambient and with surface
tension on the boundary) where the shape deformations of the free surface are induced
by internal circulations. An understanding of the free surface dynamics in this situation
represents an important theoretical paradigm in modelling a large number of physical
processes [4].

In a recent paper [3], a new theoretical approach to some two-dimensional free-surface
potential flow problems with surface tension was developed. The new approach was used
to elucidate the mathematical connection between the classical exact solutions for deep
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water capillary waves originally found by Crapper [2] and some more recent results by
Tanveer [12] which revealed that conformal mapping solutions for a steadily translating
bubble have a very specific polar decomposition. In [4], the present author used the same
theoretical reformulation to unveil the existence of some new exact solutions involving
simply connected flow regions. These include solutions for the steady-state shapes of
a bubble in a simple vortical flow, and the steady-state shapes of a droplet of fluid
containing a single point vortex.

In this paper, the doubly connected continuation of some of the solutions in [4]
is found. To the best of the author’s knowledge, these exact solutions do not appear
to have been reported before in the literature. Furthermore, in the same way that the
new solutions found in [4] have intimate mathematical connections with the deep water
capillary wave solutions of Crapper [2], the solutions presented here are intimately related
to the extension of Crapper’s solutions originally expounded in detail by Kinnersley [8]
for finite amplitude waves on fluid sheets.

As a natural first step, in Section 2 of the paper, it is indicated how to generalize the
methods presented in [3] to retrieve Kinnersley’s symmetric sheet wave solutions. The
theory of loxodromic functions is naturally applicable to this case. The solution method
is very different from the original scheme used by Kinnersley and leads naturally to
a remarkably simple representation of the solutions. A subsidiary result of the present
paper therefore is that we have found a much-simplified representation of Kinnersley’s
sheet wave solutions that is not apparent from the original paper [8].

In Section 3, the ideas of Section 2 are developed to unveil a two-parameter family
of exact solutions for steady capillary waves on a fluid annulus which represents a
genuinely doubly-connected flow configuration. The solutions can be written in closed
form. Typical steady-state shapes of the fluid annulus are plotted, as well as typical flow
streamlines.

The new solutions are presented here as a contribution to the mathematical theory
of nonlinear free surface problems and while interesting as an example of a paradig-
matic Laplace-type free surface problem that admits exact solutions, possible physical
applications of the solutions remain to be determined. The solutions certainly enhance
our understanding of the way in which hydrodynamic pressure forces interact nonlin-
early with free capillary surfaces to produce equilibrium configurations for fluid droplets
containing enclosed air bubbles and, as such, the results might be useful as a basis for
some “mean-field” model of large-scale dispersive systems containing large numbers of
blobs and/or bubbles in the same way that well-known paradigmatic exact vortex solu-
tions (e.g., Burgers vortex, Hill’s spherical vortex) have formed the basis for numerous
models of the fine-scale structure of turbulence [11]. Moreover, there exists in the liter-
ature very few known solutions for free boundary problems involvingtwo free surfaces
interacting with eachother – this paper presents new examples of such a situation. The
solutions bear the virtue of mathematical exactness, which therefore makes them a useful
tool for checking numerical codes written to resolve more complicated free boundary
problems in the same (doubly connected) geometry when additional physical effects are
included and exact results are not available. Further, not only are the solutions exact, but
they are interesting in that they are related to well-known classical exact solutions [2]
[8] in a different (“water wave”) geometry where the physical relevance of the solutions
is more easily seen.
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Fig. 1.Symmetric sheet waves.

2. Symmetric Sheet Waves

By a direct extension of the analysis of Crapper [2], Kinnersley [8] found two physically
distinct types of steady solutions for waves on sheets of fluid described in [8] as waves of
types Ia, Ib, IIa, and IIb. Waves of type Ia and Ib are completely equivalent except for a
relabelling of streamlines, as are waves of type IIa and IIb. Type I waves are symmetric,
type II waves antisymmetric.

In this section, we show how to generalize the new methodology presented in [3]
to the problem of waves on fluid sheets. Kinnersley’s symmetric (type I) waves will be
systematically retrieved.

First, we assume that the shape of both the upper and lower fluid interfaces are
spatially periodic inx with wavelengthλ ≡ 2π

k . It is well known that this potential flow
problem can be reformulated as the problem of finding a conformal mapping function
z(ζ ) describing the fluid region. Under this assumption, it is enough to consider the
structure of a conformal map from a standard parametric region (in aζ -plane) to a
window of the fluid sheet of length2πk . Therefore, consider the conformal mapping
functionz(ζ ) from the cut annulusρ < |ζ | < 1 (as shown in Figure 2) in a parametric
conformal mapping plane (ζ -plane) to a window of the finite sheet of fluid as shown in
Figure 1. Without loss of generality, it can be assumed that the upper interface of the
fluid sheet is the image of the circle|ζ | = 1. We assume that the second free surface
of the fluid sheet maps from|ζ | = ρ where 0< ρ < 1. It is clear that in this case the
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Fig. 2.Parametricζ -plane.

conformal mapping function can be written in the form

z(ζ ) = 2π

k
+ i

k
(logζ + f (ζ )) , (1)

where f (ζ ) is analytic everywhere in the annulusρ < |ζ | < 1. The branch cut associated
with the logarithm is taken along the positive real axis. Note that it is assumed thatzζ
vanishes nowhere inρ ≤ |ζ | ≤ 1. This corresponds to seeking smooth waves with no
corners or cusps.

The complex potential is defined to be

w(z) = φ(x, y)+ iψ(x, y). (2)

The fluid velocity field(u, v) is then given bydw
dz = u − i v. In the steady case, the

kinematic boundary condition on each of the fluid interfaces is equivalent to specifying
that

Im[w] ≡ ψ = constant, (3)

on each fluid boundary. It is clear that, for symmetric waves, the form ofW(ζ ) ≡ w(z(ζ ))
is given by

W(ζ ) = i
c

k
logζ + 2πc

k
. (4)

Note that this form satisfies the kinematic requirement (3) and implies that Re[W] =
const. on the vertical sides of the physical window in Figure 1.

The nondimensionalized Bernoulli (or pressure) condition on each fluid interface can
be written

1

2

∣∣∣∣dw(z)dz

∣∣∣∣2 = κ + 0, (5)
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whereκ is the curvature of the interface and0 is the Bernoulli constant. Rewriting this
in terms of the conformal mapping variableζ on |ζ | = 1 gives

Wζ (ζ )Wζ (ζ
−1)

2z̄ζ (ζ−1)
= − z1/2

ζ (ζ )

z̄1/2
ζ (ζ

−1)
Re

[
1+ ζzζ ζ

zζ

]
+ 0zζ . (6)

This can be written more conveniently as

Wζ (ζ )Wζ (ζ
−1)

2z̄ζ (ζ−1)
= − d

dζ

[
ζzζ (ζ )

ζ−1z̄ζ (ζ−1)

]1/2

+ 0zζ . (7)

Assuming the same value of the surface tension parameter on both free surfaces, the
Bernoulli condition on|ζ | = ρ can be written in a similar fashion:

Wζ (ζ )Wζ (ρ
2ζ−1)

2z̄ζ (ρ2ζ−1)
= + d

dζ

[
ζzζ (ζ )

ρ2ζ−1z̄ζ (ρ2ζ−1)

]1/2

+ 0zζ . (8)

It is assumed in what follows that the complex potentialW(ζ ) is completely specified
and also that0 is given. The correspondingz(ζ ) will then be found. Since0 = c2

2 and
from (4), it is clear that these requirements imply that the wavespeedc and the wavenum-
berk of the solutions are specified. We therefore seek solutions forz(ζ ) corresponding
to these given values ofc andk.

We define some functions which will be important in the subsequent analysis:

Definition. Define the functionR(ζ ) as follows:

R(ζ ) ≡ (ζzζ (ζ )
)1/2

. (9)

Definition. Define the functionS(ζ ) as follows:

S(ζ ) ≡ − d

dζ

[
ζzζ (ζ )

ζ−1z̄ζ (ζ−1)

]1/2

+ 0zζ (ζ ). (10)

Definition. Define the function9(ζ) as follows:

9(ζ) ≡
(

ζzζ (ζ )

ζ−1z̄ζ (ζ−1)

)1/2

. (11)

The annulusρ < |ζ | < 1 will be referred to asC0, while the annulus 1< |ζ | < ρ−1

will be referred to asC1. These annuli are drawn in Figure 3. Note finally that the quantity

Wζ (ζ )Wζ (ζ
−1)

2z̄ζ (ζ−1)
= c2

2k2z̄ζ (ζ−1)
(12)

is analyticeverywhere inC1.
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Fig. 3.Definition of annuli.

2.1. Singularity Structure

Theorem 2.1. In the problem of finding steady symmetric solutions for finite fluid sheets,
everywhere in the annulus C1 the function9(ζ) satisfies a Riccati-type equation of the
form

− d

dζ
9(ζ )+ q1(ζ )9

2(ζ ) = q2(ζ ), (13)

where q1(ζ ) and q2(ζ ) are analytic everywhere in C1. Specifically,

q1(ζ ) = 0z̄ζ (ζ−1)

ζ 2
, (14)

and

q2(ζ ) = Wζ (ζ )Wζ (ζ
−1)

2z̄ζ (ζ−1)
. (15)

Proof. The proof of this theorem is immediate using analytic continuation of the
Bernoulli condition (7) intoC1 and by substituting the definition (11) for9(ζ).

By viewing the equation for the analytically continued mapping function in an ap-
propriate way, the rigorous results of Painlev´e (e.g., [7]) can be employed to make
some important deductions about the singularity structure of the analytically continued
conformal mapping.

Theorem 2.2. In the annulus C1 the singularities of9(ζ) are necessarily simple poles.

Proof. From the previous theorem, it is known that9(ζ)satisfies a Riccati-type equation
everywhere inC1 with coefficient functionsq1(ζ ) andq2(ζ )which are known a priori to
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be analytic everywhere inC1. Painlevé established [7] thatgenerically, for an equation
of the form (13) (with analytic coefficients) the movable singularities inC1 are simple
poles. The theory also establishes that (nongeneric) higher order poles can only possibly
occur at zeros ofq1(ζ ); however since, by the conformality requirements,z̄ζ (ζ−1) (and
henceq1(ζ )) does not vanish inC1, this event does not occur. Thus the theorem follows.

Remark 1. Note that since [ζ−1z̄ζ (ζ−1)]−1/2 is analytic inC1, it is clear that9(ζ)
and R(ζ ) have the same singularity structure inC1. By squaring, we deduce that the
only possible singularities ofζzζ (ζ ) in C1 are second-order poles. It is then clear that
[ζzζ (ζ )]1/2 is single-valued everywhere in the annulusρ < |ζ | < ρ−1.

2.2. Loxodromic Mapping Functions

In this section, we indicate how the complex variable formulation leads to the considera-
tion of the subclass of possible mapping functions such thatζzζ is aloxodromic function
with multiplicative periodρ2. Loxodromic functions are intimately related to elliptic
functions (via an exponential transformation) [10] [15]. Richardson [10] provides a use-
ful summary of the general properties of these functions based on a presentation given
in Valiron [15]. For recent applications of these special functions in different physical
problems, see Richardson [10] and Crowdy and Tanveer [5].

Definition. A function H(ζ ) will be described as possessing theloxodromic property
with multiplicative periodρ2 if it satisfies the following functional relation for allζ 6= 0:

H(ρ2ζ ) = H(ζ ). (16)

Definition. A function H(ζ )will be described as possessing theantiloxodromic prop-
erty with multiplicative periodρ2 if it satisfies the following functional relation for all
ζ 6= 0

H(ρ2ζ ) = −H(ζ ) (17)

Remark 2. Note that the previous two definitions are not generally acknowledged ter-
minology but are made for convenience for the purposes of this paper. The following
definition is, however, standard [15]:

Definition. A function H(ζ ) will be said to be aloxodromic functionif it is both
meromorphicand possesses the loxodromic property.

Remark 3. We emphasize the distinction between a function possessing the loxodromic
property and a loxodromic function. A function possessing the loxodromic property need
not necessarily be meromorphic.

Now consider the two Bernoulli conditions (7) and (8). These two functional relations
hold on|ζ | = 1 and|ζ | = ρ respectively but, by analytic continuation, they also hold off
these two contours. There can only possibly exist steady solutions provided that these
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two functional relations are compatible (i.e., mutually consistent). Assuming the single-
valuedness of [ζzζ (ζ )]1/2 everywhere inρ < |ζ | < ρ−1 (this assumption is consistent
with the arguments on the singularity structure ofR(ζ ) deduced in the previous section)
and by the uniqueness of analytic continuation, it is clear that the consistency of the two
Bernoulli conditions (7) and (8) requires that the functionR(ζ ) ≡ (ζzζ

)1/2
satisfies the

functional equation

R(ρ2ζ ) = −R(ζ ); (18)

i.e., R(ζ )must possess the antiloxodromic property. Squaring (18), it is seen thatζzζ (ζ )
then possesses the loxodromic property with multiplicative periodρ2, i.e.,

ρ2ζzζ (ρ
2ζ ) = ζzζ (ζ ). (19)

In summary, for symmetric waves,R(ζ ) ≡ (ζzζ (ζ )
)1/2

possesses the antiloxodromic
property with multiplicative periodρ2. This in turn implies thatζzζ (ζ ) possesses the
loxodromic property with fundamental annulusρ < |ζ | < ρ−1. Moreover, it has been
established thatζzζ is meromorphic in this annulus. Thus we conclude that it is a
loxodromic function.For the remainder of this section on sheet waves, it is assumed that
consideration is restricted to this class of functions—i.e., functionsz(ζ ) such thatR(ζ )
satisfies (18) and has only simple poles inC1.

2.3. Exact Solutions (Sheet Waves)

Theorem 2.3. The condition that S(ζ ) is analytic everywhere in C1 is equivalent to
Bernoulli conditions (for some c and k) holding on the boundaries of the fluid sheet.

Proof. First assume that Bernoulli conditions for symmetric sheet waves (for somec
andk) hold on both surfaces of the fluid sheet. By the antiloxodromic property ofR(ζ )
from the discussion above, this implies that

S(ζ ) = c2

2k2z̄ζ (ζ−1)
(20)

on |ζ | = 1 and also everywhere else, by analytic continuation (in particular, on|ζ | = ρ
where (20) is equivalent to a Bernoulli condition). (20) immediately implies thatS(ζ ) is
analytic everywhere inC1.

Conversely, suppose thatS(ζ ) is analytic everywhere inC1. Thus,ζS(ζ ) is also an-
alytic everywhere inC1. Moreover, from the analytical structure ofS(ζ ), and by the
antiloxodromic property ofR(ζ ) (which in turn implies thatζzζ (ζ ) possesses the loxo-
dromic property), it can be seen thatζS(ζ ) also possesses the loxodromic property with
multiplicative periodρ2, i.e.,

ρ2ζS(ρ2ζ ) = ζS(ζ ). (21)

Thus, since the function [ζ−1z̄ζ (ζ−1)]−1 possesses the loxodromic property and is ana-
lytic in C1, ζS(ζ ) can be written in the following form:

ζS(ζ ) = ζH(ζ )

z̄ζ (ζ−1)
, (22)
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for some functionH(ζ ) (to be determined) which is analytic everywhere inC1 and which
also possesses the loxodromic property.

We now observe the important fact that on|ζ | = 1

S(ζ )z̄ζ (ζ−1) = S(ζ )z̄ζ (ζ
−1). (23)

This can be seen after some manipulation and depends crucially on the functional struc-
ture of S(ζ ). This implies thatS(ζ )z̄ζ (ζ−1) is real on |ζ | = 1. From (22) this in turn
implies thatH(ζ ) is real on |ζ | = 1. H(ζ ) is necessarily analytic everywhere inC1 and
possesses the loxodromic property with multiplicative periodρ2, which means that it has
a fundamental annulus that is the union ofC1 andC0 (i.e., the annulusρ < |ζ | < ρ−1).
However, the reality ofH(ζ ) on the unit circle implies

H(ζ ) = H(ζ−1), (24)

a functional equation that furnishes the analytic continuation ofH(ζ ) into C0 and, in
particular, implies thatH(ζ ) must be analyticeverywherein its fundamental annulus
(since it is necessarily analytic inC1). By Liouville’s theorem for loxodromic functions
[15], it follows thatH(ζ ) must be a (real) constant function, i.e.,

H(ζ ) = c2

k2
, (25)

for some constantc
2

k2 (say). Substituting this form forH(ζ ) back into (22), it is seen
that (22) is then equivalent to Bernoulli conditions holding on both surfaces of the fluid
sheet. The theorem is then proved.

We can now combine these results to deduce a global reformulation of the problem
of finding solutionsζzζ to the steady fluid sheet problem:

Theorem 2.4(Main Theorem). The problem of finding z(ζ ) for steady symmetric waves
on a finite fluid sheet is equivalent to finding a function z(ζ ) satisfying the following
conditions:

(i) z(ζ ) is a holomorphic, univalent map fromρ ≤ |ζ | ≤ 1 to the fluid domain having
the general form

z(ζ ) = 2π i

k
(logζ + f (ζ )) , (26)

where f(ζ ) is analytic in C0;
(ii) [ ζzζ (ζ )]1/2 possesses the antiloxodromic property;
(iii) [ ζzζ (ζ )]1/2 is meromorphic in C1 with only simple pole singularities;
(iv) the function S(ζ ) is holomorphic everywhere in C1 with

S(1) = Wζ (1)Wζ (1)

2z̄ζ (1)
. (27)



624 D. G. Crowdy

Proof. The proof of this theorem is clear from a combination of the results of all the
preceding theorems. The single extra condition (27) simply ensures that the constant
function H(ζ ) in the proof of Theorem 2.3 takes the specified valuec2

k2 .
It is well known (pp. 105 of [7]) that certain Riccati equations admit solutions that are

meromorphic with afinite number of poles. We have also now deduced that a solution
(ζzζ )1/2 is necessarily meromorphic inC1 and satisfies a Riccati-type equation there.
We therefore ask the following natural question: does the problem of steady waves on a
finite sheet of fluid admitloxodromic functionsolutions offiniteorderN?

The well-known representation theorem for loxodromic functions [10] [15] states that
if H(ζ ) is a loxodromic function of finite orderN ≥ 2 with multiplicative periodρ2, it
will necessarily have the general form

H(ζ ) = A

∏N
k=1 P(ζη−1

k )∏N
j=1 P(ζ ζ−1

j )
, (28)

where

P(ζ ) ≡ (1− ζ )
∞∏

k=1

(1− ρ2kζ )

∞∏
j=1

(
1− ρ

2 j

ζ

)
, (29)

and where
N∏

k=1

ηk =
N∏

j=1

ζj . (30)

The functionP(ζ ) has the following important properties:

P(ρ2ζ ) = −ζ−1P(ζ ) = P(ζ−1). (31)

It is also convenient at this point to define a related functionP̂(ζ ) that will be needed
later, i.e.,

P̂(ζ ) ≡
∞∏

k=1

(1− ρ2kζ )

∞∏
j=1

(
1− ρ

2 j

ζ

)
. (32)

It is enough, given the loxodromic nature ofζzζ (ζ ) to restrict attention to thefun-
damental annulusρ < |ζ | ≤ ρ−1 since all other annuli areequivalent(see [10] [15]).
Similarly, by the various conditions onR(ζ ), it can be shown that it has a representation
of the form (

ζzζ (ζ )
)1/2 = A

∏N
k=1 P(ζη−1

k )∏N
j=1 P(ζ ζ−1

j )
, (33)

for N ≥ 1, where

N∏
k=1

ηk = −
N∏

j=1

ζj . (34)

Note that all the zeros{ηj } and all poles{ζj } must be in the annulusC1.
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We now combine all the above mathematical information to deduce the following
result:

Theorem 2.5. The problem of steady symmetric waves on fluid sheets of finite thickness
admits exact solutions in whichζzζ is a loxodromic function of the form

ζzζ = i A

(∏N
k=1 P(ζη−1

k )∏N
j=1 P(ζ ζ−1

j )

)2

, (35)

where N≥ 1 and

N∏
k=1

ηk = −
N∏

j=1

ζj . (36)

In particular, the case N= 1 corresponds to the type I solutions identified by Kinnersley
[8], i.e.,

ζzζ = i A

(
P(ζη−1

1 )

P(ζ ζ−1
1 )

)2

(37)

for suitable constants A (real),η1, andζ1.

Proof. We prove the theorem by direct construction of a solution for eachN. The method
of construction is based on the need to satisfy the requirements (i)–(iv) of Theorem 2.4:

Solution for N= 1: For N = 1, the mapping function has the form

zζ (ζ ) = Â

ζ

(
P(ζη−1

1 )

P(ζ ζ−1
1 )

)2

. (38)

In order to obtain a solution forz(ζ ) with the general form (1),̂A is taken to be purely
imaginary, i.e.,Â = i A for some purely realA. The form ofS(ζ ) corresponding to (38)
is given by

S(ζ ) = −i
d

dζ

[
P(ζη−1

1 )P(ζ−1ζ̄−1
1 )

P(ζ ζ−1
1 )P(ζ−1η̄−1

1 )

]
+ i0A

ζ

(
P(ζη−1

1 )

P(ζ ζ−1
1 )

)2

. (39)

The two equations arising from the vanishing of the principal part ofS(ζ ) atζ1 are given
by

η1 = −ζ1, (40)

0A = P(|ζ1|−2)P̂(+1)

P(−|ζ1|−2)P(−1)
(41)
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Fig. 4.Kinnersley’s sheet waves using (45) withζ1 = 3.11,ρ = 0.1.

Note that (40) is consistent with the requirement (34) withN = 1. This choice of
parameters satisfies the two principal part conditions onS(ζ ) at ζ = ζ1. Finally, the
condition (27) can be shown to be equivalent to the following condition:

c2

k2
= 2A

P(|ζ1|−2)P̂(+1)

P(−|ζ1|−2)P(−1)
. (42)

Eliminating between equations (41) and (42) produces a simple relationship between0

and c
k , namely,

0A2 = c2

2k2
. (43)

This is exactly the same relationship between the parameters as that found in the case of
deep water capillary waves [3].

The final form of the exact solution is therefore a three-parameter family of solutions
parametrized byA, ζ1, andρ, i.e.,

zζ = i A

ζ

(
P(−ζ ζ−1

1 )

P(ζ ζ−1
1 )

)2

. (44)

Integration of this expression yields the final form of the conformal map as

z(ζ ) =
∫ ζ

1

i A

ζ ′

(
P(−ζ ′ζ−1

1 )

P(ζ ′ζ−1
1 )

)2

dζ ′. (45)

A plot of this conformal map for the typical valuesρ = 0.1 andζ1 = 3.11, along with
some typical streamlines, is given in Figure 4.

The concise representation of the solution (45) is exactly equivalent to Kinnersley’s
type I solutions [8]—a remarkable fact given the rather complicated expression of the
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solution (in terms of Jacobi elliptic functions) presented in the original paper [8]. It turns
out that Kinnersley’s original solutions can be greatly simplified. This simplification is
given in an appendix.

Solutions for general N: It can similarly be shown that there exists a solution for
generalN of the following form:

ζj = e
2π i ( j−1)

N ζ1, j = 2, . . . N, (46)

ηj = e
(2 j−1)π i

N ζ1, j = 1, . . . N, (47)

0A = P̂(+1)

∏N
j=2 P(ζ1ζ

−1
j )∏N

j=1 P(ζ1η
−1
j )

(∏N
k=1 P(ζ−1

1 ζ̄−1
k )∏N

k=1 P(ζ−1
1 η̄−1

k )

)
. (48)

We remark that the solutions for differentN do not represent physically distinct solutions.
Rather, they represent the Kinnersley solutions withN identical periods of the wave
described by the mapping function.

Remark 4. Note that it is immediately seen that the limitρ → 0 of theN = 1 solution
retrieves the exact solutions as obtained in Crowdy [3] (i.e., Crapper’s infinite depth
capillary wave solutions), i.e., asρ → 0,

zζ = i A

ζ

(
P(−ζ ζ−1

1 )

P(ζ ζ−1
1 )

)2

→ i A

ζ

(
(ζ + ζ1)

(ζ − ζ1)

)2

, (49)

and that

0A = P(|ζ1|−2)P̂(+1)

P(−|ζ1|−2)P(−1)
= P(|ζ1|−2)

P(−|ζ1|−2)

1

2

(∏∞
k=1(1− ρ2k)2∏∞
k=1(1+ ρ2k)2

)
→ 1

2

|ζ1|2− 1

|ζ1|2+ 1
. (50)

This is exactly Crapper’s deep water solution.

Remark 5. Note that there is no assertion ofuniquenessof the exact, loxodromic func-
tion solutions. It is possible that the foregoing mathematical arguments leading to the
finite reduction of the full nonlinear free boundary problem could be made fully rigorous,
thereby providing a possible means of proof of uniqueness of Kinnersley’s symmetric
solutions by studying the properties of the finite system to which the problem is reduced.
Such a proof of uniqueness of the symmetric solutions using other methods (e.g., func-
tional analysis) does not, to the best of the author’s knowledge, yet exist. On the other
hand, the solutions might not be unique, and additional distinct physical solutions might
well be found using the constructive methods presented above.
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Fig. 5. Irrotational flow in an annulus with surface tension.

3. Capillary Waves on an Annular Blob

The foregoing theoretical reformulation is now extended to unveil a new class of exact
solutions. The problem under consideration is that of finding steady state shapes for the
two free surfaces of a fluid annulus undergoing an irrotational, swirling motion. The
problem is the natural, doubly connected generalization of the exact solutions recently
identified by Crowdy [4] concerning the steady motion of a finite fluid drop containing a
single point vortex. In the doubly connected case, the point vortex is no longer inside the
flow region but can be thought of instead as an image vortex producing an irrotational
azimuthal swirl in the fluid annulus. The form ofW(ζ ) is again given by

W(ζ ) = i γ logζ. (51)

It will be assumed thatγ is specified.
It is expected that steady solutions will exist for particular values of the pressure dif-

ference between the pressure inside the bubble enclosed by the annulus and the pressure
of the air outside the annulus. This amounts to a statement of the fact that the Bernoulli
conditions on each of the fluid interfaces will havedifferentBernoulli constants, which
will be called01 and0ρ , respectively. It expected that the ratio of these two quantities
will be given as part of the solution. To keep the analysis as general as possible, we also
allow for different values of the (uniform) surface tension parameter on each of the two
free surfaces. Denoting the uniform surface tension on the two boundaries asT1 andTρ
respectively, the ratio will be denoted byβ, i.e.,

β = Tρ
T1
. (52)

We expect to be able to specifyβ externally and thus find corresponding solutions.
This will be seen to be the case. Physically, a difference in the values of the uniform
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surface tension on the two interfaces could be brought about by the presence of some
surface active agent (i.e., surfactant) on one (or both) of the free surfaces, or perhaps by
some other physical mechanism such as a difference in temperature of the air inside the
enclosed bubble compared to that outside the blob.

Nondimensionalizing the equations usingT1, on |ζ | = 1 the Bernoulli condition can
be written

Wζ (ζ )Wζ (ζ
−1)

2z̄ζ (ζ−1)
= − d

dζ

[
ζzζ (ζ )

ζ−1z̄ζ (ζ−1)

]1/2

+ 01zζ . (53)

The Bernoulli condition on|ζ | = ρ can be written in a similar fashion:

Wζ (ζ )Wζ (ρ
2ζ−1)

2z̄ζ (ρ2ζ−1)
= +β d

dζ

[
ζzζ (ζ )

ρ2ζ−1z̄ζ (ρ2ζ−1)

]1/2

+ 0ρzζ . (54)

Note that (51) clearly satisfies the kinematic conditions that the two free surfaces be
streamlines, i.e.,

ψ = Im[W] = constant, on |ζ | = ρ and 1. (55)

3.1. Exact Solutions (Fluid Annulus)

We now choose to seek solutions for which [zζ (ζ )]1/2 satisfies the following functional
equation:

[zζ (ρ
2ζ )]1/2 = ω ∗ [zζ (ζ )]

1/2, (56)

for some constantω. Given (53) and (54) it is clear that, in order for the analytically
continued Bernoulli conditions to be mutually consistent, it is necessary that

ρ = − 1

ωβ
(57)

and

01 = ρ2ω20ρ. (58)

For givenβ, (57) provides an equation forρ. (58) then provides the equation relating
the two Bernoulli constants01 and0ρ .

We now state the theorem analogous to Theorem 2.4 that will lead to a constructive
method of finding solutions to the above-stated problem:

Theorem 3.1. The problem of finding solutions to the problem of capillary waves on
a fluid annulus (as stated above) is equivalent to finding a conformal mapping z(ζ )

satisfying the following conditions:

(i) z(ζ ) is a univalent conformal map from C0 to the fluid region. z(ζ ) is analytic
everywhere in C0 and zζ does not vanish anywhere in C0;
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(ii) [ zζ (ζ )]1/2 satisfies the functional equation (56);
(iii) [ zζ (ζ )]1/2 is meromorphic in C1 with only simple pole singularities;
(iv) S(ζ ) is analytic everywhere in C1 with

S(1) = Wζ (1)Wζ (1)

2z̄ζ (1)
. (59)

Proof. The proof of this theorem is analogous to the proof of Theorem 2.4 with only
minor changes in detail.

Using the properties (31) it can easily be seen that the following general class of
functions satisfy the functional equation (56), i.e.,

[zζ (ζ )]
1/2 = A

∏N
k=1 P(ζη−1

k )∏N
j=1 P(ζ ζ−1

j )
, (60)

whereN is some integer andηk andζj are some constants satisfying the condition

ω =
∏N

k=1 ηk∏N
j=1 ζj

. (61)

Note also that, providedζj are in the annulusC1 and that none are repeated poles, then
(60) represents a function satisfying the analyticity constraints imposed by the problem
and is therefore a candidate solution. Indeed, using counting arguments resulting from
the necessary and sufficient conditions of the previous theorem, the counting problem
for any solution of the form (60) is consistent. This indicates at least thepossibilityof
finding exact solutions of the form (60) for someN.

An investigation of the finite system of nonlinear equations provided by assuming
that [zζ (ζ )]1/2 has the form (60) for someN and then insisting thatS(ζ ) is analytic at
each of the polesζj and satisfies (59), immediately reveals that a solution withN = 1
is impossible. However, a solution withN = 2 has been found. We will now present
details of theN = 2 exact solution.

Remark 6. While we make no claim that the solution withN = 2 is the only solution
with [zζ (ζ )]1/2 of the form (60), we have not yet been unable to find solutions corre-
sponding toN 6= 2, even though the counting problem is consistent for any positive
integerN ≥ 2. The rather intriguing question of the possible non-uniqueness of the new
solutions that are about to be presented therefore remains open at this time.

With N = 2, the solution has the form

[zζ (ζ )]
1/2 = A

P(ζη−1
1 )P(ζη−1

2 )

P(ζ ζ−1
1 )P(ζ ζ−1

2 )
. (62)
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The correspondingS(ζ ) is given by

S(ζ ) = − d

dζ

(
ζ P(ζη−1

1 )P(ζη−1
2 )P(ζ−1ζ̄−1

1 )P(ζ−1ζ̄−1
2 )

P(ζ ζ−1
1 )P(ζ ζ−1

2 )P(ζ−1η̄−1
1 )P(ζ−1η̄−1

2 )

)

+ 0A2

(
P(ζη−1

1 )P(ζη−1
2 )

P(ζ ζ−1
1 )P(ζ ζ−1

2 )

)2

. (63)

If this is to be a solution to the free boundary problem stated above, by Theorem 3.1 it is
necessary that the five parametersA, η1, η2, ζ1, andζ2 satisfy a system of five nonlinear
equations. Four of these equations result from the vanishing principal parts ofS(ζ ) at
bothζ1 andζ2. The fifth equation results from the condition (59).

3.2. Summary of the Exact Solutions (Fluid Annulus)

Using the above prescription, it is readily found that the following choices of parameters
yield a solution

η2 = −η1,

ζ2 = −ζ1,

η1 = α ζ1,

(64)

whereα is a solution of the nonlinear equation

1

α

(
P′(α−1)

P(α−1)
− P′(−α−1)

P(−α−1)

)
= 1

2
. (65)

This nonlinear equation implicitly determinesα as a function ofρ. The solutions forα
are found to be purely imaginary, and theimaginary partof α is plotted as a function of
ρ in Figure 6.

Remarkably, the corresponding form ofzζ (ζ ) can be integrated into polar form, giving
the meromorphic mapping function:

z(ζ ) = Aζ

(
P(ζ /α2ζ1)P(−ζ /α2ζ1)

P(ζ /ζ1)P(−ζ /ζ1)

)
. (66)

This corresponds to the derivativezζ (ζ ) of (66) given by

zζ (ζ ) = AB

(
P(ζ /αζ1)P(−ζ /αζ1)

P(ζ /ζ1)P(−ζ /ζ1)

)2

, (67)

where

B = P(α−3)P(−α−3)P(α−1)P(−α−1)

P2(α−2)P2(−α−2)

(
1

2
+ 1

α3

(
P′(α−3)

P(α−3)
− P′(−α−3)

P(−α−3)

))
. (68)
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Fig. 6.Plot of Im[α] (vertical axis) as a function ofρ.

The corresponding values of01 andγ are given by

01 = 1

A2

P(ζ−2
1 )P(−ζ−2

1 )P̂(1)P(−1)

P(ᾱ−1ζ−2
1 )P(−ᾱ−1ζ−2

1 )P(α−1)P(−α−1)
, (69)

γ 2 = 2A2 P(ᾱ−2ζ−2
1 )P(−ᾱ−2ζ−2

1 )P̂(1)P(−1)

P(ᾱ−1ζ−2
1 )P(−ᾱ−1ζ−2

1 )P(ᾱ)P(−ᾱ) . (70)

This solution corresponds toω = α2 so that from (57) and (58) the corresponding values
of 0ρ andβ are provided by

0ρ = 01

ρ2α4
, β = − 1

α2ρ
. (71)

Remark 7. Note that it is clearly necessary, in order to avoid negative values of the
surface tension parameters, thatα2 < 0. Thus, only roots of (65) that are purely imaginary
correspond to physically admissible solutions. Such solutions are found to exist.

Remark 8. As ρ → 0 we retrieve the values of the parameters correponding to the
solution found in [4] for a single point vortex in a finite fluid blob. In that case, it is easily
shown that the solutionα to (65) behaves like

α→ i
√

3 as ρ → 0. (72)

This can be seen explicitly in the plot of Im[α(ρ)] given in Figure 6. This implies that

z(ζ ) = Aζ

(
P(ζ /α2ζ1)P(−ζ /α2ζ1)

P(ζ /ζ1)P(−ζ /ζ1)

)
→ A

9
ζ

(
ζ 2− 9ζ 2

1

ζ 2− ζ 2
1

)
= A

9

(
ζ − 8ζ 2

1 ζ

ζ 2− ζ 2
1

)
. (73)
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Fig. 7.Shape of the fluid annulus for fixedρ = 0.2 andζ1 = 1.1.

The limiting solution is the solution for a simply connected blob containing a single point
vortex as found explicitly in Crowdy [4]. This observation justifies an earlier statement
that the exact solutions found here represent the analytic continuation into nonzeroρ

(i.e., a doubly connected topology) of the simply connected solutions in Crowdy [4].

Remark 9. Note that, using a symbolic manipulator, it is a straightforward matter to
verify by direct substitution that the above function (with the corresponding01, 0ρ , γ ,
andβ) satisfies the Bernoulli conditions on the boundaries ofC0. This was done as an
explicit check on the exact solutions.

3.3. Results

It is clear that the shape of the interface (i.e., the conformal map) is determined by the
three parameters—ζ1, ρ, and A. Whereas in the derivation of the solutions presented
here it has been assumed that01, β, andγ are specified, in order to study the shape of
the interfaces it is more convenient (and natural) to instead specifyζ1, ρ, andA. Once
ζ1, ρ, andA are specified, the shape of the interface and all the corresponding values of
the parameters are then determined—i.e.,01, 0ρ , γ , andβ. A represents no more than a
normalization; it is most conveniently given as a function ofζ1 andρ by specifying the
area of the fluid annulus. We therefore arbitrarily impose that

π = 1

2
Im

[∮
C

z̄zζdζ

]
, (74)

whereC denotes the contour consisting of the circle|ζ | = 1 traversing anticlockwise
and the circle|ζ | = ρ traversed clockwise. The solutions then represent a two-parameter
family of exact solutions parametrized byζ1 andρ.

The results forρ = 0.2 are given in Figures 7–10 for several different values of the
parameterζ1. Forζ1 close to the unit circle, the enclosed bubble decreases in size, while
the outer boundary tends to pinch in towards it from above and below. Asζ1 moves away
from the unit circle, the enclosed bubble grows in size and becomes vertically elongated,
eventually leading to a critical value ofζ1 where the conformal map loses its univalency.
Thus the enclosed bubble is seen to pinch. Some typical streamlines forρ = 0.2 are
shown in Figure 15. Note that these plots also provide confirmation of the univalency of
the conformal map in the annulusC0.
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Fig. 8.Shape of the fluid annulus for fixedρ = 0.2 andζ1 = 1.5.

Fig. 9.Shape of the fluid annulus for fixedρ = 0.2 andζ1 = 1.6.

The qualitative behavior just described is found to be exactly the same whatever
the value ofρ. For comparison, typical shapes for the valueρ = 0.3 are shown in
Figures 11–14. It is found, however, that while a univalent mapping functionz(ζ ) always
seems to exist (for any value ofρ) providedζ1 is sufficiently close to the unit circle, as
ρ increases, the range ofζ1 over which there exists a univalent map is found to decrease
rapidly. Indeed, forρ = 0.6, it is found thatζ1 had to be of the order of 1+ O(10−4)

if a univalent map is to be found. Note that the value ofζ1 at which the inner bubble
pinches is aroundζ1 = 1.70 forρ = 0.2 (see Figure 10), while it is aroundζ1 = 1.225
for ρ = 0.3 (see Figure 14). The “critical value” ofζ1 at which the enclosed bubble is
observed to pinch-off with itself continues to decrease asρ increases. Asρ gets larger,
for a univalent map,ζ1 has to be closer to the unit circle, meaning that a pole of the
mapping draws close to the unit circle. The enclosed bubble becomes very small and the
outer boundary exhibits points of high curvature in the cusplike necking regions where
it draws close to the inner bubble (cf. Figures 7–11). Because the width of the region

Fig. 10.Shape of the fluid annulus for fixedρ = 0.2 andζ1 = 1.7.



Steady Capillary Waves on a Fluid Annulus 635

Fig. 11.Shape of the fluid annulus for fixedρ = 0.3 andζ1 = 1.1.

Fig. 12.Shape of the fluid annulus for fixedρ = 0.3 andζ1 = 1.15.

between the inner bubble and the outer boundary of the annulus becomes extremely
small, the velocity of the fluid in this region becomes very high. Intuitively, a steady
solution exhibiting high velocities in a region next to sharp cusps in its free surface is
not expected to be stable (and therefore not observable physically); however, a detailed
analysis of the stability of the steady solutions found here is left for the future.

Note that from (57), the ratio of the surface tension parametersβ on the two interfaces
is seen to be just a function ofρ. This is becauseω = α2 andα has been deduced to be a
function ofρ as plotted in Figure 6. We note that the value ofρ for whichβ = 1 (so that the
surface tension parameters on the two interfaces are equal) is given byρ = 0.6355. This
is quite a large value ofρ and unfortunately corresponds to a steady solution exhibiting
cusplike necking in the outer fluid boundary with a very small enclosed bubble inside
the blob. Such solutions are not expected to be physically realizable.

The results for the shapes of the annulus are in line with what might be expected. In
[4] the two separate (simply connected) problems of a (constant pressure) bubble of air

Fig. 13.Shape of the fluid annulus for fixedρ = 0.3 andζ1 = 1.2.
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Fig. 14.Shape of the fluid annulus for fixedρ = 0.3 andζ1 = 1.225.

Fig. 15.Typical streamlines:ρ = 0.2, ζ1 = 1.6.

placed in the field of a simple vortex at infinity as well as the problem of a finite blob
of fluid containing a single point vortex is considered. Intuitively, the bubble enclosed
by the annulus in the present problem might be expected to behavequalitativelylike a
bubble in the flow field of a simple vortex, while the outer boundary of the annulus might
be expected to behave qualitatively like a simply connected blob with no air bubble but
with an isolated point vortex inside it. This is exactly the qualitative behavior that is
observed.

4. Summary

This paper has generalized, to a doubly connected fluid region, a new approach to free-
surface potential flows with capillarity recently presented in [3], [4] in the context of
simply connected flow domains. The exact finite-amplitude solutions for symmetric
waves on fluid sheets originally found by Kinnersley [8] have been retrieved in a novel
and simplified fashion. Although we have not done so here, Kinnersley’s antisymmetric
(type II) solutions are also retrievable using appropriate modifications of the theory. The
new method leads naturally to a very simple representation of Kinnersley’s symmetric
solutions. No unwieldy algebraic manipulations are involved in the derivation.

By extending the theory for sheet waves to a genuinely doubly connected fluid domain,
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exact solutions have been found for steady capillary waves on a fluid annulus. To the
best of the author’s knowledge, these solutions are new and have not been previously
reported in the literature. As seen from the development in this paper, the new solutions
have close mathematical connections with Kinnersley’s sheet wave solutions. The new
solutions are seen to be a doubly connected continuation of some new simply connected
solutions recently identified in [4].

Natural extensions of the present theory include the possibility of generalizing the
approach to find exact solutions for Euler flows around two bubbles with surface tension,
although preliminary investigations by the author have revealed that while the new
formalism and constructive approach is readily extendable, the problem may not admit
any exact solutions. Another possible generalization is the problem of pure capillary
waves on a fluid sheet of finite depth with a rigid bottom (Kinnersley briefly discussed
this problem in [8]). This problem, however, represents a nontrivial extension of the
present theory in that the nature of the boundary conditions on the free surface and that
on the rigid bottom are now very different in nature, and one can no longer deduce a
simple periodicity (or quasi-periodicity) property of the conformal mapping function
(cf. (18) and (56)).

Finally, the approach of this paper has centered around the consideration of complex
singularities. Complex singularitydynamicshas led to many theoretical insights into
closely related free boundary problems such as unsteady Hele-Shaw flows with small
surface tension [14]. Theunsteadygeneralization of the results of this paper is not
trivial, and while finding exact solutions to the time-dependent problem is unlikely, it
is nevertheless expected that the complex singularity dynamics approach is a promising
theoretical route to understanding such problems as the dynamics of inviscid capillary
pinch-off [6].

A. Simplification of Kinnersley’s Solutions

The finite amplitude sheet wave solutions as computed by Kinnersley [8] were, in fact,
implicit in Crapper [2]; however, Crapper elected not to compute these solutions stating
that the solutions were too complicated. Twenty years later, Kinnersley disputed Crap-
per’s claim that the solutions were complicated and explicitly calculated the solutions in
terms of Jacobi elliptic functions. It turns out, however, that the solutions computed by
Kinnersley admit an even greater simplification than is apparent from Kinnersley’s orig-
inal paper. Of course, we were led here to this simplification by the need to demonstrate
that the very simple representation of solutions as given in (44) (derived in a natural way
from our present solution scheme) is in fact equivalent to Kinnersley’s original solutions.

In the notation of [8], Kinnersley’s type Ia solutions were deduced to be of the form

u = c

(
P − Q

P + Q

)(
R2− S2

R2+ S2

)
, (75)

v = c

(
P − Q

P + Q

)(
2RS

R2+ S2

)
, (76)
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where

P = nd(ψ, k′), Q = cd(φ, k), R= sc(ψ, k′), S= sn(φ, k). (77)

c is a constant andψ = A9 + B, φ = A8. A and B are constants.k andk′ are the
(complementary) moduli of the Jacobi elliptic functions [1]. This is the form of the
type Ia solutions as given by Kinnersley [8]. Note that, in what follows, we employ the
original notation of Kinnersley [8]. We also use Glaisher’s notation [1].

We now demonstrate a simplification of the above solution (75)–(77). Combining
equations (75) and (76), we deduce

dw

dz
= u− i v = c

(
P − Q

P + Q

)(
R− i S

R+ i S

)
. (78)

Using various properties of Jacobi elliptic functions [1], it can be shown after some
manipulation that (

R− i S

R+ i S

)
= sn(u, k′)dn(v, k′)cn(u, k′)

sn(v, k′)dn(u, k′)cn(v, k′)
, (79)

whereu = i (φ+iψ)
2 andv = i (φ−iψ)

2 . Similarly, some manipulation reveals that(
P − Q

P + Q

)
= k′2

sn(u, k′)sn(v, k′)cn(u, k′)cn(v, k′)
dn(u, k′)dn(v, k′)

. (80)

Combining these implies

dw

dz
= ck′2

(
sn(u, k′)cn(u, k′)

dn(u, k′)

)2

. (81)

Now it is appropriate to apply Landen’s transformation [1] to enable the singularity
structure of these solutions to be seen more clearly. Setting

λ = 1− k

1+ k
, M = 1

1+ k
, (82)

we deduce that

dw

dz
= ck′2M2sn2

( u

M
; λ
)
. (83)

Sinceu is a simple linear function ofw, this represents a particularly concise statement
of the solutions.

Remark 10. It remains, of course, to integrate (83) to findz. Noting that (83) can be
equivalently rewritten in the following general form,

dz

dŵ
= p ns2(ŵ; λ), (84)
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for some constantp and some variablêw that is linearly related tow, then integration of
this equation with respect tôw provides the expression for the free surface in an equally
concise fashion:

z= x + iy = p

(
ŵ − cn(ŵ; λ)dn(ŵ; λ)

sn(ŵ; λ) − E(ŵ; λ)
)
, (85)

whereE(ŵ; λ) is the elliptic integral of the second kind. This provides a parametric
representation of the free surface (withŵ as the parameter).

Having presented a simplification of Kinnersley’s original solutions, we now briefly
indicate how (83) relates to the newly derived representation of the solutions (44) (and
hence how (85) relates to the simple form given in (45)). In terms of the notation of the
present paper, Kinnersley’s solution can be seen to imply

R(ζ ) = (ζzζ (ζ )
)1/2 ∝ ns(a logζ + b; λ) (86)

for some constantsa andb (a can be shown to be real). Recalling the fact that ns [1] is
doubly periodic (and meromorphic) with a real period 4K and imaginary period 2i K ′

(whereK , K ′ are the appropriate complete elliptic integrals), we identify the imaginary
period 2i K ′ with the angular periodicity ofR(ζ ) (i.e., it is necessary that ifζ → e2π i ζ

thenR(ζ )→ R(ζ ) to ensure single-valuedness of the conformal mapping function) so
that

a ∗ 2π i ≡ 2i K ′, (87)

and the real half-period 2K with the transformationζ → ρ2ζ so that

2a logρ ≡ 2K . (88)

In this way, it becomes apparent how

ns(a logζ + b; λ) ∝ P(−ζ ζ−1
1 )

P(ζ ζ−1
1 )

. (89)

The correspondence of (44) with Kinnersley’s solution is then clear.

Remark 11. Note that ifŵ→ ŵ+ 2K (corresponding toζ → ρ2ζ ), then ns(ŵ, λ)→
−ns(ŵ, λ). This corresponds to the antiloxodromic property ofR(ζ ).

Remark 12. Kinnersley’s type II solutions (the antisymmetric solutions) can also be
simplified in an analogous fashion. To see this directly, note that, as pointed out in [8],
waves of type IIa are related to those of type Ia (now simplified to the form (83)) by a
simple reciprocal modulus transformation [1].
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