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Following the historical development of the theory of exact solutions for singularity-driven

Hele-Shaw flows, this note demonstrates that the problem of two-dimensional viscous sintering

preserves quadrature identities. This provides a unified theoretical perspective in which to

understand the two separate free boundary problems. The result is established directly from

the equations of motion without appeal to conformal mapping theory, although the result

underlies the existence of exact conformal mapping solutions. The formulation leads to a

concise, closed-form representation of the evolution equations for the parameters in the

conformal mapping function. Some examples are given.

1 Introduction

In this paper, we demonstrate the relevance and usefulness of considering the linear

functional L[h(z, t);D(t)], defined as

L[h(z, t);D(t)] ≡
∫ ∫

D(t)

h(z, t)dxdy, (1.1)

(where h(z, t) is an arbitrary function, analytic in the domain D(t)) in the problem of the

viscous sintering of a fluid blob under the effects of surface tension.

The present note is motivated by the historical fact that it was essentially consideration

of the linear functional (1.1) which led to the discovery of exact solutions for various

singularity-driven flows in Hele-Shaw cells with zero surface tension as pioneered by

Richardson [17, 18]. The latter problem has been compared with the sintering (Stokes)

problem in the literature on a number of occasions [9, 5]. It would therefore seem to be

of some theoretical interest to point out the relevance of the linear functional (1.1) to

the viscous sintering problem, and this note is the first to do so explicitly, even though

previous authors [4–6] have commented on the relevance (to the sintering problem) of

certain ‘moment-like quantities’ (highly reminiscent of ‘Richardson moments’ [5] for the

Hele-Shaw problem but defined in the ζ-plane, not the z-plane). This note demonstrates

the result that ‘Richardson moments’ (defined in the z-plane and embodied in (1.1)) are, in

fact, relevant to the theory of both the Hele-Shaw problem and the Stokes flow problem.

First, we define a point differential functional of finite order following the definition given

in Davis [6]:

Definition The linear functional L defined on functions h(z, t) that are analytic in D and
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continuous on ∂D(t) will be said to be a point differential functional of finite order if it can

be expressed in the following form:

L[h(z, t);D(t)] =

N∑
n=1

nk∑
k=0

ank(t)h
(k)(zn(t), t), (1.2)

where z1(t), z2(t), ..zN(t) are a finite set of distinct points in the interior of D, ank(t) are

time-varying coefficients which are independent of the function h(z, t) and {nk > 0} are

integers. h(k)(z, t) denotes the k-th derivative with respect to z.

An expression of the form (1.2) constitutes a special class of quadrature identities. In a

series of theorems, Davis [6] establishes the result that the conformal mapping z(ζ, t) from

a unit-circle in a parametric ζ-plane and satisfying z(0, t) = 0 to a region D(t) is a rational

function of ζ if and only if the linear functional L is a point differential functional of

finite order. Thus, since it is has been formally proved using other methods [3] that the

problem of viscous sintering is such that if the initial conformal map to a blob D(0) is

a rational function, then the conformal map z(ζ, t) to the blob D(t) at later times will

remain a rational function, it can be immediately deduced (from the theorems of Davis

[6] just mentioned) that the problem of viscous sintering must be such as to preserve the

class of quadrature identities (1.2).

In this note, we consider it of interest to reverse the above line of reasoning and prove

directly from the equations of motion the fact that the viscous sintering problem preserves

quadrature identities. This is done without appeal to conformal mapping theory. Then, by

invoking the abovementioned theorems of Davis [6], it follows that the sintering problem

preserves rational function conformal maps. In this way, we provide an independent proof

that the problem of viscous sintering preserves rational function conformal maps while the

line of reasoning leading to this result becomes exactly analogous to that which originally

led to the identification of the exact solutions for the Hele-Shaw problem [17, 18].

This provides a certain unification in the method of solution for the two separate free

boundary problems, and results in a certain theoretical uniformity of approach. Moreover,

Richardson’s approach to the Hele-Shaw problem has been generalized, over the years, in

a number of ways (e.g. see Entov et al. [8, 7]). Understanding the sintering problem from

the same theoretical perspective might lead to similar generalizations being made for the

latter problem.

An important subsidiary result of this note is of practical value: it turns out that this

approach leads to concise, closed-form representations of the relevant evolution equations

for the exact solutions. As shown in a series of three examples, while it is difficult (or,

at least, cumbersome) to explicitly write down the evolution equations for the poles and

zeros of the rational function conformal map, an equivalent set of evolution equations

under a ‘nonlinear change of variables’ resulting from the consideration of the linear

functional L turn out to be rather concise.

2 A historical note

It is pertinent to point out the fact that the problem of free surface flows in a Hele-Shaw cell

driven by a known distribution of sources and sinks has been found to admit exact rational
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function conformal mapping solutions essentially by consideration of the linear functional

L. We refer the reader to the early papers by Richardson [17, 18]. We note, however,

that the existence of rational function exact solutions to this problem had been found

much earlier [10–14] using various complex variable techniques, but not the ‘Richardson

moments’ technique developed later (and independently) in by Richardson [17, 18]. The

approach via ‘Richardson moments’ has proved to be a particularly useful one from

a theoretical point of view and has led to many advances in the understanding of

singularity-driven Hele-Shaw flows.

The (non-dimensionalized) mathematical problem considered by Richardson [17, 18] is

to solve

∇2φ = 0 (2.1)

inside the fluid region, subject to the kinematic boundary condition

Im[(zt − (u+ iv)) z̄s] = 0, (2.2)

where

u =
∂φ

∂x
, v =

∂φ

∂y
, (2.3)

and where s denotes an arclength parameter around the fluid boundary. The dynamic

condition on the boundary ∂D is that

φ = constant on ∂D, (2.4)

while at each singularity zj the complex potential w(z) = φ+ iψ must satisfy

w(z) ∼ Qj(t)

2π
log(z − zj) as z → zj . (2.5)

It can be shown from the equations of motion (see Richardson [17] – although the

notation is different) that the time derivative of L[h(z);D(t)] is given by

dL[h(z);D(t)]

dt
=

∮
∂D(t)

2φzhdz =
∑
j

Qj(t)h(zj), (2.6)

which can be directly integrated with respect to time to give

L[h(z);D(t)] =
∑
j

Aj(t)h(zj), (2.7)

where
dAj (t)

dt
= Qj(t) and an integration constant has been taken to be zero (by choice of

initial conditions). Thus, L[h(z);D(t)] is a point differential functional of finite order (at

least for sufficiently short times t > 0).

Now, by invoking the theorems of Davis [6] mentioned earlier, it can be deduced that

singularity-driven Hele-Shaw flows (with zero surface tension) are such as to preserve the

rational function form of a conformal mapping function.

In the light of this, the aim of the present note is to establish these same results on the

exact conformal mapping function solutions for the viscous sintering problem by directly

shadowing this traditional approach to the Hele-Shaw problem. As shall be seen, it is a

significantly more difficult mathematical problem (than in the Hele-Shaw problem just

considered) to directly establish that the sintering problem preserves quadrature identities.
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Therefore, the purpose of this note is to provide details of the proof. It will become clear

that the sintering problem preserves quadrature identities for quite different mathematical

reasons than in the singularity-driven Hele-Shaw problem.

3 Stokes flow due to surface tension (viscous sintering)

Consider the unsteady evolution of a general simply-connected plane blob of very viscous

fluid evolving purely under the effects of surface tension. This problem has been considered,

using conformal mapping techniques, by many previous authors [3–6,15–21] (and the

references therein). In this section, we avoid the introduction of a conformal mapping

function. Introducing a streamfunction ψ(x, y) such that

u = (ψy,−ψx), (3.1)

then this streamfunction which satisfies a biharmonic equation in the fluid region, i.e.

∇4ψ = 0. (3.2)

On the blob boundary, the stress condition is

−pnj + 2ejknk = κnj , (3.3)

where ejk are given by

ejk =
1

2

(
∂uj
∂xk

+
∂uk
∂xj

)
. (3.4)

Additionally, there is a kinematic boundary condition that the normal velocity Vn of a

point on the boundary equals the normal fluid velocity at that point, i.e.

u.n = Vn. (3.5)

The general solution for the streamfunction can be written, at each instant of time t, as

ψ = Im[z̄f(z, t) + g(z, t)] (3.6)

where f(z, t) and g(z, t) are analytic everywhere in the fluid region D(t). The following

relations can easily be established:

p− iω = 4f′(z, t),

u+ iv = −f(z, t) + zf̄′(z̄, t) + ḡ′(z̄, t),

e11 + ie12 = zf̄′′(z̄, t) + ḡ′′(z̄, t). (3.7)

It is known that the stress condition can be integrated once with respect to s to yield the

following equation

f(z, t) + zf̄′(z̄, t) + ḡ′(z̄, t) = −i zs
2
, (3.8)

valid on the blob boundary where a constant of integration has, without loss of generality,

been taken to be zero. The conjugate function f̄ is defined as f̄(z) = f(z̄). s is the arclength

traversed in an anticlockwise direction around the blob. Finally, the kinematic condition

(3.5) can be written as

Im [(zt − (u+ iv)) z̄s] = 0 (3.9)
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on the boundary of the blob, where zt refers to the partial time derivative of z on the

blob boundary keeping the arclength s fixed.

Theorem 3.1 Under the evolution equations for Stokes flow, the following expression holds

for the time evolution of L:

d

dt
L[h(z, t);D(t)] =L[ht(z, t)− 2f(z, t)hz(z, t);D(t)], (3.10)

where h(z, t) is analytic in D(t) and continuous on ∂D(t) and f(z, t) is the Goursat function

at time t, i.e.

ψ = Im [z̄f(z, t) + g(z, t)] . (3.11)

Proof of Theorem 3.1 Using the complex form of Green’s Theorem in the plane, it is clear

that

L[h(z, t);D(t)] =
1

2i

∮
D(t)

h(z, t)z̄dz. (3.12)

We now compute the time derivative of this quantity.

dL[h(z, t);D(t)]

dt
=

1

2i

∮
∂D(t)

htz̄dz + hzztz̄dz + h (z̄dz)t . (3.13)

It is necessary to compute (z̄dz)t from the equations of motion. The stress condition

provides that

2f̄ + 2z̄
df

dz
+ 2

dg

dz
= iz̄s, (3.14)

or equivalently

2f̄dz + 2z̄df + 2dg = iz̄sdz = ids, (3.15)

using the fact that zsz̄s = 1. Combining the stress condition with the kinematic condition

yields

Im [(zt + 2f) z̄s] = − 1
2
, (3.16)

or

ztz̄s + 2fz̄s − z̄tzs − 2f̄zs = −i, (3.17)

which is equivalent to

ztdz̄ + 2fdz̄ − z̄tdz − 2f̄dz = −ids. (3.18)

Combining (3.15) and (3.18) provides the expression

(z̄dz)t = 2dg + 2d(z̄f) + z̄dzt + ztdz̄ (3.19)

which, when substituted into (3.13), gives the equation

dL[h(z, t);D(t)]

dt
=

1

2i

∮
∂D(t)

htz̄dz + 2hdg + 2hd(z̄f)

+ [hzztz̄dz + hztz̄dz + hztdz̄] . (3.20)

Note, however, that the terms in square brackets represent a total (spatial) differential,

and therefore gives a zero total contribution. Note also that the second term on the
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right-hand side of (3.20) gives zero contribution, since both h(z, t) and g(z, t) are known

to be analytic inside D(t). Finally, using integration by parts, we obtain

dL[h(z, t);D(t)]

dt
=

1

2i

∮
∂D(t)

(ht − 2fhz) z̄dz (3.21)

which, with a final application of Green’s theorem, completes the proof. q

We now prove the fact (Theorem 3.2) that the equations of viscous sintering are such

as to preserve quadrature identities. To do this, we define ẑ(z, t) to be the solution of the

complex partial differential equation

∂ẑ

∂t
− 2f(z, t)

∂ẑ

∂z
= 0; ẑ(z, 0) = z. (3.22)

We assume that equation (3.22) can be solved for ẑ(z, t) for times 0 < t < T . Now let

h(z, t) be a given function of z and t. Given h, define a function ĥ via the equation

ĥ(ẑ(z, t), t) = h(z, t), (3.23)

which is assumed to hold at all times t. It will be assumed that the function h(z, t) is

completely arbitrary, except that it must be an analytic function of z everywhere in D(0)

and D(t) for 0 < t < T for some non-zero T , a locally analytic (about t = 0) function

of time, and also such that, for 0 < t < T , the function ĥ(z, t) as defined via (3.23) is an

analytic function of z in D(0). This last fact will be needed in the proof of Theorem 3.2.

We first prove two lemmas which will be useful later:

Lemma 3.1 The following result is true:(
∂

∂t
− 2f(z, t)

∂

∂z

)n
h(z, t) = ĥ(0,n)(ẑ(z, t), t) (3.24)

for n > 1, where the notation g(m,n)(−,−) refers to the mth derivative with respect to the

first argument and the nth derivative with respect to the second argument.

Proof of Lemma 3.1 The proof is by induction. Consider the case n = 1:(
∂

∂t
− 2f(z, t)

∂

∂z

)
h(z, t) =

(
∂

∂t
− 2f(z, t)

∂

∂z

)
ĥ(ẑ(z, t), t)

= ĥ(0,1)(ẑ, t) + ĥ(1,0)(ẑ, t)

(
∂ẑ

∂t
− 2f(z, t)

∂ẑ

∂z

)
= ĥ(0,1)(ẑ, t), (3.25)

where we have used (3.23) and (3.22). Now, suppose that the result is true for an arbitrary

integer n > 1. Then (
∂

∂t
− 2f(z, t)

∂

∂z

)n
h(z, t) = ĥ(0,n)(ẑ, t), (3.26)
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which implies that(
∂

∂t
− 2f(z, t)

∂

∂z

)n+1

h(z, t) =

(
∂

∂t
− 2f(z, t)

∂

∂z

)
ĥ(0,n)(ẑ(z, t), t)

= ĥ(1,n)

(
∂

∂t
− 2f(z, t)

∂

∂z

)
ẑ(z, t) + ĥ(0,n+1)(ẑ, t)

= ĥ(0,n+1)(ẑ, t), (3.27)

by (3.22). The result follows for all integers n > 1 by induction. q

Lemma 3.2 The following result is true for all integers k > 1:

ĥ(k,0)(ẑ(z, t), t) =

k∑
j=1

cj(z, t)h
(j,0)(z, t), (3.28)

where the coefficients cj(z, t) are functions of the first j partial derivatives of ẑ(z, t) with

respect to z, i.e.

cj(z, t) = cj

(
∂ẑ

∂z
(z, t), ...,

∂j ẑ

∂zj
(z, t)

)
. (3.29)

Proof of Lemma 3.2 This straightforward result follows (again, by induction) by repeated

(partial) differentiation of equation (3.23) with respect to z (at fixed t) and use of the

chain rule. We omit the details. q

Theorem 3.2 With the assumption that the boundary evolution is locally analytic in time,

if the initial domain D(0) is a domain (with an analytic boundary) such that for all h(z)

analytic in D(0) ∫ ∫
D(0)

h(z) dxdy =

N∑
n=1

nk∑
k=0

ank
dk

dzk
h(z)

∣∣∣∣
z̃n

(3.30)

for some constants {ank} and {z̃n} (the points {z̃n} assumed strictly inside D(0)), then for

sufficiently short times 0 < t < T , D(t) is also a domain for which∫ ∫
D(t)

h(z, t) dxdy =

N∑
n=1

nk∑
k=0

dnk(t)
∂k

∂zk
h(z, t)

∣∣∣∣
zn(t)

, (3.31)

for some time-varying parameters {dnk(t), zn(t)} independent of h(z, t) – any function analytic

on D(t) and continuous on ∂D(t).

Proof of Theorem 3.2 Assuming that the boundary evolution is locally analytic in time,

L can be Taylor expanded about t = 0 for t within some radius of convergence T , i.e.∫ ∫
D(t)

h(z, t) dxdy =

∫ ∫
D(t)

h(z, t) dxdy

∣∣∣∣
t=0

+t
d

dt

∫ ∫
D(t)

h(z, t) dxdy

∣∣∣∣
t=0

+
t2

2

d2

dt2

∫ ∫
D(t)

h(z, t) dxdy

∣∣∣∣
t=0

+ ... . (3.32)
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These derivatives can be computed by repeatedly using Theorem 3.1 and Lemma 3.1

above,∫ ∫
D(t)

h(z, t) dxdy =

∫ ∫
D(0)

(
ĥ(z, 0) + tĥ(0,1)(z, 0) +

t2

2
ĥ(0,2)(z, 0) + ......

)
dxdy

=

∫ ∫
D(0)

ĥ(z, t) dxdy, (3.33)

after resumming the Taylor series expansion for ĥ(z, t) about t = 0. Using (3.30) we obtain∫ ∫
D(t)

h(z, t) dxdy =

∫ ∫
D(0)

ĥ(z, t) dxdy =

N∑
n=1

nk∑
k=0

ankĥ
(k,0)(z̃n, t), (3.34)

where we have used that fact that ĥ(z, t) is assumed analytic in D(0). Define the points

z1(t), ..zN(t) as the preimages, at time t, of the (fixed) points z̃1, ..z̃N under the transformation

defined by ẑ(z, t), i.e.

z̃n = ẑ(zn(t), t); n = 1, ..N. (3.35)

It is clear that zn(0) = z̃n and, for short enough times, it can always be assured that the

points z1(t), ..zN(t) are inside D(t). Substituting into (3.34) we obtain∫ ∫
D(t)

h(z, t) dxdy =

N∑
n=1

nk∑
k=0

ankĥ
(k,0)(ẑ(zn(t), t), t). (3.36)

Now substituting the result of Lemma 3.2 and using (3.23), we obtain∫ ∫
D(t)

h(z, t) dxdy =

N∑
n=1

nk∑
k=0

ankĥ
(k,0)(ẑ(zn(t), t), t)

=

N∑
n=1

nk∑
k=1

ank

k∑
j=1

cj(zn(t), t)h
(j,0)(zn(t), t) +

N∑
n=1

an0h(zn(t), t) (3.37)

but, by rearrangement, this can be written in the form∫ ∫
D(t)

h(z, t) dxdy =

N∑
n=1

nk∑
k=0

dnk(t)h
(k,0)(zn(t), t), (3.38)

where dn0(t) = an0 and the remaining coefficients dnk(t) depend on the constants {ank} and

the time-evolving coefficient functions {cj(zn(t), t)}. q

Remark 3.1 It is clear that dn0(t) = an0 are invariants of the motion.

4 Evolution equations

We now obtain an explicit set of first-order differential equations for the parameters

zn(t), ank(t). This is most easily illustrated by means of a series of examples.
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4.1 Example 1

Consider an initial blob for which L[h(z, 0);D(0)] is given by the following point differ-

ential functional of finite order:

L[h(z, 0);D(0)] =

∫ ∫
D(0)

h(z, 0)dxdy =

3∑
n=1

ãnh(z̃n, 0), (4.1)

where h(z, 0) is analytic in D(0). The constants {ãj} {zj} (j = 1, 2, 3) are determined by

the initial boundary shape. It is now known that the evolution of the blob is such that

this linear functional remains a point differential functional of finite order, i.e.

L[h(z, t);D(t)] =

∫ ∫
D(t)

h(z, t)dxdy =

3∑
n=1

an(t)h(zn(t), t). (4.2)

Differentiating (4.2) with respect to time gives

dL[h(z, t);D(t)]

dt
=

3∑
n=1

ȧn(t)h(zn(t), t)

+

3∑
n=1

an(t)

[
h(0,1)(zn(t), t) + żn(t) h

(1,0)(zn(t), t)

]
. (4.3)

However, from Theorem 3.1, it is also known that

dL[h(z, t);D(t)]

dt
=L[ht − 2f(z, t)hz;D(t)]

=

3∑
n=1

an(t)

[
h(0,1)(zn(t), t)− 2f(zn, t)h

(1,0)(zn, t)

]
. (4.4)

However, (4.3) and (4.4) must be consistent, so that necessarily:

ȧj(t) = 0; j = 1, 2, 3,

żj(t) = −2f(zj(t), t); j = 1, 2, 3. (4.5)

The invariant quantities aj(t) are exactly those mentioned in the previous remark and can

also be shown to be equivalent to those found (as line integrals quantities in the ζ-plane)

in the ‘theorem of invariants’ of Crowdy & Tanveer [3].

4.2 Example 2

Consider now an initial blob D(0) for which L[h(z, 0);D(0)] is a point differential func-

tional of the following form:

L[h(z, 0);D(0)] =

∫ ∫
D(0)

h(z, 0)dxdy = ãh(z̃1, 0) + b̃h(1,0)(z̃1, 0), (4.6)

where ã, b̃ and z̃1 are determined by the initial shape. By Theorem 3.2, this linear functional

remains a point differential functional under evolution, i.e.

L[h(z, t);D(t)] =

∫ ∫
D(t)

h(z, t)dxdy = a(t)h(z1(t), t) + b(t)h(1,0)(z1(t), t), (4.7)
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where, using the same methods as in the previous example, it can be shown that the

equations for z1(t), a(t) and b(t) are given by

ż1(t) = −2f(z1(t), t),

ȧ(t) = 0,

ḃ(t) = −2b(t)fz(z1(t), t), (4.8)

with initial conditions b(0) = b̃; a(0) = ã; z1(0) = z̃1.

4.3 Example 3

Finally, consider the initial quadrature identity given by

L[h(z, 0);D(0)] =

∫ ∫
D(0)

h(z, 0)dxdy = ãh(z̃1, 0) + b̃h(1,0)(z̃1, 0) + c̃h(2,0)(z̃1, 0), (4.9)

for some constants z̃1, ã, b̃ and c̃. Using the same methods as in the previous two examples,

it can be shown that D(t) evolves such that

L[h(z, t);D(t)] =

∫ ∫
D(t)

h(z, t)dxdy = a(t)h(z1(t), t)

+b(t)h(1,0)(z1(t), t) + c(t)h(2,0)(z1(t), t), (4.10)

where the relevant evolution equations are

ż1(t) = −2f(z1(t), t),

ȧ(t) = 0,

ḃ(t) = −2b(t)fz(z1(t), t)− 2c(t)fzz(z1(t), t),

ċ(t) = −4c(t)fz(z1(t), t). (4.11)

5 Conformal mapping parameters

It is worth noting that the evolution equations (4.5), (4.8) and (4.11) are very concise

and conveniently stated. In the case of a simply-connected blob, it turns out that these

evolution equations are sufficient to determine the evolution equations of the parameters

appearing in the corresponding (rational function) conformal mapping function. To see

this, consider Example 2. In this case, the conformal map has the form:

z(ζ, t) =
p(t)ζ + q(t)ζ2

(ζ − ζ1(t))2
. (5.1)

This is the only rational function form for z(ζ, t) (with z(0, t) = 0) that provides the

appropriate analyticity structure of the Schwarz function inside D(t) (see Davis [6]).

The evolution of the three parameters p(t), q(t) and ζ1(t) is required to determine the

boundary evolution explicitly. To obtain their evolution, note the following ‘nonlinear
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change of variables’:

z1(t) = z(ζ̄−1
1 (t), t),

a(t) =L[1;D(t)],

b(t) =L[z − z1(t);D(t)]. (5.2)

On the use of Green’s theorem, and then the Residue theorem, in the linear functionals, it

is clear that (5.2) provides an explicit (purely algebraic) system for determining z1(t), a(t)

and b(t) in terms of the conformal mapping parameters ζ1(t), p(t) and q(t).

Furthermore, note that it can be shown [3] that

2f(z) = −zt + ζI(ζ, t)zζ , (5.3)

where

I(ζ, t) =
1

4πi

∮
|ζ ′ |=1

dζ ′

ζ ′

(
ζ ′ + ζ

ζ ′ − ζ
)

1

z
1/2
ζ (ζ ′, t)z̄1/2

ζ (ζ ′−1, t)
. (5.4)

This provides an expression for f(z) purely in terms of the conformal mapping. From

this, it is easy to deduce that

2fz(z) =
−zζt + [ζI(ζ, t)zζ]ζ

zζ
. (5.5)

In summary, equations (4.8) and (5.2) therefore provide a particularly concise, closed-

form representation of the relevant evolution equations for the parameters in the conformal

map (5.1). Indeed, (5.2) is a nonlinear change of variables in terms of which the evolution

equations become particularly easy to write down explicitly.

6 Conclusion

The analysis here amplifies some recent observations of Cummings et al. [5], who comment

on the appearance in the theory of both the Hele-Shaw and Stokes flow problem with

zero surface tension of various ‘moment-like’ quantities, although it is pointed out by

Cummings et al. [5] that the relevant moments in the Hele-Shaw problem are defined in

the z-plane while those relevant to the Stokes flow problem are defined in the ζ-plane. This

note demonstrates the important role played by the same linear functional L[h(z, t);D(t)]

in the theory of both problems, and in particular, reveals that both free boundary problems

can be tackled by considering ‘Richardson moments’ [5] defined in a z-plane.

In addition, understanding the viscous sintering problem using the notion of ‘Richardson

moments’ also opens up the possibility that the various generalizations of Richardson’s

approach made by various authors (e.g. Entov et al. [8, 7]) with regard to the Hele-Shaw

problem, might well now also be made to the Stokes flow problem.
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