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A class of exact multipolar vortices
Darren Crowdy
Department of Mathematics, 2-335, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

~Received 4 November 1998; accepted 14 May 1999!

A class of exact solutions to the steady Euler equations representing finite area patches of
nonuniform vorticity is presented. It is demonstrated that the solutions constitute a special class of
steady multipolar vortical structures and have many qualitative similarities with the multipolar
equilibria observed in two-dimensional flows at high Reynolds numbers. The results provide
insights into the mathematical structure of the two-dimensional Euler equation that, it is argued,
underlies the occurrence of such multipolar coherent structures in real physical flows. Moreover, the
new solutions possess the interesting feature of being completely ‘‘invisible’’ in that their presence
cannot be detected anywhere outside the support of the vorticity. ©1999 American Institute of
Physics.@S1070-6631~99!00409-2#
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I. INTRODUCTION

This paper has two objectives; the principal objective
to present a class of exact mathematical solutions to the
dimensional steady Euler equations representing finite-a
nonuniform vortex patches. The second objective is to ar
that these solutions represent an instructive mathema
paradigm for a large class of multipolar vortical structur
observable in many real physical flows at high Reyno
numbers.

A. Background

Coherent structures are now well-known to constitut
dominant feature of a wide range of two dimensional flo
at high Reynolds number.1–8 The two classes of coheren
structure that have received the most attention in the lite
ture are the monopole and the dipole. When isolated m
nopolar structures become unstable they can be observ
split into two separating dipolar structures. However, it h
also been observed that isolated monopolar structures
condense into isolated multipolar structures of higher ord
The characteristics of these higher order multipolar str
tures will be described later in this introduction. The mo
common case is when a monopolar vortical structure non
early destabilizes into a single tripolar structure with distr
uted vorticity5,9,10 characterized by 3 vorticity maxima o
alternating polarity. The natural formation of dipoles and t
poles from unstable monopoles was observed in labora
experiments3,7 at more or less the same time as they w
observed in numerical simulations. It has also been sho
that more complex~i.e., higher order! vortex structures than
tripoles ~i.e., collectively dubbedmultipoles! can be formed
from more strongly perturbed two-dimensional vortices.8

A more comprehensive list of references to the exp
mental and numerical observations of multipolar vort
structures can be found in a recent paper by Morel
Carton11 who also study numerically the generation, statio
ary forms and stability of multipolar equilibrium solutions o
the two-dimensional Euler equations. Morel and Carto11

generate multipolar equilibria~numerically! from the insta-
2551070-6631/99/11(9)/2556/9/$15.00
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bility of monopolar vortical structures called thetwo-contour
Rankine vortexand thethree-contour Rankine vortex. These
are both examples ofshielded vortices, i.e., axisymmetric
vortices with zero total circulation with a radial distributio
of vorticity consisting of an inner core of uniform vorticit
of one sign surrounded by a uniform vorticity region of o
posite sign~unshielded monopoles are uninteresting beca
they are stable by the Rayleigh criterion!. Tripole structures
generated from a shielded monopole are also found in ea
investigations.5 A class of steadyquadrupolarstructures can
similarly be generated8 by the destabilization of a shielde
monopole.

These studies indicate the importance, in high Reyno
number flows, of isolated multipolar equilibrium solution
which, in the language of dynamical systems theory, app
to be important attractors in the dynamics. In view of this
thorough understanding of these multipolar equilbria wo
therefore seem desirable and this is an important active
of research@e.g., Rossi, Lingevitch, and Bernoff,13 have re-
cently studied the perturbation thresholds~to a Gaussian
monopole! separating the domains of attraction of monopo
and tripolar asymptotic solutions#. However, while
laboratory3,4,6 and numerical experiments continue to pr
vide insights into multipolar equilbria, comparatively fe
theoretical investigations have been performed to try to
derstand the mathematics behind these coherent struct
Questions of the existence of multipolar equilibrium so
tions to the 2D Euler equation, and the associated bifurca
structure, are clearly of great interest. This paper make
contribution in this direction.

It is important to define what is meant here by a stea
multipolar vortex. There are certain gross features wh
might be said to characterize the multipolar equilibrium s
lutions observed in practice. We now list six principal a
tributes of a multipolar vortex:

~i! Multipolar vortices are isolatedfinite-arearegions of
nonzero vorticity surrounded by irrotational flow;

~ii ! The vorticity distribution of a multipolar vortex o
6 © 1999 American Institute of Physics
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2557Phys. Fluids, Vol. 11, No. 9, September 1999 A class of exact multipolar vortices
order n is characterized by a centralcore vortexof
one sign, surrounded by a distribution ofn satellite
vorticesall of opposite polarity;

~iii ! They are steadily-rotating with a constant angular
locity V;

~iv! The approximate shape of a multipolar structure
ordern ~for n>3) is typified by ann-polygonal core
region with n semicircular satellite~or ‘‘lobe’’ ! re-
gions on each side of the central polygon~see Fig. 1
of Carnevale and Kloosterziel8!.

~v! The multipolar structures calculated in numeric
simulations often have zero total circulation@since
they are frequently generated by the instability
‘‘shielded’’ ~i.e., zero circulation! monopolar vorti-
ces#.

~vi! The streamline patterns in the vortical region typica
display saddle points joined by separatr
streamlines8,10 as well as regions of closed stream
lines.

Various attempts to model multipolar equilibria have be
made in the past. Because of the attendant analytical ad
tages, most theoretical models rely on hybrid combinati
of line vortices and uniform vortex patches of finite area. T
most obvious mathematical model of a tripole is the extre
idealization of a line of three point vortices of appropria
strength—such a model is studied by Carton and Legra10

They also devise a more sophisticated model in which t
replace the central line vortex in the line-vortex tripo
model by an ellipticalV-state thereby allowing the possibi
ity of splitting of the tripole due to instability of the cor
vortex. The latter model is based on the formalism of Leg
and Dritschel14 and is an approximate solution of the go
erning equations. Polvani and Carton15 have modeled the
tripole using a linear array ofthreesuchV-states. Even thes
simplified model solutions usually have to be computed
merically because analytical progress is difficult.

This paper presents a class of exact solutions to
steady Euler equations which can be said to represent m
polar equilibria in that the solutions possess all of the ch
acteristic features~i!–~vi! of multipolar equilibria listed
above. For every integern>2, we demonstrate the existenc
of a continuous one-parameter family~parametrized by a pa
rametera) of finite-area coherent vortical structures. Then
52 case, for example, represents a tripolar structure,
solutions forn.2 provide a class of multipolar equilibria o
ordern. The solutions arespecialcases of multipolar equil-
bria, however, in that they are non-rotating~i.e., V50) and
the irrotational velocity field surrounding the support of t
vorticity is stagnant. Nevertheless, we conjecture herein~see
Sec. III! that the new solutions represent amathematically
exact subclassof the full class of multipolar equilibrium so
lutions of the 2-D Euler equations and share all the sa
qualitative properties of the more general class. Furthe
will be seen that the bifurcation structure of the new class
steady solutions appears to be consistent, in many resp
with transitions between equilibria observed in experime
and numerical simulations.
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II. MATHEMATICAL FORMULATION

Consider the well-known uniform, rectilinear, circula
vortex filament, also known as theRankine vortex.16 The
uniform Rankine vortex is given by

uu5H v0r

2
r ,r 0

v0r 0
2

2r
r .r 0

. ~1!

This represents a circular vortex patch with uniform vortic
v0 in r ,r 0 and a vortex jump atr 5r 0 . Now consider add-
ing a single line vortex at the origin, i.e., consider the flo
field given by

uu5H v0r

2
2

v0r 0
2

2r
r ,r 0

0 r .r 0

. ~2!

This represents a mostly uniform circular vortex patch with
superposed line vortex of opposite polarity placed at its c
ter. The dynamical condition of continuity of velocity~and
hence continuity of pressure! is satisfied at the vortex bound
ary while a kinematic condition requires that the vort
boundary be a streamline, as is clearly the case. Finally, n
that this solution is only a consistent solution of the stea
Euler equation provided that the line vortex at the origin
steady under thenon-self-induction hypothesis.16 This is
clearly the case here. The flow~2! therefore represents
self-consistent exact solution of the steady Euler equatio
Moreover, since this solution consists of a line vortex w
circulation of one sign surrounded by a~finite area! patch of
vorticity of opposite polarity such that the combined stru
ture haszero total circulation, this solution might well be
dubbed ashielded monopolar vortex. For convenience in the
rest of this paper, the solution~2! will be referred to as the
shielded Rankine vortex. Note that this shielded Rankine vo
tex solution is a limit of thetwo-contour Rankine vortex,11

where the area of the interior vortex patch (r 1˜0 in Fig. 1!
shrinks to zero with the associated vorticity growing infin
in such a way that the total circulation of the enclosed vor
~in the limit, a line vortex! remains finite.

FIG. 1. Two-contour Rankine vortex.
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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A natural mathematical question arises; Is it possible
generalize the above solution to find other vortical config
rations consisting of finite-area vortical regions with no
trivial shapes containing a finite distribution of line vortice
If so, the resulting solutions might serve as useful models
steady~higher-order! multipolar vortical structures. The an
swer is in the affirmative.

To generalize solution~2! to other nontrivial vortex
shapes with suitable distributions of line vortices, note t
the stream function associated with~2! can be written as
follows:

c~x,y!5
v0

4
zz̄2

v0

2
ReF Ez

S~z8!dz8G ~3!

inside the patch wherez5x1 iy and S(z) is the function
given by

S~z!5
r 0

2

z
. ~4!

The key observation is thatS(z) is exactly theSchwarz
function12 of the curve bounding the region of nonzero vo
ticity, i.e., in this case, the Schwarz function of a circle
radius r 0 . The Schwarz function of a closed curve]D
bounding a simply-connected regionD is the unique, locally
analytic, functionS(z) that is equal toz̄ everywhere on the
curve]D.

Now consider ageneral closed, analytic nonsingula
curve bounding a simply-connected vortical region in t
plane. Let the Schwarz function of the curve be denoted
S(z). Since S(z) is analytic in the neighborhood of th
bounding curve, its primitive is well-defined there and it
natural to consider a generalized stream function given b

c~x,y!5
v0

4
zz̄2

v0

4 S Ez

S~z8!dz81E z̄

S̄~z8!dz8 D , ~5!

which is an expression valid inside the patch of vorticity. W
further assume that the vortex is surrounded by stagn
fluid.

Consider the total derivative ofc(z,z̄),

dc5czdz1c z̄dz̄. ~6!

Using ~5! this becomes

dc5
v0

4
~ z̄2S~z!!dz1

v0

4
~z2S̄~ z̄!!dz̄ ~7!

valid insideD. Note that, on the boundary]D, by definition
of the Schwarz functionS(z)5 z̄, thusdc50 on the bound-
ary and it is therefore a streamline. Furthermore, si
2icz5u2 iv, the speed of the fluid on]D is zero. If the
flow outside the patch is stagnant~as has been assumed! then
continuity of velocity~and hence of pressure! is ensured at
the boundary of the vortex. In this way, both the kinema
and dynamic boundary conditions at the vortex boundary
satisfied. For more details of the theory of vortex patch
see Saffman.16

In general,S(z) @and hencec(x,y) as given by~5!# will
have singularities insideD. Now we restrict attention to the
special case where theonly singularitiesof the Schwarz
Downloaded 28 Oct 2004 to 155.198.192.80. Redistribution subject to AI
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functionS(z) inside the vortical region are simple poles wi
real residues.Mathematically, this corresponds to restrictin
consideration to a particular class of closed analytic curv
Physically, from ~5!, it is seen that this corresponds to th
presence of line vortices inside the vortex patch. It is we
known that, dynamically, line vortices move with the fluid.16

Thus, for solution~5! to represent a fully self-consisten
steady solution of the Euler equation, it is necessary to
sure that each line vortex is stationary under the non-s
induction hypothesis.

A. Conformal mapping

As just mentioned, making this special choice of t
analyticity properties of the Schwarz functionS(z) inside the
curve]D corresponds to specializing to a particular class
closed, analytic, nonsingular curves. It is necessary to be
to characterize, in a convenient way, the class of curves n
under consideration. This is done by considering the uni
lent conformal map z(z) from the interior of the unit circle
in a parametricz-plane to the interior of the vortex patch
Without loss of generality, we can choose

z~0!50. ~8!

From this perspective, it is possible to exploit a result fro
the theory of Schwarz functions of analytic curves]D which
are meromorphiceverywhere inside a simply-connected r
gion D. The important result states that the conformal m
from the unit z-circle to the vortical region in this specia
case isnecessarily a rational function ofz. This fact will be
used to identify an exact conformal representation of
shape of the boundary of the vortex. For more details on
mathematical result just mentioned, we refer the reade
Davis.12

B. Exact solutions with twofold symmetry

Consider the special choice of~rational function! confor-
mal map given by

z~z!5RzS 11
b

z22a2D , ~9!

where it is assumed thata, b and R are real withuau.1.
Note that~9! satisfies~8!. The parametersa andb must be
such that~9! represents aunivalentconformal map from the
unit circle. Moreover, there are much stronger constraints
a andb as will be seen. It is noted that there is normalizati
degree of freedom~in the value ofv0) associated with the
magnitude of the vorticity in the patch. For the remainder
this paper, we takev054.

For this mapping, the Schwarz function is given, as
function of z, by

S~z~z!!5
R

z S 11
bz2

12a2z2D . ~10!

Sinceu2 iv52icz , the velocity at any point inside the re
gion is given, as a function ofz, by
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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FIG. 2. Plot ofb ~vertical axis! againsta ~abscissa! for
tripolar solutions.
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u2 iv52iRz̄S 11
b

z̄22a2D 2
2iR

z
S 11

bz2

12a2z2D .

~11!

It is clear that this velocity field has three simple pole sing
larities inside the vortex—at points in the physical plane c
responding toz50,6(1/a). These represent thez preimages
of three line vortices in the flow. In order to ensure that t
line vortices are not moving inphysical spaceit is necessary
to find local Laurent expansions~in z) of this velocity field
about the singularities in the velocity field atz50 and z
5z(61/a). Setting the constant term in the Laurent expa
sion to zero will ensure that the line vortex is steady.
general, since there are three conditions to be satisfied,
might expect that three conditions will need to be imposed
render each of the three line vortices steady.

Consider first the line vortex atz50. First, rewrite the
velocity field as follows:

u2 iv52
2iR

z
2

2iRbz

12a2z2
12iRz̄S 11

b

z̄22a2D . ~12!

From the form of the conformal map, it is clear that asz
˜0,

z~z!5RzS 12
b

a2D1O~z3!, ~13!

thus asz˜0,

u2 iv522iR2S 12
b

a2D 1

z
1O~z,z̄!, ~14!

i.e., there are no constant terms in the local velocity fi
and, under the non-self-induction hypothesis, the line vor
at z50 is steady. Comparing with the formula for the velo
ity field of a line vortex of circulationG0 at z50 as given by
Downloaded 28 Oct 2004 to 155.198.192.80. Redistribution subject to AIP
e
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u2 iv52
iG0

2pz
, ~15!

it is clear that the circulation of the line vortex atz50 is

G054pR2S 12
b

a2D . ~16!

Now consider the line vortex atz(a21)[za . Some el-
ementary~but somewhat tedious! algebra yields the follow-
ing nontrivial condition for the steadiness of the line vort
at z(1/a):

1

a
1

ba

12a4 2a1
b

4a
1

b

4a2

zzz~a21!

zz~a21!
50. ~17!

Note that~17! is more nonlinear than it seems at first sigh
this is because of the dependence of the conformal mapz(z)
~and its derivatives! on the parameterb. By symmetry of the
chosen conformal map and the velocity field~11!, this is also
the condition for the steadiness of the line vortex
z(2a21)52za , as is directly confirmed by further algebr
Equation ~17! is a real nonlinear algebraic equation forb
given the parametera. Givena, this equation is solved forb
using Newton’s method. The results forb as a function ofa
is plotted in Fig. 2 fora between 1.3 and 3.0. Depending o
initial conditions, for a givena, the Newton scheme pro
duced multiple roots forb, however only the root plotted in
Fig. 2 produces aunivalentconformal mapping~9!. Note that
the nonlinear Eq.~17! is independent of the value ofR.

Expanding the velocity field locally in the vicinity ofz
5z(1/a)[za yields

u2 iv5
iRba22zz~a21!

~z2za!
1O~~z2za!,~ z̄2 z̄a!! ~18!

providedcondition~17! is satisfied. Comparing with the for
mula for the velocity field for a line vortex of circulationGa

at z5za , i.e.,
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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2560 Phys. Fluids, Vol. 11, No. 9, September 1999 Darren Crowdy
u2 iv52
iGa

2p~z2za!
, ~19!

the circulation of the line vortex atza ~to be denotedGa) is
found to be

Ga522pRba22zz~a21!. ~20!

The line vortex atz5z(2a21)52za is found to have the
same strength.

It is seen that fixing an area of the vortex will fix th
parameterR as a function ofa ~now thatb is specified as a
function of a). For example, the area of the patch can
arbitrarily specified to bep so that

p5
1

2
ImF R

uzu51
z̄zzdzG . ~21!

For fixed v054 and areap of the patch, a one-paramete
family of exact solutions has been identified~parametrized
by the pole positiona.1), each solution constituting a dif
ferent shape patch, with a corresponding distribution of th
point vortices inside it.

Note the important result that, for any choice ofa,

2Ga1G054p. ~22!

This is as expected since it is a statement of the fact that
total circulation of the vortical structure is zero. This follow
immediately from the fact that the circulationGC around any
closedC is given by

GC5 R
C
u.dx52ImF R

C
2czdzG , ~23!

Therefore, takingC as the]D ~the boundary of the patch!
we obtain the following expression for the total circulatio
G t of the structure:

G t52ImF R
]D

2~ z̄2S~z!!dzG50. ~24!

The left-hand side of~22! is clearly the sum of the circula
tions of the three line vortices, while the right-hand si
represents the circulation associated with the finite-a
patch of uniform vorticity~of strength24) of total areap.
Equation~22! was used as a check on the calculations ofG0

andGa .
A typical streamline plot is given in Fig. 3. These ha

remarkable similarities with the numerically comput
streamlines associated with tripoles as shown, for exam
in Figs. 7 and 11 of Carton and Legras.10 Note, in particular,
the existence of separatrix streamlines which separate
three finite subregions of closed streamlines. Note also
the outermost streamline in Fig. 3 is also the boundary of
vortex patch.

One of the advantages of possessing exact solution
that explicit expressions can be simply obtained for vario
quantities of interest. For the tripolar vortices, plots ofG0

andGa as functions of the parametera are shown in Fig. 4,
while a plot of the distance between the central line vor
and each satellite vortex is given in Fig. 5. Note the imp
tant fact thatGa.0 for all a while G0,0 for all a thus,
Downloaded 28 Oct 2004 to 155.198.192.80. Redistribution subject to AI
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roughly speaking, the ‘‘core’’ of the vortical structure has
overall negative circulation while each of the two ‘‘satellite
regions has an overall positive circulation. To render w
we mean by the ‘‘core’’ and the ‘‘satellites’’ more concret
it is natural to consider the streamline plots. It seems nat
to define the ‘‘core’’ region of the vortex as the central r
gion enclosed between the two saddle points and bounde
the separatrix streamlines. This prescription is also sugge
in Carton and Legras.10 Denote the area enclosed in this co
region byAc . Since the total area of the patch isp, it is then
natural to take the area of each of the two satellite vortice
be As5

1
2(p2Ac). The total circulation associated with th

core region~as defined in this way! is then

Gc5G024Ac ~25!

since the~constant! uniform value of the vorticity in the
patch is24. Similarly, the total circulation of each of th
two satellite regions is therefore given by

Gs5Ga24As52
Gc

2
. ~26!

Using this prescription, it is clear that the ‘‘core’’ and th
‘‘satellite’’ regions as defined above always have circu
tions of opposite polarity. Note also that the ratio of circu
tions of the three vortical regions is (21,2,21).

Finally, we remark that sincez(z) is a univalent map, it
is in principle possible to invert~9! to find z(z). If one then
substitutesz(z) into the expression~11! for the velocity
field, a very complicated function ofz and z̄ results. It is
clear that while the present theoretical approach has led
straightforward parametric representation of the solutio
the resulting solutions for the velocity field are highly no
trivial functions of the spatial variablesx andy.

C. Solutions with threefold symmetry

Consider now a conformal mapping having the follow
ing rational function form

z~z!5R~a!zS 11
b~a!

z32a3D . ~27!

FIG. 3. Typical tripolar streamlines (n52, a52.0); the outermost stream
line is also the boundary of the vortex patch.
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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FIG. 4. Plot of G0 ~dots! and Ga ~crosses! againsta
~abscissa! for tripolar solutions.
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Definingh5e(2p i /3), it is clear that there will be three sate
lite line vortices at points in the physical plane correspond
to z(a21), z(ha21), andz(h2a21). By the symmetry of the
conformal mapping function and the associated veloc
field, it can be shown that the condition thatall three of the
satellite line vortices are steady is provided by the sin
nonlinear algebraic equation relatingb anda,

1

a S 11
ba3

12a6D2a1
b

3a2 1
b

6a3

zzz~a21!

zz~a21!
50, ~28!

while the line vortex at the origin turns out to be automa
cally steady under the non-self-induction hypothesis. Aga
given a value ofa (1,a,`), a Newton solver produced
multiple roots forb, however only one of these roots pro
duces a univalent conformal mapping functionz(z) ~as re-
Downloaded 28 Oct 2004 to 155.198.192.80. Redistribution subject to AI
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quired for the solution to be physical!. A plot of the physi-
cally admissibleb(a) is not given here but is found to b
qualitatively similar to Fig. 2.R(a) is again determined from
the area condition~21! onceb(a) is determined from~28!. A
typical streamline plot and vortex shape is depicted in Fig
These solutions represent a special~one-parameter! family of
quadrupolar vortices. It is instructive to compare the qual
tive features of the streamline plots in Fig. 6 with those d
picted in Carnevale and Kloosterziel.8

D. Solutions with n -fold symmetry

More generally, it can be shown that the formulatio
admits a generalization to a one-parameter family of so
tions with any integer numbern>2 of line vortices super-
r-
FIG. 5. Distance between central and satellite line vo
tices as function of parametera ~abscissa! for tripolar
solutions.
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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2562 Phys. Fluids, Vol. 11, No. 9, September 1999 Darren Crowdy
posed on a uniform vortex patch of appropriate shape.
relevant conformal mapping function is provided by

z~z!5R~a;n!zS 11
b~a;n!

zn2an D . ~29!

As before, the line vortex at the origin is automatica
steady and there is a single nonlinear equation relating
parameterb to the parametera which is enough to ensur
that all the satellite line vortices are steady and therefore
the solution is a consistent solution of the steady Euler eq
tions. Some algebra reveals that the nonlinear equation
solution of which implicitly defines the functionb(a;n) is

1

a S 11
ban

12a2nD2a1
b~n21!

2an21n
1

b

2nan

zzz~a21!

zz~a21!
50.

~30!

As an example of an order 4 multipolar structure, Fig.
shows the streamlines for a typicaln54 solution. The out-
ermost streamline corresponds to the boundary of the vo
patch. Again, comparison with Fig. 12 of Carnevale a
Kloosterziel8 shows remarkable similarities in the streamli
plots.

E. Limiting vortex shapes

It is of interest to examine the limiting shapes of t
vortical structures as the parametera tends to the two limits
` and 1;

Limiting vortex shapes as ã `: In the limit a˜` it
can be shown that, for all integersn>2, the shape of the
vortical region becomes circular and then line vortices con-
verge onto the line vortex at the origin. It becomes clear t
the shielded Rankine vortex solution is retrieved in the lim
asa˜` for all n.

FIG. 6. Quadrupolar streamlines;n53, a52.0 ~cf., Fig. 9 of Ref. 8!; the
outmost streamline is also the boundary of the vortex patch.
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Limiting vortex shapes as ã 1: The opposite limita
˜1 corresponds to the singularities of the conformal m
ping function outside the unitz-circle drawing closer to the
unit circle, leading to more distorted boundary shapes. F
ure 8 shows the boundary shapes of vortices correspon
to n53 andn54 for values ofa close to 1. These shape
have remarkable similarities with the schematic geometr
drawings of multipolar vortex structures plotted in Fig. 1
Carnevale and Kloosterziel,8 i.e., a regularn-polygonal core
region surrounded byn semicircular satellites.

F. Nonexistence of isolated dipole

Given the results above, it is natural to ask whether th
exists a solutionwithin the same class~i.e., nonrotating and
surrounded by quiescent fluid! corresponding to an isolate
dipolar structure, i.e., a structure characterized by two v
ticity maxima. The answer appears to be negative. Fo
dipolar solution within the present class of solutions, it
straightforward to deduce that the corresponding confor
map must have the following form:

FIG. 7. Pentapolar streamlines;n54, a52.0 ~cf., Fig. 12 of Ref. 8!; the
outermost streamline is also the boundary of the vortex patch.

FIG. 8. Limiting vortex shapes asa˜1 (n53,4, cf., Fig. 1 of Ref. 8!.
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z~z!5RzS 1

z2a1
1

b

z2a2
D , ~31!

whereua1u,ua2u.1. The conditions that the two line vortice
be steady gives two~highly nonlinear! algebraic equations
that must be satisfied by the parametersa1 ,a2 ,b ~these equa-
tions are independent of the normalizationR). We have so
far been unable to find any solutions to this system which
not either~i! reduce to the shielded Rankine vortex soluti
or ~ii ! yield nonunivalent conformal mappings~which cannot
be admitted physically!. This result is not particularly sur
prising: dipoles are usually characterized by a total nonz
linear or angular momentum~or both! while the present clas
of solutions clearly admits neither possibility.

III. DISCUSSION

The exact mathematical solutions just described rep
sent fully self consistent, steady, coherent vortical structu
characterized by a finite distribution of vorticity maxim
The structures have zero total circulation and correspon
finite-area regions of nonvanishing vorticity surrounded b
irrotational flow~that happens to be stagnant!. The solutions
are steady~i.e., V50). The streamline plots are characte
ized by the presence of saddle points joined by separa
streamlines. Furthermore, using the prescription for defin
the ‘‘core’’ and ‘‘satellite’’ regions~using separatrix stream
lines! described earlier, it is clear that the approxima
shapes of these vortical regions are consistent with th
generally observed in practice~and described explicitly in
Carnevale and Kloosterziel8!, i.e., ann-polygonal core re-
gion with circulation of one sign surrounded by semicircu
satellite regions of opposite polarity to the core region. T
general features just described are exactly those listed in
introduction as characterizing multipolar equilibria as o
served in laboratory experiments and numerical simulatio

An important observation is that in the limita˜` all
solutions tend to the shielded Rankine vortex solution whi
as mentioned earlier, is a limit of thetwo-contour Rankine
vortex considered in Morel and Carton.11 The preceding
analysis therefore suggests that, for each integern>2, there
exists a steady solution branch~with nth order symmetry and
continuation parametera) bifurcating from the shielded
Rankine vortex solution. This bifurcation picture is high
reminiscent of physical observation; the formation of high
order multipolar equilibria from the nonlinear destabilizati
of shielded monopolar structures with zero total circulatio

The many qualitative similarities between the class
exact solutions found in this paper and multipolar vortic
lead us to suggest that the new solutions provide impor
insights into the mathematical structure of the 2D Eu
equation which gives rise to the multipolar vortical structu
observed in experiment and in numerical simulations.
believe the mathematical solutions found herein represen
instructive theoretical paradigm.

From a mathematical point of view, it is interesting th
no deliberateattempt has been made to construct solutio
which consist of a central core with vorticity of one sig
surrounded byn satellite vortices of opposite polarity
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Rather, such solutions have been shown herein to arisenatu-
rally as a mathematical generalization using Schwarz fu
tion theory, i.e.,~5! of the shielded Rankine vortex solutio
~3!. It is intriguing that this naturalmathematicalrelationship
exists between these higher-order multipolar vortical str
tures and the shielded monopolar Rankine vortex given
seemingly naturalphysicalrelationship that is by now well-
known to exist between such structures~i.e., that higher-
order multipolar equilibria result from the nonlinear desta
lization of shielded monopolar structures!.

There are, of course, differences between the mathem
cal solutions found here and the multipolar vortices obser
in practice. In particular, thedetailedstructure of the vortic-
ity distribution of the exact solutions is unrealistic; the mu
tipoles observed in practice are typically ‘‘multicontour
vortices, the core and satellite vortices often having we
defined boundaries separated by stretches of irrotatio
fluid. Furthermore, most physically-observable multipo
rotate with anonzeroangular velocityVÞ0. On this point,
we remark that there is no reason to expect that the pre
class of mathematical models~i.e., using a finite distribution
of line vortices superposed on a uniform vortex patch
model multipolar vortices! cannot be generalized toVÞ0,
although such solutions only seem to be available at a pr
i.e., the loss of mathematical exactness. Ongoing invest
tions by the author show that perturbative solutions about
new exact solutions for non-zerouVu!1 can be found. In
this case, it is necessary to find irrotationalO(V) corrections
to the velocities interior and exterior to the patch as well
O(V) corrections to the conformal mapping function. The
perturbative corrections only seem to be available num
cally. A spectral method based on Taylor and Laurent exp
sions similar to the numerical approach used by Meir
Saffman, and Schatzmann17 can be used to find these pertu
bative solutions. Physically, it is easy to imagine that mov
the two satellite line vortices in the tripolar solution slight
inwards towards the central line vortex with a correspond
adjustment of the bounding shape of the patch might lea
a steadily-rotating, self-consistent configuration. We also
mark that calculating the perturbative solution forV!1
seems to require almost as much numerical effort as solv
the general fully-nonlinearV5O(1) problem, and a full nu-
merical study of these model multipolar solutions for gene
V will be presented in a future paper.

The solutions found here can be viewed as amathemati-
cally exact subclassof the full class of multipolar equilibria
of the 2D Euler equations and, as we have seen, they s
all the same gross features and qualitative properties of
more general class. Significantly, we point out that perh
one of the principal benefits of the new exact solutions
this paper~as with any exact solution! is that they provide
closed form solutions that can be numerically, or pertur
tively, ‘‘continued’’ into parameter regimes where exact r
sults are not available~in this case, intoVÞ0).

Naturally, the linear and nonlinear stability of these ne
equilbrium solutions is a matter of enormous interest.
examination of the stability of multipolar structures is
great importance13 and it might be hoped that the stabilit
analysis of the mathematically exact subclass of soluti
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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2564 Phys. Fluids, Vol. 11, No. 9, September 1999 Darren Crowdy
found here might have many of the same stability proper
as the more general class of multipolar equilibria of the tw
dimensional Euler equations. Moreover, the availability
exactbase-state equilibrium solutions~e.g., for a linear sta-
bility analysis! might be expected to simplify any such st
bility analysis. This important problem is left for the futur

Generally speaking, the solutions reveal that, for cert
special shapes of uniform vortex patch, it is possible to
actly nullify the irrotational flow induced outside a patch
uniform vorticity by superposing an appropriate finite dist
bution of line vortices such that thecombinedstructure is in
overall equilibrium. Note also that the coherent structu
found here are, in a sense, completely ‘‘invisible’’ in th
their presence is undetectable from an examination of
induced far-field flow. Indeed, because the vortices are
rounded by completely quiescent fluid, it is impossible
locally detect the presence of the vortex anywhere outs
the support of the vorticity. These vortex patches theref
only interact when they overlap. Such vortices cannot
detected by any remote measurements, and an understa
of such vortical structures is very important in, for examp
the context of oceanic data assimilation. We also point
that Leith18 computed a class of minimum enstrophy~MEM!
vortices which possessed exactly this property while Polv
and Carton15 have numerically calculated a class of nonr
tating (V50) tripolar V-state solutions which they describ
as ‘‘invisible’’ in that the irrotational flow field exterior to
the patch decays quickly at large distances from the pat

Finally, when considering the potential flow induce
outside a patch of nonzero vorticity from the point of view
the Biot–Savart integral, mathematical analogies betw
vorticity dynamics and the classical problems of gravi
tional and electrodynamic potential theory arise. A vortic
distribution can be considered analogous to a mass or ch
distribution. It is thus pertinent to point out that the mat
ematical approach adopted in this paper is intimately rela
to theHerglotz Principle~see, for example, the discussion
Shapiro19!. Herglotz studied laminae of uniform densi
bounded by irreducible algebraic curves and showed tha
potential of such a laminar is harmonically extendable i
the laminar except where the Schwarz function of the bou
ing curve has singularities. This is sometimes referred to
‘‘balayage inwards.’’ In the realm of vortex dynamics, ge
eral considerations of this kind are generally referred to
the study of ‘‘image vorticity.’’16 The idea of image vortic-
ity can be roughly summarized as the~nonunique! replacing
of one vorticity distribution in some setD ~e.g., a uniform
vortex patch, in the present case! by a different vorticity
distribution ~e.g., a finite set of line vortices! such that the
irrotational flow induced outsideD is the same. From this
Downloaded 28 Oct 2004 to 155.198.192.80. Redistribution subject to AI
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perspective, we have herein demonstrated that it is poss
to superposetwo different ~but specially constructed! distri-
butions of image vorticity in such a way as to obtain exa
equilibrium solutions of the Euler equations~that happen to
share many of the qualitative features of physical
observable multipolar equilibria!.
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