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The construction of exact multipolar equilibria of the two-dimensional
Euler equations
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Using ideas involving the Schwarz function of analytic curves, a new class of exact multipolar
equilibria of the two-dimensional Euler equations characterized by an annular region of vorticity
enclosing a region of irrotational fluid is constructed. The results generalize a recently derived class
of exact solutions for multipolar vortex equilibria@Crowdy, Phys. Fluids11, 2556 ~1999!#. The
solutions have many qualitative similarities to the multiple-vortex nonlinear saturation states of an
unstable annulus of uniform vorticity. More generally, the results suggest the possibility of
constructing multipolar equilibria of the steady Euler equations having distributed vortical regions
of more or less arbitrary geometrical complexity. ©2002 American Institute of Physics.
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I. INTRODUCTION

Coherent vortical structures are now known to constit
an important feature of many two-dimensional and qua
geostrophic flows.1 They arise in many aspects of astrophy
cal, geophysical, and meteorological fluid dynamics. In
initial state of randomly distributed vorticity, for exampl
the cascade of energy to larger scales is responsible fo
formation of such vortical structures.2 While monopoles and
dipoles are the most ubiquitous structures~characterized by
one and two vorticity maxima respectively!, laboratory
experiments3–6 and numerical simulations7–11 have shown
that higher order structures, such as tripoles a
quadrupoles5,6,11 ~as well as even higher order structure!,
arise from the instability of isolated circular vortices~usually
with zero total circulation!. A tripole is characterized by
three vorticity maxima—a central core region with vortici
of one sign surrounded by two satellite vortices both of o
posite sign. A tripolar-like vortex has been observed in r
physical flows12 and the possibility of its emergence from a
unstable monopolar vortex was originally mentioned
Leith.13 A quadrupole has a central core surrounded b
triangular array of three such satellites. The general clas
vortices of this general kind have been dubbed ‘‘multipo
vortices’’ and the formation, structure, and stability prop
ties of such vortices is a topic of much recent research ac
ity. Typically, such vortex structures rotate at a constant
gular velocity. We refer the reader to Ref. 6 for a detai
discussion of the general properties of multipolar vortice

Owing to the complicated structure of these multipo
vortices, most investigations of them have involved eith
laboratory experiments or full numerical simulations,
though simple point vortex models can often capture m
aspects of realistic flow situations~e.g., Ref. 14!. It is clearly

a!Telephone:~020! 7594 8587; fax:~020! 7594 8517; electronic mail:
d.crowdy@ic.ac.uk
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of interest, from a theoretical point of view, to find effectiv
models of such vortices, or ideally, some mathematical so
tions of the Euler equations which resemble multipolar v
tices and which can be studied explicitly. In this vei
Kloosterziel and Carnevale15 have recently examined th
possibility of approximating the evolutionary dynamics b
tween these equilibria by low-order dynamical syste
while, with a view to extending our theoretical understandi
of these structures as mathematical solutions of the E
equations, the present author recently pointed out16 that there
exists a class of exact solutions to the steady tw
dimensional Euler equations which share all the qualitat
properties of multipolar vortices observed in practice~physi-
cal observation, experiments, and numerical simulation!.
The new solutions are finite-area patches of nonzero vorti
and therefore, unlike simple point-vortex models, provi
insight into the shapes of vortical equilibria of the Eul
equation.

It was pointed out in Ref. 16 that the solutions deriv
there had the intriguing property of being ‘‘invisible’’ in tha
they do not induce any irrotational velocity field outside t
support of the vorticity. Such vortices therefore only intera
when the overlap. This prompts a very natural quest
which forms the basis of this paper: what happens when s
vorticesdo overlap? In particular, can overlapping of suc
vortices produce more coherent vortex equilibria of the
Euler equations, perhaps with vortical regions having ev
more complex shapes? This paper answers this question
shows that, in certain circumstances, it is possible for s
vortices to merge in such a way as to form a steady hig
order vortical structure. Indeed, our principal result is
show that, within the class of solutions under considerati
while ~shielded! monopoles cannot combine in pairs to for
compound equilibria, higher-order equilibria can be form
provided at least three monopoles combine in an ann
configuration thereby forming a vortical region of high
connectivity~in fact, doubly connected!. In the process, we
© 2002 American Institute of Physics
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essentially produce a broad new class of exact multip
solutions of the steady two-dimensional Euler equatio
This paper constitutes a natural sequel to Ref. 16.

Many investigators have considered what happens w
two or more coherent structures interact. Saffman a
Szeto17 showed that two patches of like-signed uniform vo
ticity ~i.e., V-states! cannot get too close together and co
tinue to exist in a co-rotating equilibrium, whil
Pierrehumbert18 considered the case of two opposite-sign
symmetrical vortices. Dritschel19 later generalized the
Saffman–Szeto scenario to the case when an array ofk like-
signed uniform vortex patches exist in an annular co-rota
equilibrium. Dritschel suggested that such equilibria mig
be the nonlinear saturation states of an unstable annulu
uniform vorticity. Indeed later, Dritschel20 computed the
nonlinear evolution of an annulus of uniform vorticity an
showed that, under suitable circumstances, it did indeed
stabilize into an annular array of distinct vorticity maxim
which looked very similar to the 5-patch annular configu
tion computed in Ref. 19. The new equilibrium solutions
be presented here have very strong similarities to the num
cal solutions of annular arrays of co-rotating V-states d
cussed by Dritschel.19,20 Indeed, we believe our new solu
tions to be a mathematically exact subclass of this gen
class of equilibria of the 2D Euler equation.

II. OVERLAPPING MONOPOLAR VORTICES

Saffman and Szeto17 explain the nonexistence of a co
rotating equilibrium when two like-signed vortices draw to
close together as being due to the strain field induced by
vortex being too strong for the other vortex to exist as
separate entity. In the case of the solutions of Ref. 16 wh
induce no straining flow outside the support of the vortici
this mechanism no longer represents a possible reason fo
nonexistence of steady solutions. We therefore suggest
such vortices might be able to draw arbitrarily close toget
and ‘‘merge’’ to form higher-order compound vortical stru
tures.

To illustrate the idea, consider the exact solution of
Euler equations referred to in Ref. 16 as ashielded Rankine
vortex given, in cylindrical polar coordinates (r ,u), by the
velocity fieldu5(0,V(r )) where the azimuthal velocity field
is given by

V~r !5H v0r

2
2

v0

2r
, r<1,

0, r .1,

~1!

and wherev0 is the constant uniform vorticity inside th
circular patch. This solution might equally well be referred
as a ‘‘shielded line vortex’’ because the patch of unifo
vorticity surrounding the central line vortex can be viewed
shielding it. Here, however, we continue to employ the na
introduced in Ref. 16. This vortex will be a key buildin
block in the development. It is from understanding this v
tex from the point of view of the Schwarz function of th
circle r 51 that forms the basis of the derivation of th
higher-order multipolar structures of Ref. 16.
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By definition, the Schwarz function of a general clos
analytic curve]D surrounding a bounded, simply connect
domainD in the plane is the~unique! function, analytic in an
annular domain containing the curve]D, satisfying the rela-
tion

S~z!5 z̄, everywhere on]D. ~2!

In the case in which]D is the circle defined byzz̄51 it is
clear that everywhere on]D,

z̄5
1

z
. ~3!

The function ofz on the right hand side is analytic in, fo
example, the annular domain 0.9,uzu,1.1 which contains
the unit circleuzu51. The function also satisfies Eq.~2!. We
therefore recognize it as the Schwarz function of the circ
i.e.,

S~z!5
1

z
. ~4!

The following analysis will be self-contained in that all re
sults regarding the Schwarz functions needed for the pre
application will be cited here. For more details, however,
interested reader is referred to a monograph by Davis.21 Now
consider the velocity field Eq.~1! rewritten in terms ofz
5x1 iy and its complex conjugate. Using the fact that t
radial and tangential components of a general tw
dimensional incompressible velocity field (U,V) is related to
the streamfunction by the formula

2icz5eiu~U2 iV !, ~5!

it can be deduced that the streamfunction associated with
~1! is

c52
v0

4 S zz̄2Ez 1

z8
dz82E z̄ 1

z8
dz8D . ~6!

Using the identification Eq.~4! this is equivalent to

c52
v0

4 S zz̄2Ez

S~z8!dz82E z̄
S̄~z8!dz8 D , ~7!

where the conjugate functionS̄(z) is defined byS( z̄). For-
mula ~7! provides the key route to generalization develop
in Ref. 16.

The velocity field everywhere outside the vortex in E
~1! is quiescent. The same is true of all the generalized
lutions found in Ref. 16 where the adjective ‘‘invisible’’ i
used to describe such vortices. Consider two shielded Ra
ine vortices sitting close together but not touching. Suc
configuration also constitutes a self-consistent global so
tion of the steady Euler equations precisely because the
tices do not interact. Indeed, two such vortices can draw
close together that they actually touch. This is possible
cause neither vortex induces any strain field outside the s
port of its own vorticity. It is natural to ask whether the tw
such monopolar solutions can merge, not in a dynam
sense, but in the sense that the class of equilibria can
continued via a continuous sequence of steady solut
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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259Phys. Fluids, Vol. 14, No. 1, January 2002 Construction of multipolar vortex equilibria
which form higher-order steady multipolar structures with
the same class of solutions considered in Ref. 16, i.e., n
rotating and surrounded by quiescent fluid.

There is a further reason to suspect that this idea
steady merger might be feasible. At a point where t
shielded Rankine vortices touch, the resulting configurat
will have a cusp singularity in its boundary at the point
contact. The vorticity in the neighborhood of this cusp w
be uniform. Overman22 has made a careful study of ‘‘limiting
V-states’’~i.e., limiting shapes of patches of uniform vortic
ity! and shown, by means oflocal arguments in the neigh
borhood of a point of nonanalyticity in the boundary of
uniform V-state, that the only possible limiting states poss
either 90° corners or cusps. Overman’s analysis is there
consistent with, and does not immediately rule out, the p
sibility of continuously smoothing out a cusped point of co
tact as two initially disjoint vortex structures come togeth

This question of the steady merger of the invisible v
tices of Ref. 16 is not a trivial one. Indeed, the question j
posed of whether just two shielded Rankine vortices
merge to form a higher-order, shielded, dipolar struct
~within the same class of solutions! characterized by two
localized vorticity maxima has a negative answer. This qu
tion was answered implicitly in Ref. 16 where it is found th
there does not exist a simply connected dipolar vortical pa
surrounded by quiescent fluid. Thus while it is possible
two shielded Rankine vortices to approach eachother
closely that they touch, it is not in fact possible to contin
these solutions so that the monopoles ‘‘overlap’’ and rem
in equilibrium.

III. ANNULAR CONFIGURATIONS OF VORTICES

Given this observation, it might appear that the propo
search for compound vortices formed by the overlapping
the canonical monopolar vortices Eq.~1! is destined for fail-
ure. However, many studies reveal that vortices typically
range themselves so that they consist of a finite array
vorticity maxima congregating in a co-rotating annular co
figuration. The classic studies of a co-rotating ring of li
vortices by Thomson~and others! are well-known.23 It is also
known that there exist annular configurations of vortic
maxima associated with regions of distributed vorticity w
central core regions consisting wholly of irrotation
fluid.19,20Also, in a typical multipolar vortex~e.g., Ref. 11!,
k satellite vortices congregate in an annular configurat
and enclose a core region consisting of a region of vortic
of opposite sign usually also possessing some enclose
gions of irrotational fluid.

Motivated by this, we explore the situation in which
collection of k shielded Rankine vortices come together
such a way that they form an annular~i.e., doubly connected!
region of vorticity enclosing a finite region of irrotationa
fluid and surrounded by irrotational fluid. It will be show
that such solutions exist and, moreover, that they are
cisely a result of the merging of an annular array of t
canonical monopolar vortices Eq.~1!. The solutions will be
found by generalizing the methods presented in Ref. 16.
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cause the support of the vorticity in the resulting compou
structure is now doubly connected, the analysis of Ref.
must be generalized in a nontrivial way.

We review and summarize the results of Ref. 16. T
work pointed out the relevance to multipolar vortex solutio
of the steady Euler equations of a streamfunction defined

c~z,z̄!

5H 2
v

4 S zz̄2Ez

S~z8!dz82E z̄
S̄~z8!dz8 D , in D,

0, outside D,

~8!

where S(z) is the Schwarz functionof the boundary of a
finite-area, simply connected patch of nonzero vorticity. T
function Eq. ~8! also has relevance in other quite differe
~more mathematical! contexts and is sometimes referred to
a modified Schwarz potential.24

As pointed out in Ref. 16, the special choice of strea
function Eq.~8! is remarkable in that it simultaneously sa
isfies both the kinematic and dynamic boundary conditio
on the boundary ofD ~i.e., the boundary of the region o
nonzero vorticity!. If one then restricts the class of vorte
patches to those which have a Schwarz function which
meromorphic inside the patch with just simple pole sing
larities having real residues, it was discovered that one
apply the non-self-induction hypothesis to obtain exact, s
consistent solutions of the steady Euler equations. We r
the reader to Ref. 16 for more details.

Now consider such a patch with an additional inter
region of enclosed irrotational fluid denotedDi . The region
of irrotational fluid outside the vortex patch will be denote
D0 . For convenience, we will refer to the outer bounda
~betweenD andD0! as]D0 and the inner boundary~between
D andDi! as ]Di . Figure 1 provides a schematic. The d
ficulty of generalizing Eq.~8! to an annular~i.e., doubly
connected! region of vorticity is immediately seen when on
considers the fact that such an annular region of vorticityD
now has two disjoint bounding curves. In general, both]D0

and ]Di , being disjoint closed analytic curves, will eac
define an associated Schwarz function denotedS0(z) and
Si(z), respectively, i.e.,

FIG. 1. Annular patch of vorticityD ~shaded!: the interior and exterior
regions of irrotational fluid are denotedDi andD0 , respectively. The inte-
rior boundary ofD is denoted]Di , the exterior boundary denoted]D0 .
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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260 Phys. Fluids, Vol. 14, No. 1, January 2002 Darren Crowdy
z̄5S0~z!, on ]D0 ,
~9!

z̄5Si~z!, on ]Di .

For general annular domains, these Schwarz functions
different. It is therefore not immediately clear how to gen
alize the streamfunctionc(z,z̄) as given in Eq.~8!: follow-
ing the analysis in Ref. 16 a streamfunction defined by

c~z,z̄!52
v

4 Fzz̄2Ez

S0~z8!dz82E z̄
S̄0~z8!dz8G ~10!

will satisfy both the kinematic and dynamic boundary co
ditions on the exterior boundary]D0 provided there is qui-
escent fluid outside the patch, while a streamfunction defi
by

c~z,z̄!52
v

4 Fzz̄2Ez

Si~z8!dz82E z̄
S̄i~z8!dz8G ~11!

will satisfy the kinematic and dynamic boundary conditio
on the interior boundary]Di provided there is quiescent flui
in the region enclosed by the annular vortical region. B
between the two boundaries~i.e., the vortical region! it is
necessary to define a common streamfunction. For gen
classes of annular vortical domains, Eqs.~10! and ~11! will
define different streamfunctions.

The key to generalization is to restrict to aspecialclass
of doubly connected vortical domains. We now suppose
possible to find a doubly connected domainD which has the
distinguished property that

S0~z!5Si~z![S~z!, in D, ~12!

except at afinite number k of simple pole singularities
$zj u j 51,..,k% of S(z) which are strictly insideD. In other
words, we consider a special class of domains in which b
the outer and inner bounding curves of the annular dom
have the same Schwarz function which continues merom
phically throughout the vortex patch. In addition, this~com-
mon! Schwarz function@i.e., S(z)# will be assumed to have
only simple pole singularities$zj u j 51,..,k% in D each having
purely real residues.

It has not yet been established that such special dom
exist, however, we now show why such domains are of
terest to us. Consider the streamfunction defined by

c~z,z̄!

5H 0, in D0

2
v

4 S zz̄2Ez

S~z8!dz82E z̄
S̄~z8!dz8 D , in D

0, in Di

,

~13!

whereS(z) is defined by Eq.~12!. The vorticity associated
with this streamfunction is equal to a uniformv everywhere
insideD except possibly at any singularities ofS(z). Inside
D, the total derivativedc is given by
Downloaded 29 Sep 2004 to 141.212.134.86. Redistribution subject to AI
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dc5cz dz1c z̄ dz̄,
~14!

52
v

4
~ z̄2S~z!!dz2

v

4
~z2S̄~ z̄!!dz̄.

On the boundary]D0 , Eqs.~9! and ~12! imply that dc50
so that]D0 is a streamline. Therefore, the kinematic boun
ary condition is satisfied on this boundary. Moreover,u
2 iv52icz50 on ]D0 so that velocities are continuous o
the outer boundary. This implies that fluid pressure is c
tinuous on]D0 ,25 and therefore that the dynamic bounda
condition is satisfied. Because of stipulation Eq.~12!, exactly
the same arguments hold on the inner boundary]Di . If S(z)
is assumed to have simple pole singularities inD with real
residues, then the streamfunction Eq.~13! will have line vor-
tex singularities at these points. For a consistent solution
the steady Euler equations it is necessary, by the Helmh
vortex theorems,25 to ensure that all such line vortices a
stationary under the effects of the local non-self-induced
locity field. This important physical constraint is discuss
further in Sec. V once we have found a way to construct
special class of doubly connected domains now of interes
us ~these domains are related to the theory of quadra
domains24,26!.

IV. CONFORMAL MAPPING

As in Ref. 16, the most convenient way to parametr
the class of domains now under consideration is to introd
a conformal mapz(z) from a canonical doubly connecte
region. By Riemann’s theorem,27 for any doubly connected
region there exists a conformal map from an annu
r,uzu,1 for somechoice ofr. This parameterr ~known as
the conformal modulusof the mapping—see Ref. 27! must
be determined as part of the solution. The circleuzu51 will
map to the exterior boundary of the patch]D0 , while uzu5r
will map to the interior boundary]Di . See Fig. 2 for a
schematic.

It is convenient to write the functionS(z) in terms of the
parametricz-variable which, henceforth, will be used~along
with its conjugate variable! to parametrize all physical quan
tities associated with the flow. Onuzu51, the Schwarz func-
tion S0(z) is defined by

S0~z!5 z̄. ~15!

Using the fact thatz̄5z21 on uzu51 it follows thatS0(z) can
be written

S0~z~z!!5z~z!5 z̄~z21!, on uzu51. ~16!

Herez̄(z) denotes the conjugate function toz(z) defined via

z̄~z!5z~ z̄ !. ~17!

By analytic continuation, Eq.~16! also holds off the circle
uzu51. Using the fact thatz̄5r2z21 on uzu5r the Schwarz
function Si(z) can similarly be written as

Si~z~z!!5z~z!5 z̄~r2z21!, ~18!
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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FIG. 2. Conformal mapping domains
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which similarly also holds off the circleuzu5r by analytic
continuation. Therefore, comparing Eqs.~16! and ~18!, in
order that Eq.~12! should hold, the conformal map mu
satisfy the functional relation

z̄~z21!5 z̄~r2z21!, ~19!

for all zÞ0. Functions satisfying such a multiplicative pe
odicity property are studied in classical texts on functi
theory ~e.g., Ref. 28! but all results needed for the prese
application will be explicitly stated below.

In order to explicitly construct functions satisfying E
~19! it is necessary to introduce a single special functi
Consider the functionPk(z), indexed by a nonzero positiv
integer k, defined by the following infinite-product expan
sion:

Pk~z![~12zk!)
n51

`

~12r2nkzk!~12r2nkz2k!. ~20!

This function has some special properties which will ena
us to construct a conformal mapping satisfying Eq.~19!.
First, observe that some simple direct manipulations of
infinite-product definitions reveal thatPk(z) has the follow-
ing transformation properties:

Pk~z21!5Pk~r2z!52
1

zk Pk~z!. ~21!

We now pick a positive integerk and define the following
conformal map using the special functionPk(z):

z~z!5Rz
Pk~zh1

21!

Pk~zz1
21!

, ~22!

whereR is a real parameter and the real parametersr, h1 ,
andz1 are related via

r2h1
k

z1
k 51. ~23!

Given this relation, the conformal map Eq.~22! contains
threeindependent~real! parameters, i.e.,r, z1 , andR. Using
Eq. ~21!, routine algebraic manipulation reveals that for a
Downloaded 29 Sep 2004 to 141.212.134.86. Redistribution subject to AI
.

e

e

integerk, the conformal map Eq.~22! with parameters satis
fying Eq. ~23! exactly satisfies the functional equation~19!.

It is important to observe that ifz(z) is known in the
annulusr,uzu,r21, then Eq.~19! provides the analytic
continuation ofz(z) into every other annulusr2 j 11,uzu
,r2 j 21 wherej is any integer (j Þ0). We therefore refer to
the annulus

r,uzu,r21 ~24!

as thefundamental annulus. The analyticity/singularity struc-
ture ofz(z) in all other annuli is equivalent to the analyticit
structure in this fundamental annulus. Note also thatz(z)
cannot have singularities in the sub-annulusr,uzu,1 of the
fundamental annulus because this corresponds to the
image of the mapped vortical region. It is therefore enou
the consider the singularities ofz(z) in the single annulus
1,uzu,r21.

BecausePk(z) is just a function ofzk, it is easy to see
that, for any choice of integerk, z(z) as defined in Eq.~22!
is invariant under the transformationz°zvk

j , where vk

5e2p i /k and j is any integer. Thus, the conformal map E
~22! represents a mapping to a vortical region possessin
k-fold rotational symmetry. Moreover, if we choose all th
parameters in Eq.~22! to be real, then the annular patch
vorticity will be symmetric with respect to reflections in th
x-axis. In particular, this means that the conjugate funct
z̄(z) is equal toz(z), i.e.,

z̄~z!5z~z!. ~25!

We will restrict consideration to this class of vortex patch
If z1 is chosen to be in the real interval 1,z,r21 ~re-

call that, according to the reasoning above, it is enough
consider the singularity structure ofz(z) in this particular
annulus alone!, then the conformal mapz(z) will have k
symmetrically placed simple pole singularities at pointsz
5z1vk

j , j 50,1,2,...,k21. This implies, from Eq.~16!, that
S(z(z)) will have simple pole singularities inside the vort
cal region at points corresponding toz1

21vk
j , j 50,1,2,...,

k21. From the streamfunction Eq.~13!, it is clear that physi-
cally this corresponds to the presence ofk line vortex singu-
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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262 Phys. Fluids, Vol. 14, No. 1, January 2002 Darren Crowdy
larities at symmetrically distributed points inside an oth
wise uniform annular patch of vorticity. In order for th
streamfunction Eq.~13! to represent a fully self-consisten
solution of the steady Euler equation, it is necessary to
sure that these line vortices are all steady under the effec
the local non-self-induced terms of the velocity field.

The parameters appearing in the conformal map Eq.~22!
must be such thatz(z) is a one-to-one mapping from th
annulusr,uzu,1 to the vortical region. It turns out that it i
impossible to find any one-to-one conformal map of the fo
Eq. ~22! from the annulusr,uzu,1 unlessk>3 ~the reasons
for this will not be discussed here but are a result of cert
mathematical properties of the class of domains to which
have restricted attention24!. It has also been found that a
thoughr necessarily lies in the range 0,r,1, the map Eq.
~22! is not one-to-one from the annulusr,uzu,1 for all val-
ues ofr within this range. Indeed, for eachk, there exists a
maximum value ofr for which one-to-one maps of the form
Eq. ~22! exist. Moreover, the maximum value ofr for eachk
~which we will denote byrk! provides exactly the case ofk
shielded Rankine vortices of the form Eq.~1! coming into
contact and touching in an annular configuration about
origin. Thus the conformal map Eq.~22! and associated
streamfunction Eq.~13! are precisely the required genera
zations of the theory of Ref. 16 needed to answer the qu
tion posed in the introduction: what happens when multi
shielded Rankine vortices overlap?

V. STEADINESS OF LINE VORTICES

Define an auxiliary functionP̂k(z) as follows:

P̂k~z!5
Pk~z!

~12zk!
[ )

n51

`

~12r2nkzk!~12r2nkz2k!. ~26!

Now define

Fk~z!5
Pk~z21h1

21!

P̂k~z21z1
21!P j 51

k21~12z21vk
2 jz1

21!
. ~27!

Because line vortices move with the fluid, to ensure stati
arity of the line vortices it is necessary to find the Laure
expansion~in the physical planez! of u2 iv about each point
zj at which a line vortex exists and ensure that all non-s
induced contributions to the velocity field vanish at th
point. This will mean that there is no net force on the li
vortex—clearly a necessary condition for equilibrium. F
the class of solutions under consideration, there is alwa
line vortex on the physical real axis at the~real! point z1

[z(z1
21). Some algebra reveals that at the pointz1 the con-

dition that this line vortex is steady under the effects of
non-self-induced velocity terms is given by

Fk8~z1
21!1Fk~z1

21!
zzz~z1

21!

2zz~z1
21!

2
1

z1

Pk~z1
21h1

21!

Pk~z1
22!

50.

~28!

Equation~28! provides a relation between the parameterr
andz1 in the conformal map Eq.~22!. Note that Eq.~28! is
independent of the parameterR which is essentially a nor
malization parameter.
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It can be verified by straightforward algebra that, by t
k-fold symmetry of the conformal map and the associa
velocity field, Eq.~28! is also the condition for the remainin
k21 vortices at pointsz(z1

21vk
j ), j 51,2,..k21 to be steady

under the effects of the local non-self-induction terms. T
parameterR can be specified by specifying the total area
the vortical patch region.

If solutions forz1 , r andh1 satisfying Eq.~23! and~28!
which correspond to one-to-one conformal maps from
annulus r,uzu,1 can be found then we have a solutio
which satisfies all the boundary conditions atboth vortex
patch boundaries, and ensured that the line vortices
steady under the effects of the non-self-induced veloc
field.

It turns out that such solutions do indeed exist. For a
integerk>3 there exists a continuous one-parameter fam
of solutions parametrized by the conformal modulusr. Once
r is specified,z1 andh1 follow from the two conditions Eqs.
~28! and ~23!, while R then follows from a specification o
the total area of the vortical patch region.

The critical r5rk corresponds to a situation in whic
zeros of the conformal mapping functionzz approach the
boundary of the annulusr,uzu,1 from outside~recall that
for conformality, a necessary condition is that all such ze
lie outside this annulus!. In fact, the zeros approach this a
nulus along the rays arg@z#5mk wheremk are thek-th roots of
21. The equation providing the critical value ofr5rk can
be found by simultaneously solving Eqs.~28!, ~23! as well as
the additional equation

zz~eip/k!50, ~29!

for the three~critical! parametersz1 , h1 , andr. Note that
the argument ofzz in Eq. ~29! is simply the root of21 lying
in the first quadrant. These critical solutions correspond t
situation in whichk shielded Rankine vortices just come in
contact in ak-symmetric annular configuration. The value
r obtained will be the maximumr5rk for which solutions
of this kind exist, i.e., for eachk>3, solutions exist for allr
satisfying

0<r<rk . ~30!

The first few values ofrk are found numerically, to three
decimal places, to be given by

r350.567, r450.671, r550.732, r650.799.
~31!

Summary of the exact solutions. For convenience, we now
summarize the important formulas. It has been shown th
class of exact solutions for an annular multipolar array ok
vortices is described by a conformal map from the annu
r,uzu,1 given by Eq.~22! for any integerk>3 with real
parametersr, h1 , z1 andR related via Eq.~23! and existing
in the ranges

0<r<rk , 1,z1,r21, 1,h1,r21, ~32!

and also satisfying the nonlinear algebraic constraint
~28!. Using the fact that
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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2icz52i
]c

]z
5 i

]c

]x
1

]c

]y
5u2 iv, ~33!

the associated velocity field insideD is given ~as a function
of z and z̄! as

u2 iv52icz52
ivR

2 S z̄
Pk~ z̄h1

21!

Pk~ z̄z1
21!

2
1

z

Pk~z21h1
21!

Pk~z21z1
21! D .

~34!

These solutions represent a continuous one-parameter fa
of vortices for each integerk>3. We can chooser to be the
relevant governing geometrical parameter. The parametR
is arbitrary but one choice is to specify the total area of
vortical patch to be, say,p, i.e.,

p5
1

2
ImF R

uzu51
z̄~z21!zz~z!dz2 R

uzu5r
z̄~z21!zz~z!dzG ,

~35!

where we have used Eq.~19!. To find the criticalrk , we
simultaneously solve Eqs.~23!, ~28!, and the equation

zz~ep i /k!50, ~36!

for z1 , h1 , andrk .

VI. DISCUSSION OF THE SOLUTIONS

In Fig. 3, the graphs ofz1 againstr as determined by
solving Eqs.~23! and ~28! using a numerical Newton itera
tive procedure are shown fork53, 4, 5, and 10 forr-values
within the respective range of existence of solutions in e
case. Givenk andr, the correspondingz1 is given by these
graphs. The value ofh1 then follows from Eq.~23!. R fol-
lows from the area normalization condition oncer, z1 and
h1 are determined.

FIG. 3. Graph of the solution forz1 ~y-axis! of the stationarity condition Eq.
~28! againstr ~x-axis! for k53, 4, 5, and 10.
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We first investigate theshapesof the vortices as the
geometrical parameterr is varied. Note that, although th
conformal map Eq.~22! is represented as an infinite produc
because the conformal modulusr is less than 1, the vortex
shapes can be plotted by truncating the infinite products
~20! after a suitably large number of terms. A convenient t
of whether enough terms have been retained is provided
checking that the functional relation Eq.~19! is well satisfied
for arbitrary choices ofz. In practice, it is found that only a
few terms need to be retained.

In Fig. 4, the shapes of the vortical regions for vario
values ofr are plotted for a class of vortices withk53. The
positions of the line vortices are also indicated by dots wit
the patch. The first plot is a near-critical case withr50.56. It
can be seen that this corresponds to a situation in which t
shielded Rankine vortices just come into contact forming
doubly connected annular region of vorticity enclosing a
gion of irrotational flow. Asr decreases, the three initia
shielded Rankine vortices merge to form a compound vo
cal structure. It is interesting to note that a domain of t
particular kind was first constructed, using very differe
methods, by Gustafsson,29 who was interested in purely
mathematical problems in quadrature domain theory. H
we have shown the applicability of these abstract mathem
cal results to finding physical solutions of the Euler equati

FIG. 4. Vortex boundaries and line vortex positions~shown as dots!: k
53; r50.56, 0.4, 0.3, 0.2, 0.1.
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In Fig. 5, the analogous shapes are given for a clas
vortices withk54, while Figs. 6 and 7 give the casesk55
and k510, respectively. In each case, the first plot cor
sponds to a near-critical value ofr so that the configuration
resemble an annular configuration of touching shield
Rankine vortices. Asr decreases, the size of the enclos
irrotational region decreases until it eventually disappe
whenr50 resulting in a simply connected region of vorti
ity.

The shapes of these compound vortices have many s
larities with the shapes computed numerically by Dritsche20

in his calculations of the breakup of a uniform vortical a
nulus into multiple vortices. In particular, it is interesting
compare the vortical shapes in Figs. 4–7 here~especially
those corresponding to smallerr values! to some of those
featured in Figs. 3–6 and 10 of Dritschel.20

Figures 8–10 show typical streamlines and circulat
regions associated with the merged compound vortices
plot the streamlines, it is found most convenient to use
~34! to compute the components (u,v) of the velocity field
for a discretized set of points inside the unit disc in t
z-plane. These data are then fed into a data visualiza

FIG. 5. Vortex boundaries and line vortex positions~shown as dots!: k
54; r50.65, 0.4, 0.3, 0.2, 0.1.
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package which integrates an interpolated velocity field
the streamlines numerically. This procedure gives very go
results in general. We point out, however, that certain stre
lines that draw too close to the stagnation points are so
times found not to ‘‘close’’ completely due to inaccuracies
the numerical integration. Also, streamlines too close to
boundaries of the patch~where the magnitude of the velocit
field gets small! are similarly hard to calculate accurately
this way. These inaccuracies are purely numerical—
theory, these streamlines close. Whilein principle it is pos-
sible to use the explicit expression for the Schwarz funct
to integrate the expression Eq.~13! analytically for the
streamfunction, there seems to be no simple closed form
pression for the resulting primitives. The streamfuncti
could therefore be represented as an explicit set of integ
however, to actually plot the streamlines would still requ
numerical quadrature of these integrals.

In Fig. 8, streamlines of the principal circulation regio
of a typical k54 vortex are shown, while Figs. 9 and 1
depict the circulation regions of a typical multipolar vorte
with k55 andk510, respectively. The streamlines shown

FIG. 6. Vortex boundaries and line vortex positions~shown as dots!: k
55; r50.72, 0.5, 0.4, 0.3, 0.2.
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bold are the inner and outer boundaries of the vortical reg
Typically, one observes that there existsk stagnation points
at which separatrix streamlines converge marking out
tinct regions of recirculation. Due to difficulties in plottin
streamlines through the stagnation points, none of the s
ratrix streamlines are shown in Figs. 8 and 9, but streaml
drawing close to the separatrix streamlines are feature
Fig. 10 in the casek510. Whenr is close to~but just below!
the critical rk for eachk, the area occupied by streamline
which circulate around the entire structure~as opposed to
circulating locally around one of the satellites! is small, as is
the area of the streamlines which circulate around the
closed region of irrotational fluid. These areas increase ar
decreases toward zero, leading to a greater area of str
lines circulating around the entire vortical structure a
therefore to greater global interaction between the sepa
shielded vortices which have merged to form the compo
structure.

The strength,Gk say, of each of thek line vortices su-
perposed on the otherwise uniform patch of vorticity is

Gk52
vp

k
, ~37!

FIG. 7. Vortex boundaries and line vortex positions~shown as dots!: k
510; r50.85, 0.6, 0.5, 0.4, 0.2.
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regardless of the value ofr or z1 . This result is clear: the
total circulation of the structure is zero while the vortici
associated with the uniform patch, of total areap, is v. The
strengths of the line vortices must therefore be given by
~37! if the combined structure is to have zero total circu
tion. One can ask the following hypothetical question:
how many geometrical configurations can one arrange a
form patch of vorticity of areap and strengthv with k line
vortices each of strength2(vp/k) such that the combined
structure is a global equilibrium solution of the Euler equ
tion? The above results reveal that there is at least a con
ous one parameter family~parametrized here byr! of ways
to do this and therefore a dense set of such multipolar c
figurations. The apparently dense nature of the class of m

FIG. 8. Typical streamlinesk54 ~r50.118 andz151.453!: the bold
streamlines are the inner and outer boundaries of the vortex patch.

FIG. 9. Typical streamlinesk55 ~r50.227 andz151.436!: the bold
streamlines are the inner and outer boundaries of the vortex patch.
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tipolar equilibrium solutions of the Euler equation has be
pointed out before30 and we comment further on this point i
the conclusion.

As mentioned earlier, the limitr→0 gives a simply con-
nected vortical region which hask satellite vortical regions
and a central core region~enclosed by the separatrix stream
lines! of uniform vorticity. In fact, as recently discussed
Crowdy and Cloke,31 this simply connected patch solution
contained within the class of solutions16 and can be found by
using the methods of Ref. 16 and considering conform
maps from the unitz-circle which have the rational functio
form

z~z!5
R~a!z

zk2ak . ~38!

Note that this form is different to that considered in Ref. 1
Only one single value of the parametera in Eq. ~38! will
satisfy the associated stationarity condition of the line vo
ces in this case and therefore give an exact solution of
steady Euler equation. The new solutions presented here
therefore also be understood as a continuation of the sim
connected solutions Eq.~38! into nonzeror ~corresponding
physically to the formation of an enclosed central region
irrotational fluid!.

A topic of much recent research concerns the stability
multipolar vortex structures. Usually, such stability questio
are examined numerically and stability studies often invo
first solving numerically for a multipolar equilibrium solu
tion and then perturbing it~numerically! in some way. The
class of solutions found both here and in Ref. 16 not o
have the advantage of being describable by means of e
closed-form formulas but also have advantages whe
comes to studying their stability properties. First, the line
stability matrices associated with small~linear! perturbations
can be written down in closed form from exact knowledge
the base state solution being perturbed. Second, becaus
exact solutions consist of a combination of two of the m
well-studied idealizations of two-dimensional vorte
patches, i.e., line vortices and uniform vortex patches, th

FIG. 10. Typical streamlinesk510 ~r50.4327 andz151.333!: the bold
streamlines are the inner and outer boundaries of the vortex patch.
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nonlinear stability properties can be studied using simple
aptations of existing numerical contour dynamics codes.

The linear and nonlinear stability properties of the m
tipolar solutions presented in Ref. 16 has recently been s
ied in Ref. 31. Many of the stability properties of the exa
solution class are found to be consistent with previous
bility studies of multipolar vortices. The recent results
Crowdy and Cloke31 suggestthat there is a good possibility
that the solutions found here might be robust structures
not actually linearly/neutrally stable. This is because the
lutions here resemble certain of the multipolar solutions
Crowdy16 in the case where the satellite line vortices a
well-separated and the central line vortex is comparativ
weak ~the solutions here, of course, possess no central
vortex but the overall qualitative distribution of vorticity i
similar!. Recent results31 reveal that such configurations a
neutrally stable in the casek53 while the casesk54 and
k55 are neutrally stable provided the satellite line vortic
are sufficiently separated and, under moderate nonlinear
turbation, prove relatively robust. A detailed study would
required to determine whether the solutions found here
herit these linear stability traits. The linear stability prope
ties of a concentric annular vortex of uniform unit vortici
as considered by Michalke and Timme32 have been found to
depend crucially on the conformal modulusr of the annulus.
Indeed, the annulus becomes linearly stable as the confo
modulus decreases below the critical value ofr51

2. We con-
jecture that the linear stability properties of the new annu
multipolar structures will similarly have an important depe
dence onr. The dependence of the linear stability on t
symmetry parameterk is also of interest.

VII. CONCLUSION

A new class of nontrivial exact solutions of the Eul
equation possessing regions of distributed vorticity remin
cent of the nonlinear multipolar saturation states of an
stable uniform vortical annulus~cf. Dritschel20! has been de-
rived.

It has been shown how mathematical properties of
Schwarz function21 combine with the physical constraint
relevant to steady vortical flows to produce classes of mu
polar equilibria of the Euler equations. The solutions p
sented here and in Crowdy16 reveal that the modified
Schwarz potential Eq.~8! provides a natural mathematica
device for understanding how a finite-area patch of unifo
vorticity interacts with a finite set of superposed line vortic
to form global equilbria of the Euler equation. Furthermo
Crowdy33 has recently extended the same mathematical id
to derive a class of exact solutions involvingrotating vortex
arrays with distributed vorticity which generalize Thomson
classic study of co-rotating line vortex configurations.23

Any two shielded Rankine vortices only interact whe
they overlap and it has been shown that there exists a n
linear superposition property which means that one can c
struct global multipolar equilibria of the Euler equation wi
an annular doubly connected distribution of nonzero vortic
by merging these invisible vortical structures in the man
described herein. This suggests that it might be possibl
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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construct multipolar equilibria having vortical regions
even more complicated topological structure, and ther
move toward a general nonlinear superposition method
vortex equilibria. Further work in this direction has be
carried out in Crowdy26 where a general constructive metho
is formulated based on ideas from quadrature dom
theory.21,24

The geometry/topology of vortex equilibria is of gre
interest. Campbell and Ziff34 have catalogued stable and u
stable equilibria ofN line vortices for up toN550. With
reference to this study, Pullin30 suggests that ‘‘if all such
equilibria can be continued to finite and perhaps differ
area and uniform vorticity for each vortex then the class
finite areaN-vortex equilibria in expected to be very dens
excluding even the possibility of further bifurcations off ea
branch for givenN...the class of multiple-vortex equilbria i
very large.’’ We believe that our results, suggestive as t
are of a general nonlinear superposition principle for vor
equilibria, provide evidence to corroborate this statemen

Finally, a note on the physical detection of these vortic
using remote measurements. The ‘‘invisibility’’ of the sol
tions found both here and in Ref. 16 means that their p
ence cannot be detected by any remote measurements o
induced far-field velocity. Moreover, the results here sh
that there is a high degree of nonuniqueness in the clas
localized vortical structures possessing this invisibility pro
erty. An interesting and physically important question
how does one ascertain the structure of these vortices
means of remote measurements? Such questions of re
detection arise in various physical contexts such as oce
data assimilation. In practice, three-dimensional effects
presumably enter, however, it is interesting that there e
large classes of geometrically distinct two-dimensional v
tices whose far-field moments vanish identically at all orde
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