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This paper demonstrates that analytical solutions to the steady two-dimensional
Euler equations possessing all the qualitative properties of multipolar vortices ob-
served experimentally and numerically can be constructed using the theory of alge-
braic curves and quadrature domains. The solutions consist of a finite set of line
vortices superposed on finite-area patches of uniform vorticity. By way of example,
new solutions are presented in which the support of the vorticity is a quintuply con-
nected vortex patch with five vorticity maxima modelling a symmetric pentapolar
vortex consisting of a central core vortex, four satellite vortices and four enclosed
zones of irrotational fluid between the core and the satellite vortices. The method of
construction is amenable to the derivation of exact solutions of the two-dimensional
Euler equations having vorticity distributions of even greater geometrical complexity.

Keywords: multipolar vortices; quadrature domains; algebraic curves

1. Introduction

Coherent vortical structures are now known to constitute an important feature of
many two-dimensional and quasi-geostrophic flows (McWilliams 1984). The Rankine
vortex is a classical exact solution for a uniform circular patch of vorticity (Saffman
1992) and represents one of the simplest examples of a solution of the two-dimensional
Euler equations with distributed vorticity. Maxwell (1861a,b) used the Rankine vor-
tex model in his early attempts to describe the nature of electrical and magnetic
phenomena. He referred to these vortex structures as ‘molecular vortices’. In this
paper, we follow in the spirit of these early investigations but base our approach
on a different ‘molecular vortex’. It will be shown that it is possible to ‘nonlinearly
superpose’ (in a manner to be explained) a variant of the usual Rankine vortex solu-
tion, referred to herein as the shielded Rankine vortex, in such a way as to construct
compound vortical equilibria of the two-dimensional Euler equation consisting of
much more complicated regions of distributed vorticity. The resulting solutions fall
within the class of solutions of the Euler equations which have become collectively
known as multipolar vortices.
Coherent vortices arise in many aspects of astrophysical, geophysical and meteoro-

logical fluid dynamics. In an initial state of randomly distributed vorticity, for exam-
ple, the cascade of energy to larger scales is responsible for the formation of such
vortical structures (Legras et al. 1988). While monopoles and dipoles are the most
ubiquitous structures (characterized by one and two vorticity maxima, respectively),
laboratory experiments (Orlandi & Van Heijst 1992; Van Heijst et al. 1989, 1991) and
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numerical simulations (Carton & Legras 1992; Carton et al. 1989; Polvani & Car-
ton 1990) have shown that higher-order structures, such as tripoles and quadrupoles
(Beckers & van Heijst 1998; Carnevale & Kloosterziel 1994; Morel & Carton 1994)
(as well as even higher-order structures) arise from the instability of isolated circu-
lar vortices, usually with zero total circulation. A tripole is characterized by three
vorticity maxima: a central core region with vorticity of one sign surrounded by two
satellite vortices both of opposite sign. A quadrupole has a central core surrounded
by a triangular array of three such satellites. The class of vortices of this general kind
has been dubbed multipolar and the formation, structure and stability properties of
such vortices are a topic of much recent research activity. Typically, such vortex
structures rotate at a constant angular velocity. The reader is referred to Carnevale
& Kloosterziel (1994) for a detailed discussion of the properties of multipolar vor-
tices.
Owing to the complicated structure of these multipolar vortices, most investiga-

tions of them have involved either laboratory experiments or full numerical simula-
tions, although simple point vortex models can often capture many aspects of realistic
flow situations (see, for example, Velasco Fuentes et al. 1996). It is of interest, from
a theoretical point of view, to find effective models of such vortices, or ideally, some
mathematical solutions of the Euler equations which resemble multipolar vortices
and which can be studied explicitly. In this vein, Kloosterziel & Carnevale (1999)
examined the possibility of approximating the evolutionary dynamics between these
equilibria by low-order dynamical systems while, with a view to gaining an under-
standing of these structures as mathematical solutions of the Euler equations, the
present author recently pointed out (Crowdy 1999) that there exists a class of exact
solutions to the steady two-dimensional Euler equations which share all the qualita-
tive properties of multipolar vortices observed in practice. The solutions in Crowdy
(1999) are finite-area patches of non-zero vorticity and so, unlike simple point-vortex
models, provide insight into the shapes of multipolar vortical equilibria of the Euler
equation. Mathematically, the solutions are non-trivial generalizations of the geo-
metrically trivial shielded Rankine vortex (defined in § 2).
The class of solutions derived in Crowdy (1999) has the property of being ‘invisi-

ble’ in that the irrotational velocity field induced outside the support of the vorticity
is identically zero. Any two such vortices therefore only interact when they overlap.
This prompts a very natural question: what happens when such vortices do overlap?
In particular, can the overlapping of such vortices produce more coherent vortex equi-
libria of the two-dimensional Euler equations, perhaps with vortical regions having
even more complex shapes?
Crowdy (2001a) has answered this question in the affirmative and has shown by

explicit construction that such compound solutions are possible when a collection of
three or more shielded Rankine vortices merge in an annular configuration forming
a doubly connected vorticity region enclosing a central region of irrotational fluid.
This result raises the intriguing possibility of constructing solutions of the steady
Euler equation consisting of vortical regions with even more complex topologies.
This would be interesting from a mathematical point of view in that it might lead to
a general ‘superposition principle’ for vortex patches. Physically, it might also lead
to the construction of more realistic multipolar solutions of the Euler equation. In
particular, multipolar vortices typically display regions of irrotational fluid between
the core and satellite vortices; the solutions of Crowdy (1999) do not have this feature.
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2. The shielded Rankine vortex

A classical exact solution of the steady two-dimensional Euler equations governing
the motion of an ideal fluid is given by the velocity field u = (0, V (r)) (in plane polar
coordinates (r, θ)) where

V (r) =



ω0r

2
, r � r0,

ω0r
2
0

2r
, r > r0,

(2.1)

depending on the parameter pair (ω0, r0), where ω0 is the vorticity, while r0 is a
geometrical parameter giving a measure of its size. This simple exact solution is
known as the Rankine vortex (Saffman 1992). Now suppose that a line vortex with
circulation equal and opposite to the total circulation of the Rankine vortex is placed
at its centre. The associated velocity field is then given by u = (0, V̂ (r)), where

V̂ (r) =



ω0r

2
− ω0r

2
0

2r
, r � r0,

0, r > r0.
(2.2)

The flow exterior to the patch of vorticity now vanishes identically and the total
circulation of the combined vortical structure is zero. Because of this, the solution
(2.2) will be referred to as a shielded Rankine vortex.
The flow (2.2) is incompressible, so there is an associated stream function which

is related to the radial and tangential components of a general velocity field (U, V )
(in plane polar coordinates) by the formula

2iψz = e−iθ(U − iV ), (2.3)

where z = x+ iy and (x, y) denote plane Cartesian coordinates. By integration, the
stream function associated with the particular solution (2.2) can be seen to be

ψ(z, z̄) = −1
4ω0

(
zz̄ −

∫ z

S(z′) dz′ −
∫ z̄

S̄(z′) dz′
)
, (2.4)

to within an inconsequential real constant, where

S(z) ≡ r20/z. (2.5)

The function S(z) happens to be the Schwarz function (Davis 1974) of the circle
r = r0, and this observation is important in providing a route to generalization of
the monopolar shielded Rankine vortex to higher-order multipolar structures with
non-trivial geometry (see Crowdy 1999).
It will be shown that the shielded Rankine vortex solution can be used as a

‘building-block’ solution in the construction of higher-order structures. Due to the
fact that there is no induced flow outside the support of the vorticity then, provided
they do not overlap, an array of such solutions, perhaps with varying parameter pairs
(ω0, r0), can be arbitrarily superposed in the plane to form other global equilibria
of the Euler equations. For example, a global equilibrium constructed in this way
is depicted in figure 1, where five different shielded Rankine vortices are arbitrarily
superposed in the plane. This equilibrium has a geometrically trivial distribution of
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Figure 1. An array of five non-overlapping shielded Rankine vortices.
There is a line vortex (not shown) at the centre of each disc.

Figure 2. Geometrical arrangement of five touching shielded Rankine vortices.
There is a line vortex (not shown) at the centre of each disc.

vorticity consisting of an assortment of disconnected circular patches each with a
superposed central line vortex.
In contrast to the illustrative situation in figure 1, where five shielded Rankine

vortices are arbitrarily superposed in the plane such that they do not overlap or
touch, in figure 2 five shielded Rankine vortices are now carefully positioned in the
plane in such a way that they are just touching. The question to be addressed here is
whether this equilibrium can be ‘continued’ to form a more complicated compound
equilibrium. This continuation procedure, and how to perform it, is the principal
subject of this paper. We will show, by explicit construction, that a geometrically
more complicated pentapolar equilibrium can be constructed by the ‘merging’ of the
five touching shielded Rankine vortices shown in figure 2.
In Crowdy (2001a) the theory of Schwarz functions (Davis 1974) was combined

with conformal mapping theory to construct vortical structures having doubly con-
nected vortical regions. In this paper, the mathematical approach of Crowdy (2001a)
is generalized in a non-trivial way by exploiting the theory of algebraic curves and
quadrature domains to produce a model of a pentapolar vortex having a quintuply
connected vortical region with four enclosed islands of irrotational fluid. In presenting
this case study, we hope to illustrate the potential of the new approach as a method
for the construction of multipolar equilibria of the two-dimensional Euler equations
having vortical regions with very complex topological structure.
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Figure 3. A quintuply connected patch of vorticity.

3. Mathematical formulation

Let the domain D be a non-empty, open, connected, bounded subset of the complex
plane C. Let the connectivity of the domain D be N . See figure 3 where a typical
domain with connectivity N = 5 is shown. Let ∂D denote the boundary of D and
D̄ the closure of D. We will seek solutions of the two-dimensional Euler equations
consisting of finite-area patches of vorticity which is uniform except for a finite set
of line vortex singularities superposed on the patch. The set D just described will
constitute the region of non-zero uniform vorticity. The N − 1 enclosed regions will
be taken to be irrotational (i.e. no vorticity).
Motivated by the form of the stream function given in (2.4), define a stream

function ψ(z, z̄) as follows:

ψ(z, z̄) =


zz̄ −

∫ z

S(z′) dz′ −
∫ z̄

S̄(z′) dz′, z ∈ D̄,
0, z ∈ C\D̄,

(3.1)

where S(z) is a function to be specified. It is clear from (3.1) that the flow is quiescent
exterior to the vortex patch (and therefore trivially irrotational). The associated
vorticity inside the patch D takes the uniform value −4 except at any singularities
of the function S(z). This is an arbitrary choice made for convenience. So far, we
have made no specifications on the domain D or the function S(z).
Now suppose that it is possible to construct a function S(z) and a domain D such

that the following conditions are satisfied.

(a) S(z) is meromorphic in D with poles at the finite set of points {zj} (zj ∈ D).
(b) S(z) is continuous on D̄\{zj}.
(c) S(z) satisfies S(z) = z̄ for z ∈ ∂D.
(d) S(z) has only simple pole singularities in D, with real residues.

(e) Near each element of the set {zj}, S(z) is of the form

S(z) =
Γj

4π(z − zj)
+ z̄j +O(|z − zj |), (3.2)

where Γj ∈ R.
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If (3.1) is to represent a steady solution of the two-dimensional Euler equation,
there are a number of physical constraints that must be satisfied. Henceforth, we
refer to D as the vortex patch. First, there is a kinematic requirement that the
boundaries of the patch are streamlines. Second, a dynamical requirement is that
the fluid pressure is continuous across the vortex jumps on the boundaries of the
patch and this is well known to be equivalent to continuity of fluid velocity (Saffman
1992).
Let (u, v) denote the Cartesian components of the velocity field u with respect to

Cartesian coordinates (x, y). It is straightforward to show that (u, v) follow from the
stream function ψ by means of the formula

u− iv = 2iψz. (3.3)

Using (3.1),
u− iv = 2iψz = 2i(z̄ − S(z)). (3.4)

The fluid velocity exterior to the patch (in C\D̄) is zero, so the dynamical require-
ment that velocities are continuous on the boundary of the patch dictates that

z̄ − S(z) on ∂D. (3.5)

However, this is satisfied by condition (c) above. Moreover,

dψ = ψz dz + ψz̄ dz̄,

= (z̄ − S(z)) dz + (z − S̄(z̄)) dz̄. (3.6)

A streamline is a curve on which ψ is constant, so dψ = 0 on a streamline. This is true
on ∂D, again by condition (c) above. Therefore, both the kinematic and dynamic
boundary conditions on the boundary of the patch are satisfied by (3.1).
By condition (a) above, the vorticity associated with (3.1) is uniform inside the

patch except for the vortical singularities associated with the finite set of singularities
{zj} of the function S(z). By condition (d) above, all such singularities are actually
line vortices. Moreover, by condition (e) above, near each zj the local velocity field
has the form

u− iv = − iΓj

2π(z − zj)
+O(|z − zj |). (3.7)

The real number Γj therefore represents the strength (or circulation) of the line
vortex at position zj . Note that there is no constant term in the local expansion
(3.7). This condition is crucial and corresponds to the fact that the line vortex is
steady under the effects of the non-self-induced velocity field. This is a necessary
physical condition required by the Helmholtz laws of vortex motion (Saffman 1992).
Only if this condition is satisfied will (3.1) represent a consistent steady solution of
the Euler equation.
It remains to ascertain whether a set D and a function S(z) satisfying condi-

tions (a)–(e) can be found. Crowdy has shown, by explicit construction using con-
formal mapping theory, that such solutions are possible in the simply connected case
N = 1 (Crowdy 1999) and in the doubly connected case N = 2 (Crowdy 2001a). In
what follows, we deliberately avoid the use of conformal maps and instead use the
theory of quadrature domains and algebraic curves. By way of example, we show,
by explicit construction, that such solutions also exist for N = 5. It will be clear
that the present methods are, in principle, general enough to allow the possibility of
constructing solutions with vortical regions of any finite connectivity.
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4. Quadrature domains

The domains D and functions S(z) required to satisfy the conditions stipulated
in the previous section can be constructed by considering the theory of quadra-
ture domains. The mathematical theory of quadrature domains is well developed
(Aharonov & Shapiro 1976; Gustafsson 1983, 1988; Sakai 1982). The simplest exam-
ple of a quadrature domain is a circular disc. For a circular disc D, of radius r,
centred at the origin, the well-known mean value formula (Ablovitz & Fokas 1997)
states that ∫∫

D

h(z) dxdy = πr2h(0), (4.1)

where h(z) is an arbitrary integrable (with respect to area measure) analytic function
in the disc.
As a generalization of this case, we call a domain D a quadrature domain if the

following quadrature identity holds for all h(z) analytic in D and integrable over D
with respect to area measure:∫∫

D

h(z) dxdy =
m∑

k=1

nk−1∑
j=0

ckjh
(j)(zk), (4.2)

for some set of (complex) coefficients {ckj} and some point set {zk | k = 1, . . . ,m}
consisting of m � 1 distinct values, where m is a positive integer. The set {nk |
k = 1, . . . ,m} is a set of positive integers and

∑m
k=1 nk is known as the order of

the quadrature identity. Here h(j)(z) denotes the jth derivative of h(z). The sets of
complex numbers {ckj} and {zk} appearing in the right-hand side of (4.2) are known
as the quadrature data of D. In the present application, the part of the quadrature
data called {zk} will be exactly the line vortex positions mentioned in § 3, which is
why the same notation as in the previous section has been employed.
We now summarize the mathematical results to be used in the construction of

the vortex patch solutions. Aharonov & Shapiro (1976) have shown that D is a
quadrature domain if and only if there exists a meromorphic function H(z) in D
such that

H(z) = z̄ on ∂D. (4.3)

Moreover, if the quadrature identity associated with the quadrature domain is given
by (4.2) then the singularities of H(z) are given by the set of points {zk}. It can
be seen that the function H(z) is exactly the kind of function required in the con-
struction of vortex patch equilibria as described in § 3 and, once a few additional
constraints have been imposed upon it, the function H(z) of Aharonov & Shapiro
will correspond precisely to the function S(z) required in the stream function (3.1)
to represent an exact solution of the Euler equation. The set of points {zk} are the
line vortex positions mentioned in the requirements for S(z). Moreover, the vortex
patches which satisfy all the requirements described in § 3 are now understood to be
quadrature domains. If the patches contain enclosed regions of quiescent fluid then
these quadrature domains will be multiply connected.
In the present application, the integerm in (4.2) will be the number of line vortices

superposed on the patch. Because the singularities are all supposed to be line vortex
singularities then nk = 1 for all k = 1, . . . ,m. Finally, as will be shown in § 7 b,
the values of ck0 will be directly related to the strength of the line vortex at zk. In
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summary, specifying the positions and strengths of the line vortices corresponds to
specifying the quadrature data of the quadrature domain, this domain being precisely
the vortex patch on which the line vortices are superposed.
In this way, the problem of constructing multipolar equilibria of the Euler equa-

tions has been reduced to the construction of multiply connected quadrature domains
satisfying certain supplementary conditions. Note that the existence of multiply con-
nected quadrature domains has been established by Gustafsson (1983) using Rie-
mann surface theory. To the best of the author’s knowledge, however, no examples
of explicit constructions of non-trivial quadrature domains of connectivity greater
than two currently exist in the literature. In this paper, we devise a method to
carry out such a construction by exploiting another important mathematical result
of Aharonov & Shapiro; it is shown in Aharonov & Shapiro (1976) that if D is
a quadrature domain then ∂D is part of an algebraic curve. More details of this
important result are presented in § 5.
The method that will be presented represents a scheme for tackling the general

mathematical problem of constructing multiply connected quadrature domains. The
method is very general and flexible. Once the appropriate class of quadrature domains
has been constructed, in the present application there is the additional complica-
tion of finding quadrature domains satisfying some additional physical constraints
imposed by the Euler equation. This is done in § 7 b.

5. Algebraic curves

We now give a more detailed description of how to construct the relevant quadrature
domains. It is known (Aharonov & Shapiro 1976) that, if D is a quadrature domain
satisfying some identity (4.2), then its boundary ∂D is an algebraic curve given, to
within a finite set of ‘special points’, denoted V0, by

∂D = {z ∈ C | P(z, z̄) = 0}\V0, (5.1)

where

P(z, w) =
n∑

k,j=0

akjz
kwj , (5.2)

where n =
∑m

k=1 nk denotes the order of the quadrature identity (4.2) and where
the coefficients {akj} satisfy

akj = ājk. (5.3)

The set of coefficients {akj} will more conveniently be thought of as constituting the
elements of a Hermitian matrix A, where

Akj = akj . (5.4)

The finite set V0 will be important in the construction of the boundaries of the
quadrature domains and will be discussed in more detail later. There is a normal-
ization degree of freedom in the specification of the algebraic curve. This is fixed by
specifying

ann = 1. (5.5)
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An alternative way of writing (5.2) is in the form

P(z, w) =
n∑

j=0

wjpj(z), (5.6)

where each pj(z) is a polynomial (in z) of degree at most equal to n, the order of
the quadrature identity.
Of course, one expects that there must be some connection between the quadrature

data, {ckj} and {zk}, defining the quadrature identity (4.2) and the set of coefficients
{akj} defining the associated algebraic curve. Indeed, there is a partial connection
embodied in the following theorem of Gustafsson (1983).

Theorem 5.1. For a quadrature domain of order n satisfying the quadrature
identity (4.2), the identity

1
π

m∑
k=1

nk−1∑
j=0

j!ckj

(z − zk)j+1 ≡ ann−1 − pn−1(z)
pn(z)

, (5.7)

where

pn−1(z) = ann−1z
n + an−1n−1z

n−1 + · · ·+ a0n−1, (5.8)

pn(z) = zn + an−1nz
n−1 + · · ·+ a0n, (5.9)

sets up a one-to-one correspondence between the set of coefficients {ckj}, {zk} and
the last two columns (and rows, by the Hermitian property of A) of the coefficient
matrix A.

It is important to realize that this connection between the coefficients is only
partial; as emphasized by Gustafsson (1983), it is generally a difficult matter to
determine the entire set of coefficients {akj} (defining the algebraic curve) purely
from knowledge of the quadrature data in (4.2).
As a general rule, one expects that the unknown coefficients defining the alge-

braic curve to be determined to within a number of degrees of freedom equal to the
number of irrotational regions contained within the finite vortex patch. One way of
understanding these degrees of freedom is to think of them as determining the area
of each of the enclosed irrotational regions; to any given quadrature identity, there
correspond many different quadrature domains, each having enclosed irrotational
regions of different areas.
These degrees of freedom in defining the algebraic curve bounding the quadrature

domain turn out to be crucial when seeking solutions of the steady Euler equations.
Not every quadrature domain is a solution of the steady Euler equations. Indeed,
most are not. Rather, only those quadrature domains which are consistent with
the physical requirement dictated by the Helmholtz law that the line vortices are
stationary under the effects of the non-self-induced terms in the local velocity field
are physically admissible solutions. In order to impose this additional requirement,
it will be necessary to use up some of the remaining degrees of freedom in defining
the algebraic curve. Physically, the condition of stationarity of the line vortices will
be seen to set the size/area of the enclosed irrotational regions.
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6. Special points of quadrature domains

Gustafsson (1988) has also discussed how points of contact of disconnected circular
domains leave so-called ‘special points’ zs inside the domain as the domain changes
so as to become connected. Such special points are defined as being isolated solutions
of

P(zs, z̄s) = 0, (6.1)

and do not, in general, constitute part of the continuous boundary ∂D of the quadra-
ture domain D. These points constitute the finite set V0 referred to in § 6. Moreover,
at such points, it is known that the following holds:

∂P(zs, z̄s)
∂z

=
∂P(zs, z̄s)

∂z̄
= 0. (6.2)

We refer the reader to Gustafsson (1988) for a detailed discussion of these special
points. The important result from the work of Gustafsson (1988) that will be used in
the sequel is that, for connected quadrature domains formed by two touching circu-
lar quadrature domains ‘merging’ together (in the present physical application, this
corresponds to the merging of two shielded Rankine vortices), the point of contact
between the initially touching discs leaves a ‘special point’ in the interior of the result-
ing connected quadrature domain. By extension, for complicated domains formed by
the merging of multiple touching discs, for every initial point of contact between
touching circles, one expects a ‘special point’ to appear inside the resulting con-
nected domain. For quadrature identities possessing certain geometrical symmetries,
it is natural to seek associated quadrature domains sharing the same symmetries.
In certain cases, the symmetries of the quadrature identity and associated domain
can be used to deduce information on where such special points should be. This is
precisely what is found, using ideas from algebraic geometry, in Gustafsson (1988).
It is sometimes possible to exploit these symmetries as well as the above-mentioned
properties concerning the special points of the domain to deduce important informa-
tion about the ‘unknown’ data of the matrix A. This will be done in the context of
a specific example in § 7.
The mathematically important notion of ‘special points’ on quadrature domains

has been introduced in this section because of their importance in actually construct-
ing quadrature domains (see the next section). It will turn out that the set V0 also
has an important physical significance.

7. An exact pentapolar vortex

In Crowdy (2001a), using conformal mapping theory, a multipolar vortex was con-
structed by continuing a solution in which four identical shielded Rankine vortices
come into contact in a 4-symmetric annular configuration to enclose a core region
of irrotational fluid. The pentapolar vortices observed in practice typically possess a
core vortical region surrounded by four satellite vortical regions, usually with regions
of irrotational fluid between the core and the satellites. We now attempt to con-
struct a solution of the Euler equations which more closely models this situation.
This example will serve as an illustration of the new methods.
Consider the situation in figure 2 in which four identical shielded Rankine vortices

form an annular array (as considered in Crowdy (2001a)). These will model the
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satellite vorticity maxima of a pentapolar vortex. To model the core, another shielded
Rankine vortex of smaller radius is placed inside the otherwise irrotational core so
that it just touches all four of the satellite vortices. We suppose that the centre of
this central shielded Rankine vortex corresponds with the coordinate origin.
The domain in figure 2 has a fourfold rotational symmetry about the origin.

Because the vortices do not overlap, integration over the total domain is additive
so that the mean value formula (4.1) can be used to show that such a domain satis-
fies the quadrature identity:∫∫

D

h(z) dxdy = πh(z1) + πh(z2) + πh(z3) + πh(z4) + π(
√
2− 1)2h(0), (7.1)

where
z1 =

√
2, z2 = i

√
2, z3 = −

√
2, z4 = −i

√
2. (7.2)

The algebraic curve corresponding to this quadrature domain happens to be easy to
construct. It is given by

P(z, z̄) = 0, (7.3)

where

P(z, z̄) = (|z|2 − (
√
2− 1)2)(|z −

√
2|2 − 1)(|z − i

√
2|2 − 1)

× (|z +
√
2|2 − 1)(|z + i

√
2|2 − 1). (7.4)

Now consider a generalized quadrature identity, parametrized by two real param-
eters (r, p), given by∫∫

D

h(z) dxdy = πr2h(z1) + πr2h(z2) + πr2h(z3) + πr2h(z4) + πp2h(0), (7.5)

where we have altered the coefficients of the quadrature identity (7.1) so as to be
consistent with seeking connected quadrature domains sharing the same symmetries
as the original configuration of touching discs. In § 7 b it will be seen that the parame-
ter r is directly related to the strength of the satellite line vortices, while p is directly
related to the strength of the central line vortex.
Using theorem 5.1 the associated matrix A is given by

A =




k 0 0 0 4p2 0
0 g 0 0 0 −4
0 0 f 0 0 0
0 0 0 e 0 0
4p2 0 0 0 −(4r2 + p2) 0
0 −4 0 0 0 1



, (7.6)

where the last two rows and columns of (7.6) have been determined using a direct
computation based on theorem 5.1. We have also taken into account the required
symmetries of the quadrature domain; in particular, the fourfold rotational symme-
tries imply that all off-diagonal elements of the matrix A are zero except for those
shown in (7.6). To see this, let ω = e2πi/4. Then, by the fourfold rotational symmetry
of the domain, it is necessary that

P(ωz, ωz) = P(z, z̄), (7.7)
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so that the coefficients akj in (5.2) can be non-zero only if k−j is an integer multiple
of 4. The only possible cases are

k = j; k = 1, j = 5; k = 5, j = 1. (7.8)

This leaves four (as yet undetermined) coefficients (e, f, g, k) needed to specify the
algebraic curve. The values of these coefficients do not follow in any obvious way from
the specification of the quadrature identity (7.5). The initial domain of touching discs
corresponds to the parameter set

r = 1; p =
√
2− 1; e = 10− 8

√
2;

f = 2− 4
√
2; g = 13− 8

√
2; k = −3 + 2

√
2.

}
(7.9)

These values are deduced from (7.4) by straightforward algebraic manipulations. We
now seek to find domains for which the quadrature identity (7.5) holds with values
of r and p close to, but different from, those given in (7.9) and such that the domain
is now quintuply connected. Physically, this corresponds to a situation in which the
five non-interacting shielded Rankine vortices of figure 2 have ‘merged’ to form a
single compound (pentapolar) vortex.
Following the example of Gustafsson (1988), for a fourfold symmetric quintuply

connected domain, we expect to find four special points on the rays

arg[z] = 1
2πl, l = 0, 1, 2, 3; (7.10)

and four others on the rays

arg[z] = 1
4(π + 2πl), l = 0, 1, 2, 3. (7.11)

The eight points of contact of the initial touching discs are to be found on these rays.
Now define the functions

q1(s) ≡ P(seiπ/4, se−iπ/4),
q2(t) ≡ P(t, t),

}
(7.12)

where parameters s and t are taken to be real. In order for s to represent the distance
from the origin of the special point on arg[z] = 1

4π, and for t to represent the distance
from the origin of the special point on the real axis, we require

q1(s) = 0,

q′
1(s) = 0,
q2(t) = 0,

q′
2(t) = 0.




(7.13)

These equations are a result of conditions (6.1) and (6.2), which must hold at any
special point of the quadrature domain. Equation (7.13) constitutes four real equa-
tions.
Recall that, in general, it should be expected that a quadrature domain with four

enclosed irrotational regions should have four degrees of freedom corresponding to
setting the area of each of the enclosed regions. Here, however, symmetry has been
assumed so that all four irrotational regions must have the same area. We therefore
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only expect one degree of freedom associated with specifying the area of each of
these regions. Let us assume that setting the real parameter s corresponds to fixing
this degree of freedom.
Given the four equations (7.13) which relate (e, f, g, k) and (s, t) and assuming

that r, p and s have been externally specified, five unknown parameters (e, f, g, k)
and t remain to be determined. It is clear that we do not yet have enough equations
to determine the required algebraic curve.
To fix an additional equation, we turn to the quadrature identity (7.5) and pick

h(z) = 1. This yields the nonlinear equation

F(e, f, g, k, t) = 0, (7.14)

where the function F(e, f, g, k, t) is defined as

F(e, f, g, k, t) ≡ 1
2i

∮
∂D

z̄ dz − 4r2 − p2. (7.15)

Note that the dependence of the function F on the parameter set (e, f, g, k, t) is rather
subtle: it occurs only because the line integral in (7.15) is taken around the algebraic
curve ∂D which depends on (e, f, g, k), which, through (7.13), themselves depend
on t. Not all algebraic curves ∂D will be the boundaries of quadrature domains;
indeed, only the special values of (e, f, g, k) which are the simultaneous solution of
the five equations (7.13) and (7.14) are expected to give an algebraic curve bounding
a quadrature domain.
It thus remains to solve the five equations (7.13) and (7.14) for (e, f, g, k) and t. To

do this, it is useful to observe that the four equations (7.14) are linear in (e, f, g, k)
(for given r, p, s and t). These four linear equations are solved for e, f , g and k as
functions of r, p, s and t. These are substituted in (7.15), making it a single real
nonlinear equation in one real unknown t. This single equation is solved using the
following numerical scheme based on Newton’s method.

(a) Numerical method

(i) Assuming that r, p and s are specified, a guess is made for t. Equations (7.13)
are then used to solve for (e, f, g, k) in terms of r, p, s and t. This fixes some
algebraic curve P(z, z̄) = 0 (although not necessarily the boundary of a quadra-
ture domain).

(ii) By the reflectional symmetries of the configuration about the x- and y-axes,
it is enough to consider one quadrant of the plane. Without loss of generality,
the second quadrant is chosen. A highly accurate polynomial solver is used to
compute real solutions x of P(x, x) = 0. This provides the intersection points
of the algebraic curve with the x-axis. The point x0 furthest away from the
origin is picked out.

(iii) The x-axis between [x0, 0] is discretized into N equally spaced points. Differ-
ent values of N are used to ensure accuracy and convergence (but satisfactory
results are obtained using N = 105). At each point x, a highly accurate (com-
plex) polynomial solver is used to numerically compute all solutions y to the
(real) polynomial P(x+ iy, x− iy) = 0. The solution set of 10 roots is filtered
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for real solutions y. The points at which the number of admissible (i.e. real)
solutions (for y) changes are recorded (these correspond to turning points in y)
and a small x-interval around such points is subdivided into 200 subintervals.
(Because the curve is algebraic there is always only a finite number of such turn-
ing points.) This is a simple form of mesh refinement and is performed because,
having chosen x as the independent coordinate, at such y-turning points, the
change in y for a small change in x can be unacceptably large (unless we refine
the mesh). This refinement is found to be crucial for accurate computations of
the integral (see next step).

(iv) Once points on the curve are accurately determined, a trapezium rule is used
to compute the one-dimensional complex integral in F(e, f, g, k, t). The mesh
refinement in step (iii) is necessary to ensure that |dz| is always acceptably
small in this numerical integration.

(v) Iterate on t until F(e, f, g, k, t) = 0 in a Newton iteration.

For x0 of order one, the global error in such a calculation is expected to be O(N−1),
i.e. the error resulting from the numerical integration. Calculations were repeated
using different values of N to ensure accuracy.
A useful check on the solutions obtained using this numerical method was made

by choosing arbitrary analytic functions h(z) (e.g. h(z) = ez, 1/(5 − z) were used)
and numerically computing the integral of such h(z) over the final domain by using
Green’s theorem to convert the integral to the one-dimensional integral

1
2i

∮
∂D(t)

h(z)z̄ dz, (7.16)

and using the same integration procedure as described in the numerical scheme above.
These numerically computed values were then directly compared with the values
given by evaluating the right-hand side of the quadrature identity. It was deduced
that a quadrature domain had been successfully reached when these two values of
the integral agreed to within the accuracy of the numerical integration.
In figures 4 and 5, the values of e calculated using this numerical scheme are plotted

as functions of the parameter s for fixed values of r = 1.01, p =
√
2− 1 (figure 4)

and r = 1.02, p =
√
2− 1 (figure 5). The reason for plotting just the values of the

coefficient e is because it turns out that the additional physical requirement that the
five line vortices be stationary under the effects of the local non-self-induced velocity
field only depends on this particular parameter (see § 7 b).
Note that the range of s values for which corresponding e values are plotted in

figures 4 and 5 corresponds to the range of s for which quadrature domains exist
for the fixed values of r and p. These ranges of existence are found to be given
approximately by s ∈ [0.92, 1.10] for the value r = 1.01 and s ∈ [0.9, 1.15] for the
value r = 1.02. These intervals are said to be ‘approximate’ because they are found
simply by inspection of the corresponding domains plotted for different s values. It is
found that as s draws towards the lower value of this range of existence, the special
points move towards the enclosed boundaries of the domain and incipient cusps on
these enclosed boundaries are seen as s reaches the lowest value of the interval of
existence. As s reaches the highest value of the interval of existence, the special
points draw close to the outer boundary of the domain and incipient cusps are seen
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Figure 4. Graph of e against s for r = 1.01, p = 0.4142.
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Figure 5. Graph of e against s for r = 1.02, p = 0.4142.

to develop on the outer boundary. These extreme cases turn out not to be relevant
to the current application. As will be seen in the next section, only one choice of s
in this range will give a global equilibrium of the Euler equation.
Other numerical methods than that described above can be used. Another method

that can be used is to find a parametrization of the algebraic curve consisting of
points equally spaced in arclength around the curve. A Nystrom-method based on
the trapezium rule can then be used to compute integrals (this achieves superalge-
braic convergence for smooth functions on periodic domains). For smooth curves with
no points of large curvature, such a method requires much fewer points in the dis-
cretization of the curve. The numerical method described earlier is used here because
the initial configurations display points of very high curvature (at the points of con-
tact of the touching discs) and our method has no problem in dealing with such
points. Furthermore, the method has the advantage of automatically locating the
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interior special points of the domains which are of particular interest in the present
study.

(b) Stationarity of line vortices

For each of the values of e in either figure 4 or 5, there corresponds a quintu-
ply connected quadrature domain. However, not all such quadrature domains are
such that the five line vortices at points z = 0, ±√

2, ±i√2 will be simultaneously
stationary under the effects of the local non-self-induced velocity field. This is an
imperative global equilibrium requirement for a consistent solution of the steady
Euler equations.
To determine whether any of the quadrature domains just found do indeed corre-

spond to exact multipolar equilibria of the Euler equations (and we emphasize that
a priori there is no reason to expect that we should be able to find any) we observe
that the function S(z) appearing in (3.1) satisfies the equation

S(z) = z̄, (7.17)

on the boundary ∂D. However, it is also known that, on ∂D, z̄ is a solution of

P(z, z̄) = 0. (7.18)

We therefore conclude, following (5.6), that S(z) satisfies the nonlinear equation of
the form

p5(z)[S(z)]5 + p4(z)[S(z)]4 + p3(z)[S(z)]3 + p2(z)[S(z)]2 + p1(z)S(z) + p0(z) = 0,
(7.19)

for a set of polynomials {pj(z)} defined earlier. It is important to realize that (7.19)
is now a relation between functions of z and therefore holds everywhere by analytic
continuation. A local analysis of (7.19) reveals that, near z =

√
2, S(z) has a Laurent

expansion of the form

S(z) =
Γs

(z − √
2)

+ γs0 + γs1(z −
√
2) + · · · , (7.20)

where Γs, γs0, γs1, . . . are constants to be determined. The local velocity field has the
form

u− iv = 2iψz = 2iz̄ − 2iS(z) = 2i
(√

2− Γs

(z − √
2)

− γs0 +O(|z −
√
2|)

)
. (7.21)

The condition that the line vortex at z =
√
2 is stationary under the effects of the non-

self-induced terms in the local velocity field is therefore equivalent to the condition
√
2− γs0 = 0. (7.22)

To determine γs0 we analyse equation (7.19) locally near z =
√
2. Substituting (7.20)

into (7.19) and examining the coefficient of (z − √
2)−4 we obtain the relation

Γs = −p4(
√
2)

p′
5(

√
2)
, (7.23)
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while the coefficient of (z − √
2)−3 yields the following equation for γs0:

γs0 = −p3(
√
2) + Γsp

′
4(

√
2) + (1

2Γ
2
s )p

′′
5(

√
2)

5Γsp′
5(

√
2) + 4p4(

√
2)

. (7.24)

It can easily be deduced that

p5(z) = z5 − 4z,

p4(z) = −(p2 + 4r2)z4 + 4p2,

p3(z) = ez3,


 (7.25)

so that substitution into (7.23) and (7.24) yields

Γs = r2. (7.26)

This shows that specifying r in the quadrature identity amounts to specifying the
strength of the satellite line vortices. Equation (7.24) together with (7.22) now pro-
vides the following condition on e that must be satisfied if we are to obtain a steady
solution of the Euler equation:

e = 4p2r2 + 6r4 − 8r2. (7.27)

By symmetry of the geometrical configuration and the associated velocity field, the
three other line vortices at z = −√

2, ±i√2 will also be stationary provided condi-
tion (7.27) is satisfied. It remains to ensure that the line vortex at z = 0 is stationary.
In fact, no additional conditions on the parameters are required because the central
line vortex is automatically stationary. This can be argued using symmetry of the
velocity field about the origin. Alternatively, the function S(z) has the following
expansion in the vicinity of the origin:

S(z) =
Γc

z
+ γc0 + γc1z + · · · , (7.28)

and the condition for stationarity of the central line vortex is that

γc0 = 0. (7.29)

That this condition is satisfied can be verified by performing an analysis analogous
to that just described. Such an analysis also leads to the relation

Γc = p2, (7.30)

which shows that specifying the parameter p in the quadrature identity amounts to
specifying the strength of the central line vortex.
It turns out that exact pentapolar equilibria of the Euler equations can indeed

be found. From (7.27), the equilibrium values of e for the following three example
choices of the pair (r, p) are computed (to three decimal places) to be

r = 1.01, p = 0.4142, e = −1.217;
r = 1.02, p = 0.4142, e = −1.115;
r = 1.01, p = 0.4261, e = −1.176.


 (7.31)
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(a)

(b)

Figure 6. r = 1.01, p = 0.4142. (a) Region of non-zero vorticity. (b) Bold dots indicate point
vortex positions and small dots indicate special points of the domain (or stagnation points of
the flow).

It is found that there exist values of the parameter s (yielding quintuply connected
quadrature domains) corresponding to these equilibrium values of e. These are found
to be given, respectively, by

s = 1.006,
s = 1.011,
s = 1.008.


 (7.32)

The first two values can be found, in principle, by reading off the corresponding values
of s from the graphs in figures 4 and 5. This fitting was in fact done numerically
(by adapting the Newton methods already described) by specifying the value of
e required for equilibrium (for a given (r, p)) and then finding the corresponding
(s, f, g) required to give a quadrature domain.
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(a)

(b)

Figure 7. r = 1.02, p = 0.4142. (a) Region of non-zero vorticity. (b) Bold dots indicate point
vortex positions and small dots indicate special points of the domain (or stagnation points of
the flow).

In order to examine the shapes, the corresponding steady vortical structures are
plotted in figures 6–8. Each figure corresponds to each of the three different choices of
the parameters r and p and consists of two diagrams: the region of non-zero vorticity
is shown as a shaded region in the first diagram, while the second diagram shows
the same solution with the positions of the superposed line vortices and the special
points clearly marked.
It might not be expected that these special points, which clearly have great math-

ematical importance (not least in the practical matter of constructing the domains,
as has been seen), would have any physical significance. However, it turns out that
they do. Consider the velocity field given by

u− iv = 2iψz = 2i(z̄ − S(z)). (7.33)
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(a)

(b)

Figure 8. r = 1.01, p = 0.4261. (a) Region of non-zero vorticity. (b) Bold dots indicate point
vortex positions and small dots indicate special points of the domain (or stagnation points of
the flow).

Recall from (6.1) that, at all special points zs in the set V0,

P(zs, z̄s) = 0. (7.34)

However, it is also true (from (7.19)) that the function S(z) satisfies the equation

P(z, S(z)) = 0, (7.35)

which holds everywhere by analytic continuation. Evaluating (7.35) at the special
point zs inside the domain we obtain the relation

P(zs, S(zs)) = 0. (7.36)

But (7.34) and (7.36) are both valid at the point zs so that together they imply that

z̄s = S(zs), (7.37)
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which, using (7.33), implies that

u− iv = 0 at zs. (7.38)

Thus the special points of the quadrature domain are precisely the stagnation points
of the physical flow field inside the patch. These stagnation points have great physical
importance because they are the points of confluence of the separatrix streamlines
separating the core and satellite vortical regions. Note also that the parameter s now
takes on a physical significance: it is the distance away from the central line vortex
(which is at the origin) of four symmetrically disposed stagnation points of the flow.
It is interesting that in this particular physical application of the theory of quadra-

ture domains there exists a physical interpretation of the mathematical notion of the
‘special points’ of a quadrature domain.

8. Summary and discussion

This paper has demonstrated how to construct geometrically complex global equi-
libria of the two-dimensional Euler equation by means of a ‘nonlinear superposition’
method in which a set of shielded Rankine vortices merge to form a compound mul-
tipolar equilibrium. The principle is very general. The construction has been imple-
mented explicitly using the theory of quadrature domains and algebraic curves.
The study of multiple vortex equilibria of the Euler equations is important; point

vortex models are the most analytically tractable models and Campbell & Ziff (1978)
have catalogued stable and unstable equilibria for configurations consisting of up to
50 line vortices. It is relatively easy, from an analytical point of view, to superpose
distributions of point vortices and to seek equilibria. In general, it is much more diffi-
cult (and in general impossible) to make any analytical progress in finding equilibria
when regions of distributed vorticity, such as vortex patches, are superposed. This
paper has presented some new ideas to show how this can be done when superposing
shielded Rankine vortex solutions. With reference to the study of Campbell & Ziff
(1978), Pullin (1992) has suggested that

if all such equilibria can be continued to finite and perhaps different area
and uniform vorticity for each vortex then the class of finite-areaN -vortex
equilibria is expected to be very dense, excluding even the possibility of
further bifurcations off each branch for given N. . . the class of multiple-
vortex equilibria is very large.

We believe that our results provide strong evidence to corroborate this statement,
as well as providing a general constructive method for finding ‘exact’ representations
of such equilibrium solutions.
A word of caution: it is important to point out that it is also possible to con-

struct (in exactly the same way) a class of quadruply connected quadrature domains
parametrized by (r, p) having three satellite vorticity maxima and three enclosed
zones of irrotational fluid. It is reasonable to suppose that such quadrature domains
might be used to construct solutions of the steady Euler equations modelling quad-
rupolar vortices. Indeed, this was attempted. However, while it is again found that
the stationarity condition on the satellite line vortices imposes a condition on a
parameter e depending on r and p (analogous to the condition (7.27)), it is found
that for any chosen pair of parameters (r, p) considered, the value of e required for
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stationarity of the line vortices is always well outside the range of e for which quadra-
ture domains (of this kind) exist. Therefore, no exact solutions of the steady Euler
equations were found in this case. While this is not evidence of the non-existence
of such solutions, it does highlight the non-trivial nature of the exact pentapolar
solutions just found; even given that multiply connected quadrature domains can be
explicitly constructed (a challenging task in itself), this is no guarantee that they
will yield exact multipolar solutions of the steady Euler equations. Any such quadra-
ture domains must satisfy additional constraints. A total balance of hydrodynamic
pressure forces depending on the global geometry of the vorticity is required. The
method presented here provides some analytical tools for studying when such global
force balance can occur.
The emphasis of this paper has been a presentation of the mathematical construc-

tion of new solutions; however, the results give rise to many physical questions. For
example, an important question concerns the linear and nonlinear stability of the
solutions. Such questions are currently under investigation (Crowdy & Cloke 2001).
It is an important feature of our solutions that they consist of combinations of line
vortices and uniform vortex patches, which implies that their fully nonlinear evolu-
tion can be studied by straightforward adaptations of standard numerical contour
dynamics algorithms (Pullin 1992).
Finally, we remark that the analytical ideas presented here can be extended in

a slightly different direction to construct classes of steady rotating vortical equilib-
ria (Crowdy 2001b). The same mathematical ideas therefore appear to lead to the
construction of a wide range of different species of multipolar equilibria.
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