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This paper demonstrates that two well-known equilibrium solutions of the Euler equations—the
corotating point vortex pair and the Rankine vortex—are connected by a continuous branch of exact
solutions. The central idea is to ‘‘grow’’ new vortex patches at two stagnation points that exist in the
frame of reference of the corotating point vortex pair. This is done by generalizing a mathematical
technique for constructing vortex equilibria first presented by Crowdy@D. G. Crowdy, ‘‘A class of
exact multipolar vortices,’’ Phys. Fluids11, 2556~1999!#. The solutions exhibit several interesting
features, including the merging of two separate vortex patches via the development of touching
cusps. Numerical contour dynamics methods are used to verify the mathematical solutions and
reveal them to be robust structures. The general issue of how simple vortex equilibria can be
continued continuously to more complicated ones with very different vortical topologies is
discussed. The solutions are examples of exact solutions of the Euler equations involving multiple
interacting vortex patches. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1767771#

I. INTRODUCTION

Point-vortex models and vortex-patch models are by far
the most popular and well studied in vortex dynamics.1,2

Point-vortex models have the advantage of reducing the
problem to that of tracking a discrete point set while vortex-
patch models reduce the problem to that of tracking a curve
~or set of curves!. Such mathematical simplifications prove
to be of great advantage.

In studying any dynamical system, an important first
step is to gain a thorough understanding of the possible equi-
librium configurations since they are often attractors in the
dynamics. For this reason, the subject of ‘‘vortex statics’’ is
an important one.3 One of the very simplest nontrivial point-
vortex equilibria is the corotating point vortex pair in which
two equal point vortices corotate about the central point of
their line of centers. On the other hand, the simplest example
of a vortex-patch equilibrium is undoubtedly the Rankine
vortex solution1,2 which describes a circular patch of uniform
vorticity in solid-body rotation. In this paper, a vortex patch
is understood to be a region of fluid in which the vorticity is
a uniform constant.

Point vortices and uniform vortex patches are closely
related. The limit in which the radius of a Rankine vortex
vanishes while its vorticity tends to infinity in such a way
that the circulation is fixed is known to yield a point-vortex
solution. At the same time, the idea of desingularizing, or
regularizing, a point vortex by smearing out the vorticity to a
uniform patch of nonzero area is well known. Dritschel,4 for
example, smeared out the vorticity in the rotating
N-polygonal point vortex arrays considered by Thomson1,2

to find modified equilibria involvingN corotating vortex

patches. Elcrat and Miller5 have proved the existence of
equilibrium vortex patches close to a stable configuration of
point vortices. Converting point vortices to patches, or vice
versa, is a common method of producing modified equilibria
from existing ones.

Other methods of constructing modified equilibria from
any given one have recently been proposed. A given steadily
rotating equilibrium of point vortices, for example, often ex-
hibits points of relative rest in a frame of reference corotating
with the equilibrium. In the context of point-vortex dynam-
ics, Aref and Vainchtein6 have proposed the idea of con-
structing more complicated point-vortex equilibria by
‘‘growing’’ new point vortices at any such corotating points.
A zero-circulation point vortex is dynamically inactive and
can be placed at any such corotating points without affecting
the equilibrium. The idea of Aref and Vainchtein6 is to per-
form a continuation in the circulation of any such nascent
point vortices in an attempt to create new equilibria involv-
ing more complicated vortical configurations. While there is
no guarantee that such continued solutions exist, in cases
where they do, new~and even asymmetric! equilibria can be
constructed.

Here, we develop this idea in a natural way and consider
the possibility of growing new vortex patches~as opposed to
point vortices! at the corotating points of an existing vortical
equilibrium. This paper illustrates that this is sometimes pos-
sible and an explicit example is presented in detail using
perhaps the simplest nontrivial equilibrium—the corotating
point-vortex pair. The mathematical construction is based on
extensions of ideas originally presented in Crowdy7 and de-
veloped in Crowdy.8,9 A consequence of the analysis is to
show that the corotating point-vortex pair is, in fact, con-
nected by a continuous branch of nontrivial vortex equilibria
to the classical Rankine vortex solution. Moreover, the entire
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branch of solutions is describable in mathematical form by
means of analytical formulas~although one of the parameters
appearing in these formulas must be determined numeri-
cally!.

While this result is of theoretical interest in its own right,
perhaps more important is the more general question which it
provokes concerning how different vortical equilibria, per-
haps with very different vortical topologies, might be con-
nected and how a given equilibrium might be ‘‘continued,’’
in a continuous fashion, to a more complicated one. The
explicit example presented here starts with a vorticity distri-
bution consisting of a simple two-point set. This is contin-
ued, continuously, to a distribution consisting of a hybrid
combination of two-point vortices and two-vortex patches.
The latter configuration is then smoothly continued to a dis-
tribution involving four-vortex patches which, finally, coa-
lesce into a single isolated Rankine vortex. Being inherently
nonlinear, the steady Euler equation is renowned for being
difficult to solve. For this reason, a thorough understanding
of how complicated vortical equilibria can be systematically
constructed by continuous deformations of simpler ones is
desirable and is discussed in Sec. VIII.

It should be remarked that the class of solutions involve
vortex patches that are in pure solid-body rotation and are
not the only possible rotating equilibria consisting of two
patches and two-point vortices. More general solutions in
which the fluid in the vortex patches has a nontrivial irrota-
tional component are also possible, but it is likely that this
more general class is not describable in analytical form.

II. THE COROTATING POINT-VORTEX PAIR

Consider two-point vortices, each of circulation 2pv,
initially at points (0,61). Introducing the usual complex
coordinatez5x1 iy , the associated instantaneous complex
potentialw(z) for this flow is

w~z!52 iv ln~z2 i !2 iv ln~z1 i !. ~1!

It is straightforward to show that such a configuration rotates
about the origin with angular velocity equal tov/2. In a
frame of reference corotating with this angular velocity, the
configuration is stationary and the complex velocity fieldu
2 iv has the form

u2 iv5
dw

dz
52 ivS 1

z2 i
1

1

z1 i
2

z̄

2D . ~2!

A simple calculation shows that this velocity field has stag-
nation points atz50,6). Equivalently, because these
points are stagnation points in a corotating frame, one might
equally well refer to these as ‘‘corotating points’’ following
Aref and Vainchtein6 ~see also Morton10!. In the following
section, it is shown how to grow two new vortex patches at
the corotating points located atz56).

III. MATHEMATICAL CONSTRUCTION

Crowdy8,9 has demonstrated the theoretical advantages
of considering streamfunctions of the form

c5H v

4 S zz̄2Ez

S~z8!dz82E z̄
S̄~z8!dz8 D zPD

0 z¹D

, ~3!

where D is some fluid region andS(z) is the Schwarz
function11 of the boundary curve]D. For certain special
choices of fluid domainD, such a streamfunction can repre-
sent an equilibrium solution of the Euler equation. Moreover,
in many cases, these special classes of domains can be pa-
rametrized using conformal mappings thus effectively lead-
ing to exact solutions of the Euler equation.

This constructive method appears to be quite general,
and we will use a variant of it here. Consider a configuration
in which, in addition to the two-point vortices atz56 i ,
two-vortex patches are located symmetrically on the positive
and negative real axis. A schematic is shown in Fig. 1. The
irrotational fluid region containing the two-point vortices is
denotedD, the two-vortex patches are denotedD1 andD2 .
Let the boundaries of the two patches be]D1 and ]D2 . It
will be assumed that the vortex patches have the same angu-
lar velocity v/2 as the rotating point vortex configuration
and, moreover, are in pure solid-body rotation about the ori-
gin. The uniform vorticity of each patch is thereforev and
the assumption of solid-body rotation implies that, in the
corotating frame, the fluid inside the two patches is stagnant.

Now pose that the streamfunction of the flow, in a frame
of reference corotating with angular velocityv/2, is of the
form ~3! whereS(z) is now the Schwarz function~if it ex-
ists! of both boundaries ofD, i.e.,]D1 and]D2 . Recall that
the vorticity is given by24czz̄ where subscripts denote par-

FIG. 1. Schematic illustrating the vortex configuration of interest. Two-point
vortices are at (0,61) while two rotationally symmetric uniform vortex
patches are located on the positive and negative real axis.
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tial differentiation. This means that, in the corotating frame,
the vorticity insideD associated with the streamfunction~3!
is a uniform constant. Note also that the functionS(z),
which is locally analytic in annular neighborhoods of both
]D1 and]D2 , must satisfy

S~z!5 z̄ ~4!

on both]D1 and]D2 . If there are just two-point vortices in
D, it is clear that an additional restriction on the function
S(z) is that it must only have two simple poles inD.

The associated velocity field is

u2 iv[2icz5
iv

2
@ z̄2S~z!#. ~5!

If S(z) satisfies~4! on ]D1 and]D2 , it is easy to verify that
this streamfunction satisfies the kinematic and dynamic
boundary conditions on both boundaries]D1 and]D2 of D.
The kinematic boundary condition is that both]D1 and]D2

are streamlines, the dynamic boundary condition is that the
velocity field must vanish everywhere on these boundaries in
order to be continuous with the stagnant flow inside the
patches. Continuity of velocity on the boundary of a steady
vortex patch implies that the hydrodynamic pressures are
continuous.1

IV. CONFORMAL MAPPING

As in Crowdy,7,8 the most effective way to construct the
relevant fluid domainsD is to employ conformal mapping
techniques. Here,D is an unbounded doubly connected do-
main. The Riemann mapping theorem guarantees that any
such domain can be conformally mapped from some annulus
r,uzu,1 in a parametricz plane. The parameterr relevant
to any given domain must be determined as part of the prob-
lem.

Let the conformal map bez(z) and suppose that the
circle uzu51 maps to]D1 while uzu5r maps to]D2 . Note
that on]D1 ,

S~z!5 z̄5z~z!5 z̄~z21!, ~6!

where we have used the fact thatz̄5z21 on uzu51 and the
conjugate functionz̄(z) is defined by

z̄~z!5z~ z̄ !. ~7!

Note also that on]D2 ,

S~z!5 z̄5z~z!5 z̄~r2z21!, ~8!

where we have used the fact thatz̄5r2z21 on uzu5r. In
order for ~6! and ~8! to be consistent it is clear that the
conformal map must satisfy

z̄~r2z!5 z̄~z! ~9!

for all z.

V. EXACT SOLUTIONS

Consider now the conformal mapping given by

z~z!5R
P~2zAr21!P~2zAr!P~zAr!

P~zAr21!P~zAreiu!P~zAre2 iu!
, ~10!

where R and u are some real parameters and the special
function P(z) is defined as

P~z!5~12z!)
k51

`

~12r2kz!~12r2kz21!. ~11!

This is the same special function used by Crowdy9 to con-
struct exact solutions for annular arrays of vortices. It is re-
lated to the first Jacobi theta function.12 Note that the map
has a simple pole at the pointz5Ar which therefore maps to
physical infinity, while it has a zero atz52Ar which there-
fore maps toz50. The conformal map~10! depends on just
three real parametersR, r, andu.

It is straightforward to show, by use of its definition~11!,
that P(z) satisfies the functional relations

P~r2z!52z21P~z!,

P~z21!52z21P~z!. ~12!

These relations~12! are all that are needed to verify directly
that z(z) satisfies

z~rz21!52z~z!, ~13!

which implies that for every pointz on the unit circle map-
ping toz1 , say, there is a pointrz21 on ther-circle mapping
to 2z1 . This means that the mapping produces two rotation-
ally symmetric vortex patches, as required. Also,~12! can be
used to verify directly thatz(z) satisfies the requirement
given in ~9! which is essentially the condition that the
Schwarz functions of the two separate boundaries]D1 and
]D2 are the same. Finally, noting that

S~z!5 z̄~z21!

5R
P~2z21Ar21!P~2z21Ar!P~z21Ar!

P~z21Ar21!P~z21Areiu!P~z21Are2 iu!
,

~14!

it is clear thatS(z) has just two simple poles in the annulus
r,uzu,1, at the pointsz5Areiu,Are2 iu. This means that
S(z) has just two simple poles inD at the corresponding
conformally mapped pointsz(Areiu) andz(Are2 iu), again
as required. The scaling parameterR is fixed by insisting that
the two-point vortices are at6 i which is equivalent to the
equation

i 5z~Areiu!. ~15!

The conformal map~10! therefore satisfiesalmostall of the
requirements for a mapping to an appropriate equilibrium
domainD. The only outstanding condition is to ensure that
the two-point vortices are stationary under the effects of the
local non-self-induced velocity field. By symmetry, it is only
necessary to ensure that this condition of stationarity is sat-
isfied at one of the point vortices. Substituting~10! and~14!
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into ~5! one obtains a formula for the complex velocity field,
in the corotating frame, as a function ofz and z̄. This is

u2 iv5
ivR

2
S P~2 z̄Ar21!P~2 z̄Ar!P~ z̄Ar!

P~ z̄Ar21!P~ z̄Areiu!P~ z̄Are2 iu!

2
P~2z21Ar21!P~2z21Ar!P~z21Ar!

P~z21Ar21!P~z21Areiu!P~z21Are2 iu!
D .

~16!

On use of the conformal mapping function it can be shown
that, asz→ i , the velocity field~16! locally has the form

u2 iv52
iGs

2p~z2 i !
1V1o~1!, ~17!

whereGs is the circulation of the point vortex atz5 i andV
is the local non-self-induced velocity. The condition that the
two-point vortices are stationary under the non-self-induced
velocity field is equivalent toV50. The Appendix gives ex-
pressions forGs and the condition thatV50 in terms of the
conformal mapping parameters. By the symmetry, this con-
dition also ensures that the vortex atz52 i is stationary. As
seen in the Appendix, this equation is independent ofR
~which is simply a scaling parameter! but depends only onr
and u. By applying Newton’s method to this equation, we-
have found that it can be solved numerically foru for given
r in the interval

rP@0,rcrit #, ~18!

FIG. 2. A continuous branch of rotating vortex arrays connecting the coro-
tating point-vortex pair to the Rankine vortex. The figures illustrate the
‘‘growing’’ of two-vortex patches at the two stagnation points~at 6) in the
corotating frame! of the corotating point-vortex pair. The sixth figure is the
limiting state of the solution~10! wherer5rcrit and where the two patches
develop cusps and touch at three distinct points enclosing circular irrota-
tional regions centered on the point vortices. The last two figures illustrate
the desingularization of the point vortices to form a single Rankine vortex.
The circulationsGs andGsp are also shown.

FIG. 3. Graph of satellite patch circu-
lations Gsp and satellite point-vortex
circulationsGs againstr. The sumGs

1Gsp is found to equal 2p for all val-
ues ofr. As r→rcrit ,Gs ,Gsp→p.
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wherercrit yields a limiting configuration to be discussed in
the following section. The solution to this equation is very
straightforward since it is a Newton iteration on just a single
unknown parameter.

VI. CHARACTERIZATION OF THE SOLUTIONS

The conformal map~10!, with the three parametersR, r,
andu constrained by the two conditions of stationarity of the
point vortices and the normalization~15! yield a continuous
one-parameter family of two-patch equilibria. Without loss
of generality, we setv51. In the limit r→0, it is found that
the two-vortex patches become invisibly small and essen-
tially disappear atz56) in this limit. This is precisely the
location of the corotating points in the pure point-vortex con-
figuration discussed in Sec. II. For this reason, the construc-
tive procedure just described essentially effects the job of
growing two-vortex patches at these corotating points.

As r increases, so does the size of each vortex patch.
Figure 2 shows several configurations for different values of

r. Different values ofr correspond to different values of the
circulations of both the point vortices and the patches. LetGs

denote the point-vortex circulations and letGsp denote the
circulation of each of the vortex patches. The expression~16!
can be used to derive analytical expressions forGs andGsp in
terms of the conformal mapping parameters. Figure 2 anno-
tates each configuration with the corresponding values of
these circulations. Whenr→0, Gsp tends to zero~because it
is proportional to the patch area!. A superposed graph ofGs

andGsp is shown in Fig. 3 and displays a surprising feature.
To within numerical accuracy~in the solution of the station-
arity condition foru given a value ofr!, it is found that all
the equilibrium configurations satisfy

Gs1Gsp52p. ~19!

Thus, while the values ofGs and Gsp both change withr,
their sum remains constant. We can offer no explanation for
this unexpected result.

Perhaps equally surprising is the nature of the limiting
configuration asr→rcrit50.735. This is shown in the sixth
diagram of Fig. 2. In this limiting state the two-vortex
patches touch at three distinct points, the points of contact
taking the form of three cusp singularities in the patch
boundaries. Asr→rcrit , the curvature of the near cusps gets
larger as the distance between corresponding near cusps on
the two-vortex patches gets smaller. Atr5rcrit , within nu-
merical accuracy, it is found that the patches touch and en-
close two exactly circular regions of irrotational fluid with
the point vortices located at their centers. To test this, Fig. 4
shows the critical configuration superposed with the three
circles uz6 i u51 anduzu52. The boundaries of the limiting
configuration are indistinguishable from these three circles.
It was also noticed that in the limiting configuration, the
values ofGs andGsp become equal. By~19!, they both tend
to p. This can be seen clearly in Fig. 3.

This feature of the limiting two-patch solutions suggests
that the class of solutions can be continued, in a continuous
fashion, even past this limiting state. In view of the fact that
the streamlines around the point vortices are exactly circular,
the two-point vortices can be desingularized in the usual way
and replaced by two Rankine vortices~with the same total
circulation as the original point vortices! but with gradually
increasing radiusr . If v r denotes the vorticity of a Rankine
vortex of radiusr and total circulationp then

v r5
1

r 2 . ~20!

FIG. 4. Critical configuration for two satellite patches and two satellite point
vortices for r5rcrit50.735 ~drawn in solid lines! shown with the three
circles uz6 i u51 and uzu52 superposed~drawn with dashed lines!. The
solid and dashed curves are indistinguishable. In this critical case, the cir-
culation of each satellite patch isp, as is the circulation of each satellite
point vortex.

FIG. 5. Contour dynamics simulation of a single revolution of the equilibrium shown in the fourth figure of Fig. 2 withGs54.620,Gsp51.663.
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The value ofr>0 is arbitrary provided it is less than, or
equal, to unity which is where the enclosed Rankine vortices
meet the circular boundaries of the satellite patches. The sev-
enth diagram in Fig. 2 shows the configuration forr 50.4.
Indeed whenr 51, by the previously observed fact that the
limiting circulation of Gs is p, the uniform vorticity of the
enclosed circular Rankine vortices tends exactly to the value
of the uniform vorticity of the satellite vortex patches imply-
ing that, whenr 51 thenv r51 by ~20! and the equilibrium
essentially becomes a single circular Rankine vortex of ra-
dius 2, uniform vorticityv51, and total circulation 4p.

Overman13 showed that points of nonanalyticity in the
boundary of a steady vortex patch can either be right-angled
corners or cusps. It is known that two corotating vortex
patches reach a limiting configuration at which they touch at
the same time as a corner develops in the boundary of each
patch. Saffman and Szeto14 and Kamm15 have investigated
such problems. The equilibrium solutions found here exhibit
the feature of two equal corotating vortex patches touching
~in this case, simultaneously at three distinct points! as the
boundaries of the two patches develop cusps, as opposed to
corners. The presence of the straining flow due to the point

vortices seems to induce this occurrence. This appears to be
an example of a limiting equilibrium exhibiting touching
cusps. Note that, owing to the presence of these cusps~which
have infinite curvature!, it is likely that the limiting states
would be challenging to compute using any numerical
scheme which relies on a discretization of the patch bound-
aries. The existence of a closed-form formulas for the solu-
tions is therefore of great value.

VII. CONTOUR DYNAMICS SIMULATION

As a check on the mathematical solutions, the contour
surgery code of Dritschel16 for computing the evolution of
vortex patches was modified to include the effect of two-
point vortices interacting with the patches. This code was
initialized using the equilibrium configurations just derived
in order to check that they simply rotate without change of
form under the dynamics of the Euler equation. Figure 5
shows snapshots of the evolution of the equilibrium in the
fourth diagram of Fig. 2 during a single turnover time. Here,
time has been rescaled with respect to 2p so, sincev51 so
that the angular velocity is 1/2, thent52 corresponds to a

FIG. 6. Superposition of the initial
configuration and final configurations
after 10 turnover times~i.e., t520) as
computed by contour dynamics. The
curves sit on top of each other. The
initial configuration is the equilibrium
shown in the fourth diagram of Fig. 2.

FIG. 7. Contour dynamics simulation of a single revolution of the critical equilibrium.
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single revolution of the array. The snapshots are taken att
50.5,1,1.5 andt52 and, indeed, these are clearly found to
correspond to quarter revolutions of the configuration. As an
additional check, Fig. 6 features a superposition of the initial
condition and the final configuration after 10 turnover times
~i.e., at t520). Within numerical errors associated with the
simulation, the initial condition is verifiably an equilibrium
of the equations. Figure 7 shows a simulation of a single
revolution of the critical case in which the two patches touch.
This too appears to be a robust equilibrium of the equations
even though the numerical evolution of the cusp regions of
the interface is a little unsteady. It should be mentioned that,
owing to the presence of these high curvature regions, a large
number of points must be given in the initial conditions for
the contour dynamics simulation in this case.

The preceding calculations also suggest that the equilib-
ria might well be linearly stable since if unstable, growth of
any small numerical inaccuracies might be expected to de-
stabilize the array after sufficiently long times. A detailed
investigation of the stability properties of this class of solu-
tions remains to be performed, however, some preliminary
investigations using contour dynamics suggests that the equi-
libria are robust structures. Figure 8 shows the initial con-
figuration given in the fourth diagram of Fig. 2 but perturbed
by displacing the upper point vortex vertically upwards by a
distance 0.05. The overall structure remains robust but the
angular velocity of rotation is affected. After two revolutions
of the unperturbed equilibrium, the configuration has not re-
turned to its original orientation but is displaced through
some angle.

As a check on the equilibria constructed by desingular-
izing the point vortices to Rankine vortices, Fig. 9 shows a
contour dynamics simulation of two revolutions of the criti-
cal configuration in which the two-point vortices are each

replaced by a radius 1/2 Rankine vortex each of vorticity 4.
Similarly, Fig. 10 shows a case in which the point vortices
are replaced by Rankine vortices of different radii: the upper
point vortex is replaced by a Rankine vortex of radius 2/3
and vorticity 9/4 while the lower point vortex is replaced by
a Rankine vortex of radius 1/3 and vorticity 9. These simu-
lations corroborate the fact that the vortex configurations are
indeed equilibria of the Euler equation.

VIII. DISCUSSION

This paper has demonstrated that the corotating point-
vortex pair can be continuously deformed, through a series
of equilibria describable using exact mathematical formulas,
to the classical Rankine vortex. This has been done by the
device of growing two new vortex patches at the corotating
points atz56) of the corotating point-vortex pair.

It should be noted that, as in the point-vortex case con-
sidered by Aref and Vainchtein,6 the success of growing
patches at corotating points is not guaranteed. Indeed, in the
present example, one could contemplate adapting the same
methods used here to grow a new central vortex patch at the
corotating point atz50 instead of atz56). However, this
attempt would fail as can be concluded immediately from the
fact that such a generalized equilibrium would fall within the
class of equilibria consisting of a central vortex patch sur-
rounded byN satellite point vortices considered recently by
Crowdy.8 In the latter study, it was found that equilibrium
solutions of this kind can be found for allN>3 but the case
N52 does not yield solutions.

Remarkably, using numerical methods, Cerretelli and
Williamson17 have recently found a completely distinct
branch of equilibria connecting the corotating point vortex
pair to the Rankine vortex. Instead of growing new vortex

FIG. 9. Contour dynamics simulation of two revolutions of the continued critical equilibrium in which the two-point vortices are replaced by two Rankine
vortices each of radius 0.5.

FIG. 8. Contour dynamics simulation of a perturbed equilibrium. The upper point vortex in the equilibrium of the fourth figure of Fig. 2 is displaced upwards
by 0.05. The configuration is robust, but its overall angular velocity of rotation is affected.
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patches at the corotating points and then later desingularizing
the point vortices as done here, the latter authors’ approach is
to start by desingularizing the two corotating point vortices
by replacing them with two finite-area patches. The area of
the two~noncircular! patches is gradually increased until the
patches touch. Thereafter, Cerretelli and Williamson17 con-
tinue the class of equilibria even beyond this~apparently
limiting! state to construct a class of simply connected patch
equilibria variously dubbed ‘‘dumb-bells’’ and ‘‘sausages’’
before the truly limiting ‘‘cat’s-eye’’ state is reached. En
route to this limiting state, the patch becomes a Kirchhoff
ellipse which, it is well-known,1,2 can be continuously de-
formed~through a sequence of equilibrium ellipses of gradu-
ally increasing aspect ratio! back to the circular Rankine vor-
tex. By this path of solutions, the corotating point-vortex pair
is again continuously connected to the classical Rankine vor-
tex.

All this evidence suggests powerful possibilities for the
future construction of new vortical equilibria based on com-
bined point-vortex and vortex-patch models. By procedures
such as~i! the desingularization of point vortices to uniform
vortex patches~or vice versa!, ~ii ! the growing of new point
vortices at corotation points of existing equilibria as done
recently by Aref and Vainchtein,6 ~iii ! the growing of new
vortex patches at corotation points of existing equilibria as
done here, and~iv! the smooth continuation of touching vor-
tex patches to a merged equilibrium as done here and re-
cently by Cerretelli and Williamson,17 it appears that even
basic equilibria with simple vorticity distributions can be
continuously continued to more complicated ones with more
elaborate vortical topology.

In general, any such continuations must be performed
using numerical methods. However, it appears that there ex-
ist special cases where exact solutions can be identified. Ex-
act solutions of the steady Euler equation are rare, yet con-
sideration of streamfunctions of the form~3! seems to be
unusually successful in producing them as evinced both here
and in previous studies.7–9 Moreover, the resulting solutions
appear to have a number of surprising characteristics that
have yet to be explained. This is left for future work as the
potential of the streamfunction~3! is examined further.

Finally, we mention that the two-patch solutions herein
are examples of exact solutions of the Euler equations in-
volving more than one vortex patch. The possibility of ex-
tending the general methods to find equilibria involving
more than two vortex patches is intriguing but involves the

theory of conformal mappings of multiply connected do-
mains. In the doubly connected case considered here, the
mappings have been constructed by implicit use of the well-
developed theory of elliptic functions@manifested in the use
of P(z) which is related to Jacobi theta functions12#. For
more than two patches, the situation becomes much more
challenging and details remain to be worked out. Finally,
another interesting generalization is to the case where vortex
patches are grown at the corotation points of a corotating
point-vortex pair with different strengths, however, we have
not studied this case in any detail.
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APPENDIX: THE STATIONARITY CONDITION

The velocity field associated with the exact solutions is
~16! which, nearz5a5Areiu can be written in the form

u2 iv5
ivR

2 S A~z!

z2a
1B~ z̄ ! D , ~A1!

whereA(z) is analytic atz5a and where explicit formulas
for A(z) andB( z̄) can be derived from~16!.

Let z1 denote the position of the point vortex on the
imaginary axis. Thenz15z(a) and

z2z15zz~a!~z2a!1
zzz~a!

2
~z2a!21¯ ~A2!

so that, with some manipulations, we deduce that

1

z2a
5

zz~a!

z2z1
1

zzz~a!

2zz~a!
1O~z2z1!. ~A3!

It follows that the circulationGs of the point vortex is

Gs52pvRA~a!zz~a! ~A4!

while the stationarity conditionV50 is equivalent to

Az~a!1A~a!
zzz~a!

2zz~a!
1B~ ā !50. ~A5!

FIG. 10. Contour dynamics simulation of a single revolution of the continued critical equilibrium in which the upper point vortex is replaced by a Rankine
vortex of radius 2/3 and vorticity 9/4 while the lower point vortex is replaced by a Rankine vortex of radius 1/3 and vorticity 9.
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