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Abstract. The nonlinear free-boundary problem of finding the equilibrium shapes of two equal-sized two-
dimensional inviscid bubbles with surface tension situated in a polynomially-singular slow viscous flow is solved
in terms of closed-form formulae. The singular flow is taken to be within the class of those realizable at the
centre of a four-roller mill apparatus. The associated flow field is also found explicitly. These solutions allow
investigation of the bubble shapes and associated streamline patterns as functions of the far-field asymptotic
conditions. In certain regimes, the bubbles are found to exhibit both near-cusps and a characteristic dimpling
as they draw closer together. The results provide the first instances of exact solutions involving two interacting
bubbles in an unbounded Stokes flow.
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1. Introduction

The problem of interaction of multiple bubbles and fluid droplets dispersed in a second host
fluid is important in many industrial applications. Processes such as droplet coalescence can
only be understood by studying the interaction between two or more droplets. Chesters [1]
provides a comprehensive review of this area. The converse scenario is breakup, where a single
bubble or droplet evolves to a situation involving multiple bubbles/droplets. The deformation
and breakup of drops and bubbles is relevant to such physical processes as the rheology of
emulsions and mixing in multiphase systems. An early review of this area is provided by
Rallison [2] and a more recent one by Stone [3].

Difficulties in resolving the hydrodynamic interaction of two droplets or bubbles (and
hence flows involving two disjoint free surfaces) have resulted in very few theoretical or
mathematical results in the literature concerning bubble interaction in an ambient flow field.
Analytical solutions to a fully three-dimensional situation still prove elusive owing to a lack
of suitable mathematical techniques. On the other hand, simplified two-dimensional models
of free-surface Stokes flow can be tackled by complex-variable methods. A variety of such
results have been established (e.g. [4]–[16]). Moreover, from a physical point of view, these
two-dimensional solutions shed light on important qualitative aspects of axisymmetric flows.
Antanovskii’s analytical solutions [10], [11] for cusping bubbles, for example, have striking
similarities with the three-dimensional bubbles observed in Taylor’s early experiments in a
four-roller mill [17].

To the best of this author’s knowledge, no analytical results for the problem of two in-
teracting bubbles in an unbounded ambient Stokes flow currently exist in the literature. An
exception is recent work by the present author in which exact solutions are found for multiple
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time-evolving bubbles in bounded Stokes flows [16]. The present paper makes a contribution
in this direction by deriving a class of explicit solutions for the equilibrium shapes of two
inviscid bubbles placed in a polynomially-singular flow typical of that produced at the centre
of a four-roller mill.

This paper has been inspired by two prior investigations. The first is recent experimental
work on the problem of two-droplet coalescence. Yang et al. [18] have studied experimentally
velocity-gradient-induced coalescence at the individual droplet level, i.e., the coalescence of
two equal-sized droplets in a linear ambient flow. These experiments were carried out using
a linear flow produced in a four-roller mill apparatus. The second source of motivation is
the known existence of classes of exact solution for a single constant-pressure bubble in an
ambient Stokes flow typical of that produced in a four-roller mill. Using boundary-integral
calculations, Antanovskii [11] deduced the form of the local flow in the neighbourhood of
a small bubble at the centre of the four-roller mill constructed by Taylor [17] in his classic
early experiments. Working in the spirit of matched asymptotic expansions, Antanovskii [11]
used the local expansion of this numerical ‘outer’ solution as the far-field boundary conditions
for an ‘inner’ free-boundary problem. This inner problem was solved using complex-variable
methods to find the shape of the bubble, and the associated flow field, in closed form. These
complex-variable methods were first developed in Antanovskii [10] for far-field flows within
the same class. The ambient ‘outer’ flows of Antanovskii [10], [11] have the form of a purely
straining orthogonal stagnation-point flow. Pozrikidis [19], [20] has studied time-evolving
bubbles in this class of ambient flows using boundary-integral methods. Later, Siegel [21]
found exact solutions to the same (time-dependent) problem considered by Pozrikidis [19],
however, such exact solutions only exist provided the bubble area remains constant in time
(see Crowdy and Siegel [22] for clarification of this point).

This paper extends the second part of Antanovskii’s analysis to the case of two symmetric
bubbles placed in the same class of outer ambient flows considered in [10], [11]. The present
analysis is therefore a generalization to the case of two interacting bubbles of the steady single-
bubble analysis of Antanovskii [10], [11]. The latter work is itself a natural generalization of
earlier investigations by Richardson who identified exact solutions for the equilibrium shapes
of a single bubble both in linear flows [4] and parabolic flows [5].

This paper focuses on presenting details of the mathematical solutions and in exploring
their properties. The solutions fully resolve the global bubble deformation due to the ambient
flow and the interaction effects due to the presence of a second bubble. Closed-form formulae
for the free-surface shapes and the associated flow field are found for different ambient flow
conditions.

It is anticipated that one of the more important roles of the exact solutions will be to
provide non-trivial checks on numerical codes (e.g., boundary integral codes) written to re-
solve the more general unsteady evolution of two bubbles in a two-dimensional ambient flow.
Moreover, theoretical treatment of two-bubble interactions involves mostly asymptotic and/or
perturbative procedures. For example, the droplet-coalescence problem is usually analysed by
first resolving the mutual approach of the bubbles under the effects of the ambient flow then,
once the bubbles are close enough, some inner asymptotic (usually ‘thin film’) analysis of film
drainage is performed. In this spirit, the present results might serve as leading-order solutions
in theoretical treatments where additional effects are introduced perturbatively.

In Section 2, a complex-variable formulation of the problem is presented. In Section 3, the
choice of the class of far-field boundary conditions is discussed. In Sections 4–5, the analysis
leading to the solutions is presented, while Section 6 presents details of the resulting solutions.
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Finally, the paper concludes with a discussion of possible generalizations and application of
the results.

2. Mathematical formulation

The model problem treated here is idealized in that the flow is assumed to be two-dimensional,
the two bubbles are assumed to be of equal size and of constant interior pressure and the
ambient flow is taken to be a slow viscous Stokes flow with a far-field behaviour typical of
that produced in a four-roller mill apparatus.

Consider two equal-sized plane inviscid bubbles placed in an infinite regionD occupied by
a very viscous fluid of viscosity µ in the Stokes regime. Because the flow is incompressible,
a streamfunction ψ(x, y) is introduced such that

u = (u, v) = (ψy,−ψx), (1)

and which satisfies the biharmonic equation in the fluid region (see [23], i.e.,

∇4ψ = 0 in D. (2)

It is further assumed that the two bubbles are symmetric in the sense that each is a rotation
about the origin by an angle π of the other. The internal bubble pressures are assumed equal
and, without loss of generality, set equal to zero. A uniform surface tension σ acts on each
bubble boundary and is assumed to be the same for both. The equation of stress balance on
each bubble boundary takes the form

−pnj + 2µejknk = σκnj, (3)

where p is the fluid pressure, ejk is the fluid rate-of-strain tensor and κ is the surface curvature.
ni denotes the i-th component of the vector normal to the boundary. The kinematic condition
on the bubble boundaries in the steady case requires that each surface is a streamline (i.e., a
ψ-contour). It will also be necessary to impose boundary conditions on the flow at infinity as
described in detail in Section 3.

The general solution of (2) can be written, in terms of the usual complex variable z = x+ iy
and its complex conjugate z̄ = x − iy, as

ψ = Im[z̄f (z)+ g(z)], (4)

where f (z) and g(z) are analytic in the fluid region D except at infinity where they exhibit
the singular behaviour to be described in Section 3. The following relations can be established
[23, pp. 156–160]:
p

µ
− iω = 4f ′(z), u+ iv = −f (z)+ zf̄ ′(z̄)+ ḡ′(z̄), e11 + ie12 = zf̄ ′′(z̄)+ ḡ′′(z̄), (5)

where ω = −∇2ψ is the vorticity of the fluid. The conjugate function f̄ (z) is defined as

f̄ (z) = f (z̄). (6)

It is convenient to non-dimensionalize velocities by σ/µ, pressure by σ/a0 and length and
time by a0 and a0µ/σ , where a0 is a typical length scale of the bubbles. It is assumed that one
bubble is situated on the negative real axis, while bubble 2 is situated on the positive real axis.
Upon defining s to be the arclength traversed in a clockwise direction around each bubble
boundary, the stress condition on bubble 1 takes the form
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f (z)+ zf̄ ′(z̄)+ ḡ′(z̄) = −i zs
2

+ A1, (7)

where A1 is a constant of integration and zs = dz/ds. See, for example, Crowdy and Tanveer
[12] for a derivation of this result. Similarly, the stress boundary condition on bubble 2 is

f (z)+ zf̄ ′(z̄)+ ḡ′(z̄) = −i
zs

2
+ A2, (8)

where A2 is another integration constant. The kinematic condition on each bubble boundary
can be written as

Im [(u+ iv)z̄s] = 0. (9)

The constants A1 andA2 in (7) and (8) are determined implicitly by the bubble shapes (see [4],
[14] for a discussion of this point) and are not directly related to the interior bubble pressures.
It can be seen from (5) that f (z) and g′(z) are only determined up to additive degrees of
freedom; transforming f (z) 	→ f (z)+ A and g′(z) 	→ g′(z)+ Ā where A is some constant,
can be seen not to affect either the fluid pressure, velocity or stress fields. This degree of
freedom implies that one of the constants in (7) and (8) can be specified to be zero. The
symmetry of the bubble configuration also constrains these constants of integration. To see
this, consider a transformation corresponding to a rotation of the flow domain by an angle π
so that the set {z, f (z), g(z),A1, A2} maps to the set {Z,F (Z),G(Z),A1,A2}. Inspection
of the formulae in (5) for the pressure and velocity fields implies that z and the two Goursat
functions must transform as follows:

Z = −z, F (Z) = −f (z), G′(Z) = −g′(z). (10)

Using (10) in the stress condition implies that the constants Aj transform as

Aj = −Aj, j = 1, 2. (11)

However, because the domain is invariant under a rotation through π , then in order that the
stress boundary conditions be similarly invariant, we take A1 = A2 = 0.

3. The flow-field induced by a four-roller mill

It is assumed that the only singularity of the flow exterior to the two bubbles occurs at infinity.
The conditions on f (z) and g(z) as z → ∞ are taken to be of the polynomial form

f (z) ∼ f3z
3 + f1z+ . . . , g(z) ∼ g4z

4 + g2z
2 + . . . , (12)

where f3, f1, g4 and g2 are constants. Using the expressions for the physical quantities in
terms of the Goursat functions given in (5), we may easily deduce that the expansions (12)
are the only ones consistent with the required symmetries of the problem. In the far-field,
both the fluid velocities and fluid pressure associated with (12) are divergent. The choice (12)
coincides with the class of rotational far-field flows considered in the case of a single bubble by
Antanovskii [10] in his analysis to demonstrate analytically the formation of a cusped bubble
in a four-roller mill. Later, using boundary-integral methods based on the configuration used
in Taylor’s original experiments, Antanovskii [11] showed that the behaviour of f (z) and
g(z), as stated in (12) for specific choices of parameters g4, g2, f3 and f1, includes the small
|z| expansion of the ‘outer’ flow generated by the rollers in the mill. In the spirit of matched
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Figure 1. Schematic of the problem under consid-
eration. Two bubbles are placed at the centre of
a four-roller mill. The bubbles are assumed small
compared to the size of the mill. The problem con-
sidered is the ‘inner’ free boundary problem (local-
ized in the dotted rectangle) which must be matched
to a polynomially-singular far-field flow (cf: (12))
given by the local expansion (near the mill centre) of
the ‘outer flow’ produced by the four rollers (shown
as darkly-shaded circles).

Figure 2. Conformal mapping domains. The shaded
annulus ρ < |ζ | < 1 maps in a one-to-one fash-
ion onto the unbounded (shaded) exterior of the two
bubbles.

asymptotic expansions, the ‘inner’ problem of flow induced around a small bubble at the
centre of the mill must therefore match to the boundary conditions (12) in the far-field. This
inner flow problem is solved exactly [11] using complex-variable methods.

This paper follows this idea but includes the additional feature that there are now two
bubbles at the centre of the mill. It is again assumed that both bubbles are much smaller
than the typical size of the mill so that a local expansion of the ‘outer’ flow due to the four
rollers provides the far-field flow (12) to which the ‘inner’ flow must be matched. Figure 1
provides a schematic of the inner free-boundary problem to be solved. It will be solved here
by generalizing the methods employed by Antanovskii [10] – a generalization that is nontrivial
because the fluid region is now an unbounded, doubly-connected region with two separate free
surfaces over which all boundary conditions must be simultaneously satisfied.

To assign physical significance to the constants f3, f1, g4 and g2 we follow an argument
of Antanovskii [10]. To understand the expansion of the irrotational component g(z), observe
that the complex velocity potential w(z) associated with a simple model of the four-roller mill
configuration in which four vortices of opposite but equal strength ! are placed at positions
{c, c̄,−c,−c̄} (where c = cx + icy) is given by

w(z) = − i!

2π
log

(
1 − z2/c2

1 − z2/c̄2

)
. (13)

If the average radius of a bubble at the centre of the mill is much less than |c|, the leading-order
expansion for w(z) is

w(z) ∼ −2!cxcy
π |c|4 z

2 − 2!cxcy(c2
x − c2

y)

π |c|8 z4 + . . . , (14)
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and (14) constitutes the far-field conditions for an inner problem governing the shapes of the
bubbles. We can therefore make the identification

g2 = −2!cxcy
π |c|4 , g4 = −2!cxcy(c2

x − c2
y)

π |c|8 . (15)

The constants g2 and g4 thus depend on the geometry of the mill and the rate of rotation of the
rollers. g2 can be associated with the strength of a local stagnation-point flow at the centre of
the mill and might be measured experimentally by determining the velocity gradient along the
centreline of the mill. In Taylor’s experiments the rollers were positioned at the four corners
of a square so that g4 = 0 (this is consistent with (15) if cx = cy). In more general mill
configurations with rollers placed at the corners of a general rectangle (so that cx �= cy) g4

will be non-zero. For maximal generality, we treat the general class of far-field conditions
(12) with no special restrictions imposed on the mill configuration (that is, we allow for a
non-zero g4). As corroborated by the boundary-integral calculations of Antanovskii [11], the
Stokes flow generated at the centre of a four-roller mill is not purely irrotational and there
is a rotational component associated with non-zero f (z). Inspection of (5), shows that the
constants f3 and f1 are associated with pressure gradients.

4. Steady solutions

Setting A1 = A2 = 0 and combining (7)–(9), we may show that the kinematic condition (9)
on the free surface of both bubbles is equivalent to

−Im
[
2f (z)z̄s

] = 1

2
. (16)

Defining W(z, z̄) = z̄f (z)+ g(z), we have on each free surface,

dW

ds
= ∂W

∂z
zs + ∂W

∂z̄
z̄s = (z̄f ′(z)+ g′(z))zs + f (z)z̄s. (17)

From the stress conditions,

z̄f ′(z)+ g′(z) = i
z̄s

2
− f̄ (z̄) (18)

on both bubble surfaces, so

dW

ds
= i

2
+ i Im[2f (z)z̄s] = i

(
Im[2f (z)z̄s] + 1

2

)
= 0, (19)

where the last equality follows from (16). It follows that W is constant on each bubble
boundary, i.e.,

W = C1, on bubble 1;
W = C2, on bubble 2.

(20)

Without loss of generality, we set C1 = 0. By the imposed symmetry of the configuration, we
expect C2 = 0 and seek solutions where W = 0 on both bubble boundaries.
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5. Conformal mapping

The fluid region in the two-bubble case considered here is an unbounded doubly-connected
domain. To reconstruct the fluid domains, it is convenient to introduce a one-to-one conformal
map from a canonical doubly-connected region in a parametric ζ -plane. Such a region is given
by the annulus ρ < |ζ | < 1 shown in Figure 2; ρ is known as the conformal modulus [24,
pp. 333-334]. The existence of a conformal mapping from some such annulus to the fluid
domain is guaranteed by the Riemann mapping theorem; ρ must be computed as part of the
solution. The circle |ζ | = 1 maps to the boundary of bubble 1, while the circle |ζ | = ρ

maps to the boundary of bubble 2. The conformal map must have a simple pole in the annulus
ρ < |ζ | < 1 corresponding to the point mapping to infinity in the physical z-plane. It must
also be such that zζ vanishes nowhere in ρ < |ζ | < 1. This is a necessary, but not sufficient,
condition for z(ζ ) to be a one-to-one mapping.

If W(z, z̄) = 0 on bubble 1, this implies that, on |ζ | = 1,

z̄(ζ−1)f (z(ζ ))+ g(z(ζ )) = 0, (21)

where we have used that fact that ζ̄ = ζ−1 on |ζ | = 1. The fact that W = 0 on bubble 2
similarly implies that on |ζ | = ρ,

z̄(ρ2ζ−1)f (z(ζ ))+ g(z(ζ )) = 0, (22)

since ζ̄ = ρ2ζ−1 on |ζ | = ρ. Equations (21) and (22) constitute relations between functions of
a single complex variable ζ so that, by the principle of analytic continuation, (21) also holds
off the circle |ζ | = 1, and (22) holds off |ζ | = ρ. Assuming that both relations hold in an
overlapping region inside the annulus ρ < |ζ | < 1, then in order for the two equations to be
mutually compatible, z(ζ ) must be such that

z̄(ρ2ζ−1) = z̄(ζ−1). (23)

Thus, in addition to the symmetry requirements already stated, (23) represents a further con-
straint on the relevant conformal mapping.

The following two special functions will be useful. Define PN(ζ, ρ) and QN(ζ, ρ) via the
infinite product expansions

PN(ζ, ρ) = (1 − ζN)
∞∏
k=1

(1 − ρ2kNζN)(1 − ρ2kN/ζN), (24)

and

QN(ζ, ρ) = (1 + ζN)
∞∏
k=1

(1 + ρ2kNζN)(1 + ρ2kN/ζN). (25)

These functions are related to the standard theta functions [25, Chapter 16]. Simple ma-
nipulation of the infinite product definitions show that they satisfy the following functional
equations;

PN(ζ
−1, ρ) = PN(ρ

2ζ, ρ) = − 1

ζN
PN(ζ, ρ);

QN(ζ
−1, ρ) = QN(ρ

2ζ, ρ) = 1

ζN
QN(ζ, ρ).

(26)
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A class of conformal maps that will be shown to give solutions of the physical problem
considered is

z(ζ ) = P1(−ζ√ρ−1
, ρ)

P1(ζ
√
ρ

−1
, ρ)

(
A
Q2(ζ

√
ρ, ρ)

P2(ζ
√
ρ, ρ)

+ BP1(−ζ√ρ, ρ)
P1(ζ

√
ρ, ρ)

)
, (27)

where ρ,A and B are real parameters. First note that ζ = √
ρ maps to infinity in the physical

plane, while ζ = −√
ρ maps to z = 0. (27) is also seen to satisfy

z(ζ ) = z(ζ ). (28)

This implies that the bubble configuration is symmetric with respect to reflection in the real
z-axis. To see this, suppose z∗ = z(ζ∗) is a point on the boundary of bubble 1. Then,

z∗ = z̄(ζ̄∗) = z(ζ̄∗). (29)

But because ζ̄∗ is also on the unit ζ -circle, z̄∗ = z(ζ̄∗) is also a point on bubble 1 and is the
reflection of z∗ in the real axis. This is true for all choices of z∗, which implies that the bubble
configuration is refectionally-symmetric with respect to the real axis.

Next, use of properties (26) show that, under the transformation ζ 	→ ζ̂ = ρ/ζ (which
takes a point on the circle |ζ | = 1 to a point on the circle |ζ | = ρ), the conformal map
satisfies

z(ζ̂ ) = −z(ζ ). (30)

This implies that each point on bubble 2 corresponds to a rotation by an angle of π of a point
on bubble 1. Finally, the properties (26) can be used to verify that the map (27) satisfies the
functional relation

z(ρ2ζ ) = z(ζ ) (31)

for all ζ �= 0. In particular, combining (31) with (28) shows that the map (27) satisfies the
required condition (23).

Inspection reveals that the conformal map (27) has an infinite number of simple poles in the
complex plane and is therefore not a rational function as in the case of the exact single bubble
solutions [10], [11]. Note, however, that, once the singularities in ρ < |ζ | < ρ−1 are specified,
the positions and strengths of all other singularities in the complex plane are determined by the
multiplicative periodicity condition (31). It is therefore sufficient to consider the singularity
structure of the conformal map in the annulus ρ < |ζ | < ρ−1. Figure 3 shows the distribution
of simple pole singularities of the map (27) inside this annulus.

Using conditions (5) and the relations

zs = iζ zζ

|zζ | on |ζ | = 1, (32)

and

zs = − iζ zζ

ρ|zζ | on |ζ | = ρ, (33)

we may write the kinematic condition (9) as follows
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Figure 3. Singularities of the conformal map (27) in
the annulus ρ < |ζ | < ρ−1. All poles shown are
simple poles. The point ζ = √

ρ maps to physical
infinity while ζ = −√

ρ maps to the physical origin.
The circles |ζ | = 1 and |ζ | = ρ map to the two
boundaries of the bubbles.

Figure 4. Equilibrium bubble shapes for fixed ρ =
0·01 and various values of λ. The dimensionless area
of all bubbles is π .

Re

[
2f (z(ζ ))

ζ zζ

]
=




1

2
|zζ |−1 on |ζ | = 1

−1

2
ρ|zζ |−1 on |ζ | = ρ.

(34)

From (12) it is known that, to within multiplicative constants, f (z) ∼ z3 while zζ ∼ z2 as
z → ∞. This implies that the term inside the square brackets in (34), when considered as a
function of ζ , has a simple pole at ζ = √

ρ. Now, introduce an auxiliary function q(ζ ) defined
as

q(ζ ) = P1(−ζρ−1/2;ρ)P1(−ζ−1ρ−1/2;ρ)
P1(ζρ

−1/2;ρ)P1(ζ
−1ρ−1/2;ρ) . (35)

This function has a simple pole at ζ = √
ρ. It also satisfies

q(ζ ) = q(ζ−1) = q(ρ2ζ ) (36)

Subtracting Re[F0q(ζ )] from (34), where F0 is some real constant to be determined, we have

Re

[
2f (z)

ζ zζ
− F0q(ζ )

]
=




1

2
|zζ |−1 − Re[F0q(ζ )] on |ζ | = 1

− 1

2ρ
|zζ |−1 − Re[F0q(ζ )] on |ζ | = ρ.

(37)

For a suitable value of F0, the term in the square brackets in (37) will be analytic and single-
valued in the annulus ρ < |ζ | < 1. In order to obtain the required single-valuedness, F0 must
satisfy
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|ζ |=1

(
1

2|zζ | − Re[F0q(ζ )]
)

dζ

ζ
=
∮

|ζ |=ρ

(
− 1

2ρ|zζ | − Re[F0q(ζ )]
)

dζ

ζ
. (38)

It can be shown from (36) that q(ζ ) is real on |ζ | = 1 and |ζ | = ρ. Thus, F0 satisfies

F0

∮
C0

q(ζ )
dζ

ζ
=
∮

|ζ |=1

1

2|zζ |
dζ

ζ
+
∮

|ζ |=ρ
1

2ρ|zζ |
dζ

ζ
. (39)

Using the residue theorem, we obtain the following explicit formula for F0,

F0 = P̂1(1, ρ)P1(ρ
−1, ρ)

P1(−1, ρ)P1(−ρ−1, ρ)

[
1

2π i

∮
|ζ |=1

1

2|zζ |
dζ

ζ
+
∮

|ζ |=ρ
1

2ρ|zζ |
dζ

ζ

]
, (40)

where the function P̂N(ζ, ρ) is defined by

P̂N(ζ, ρ) ≡ PN(ζ, ρ)

(1 − ζN) =
∞∏
k=1

(1 − ρ2kNζN)(1 − ρ2kN/ζN). (41)

With F0 given by (40), the Villat formula [26, pp. 227–230] for an annulus (which gives an
integral expression for a function analytic in an annulus given its real part on the two boundary
circles) provides the following expression for f (z(ζ )),

2f (z(ζ )) = [I (ζ )+ F0q(ζ )]ζzζ (ζ ), (42)

where I (ζ ) is defined as

I (ζ ) = I+(ζ )− I−(ζ )+ Ic, (43)

with the functions I+(ζ ) and I−(ζ ) defined by

I+(ζ ) = 1

2π i

∮
|ζ ′|=1

dζ ′

ζ ′

(
1 − 2

ζ

ζ ′
P1ζ (

ζ

ζ ′ , ρ)

P1(
ζ

ζ ′ , ρ)

)[
1

2|zζ (ζ ′)| − F0q(ζ
′)
]
, (44)

I−(ζ ) = 1

2π i

∮
|ζ ′|=ρ

dζ ′

ζ ′

(
1 − 2

ζ

ζ ′
P1ζ (

ζ

ζ ′ , ρ)

P1(
ζ

ζ ′ , ρ)

)[
− 1

2ρ|zζ (ζ ′)| − F0q(ζ
′)
]
, (45)

and the constant Ic is given by

Ic = − 1

2π i

∮
|ζ |=ρ

dζ

ζ

[
− 1

2ρ|zζ (ζ )| − F0q(ζ )

]
. (46)

P1ζ (ζ, ρ) denotes the partial derivative of the function P1(ζ, ρ) with respect to its first argu-
ment.

Equation (42) determines the Goursat function f (z(ζ )) in terms of the geometrical con-
figuration encoded in the conformal mapping z(ζ ). The remaining Goursat function g(z(ζ ))
now follows from either (21) or (22), i.e.,

g(z(ζ )) = −z̄(ζ−1)f (z(ζ )). (47)
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It is important to examine the singularities of the function g(z(ζ )) as given by (47) inside the
fluid domain in order to ensure that it has the required analyticity properties there. Expression
(47) involves the function z̄(ζ−1) which has singularities at ζ = √

ρ (corresponding to z →
∞) and at ζ = −√

ρ (corresponding to the physical origin). This is clearly seen from Figure 3
where the ζ 	→ ζ−1 inversion of the argument of the conjugate conformal map maps the two
singularities of z(ζ ) at ζ = ±1/

√
ρ into the annulus ρ < |ζ | < 1 corresponding to the fluid

region (recall from (28) that here the conjugate conformal-mapping function is precisely the
conformal map itself). These two singularities are now considered individually. First, to within
multiplicative constants, z̄(ζ−1) ∼ 1/(ζ −√

ρ
−1 as ζ → √

ρ, while f (z(ζ )) ∼ 1/(ζ−√
ρ)−3

as ζ → √
ρ so that, by (47), g(z(ζ )) ∼ 1/(ζ − √

ρ)−4. This implies that g(z) ∼ g4z
4 (for

some g4) as z → ∞ as required in (12). Next, because z̄(ζ−1) has a simple pole at ζ = −√
ρ,

in order that g(z(ζ )) is analytic at the physical origin, we must ensure that f (z(ζ )) vanishes
at z = 0 (or ζ = −√

ρ) in order to remove the singularity of z̄(ζ−1). But the condition
f (0) = 0 is forced by the symmetry of the problem and the fact that the physical origin must
be a stagnation point of the flow. Mathematically, from (42) and because q(−√

ρ) = 0, this
condition is equivalent to

I (−√
ρ) = 0 (48)

– a fact that can be checked a posteriori by numerical evaluation of the integrals involved in
the definition of I (ζ ) given in (46)–(46).

In summary, we have now explicitly constructed the two Goursat functions f (z) and g(z)
in terms of the conformal mapping variable ζ with all the required analyticity properties.
The conformal maps (27) therefore represent exact solutions describing the shapes of two
symmetric bubbles in equilibrium embedded in a flow with the far-field behaviour given in
(12).

The conformal map (27) contains three real parameters ρ,A and B. The pressure inside
each bubble has been assumed equal to zero. If we assume that the area of each bubble is
specified, it is to be expected that the value of f1 will be implicitly determined (if the flow was
such that the fluid pressure at infinity tended to a constant, f1 would be proportional to this
constant). The area condition represents one condition relating the parameters ρ,A and B.
Two additional conditions are obtained by ensuring that f (z) ∼ f3z

3 + O(z) as z → ∞ and
that g(z) ∼ g4z

4 + O(z2) as z → ∞ where f3 and g4 are externally specified. Thus for given
bubble area and given f3 and g4, the direct problem is to solve for the corresponding conformal
mapping parameters ρ,A and B. Alternatively, having specified ρ,A and B corresponding to
a univalent map, the inverse problem is solved by computing the corresponding values of the
bubble area, f3 and g4.

It is important to make clear a distinction from the single bubble analysis of Antanovskii
[10], [11]. In that work, it proved possible to construct a rational conformal mapping function
from the circular disk |ζ | < 1 to the fluid region exterior to the bubble corresponding to
any given bubble area, g4, f3 and g2. In the two bubble case, it appears that once the bubble
area and the values of g4 and f3 are specified, the value of g2 giving rise to equilibrium is
determined by the solution. It may be that a more general class of solutions exists which will
allow g2 to be independently specified but the present author has not succeeded in identifying
such a class. Whether a more general class of two-bubble equilibria exists remains an open
question at present.

A consistency check on the solutions is obtained by expanding f (z) and g(z) in powers of
z as z → ∞. After due manipulations, expressions for the coefficient of z2 in the expansion
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Figure 5. Values of g4 and f3 against λ for fixed
ρ = 0·01 and bubble area equal to π .

Figure 6. Values of g2 against λ for fixed ρ = 0·01
and bubble area equal to π .

of f (z) and for the coefficient of z3 in the expansion of g(z) can be deduced. These should
be zero and this can be checked numerically. Appendix A gives more explicit details of these
consistency conditions, including a derivation of the far-field equations relating the conformal
mapping parameters {ρ,A,B} to the flow characteristics, i.e., g4, f3, g2 and the bubble area.

Although the Goursat functions have been given explicitly, the formulae involve integrals
that cannot be evaluated in closed form. Numerical quadrature is needed to evaluate them.
The solutions as well as the kernel of the integral function I (ζ ) depend on the functions
PN(ζ, ρ) andQN(ζ, ρ) which have been defined in terms of an infinite product expansion. To
perform the computations, expansions (24) and (25) are truncated at k = 10 terms which gives
excellent accuracy. A check on this accuracy is performed by verifying that the conformal map
satisfies the required property (23) for arbitrary choices of ζ . The integral function I (ζ ) can be
computed using a trapezoidal rule with super-algebraic convergence for the present periodic
functions on periodic domains.

6. Investigation of bubble shapes

Rather than seeking solutions for given f3, g4 and bubble area, we have chosen instead to
investigate the class of conformal maps (27) for different values of the parameters ρ,A and
B. In this way, possible equilibrium bubble shapes can be systematically surveyed.

Some preliminary observations are made. First, for fixed choices of A and B, it is found
that the two bubbles move further apart as ρ → 0. In a general sense, ρ can therefore be
viewed as representing a measure of the separation of the two bubbles with small values
of ρ corresponding to widely-separated bubbles. Second, univalent mappings can only be
constructed provided ρ is sufficiently small, i.e., the space of parameters (A,B) for which
univalent maps exist is found to get smaller with increasing ρ. The procedure adopted to
investigate the solutions is as follows: a value of ρ is fixed; different values of the ratio λ ≡
B/A are then explored with A determined by the condition that the (non-dimensional) area
of each bubble is equal to π ; the corresponding values of g4, g2 and f3 are then calculated a
posteriori.
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Figure 7. Equilibrium bubble shapes for fixed ρ =
0·05 and various values of λ. The area of all bubbles
is π .

Figure 8. Values of g4 and f3 against λ for fixed
ρ = 0·05 and bubble area equal to π .

First we examine how the bubble shapes depend on the two parameters ρ and λ. Figure 4
shows the case of ρ = 0·01 for various choices of λ. The bubble shapes for different λ are
superposed on the same diagram, but the far-field conditions in each case are different. The
corresponding values of g4, f3 and g2 can be read from the graphs featured in Figures 5
and 6 which show plots of these parameters for fixed ρ = 0·01 and bubble area equal to π ,
as functions of the parameter λ. In a similar way, for ρ = 0·05 superposed bubble shapes
for different λ-values are shown in Figure 7 with corresponding far-field asymptotic flow
conditions graphed in Figures 8 and 9. Figures 10–11 show analogous results for ρ = 0·1.
Note the general trend, consistent with the observation made above, that for higher values of
ρ the bubbles are closer together on the whole. This can be seen by comparing Figures 4, 7 and
10 which correspond to successively larger values of ρ. In each case with ρ fixed, it is found
that there exists a lower limit, λ = λc say, for which a univalent mapping from the annulus
can be found. For example, in the case ρ = 0·01, λc ≈ −0·49. For all examples calculated, λc
is found to be negative and to increase with increasing ρ. As λ → λc for fixed ρ, each bubble
develops two pointed vertical ends having high curvature and, for the higher ρ-values when
the bubbles are generally closer together, these two points of high curvature on the separate
bubbles in the first and second quadrant draw close together (with a reflectionally-symmetric
situation occurring in the third and fourth quadrants). In the limit λ → λc, these high curvature
points appear to become near-cuspidal, especially for the larger ρ-values. The appearance
of near-cusps in free boundaries involving slow viscous flows is by now well known (e.g.
[27], [19], [20]). It is found that, as the bubbles draw closer together, their interaction with
both each other and the ambient flow induces the formation of both a concave (‘dimple’)
region. For lower values of ρ (so that the bubbles are, on the whole, more widely separated)
these concave regions and the points of high curvature are less pronounced and the bubbles
have generally smoother shapes. The dimple regions are most apparent in Figure 10. The
phenomenon of ‘dimpling’ is well-known in studies of droplet coalescence and film drainage
[1, 28, 18] and are a consequence of the pressure gradients associated with the bubbles drawing
closer together.
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Figure 9. Values of g2 against λ for fixed ρ = 0·05
and bubble area equal to π .

Figure 10. Equilibrium bubble shapes for fixed ρ =
0·1 and various values of λ. The area of all bubbles
is π .

Typically, as ρ gets larger, bubble shapes obtain larger aspect ratios, the bubbles get closer
together and the dimples become increasingly semi-circular in shape. This can lead to config-
urations in which the two bubbles almost touch at the near-cusps and enclose a near-circular
region of fluid thereby forming what resembles a single composite bubble containing a stag-
nant circular droplet. This limiting situation is reminiscent of the limiting states for isolated
bubbles in an ambient parabolic flow as calculated by Richardson [5]. There, the rear of the
bubble develops a re-entrant wake which, in the limiting case, displays two points of high
curvature which draw together to enclose a circular region of near-stagnant fluid. A near-
limiting configuration in the two-bubble case is given in Figure 13 where ρ = 0·4 (a value
quite close to the upper limit for which univalent mappings of this kind exist) and λ = −0·25.
Figure 13 should be compared to Figure 3(f) of Richardson [5].

On the other hand, as λ increases for fixed ρ, the aspect ratio of the bubbles increases and
the distance between the bubbles tends to decrease. In the case of sufficiently small ρ, there
appears to be an intermediate value of λ at which the distance of closest approach of the two
bubbles ceases to decrease and instead gets larger (see Figures 4 and 7). All the time, as λ
increases, the aspect ratio of the bubbles continues to increase. Steady solutions appear to
exist for all positive values of λ, the aspect ratio growing very large as λ → ∞. Figure 14
shows bubble shapes in the case ρ = 0·05 for λ near to λc and also for a large, positive λ-value
(λ = 5). This figure illustrates the typical extremes of the possible equilibrium bubble shapes
for a fixed ρ-value.

The value of f3 is found to be negative whatever values are taken for the parameters
appearing in the conformal map (27). This is significant because Antanovskii [10], [11] found
that the sign of a ‘pressure parameter’ (which is related to the sign of the cubic terms in f (z))
is crucial in determining whether a single bubble will ‘cusp’ or ‘burst’. To make a closer
connection with the single-bubble analysis of Antanovskii [10], note first that Antanovskii’s
choice of non-dimensionalization is different to that adopted here. In particular, Antanovskii
rescales time with respect to a local deformation rate G of the ambient velocity field as
opposed to the a0µ/σ used here. However, for present purposes we are concerned only with
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Figure 11. Graph of values of g4 and f3 against λ
for fixed ρ = 0·1 and bubble area equal to π .

Figure 12. Graph of values of g2 against λ for fixed
ρ = 0·1 and bubble area equal to π .

Figure 13. Bubble shapes for ρ = 0·4 and λ =
−0·25. The near-cuspidal points on the two bubbles
almost touch thus enclosing a near-circular region of
fluid.

Figure 14. Near-limiting bubble shapes for fixed ρ =
0·05. For λ ≈ −0·49 the bubbles become elongated
in the vertical direction and develop near-cusps at
the top and bottom. As λ becomes large and positive
(here λ = 5) the bubbles are drawn out horizontally.
The area of all bubbles is π .

the signs of various quantities. To within positive constants, the correspondence between the
dimensionless parameters a, b and G used in [10] and the parameters f3, g4 and g2 used here
is the following:

f3 ∼ Gb, g4 ∼ Ga, g2 ∼ G (49)

Antanovskii takes G positive and, in cases a ≤ 0 or b ≤ 0, he essentially finds that there is
an upper bound on G for which a steady solution exists. He associates this upper bound on
the existence of solutions with the onset of bursting of the single bubble. Antanovskii’s results
are consistent with the new solutions found here; observe from Figures 6, 9 and 12 that as
λ → λc (the quantity λ can be identified with Antanovskii’s deformation parameter q) the
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Figure 15. Streamlines around one of the two bub-
bles for parameter values ρ = 0·1 and λ = −0·4.
The far-field streamlines resemble those of a stagna-
tion point flow about the origin.

Figure 16. Streamlines for parameter values ρ = 0·1
and λ = −0·1. The ψ = 0 contour is now seen to
form a separatrix streamline between distinct parts
of the flow.

quantity g2 increases to a maximum positive value. Because solutions with λ close to λc have
an associated g2 which is positive and f3 negative, the identifications in (49) show that the far-
field flow in which such two-bubble solutions find themselves correspond to the b < 0 far-field
flows of Antanovskii. These are precisely the far-field flows which Antanovskii associates with
the ‘bursting’ of a single bubble. It is therefore tempting to suggest that the new two-bubble
configurations with λ close to λc might constitute equilibria to which a ‘burst’ bubble will
relax when it can no longer exist as a single entity. It is also worth pointing out that the ‘single’
composite bubble in Figure 13 discussed above (containing, in the limit, a stagnant circular
blob of fluid) to which the close-to-limiting two-bubble configuration seems to converge, has
a shape highly reminiscent of the b < 0 single-bubble solutions (i.e., ‘bursting’ solutions)
displayed in Figures 5 and 6 of Antanovskii [10].

Finally, to gain a better understanding of the nature of the ambient flow-field, it is instruc-
tive to plot the associated streamline patterns. An explicit formula for the streamfunction ψ as
a function of ζ and ζ̄ is given by

ψ(ζ, ζ̄ ) = Im
[(
z̄(ζ̄ )− z̄(ζ−1)

)
f (z(ζ ))

]
, (50)

where f (z(ζ )) is given explicitly in (42). This formula can be used to plot ψ-contours which
are the streamlines. If required, the pressure field can also be computed in a straightforward
way using the formula

p = Re

[
4

zζ (ζ )

df (z(ζ ))

dζ

]
. (51)

Figures 15–17 depict typical streamlines around one of the two bubbles for fixed ρ = 0·1
and three different choices of λ = −0·4,−0·1 and 1 (the streamline distribution around the
other bubble being obvious from symmetry). The dimensionless area of the bubble in each
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Figure 17. Streamlines for parameter values ρ = 0·1 and λ = 1. At this value of the parameters, the ψ = 0
separatrix streamline has now met with the bubble (which is also a ψ = 0 contour).

case is π . These figures illustrate how the topology of the streamline distribution changes as
λ increases for fixed ρ. In Figure 15, the streamline pattern resembles that of a stagnation
point flow about the origin. As λ increases, the nature of the streamline pattern changes. In
Figure 16 the ψ = 0 streamline is seen to form a separatrix between distinct regions of the
flow behind the bubble. As λ increases further, this separatrix streamline reaches the bubble
and bifurcates along the top and bottom, as seen in Figure 17.

7. Discussion

It would be interesting to examine experimentally to what degree any of the computed bub-
ble shapes might be reproduced in an appropriately-configured four-roller mill using clean
low-viscosity fluids. It is worth remembering that the two-dimensional single-bubble model
considered by Antanovskii [11] shows remarkably similar bubble profiles to cross-sections
of the fully three-dimensional bubbles observed experimentally by Taylor [17]. The bubbles
considered here are assumed to be inviscid and at constant internal pressure with free bound-
aries that are free of surfactants. This leads to a situation in which the interfaces are highly
mobile; introducing a non-zero viscosity and hydrodynamic coupling with the bubble phase or
surfactants on the bubble boundaries is generally expected to reduce this mobility and thereby
reduce the deformability of the interfaces. Some of the more deformed bubble shapes observed
in the present study are not therefore expected to be observable in experiments involving
real fluids. In particular, while qualitatively consistent with prior observations, some of the
‘dimple’ regions observed are very much more pronounced than that seen in, for example,
studies of droplet coalescence [28, 29] or studies of bubbles approaching walls [30]. These
pronounced shapes are partly due to the high mobility of the bubble interfaces in the present
model.

The stability of the equilibrium solutions is of interest but lies beyond the scope of the
present paper. More generally, the problem of two time-evolving interacting bubbles also
remains to be investigated. Such an investigation can be performed numerically (e.g., using
boundary-integral methods for which the present exact solution class may provide valuable
checks on the code) but the existence of exact solutions for time-evolving bubbles in the
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single-bubble case suggests the possibility that the exact results here might similarly be gen-
eralizable to a quasi-steady, time-evolving class of exact solutions in which the parameters
appearing in the conformal-mapping functions evolve according to some (finite) nonlinear sys-
tem of differential equations as in the single bubble case [8, 9, 22]. Any developments of this
kind would provide a useful theoretical framework for studying the two-droplet coalescence
problem [18], albeit in a planar model.

The exact solutions suggest further possibilities for generalizations in other directions.
There is, in principle, no obstruction to extending the present steady analysis to bubbles with
surfactants and such generalizations in the single-bubble case have been performed by Siegel
[31, 32] resulting in exact solutions for both the bubble shape, the associated flow and the
steady surfactant distribution. The present author has also recently demonstrated [33] that the
single-bubble exact solutions of Tanveer and Vasconcelos [8] can be generalized to the case of
compressible bubbles whose pressure-area relation is governed by some externally specified
equation of state – a scenario recently studied numerically by Pozrikidis [34]. Similar general-
izations to compressible bubbles might also be feasible for two bubbles. Finally, derivation of
exact solutions for equilibrium configurations involving multiple (i.e., more than two) bubbles
poses an intriguing challenge. It is hoped to explore these many various possibilities in future
work.
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Appendix, Derivation of the far-field equations

In this appendix, we indicate how to find relations between the conformal mapping parameters describing the
bubble shapes and the parameters of the far-field asymptotic flow.

As ζ → √
ρ, let

z(ζ ) ∼ α

(ζ − √
ρ)

+ β + γ (ζ − √
ρ)+ . . . , A1)

and

z̄(ζ−1) ∼ δ

(ζ − √
ρ)

+ ε + χ(ζ − √
ρ)+ . . . , (A2)

where expressions for α, β, γ, δ, ε and χ in terms of {ρ,A,B} can be derived using (27). This is conveniently
done with the help of a symbolic manipulator. We also let

F0q(ζ ) ∼ q−1

(ζ − √
ρ)

+ q0 + q1(ζ − √
ρ)+ . . . , (A3)

as ζ → √
ρ, where expressions for q−1, q0 and q1 can be derived using (35) and (40). Using these expansions to

expand F(ζ ), as given in (42), as ζ → √
ρ we have

F(ζ ) ∼ F3

(ζ − √
ρ)3

+ F2

(ζ − √
ρ)2

+ F1

(ζ − √
ρ)

+ . . . , (A4)

where

F3 = −α
√
ρq−1

2
,

F2 = −α
2

(
q−1 + (q0 + I0)

√
ρ

)
,

F1 = γ
√
ρq−1

2
− α

2

(
q0 + I0 + (q1 + I1)

√
ρ

)
,

(A5)
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where I0 = I (
√
ρ) and I1 = Iζ (

√
ρ). At the same time, using (A1) to expand f3z

3 + f1z in powers of (ζ − √
ρ)

as ζ → √
ρ gives

F(ζ ) ∼ f3α
3

(ζ − √
ρ)3

+ 3α2βf3

(ζ − √
ρ)2

+ (f1α + f3(3α
2γ + 3αβ2)

(ζ − √
ρ)

+ . . . (A6)

Equating coefficients of (ζ − √
ρ)−3 in (A4) and (A6) gives f3 in terms of the conformal mapping parameters,

i.e.,

f3 = −
√
ρq−1

2α2
, (A7)

while the coefficient of (ζ − √
ρ)−2 provides the following consistency condition between the parameters,

3β
√
ρq−1 = α

(
q−1 + (q0 + I0)

√
ρ

)
. (A8)

That the solutions satisfy this condition can be confirmed numerically.
Similarly, expanding G(ζ) as given in (47) as ζ → √

ρ yields

G(ζ) ∼ − δF3

(ζ − √
ρ)4

− (εF3 + δF2)

(ζ − √
ρ)3

− (χF3 + εF2 + δF1)

(ζ − √
ρ)2

+ . . . , (A9)

while, from (1), g4z
4 + g2z

2 has the behaviour

G(ζ) ∼ g4α
4

(ζ − √
ρ)4

+ 4α3βg4

(ζ − √
ρ)3

+ α2g2 + g4(4α
3γ + 6α2β2)

(ζ − √
ρ)2

. (A10)

as ζ → √
ρ. Equation coefficients in (A9) and (A10) provides the following expressions for g4 and g2 in terms of

the conformal mapping parameters, i.e.,

g4 = δ
√
ρq−1

2α3
, (A11)

and

g2 = χ
√
ρq−1

2α
+ ε(q−1 + (q0 + I0)

√
ρ)

2α
− δγ

√
ρq−1

2α2
+ δ(q0 + I0 + √

ρ(q1 + I1)
2α

−g4(4αγ + 6β2),

(A12)

as well as a consistency condition

4
√
ρβδq−1 = αε

√
ρq−1 + αδ(q−1 + (q0 + I0)√ρ). (A13)

Again, it can be checked numerically that the solutions satisfy (A13).
Finally, it is noted that the bubble area is given by the formula

−Im

[
1

2i

∮
|ζ |=1

z̄(ζ−1)zζ (ζ ) dζ − 1

2i

∮
|ζ |=ρ

z̄(ρ2ζ−1)zζ (ζ ) dζ

]
. (A14)
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