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Analytical solutions for distributed multipolar vortex equilibria on a sphere
Darren Crowdya) and Martin Clokeb)

Department of Mathematics, Imperial College of Science, Technology and Medicine, 180 Queen’s Gate,
London SW7 2BZ, United Kingdom

~Received 22 April 2002; accepted 24 September 2002; published 21 November 2002!

Analytical solutions of the steady Euler equations corresponding to stationary multipolar vortices on
a sphere are derived. The solutions represent localized regions of distributed vorticity consisting of
uniform vortex patches with a finite set of superposed point vortices. The mathematical method
combines stereographic projection with conformal mapping theory to generalize a class of exact
solutions for planar multipolar vortices developed by Crowdy@Phys. Fluids11, 2556~1999!# to the
physically more important scenario of multipolar vortices on a spherical surface. The solutions are
believed to be the first examples of analytical solutions of the Euler equations on a sphere involving
patches of distributed vorticity with nontrivial shape. ©2003 American Institute of Physics.
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I. INTRODUCTION

In modeling large-scale features of atmospheres
oceans, it is natural to study the dynamics of vorticity on
surface of a sphere. When modeling planetary-scale cohe
structures the curvature of the planet can play an impor
part in the dynamics. The atmosphere contains locali
large-scale structures the dynamics of which can be sig
cantly affected by the curvature of the sphere and rotatio
effects ~as, for example, in the dynamics of concentra
regions of vorticity such as a hurricane on time scales of
order of one day!. In terms of localized vorticity distributions
on a sphere, point vortex models represent the most-stu
paradigm~see, for example, Kidambi and Newton1 which
includes an extensive list of references!. The purpose of this
paper is to construct and study a class of stationary cohe
vortical equilibria on the surface of the sphere. The full c
vature effects of the sphere are taken into account and
solutions involve localized regions of distributed unifor
vorticity. The theory is at present limited to a sphere tha
nonrotating.

In comparison with planar vortex equilibria, the unde
standing of vortical equilibria on a spherical surface is mu
more limited. The equations of motion for the simplest po
vortex models appear to have been first written down
Bogomolov.2 Kimura and Okamoto3 later retrieved these
equations and also those relevant for the motion of patc
of uniform vorticity. Dritschel and Polvani4 have used nu-
merical contour surgery codes to study the roll-up of vort
ity strips on a spherical surface and later studied multivor
equilibria modeled as patches of uniform vorticity.5 DiBat-
tista and Polvani6 have constructed models combining po
vortices and uniform vortex patches to study barotropic v
tex pairs on a rotating sphere. More general models of b
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tropic vortex pairs include the exact modon solutions
Verkley.7

Recently, much attention has been paid to a class of
herent vortical structures known as multipolar vortices.
tripole, for example, has a central region with vorticity
one sign and two satellite vortices of opposite sign and s
a structure has been observed in the Bay of Biscay.8 A qua-
drupolar vortex has a central core surrounded by three e
satellites of opposite signature; higher-order multipolar str
tures have correspondingly greater numbers of satellite
tices. Much recent effort has been made to understand t
coherent structures~see, e.g., Van Heijst and Kloosterziel9

Carnevale and Kloosterzial,10 Morel and Carton11! but most
theoretical studies have been confined to two-dimensio
models in the plane. In an attempt to understand these s
tures as a class of mathematical solutions to the tw
dimensional Euler equations, Crowdy12 has constructed ex
act solutions of these equations having all the qualitat
features of the general class of multipolar equilibria. Th
analysis rests on a generalization of a basic solution refe
to in Ref. 12 as theshielded Rankine vortex. This simple
solution is a point vortex of one sign situated at the cente
a uniform circular vortex patch of opposite sign such that
total circulation of the structure is zero. It might equivalen
be thought of as a shielded point vortex. The generali
solutions consist of uniform vortex patches of nontriv
shape with distributions of superposed point vortices. Ma
of these equilibria have recently been shown to be linea
stable structures.13 The general ideas underlying this stud
have been extended in various directions.14,15

This paper examines whether the exact multipolar so
tions of Crowdy12 can be generalized to the physically mo
important case of vortices on the surface of a sphere. Th
are two fundamental theoretical differences in finding vo
cal equilibria in the plane and on the sphere. The first diff
ence is that the surface of a sphere has a nonzero curva
The radius of curvature of the sphere defines a character
lengthscale not present in the planar case. The second d
© 2003 American Institute of Physics
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23Phys. Fluids, Vol. 15, No. 1, January 2003 Analytical solutions for distributed multipolar vortex
ence is that the sphere is a closed compact surface. A
consequence of Gauss’ theorem, the integral of the sc
vorticity field over the spherical surface must, therefore,
zero. This constraint does not exist in the planar case.

Given these differences, it is by no means immedi
that the exact solution structure of the planar multipolar v
tex solutions of Crowdy12 will be generalizable to the sphere
Indeed, it is a well-known fact that the classical planar ell
tical vortex solution of Kirchhoff16 cannot be generalized, i
exact mathematical form, to a spherical surface. Stric
speaking, even the simple mathematical idealization of
isolated point vortex solution~i.e., ad-function distribution
of vorticity! does not generalize directly to a sphere. This
a consequence of the constraint that the total integral of
vorticity of the sphere is zero. Instead, ad-function point
vortex distribution of vorticity must always be embedded
a background of constant uniform vorticity of exactly th
right strength to render the global integral of vorticity equ
to zero. Such a situation is strongly reminiscent of t
shielded Rankine vortex solution that has formed the basi
a general constructive method for vortical equilibria
Crowdy.12,14,15This similarity provides a first clue that gen
eralization of Ref. 12 to a sphere might be possible. T
paper shows that a generalization can indeed be made
gives details of the construction.

We summarize the main result. In Crowdy12 it was dem-
onstrated that streamfunctions of the form

c~z,z̄!5H 2
v0

4 Fzz̄2Ez

S~z8!dz82E z̄
S̄~z8!dz8G zPD̄

0 z¹D
,

~1!

where z5x1 iy and z̄5x2 iy denote points in a comple
plane, comprise a class of exact solutions for multipolar v
tices provided that]D, the boundary of the vortex patchD,
is chosen appropriately andS(z) is chosen to be theSchwarz
functionassociated with]D. In this paper, this class of so
lutions is generalized to multipolar vortices on the surface
a sphere. This is done by first projecting the vortex pa
stereographically onto a regionDp of a complexz-plane. The
boundary of the vortex patch projects down to a curve]Dp .
It is shown herein that the generalization of~1! is

c~z,z̄ !55
2v0F log~11zz̄ !2E z S~z8!

11z8S~z8!
dz8

2E z̄ S̄~z8!

11z8S̄~z8!
dz8G zPD̄p

0 z¹Dp

, ~2!

where z̄ is the complex conjugate variable toz. For special
choices of the bounding curve]Dp , the streamfunction~2!
describes, in closed form, a class of multipolar vortices
equilibrium on the surface of a sphere.

II. VORTEX MOTION ON A SPHERE

Consider vortex motion on a sphere. Without loss
generality it is assumed that the sphere has unit radius
Downloaded 28 Sep 2004 to 133.11.199.17. Redistribution subject to AIP
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terms of standard spherical polar coordinates~r, u, f! with
the latitude angleu measured from the axis through the nor
pole, the velocity vector has the form

uI 5~0,v,u!, ~3!

whereu andv are the zonal and meridional components
the velocity field, respectively. The incompressible nature
the flow allows the introduction of a scalar streamfunctionc
via

uI 5¹c∧eI r , ~4!

whereeI r is the radial unit vector. It is then possible to defin
a scalar vorticity fieldv~u, f! such that

veI r5¹∧uI , ~5!

where

v52¹S
2 c, ~6!

and¹S
2 denotes the spherical Laplace–Beltrami operator

¹S
2 [

1

sinu

]

]u S sinu
]

]u D1
1

sin2 u

]2

]f2 . ~7!

In terms of the streamfunctionc, u, andv are given as

u52
]c

]u
,

v5
1

sinu

]c

]f
. ~8!

There exists a global constraint on the vorticity distributio
Gauss’ theorem dictates that only vorticity fields which in
grate to zero over the sphere are permitted, i.e.,

E
sphere

vds50, ~9!

whereds denotes the area element on a spherical surfac

III. STEREOGRAPHIC PROJECTION

The analysis of Crowdy12 depends crucially on consid
ering complexified equations of motion. The surface o
sphere can be endowed with a complex structure obtaine
stereographic projection. In what follows, we consider
class of multipolar vortices centred on the south pole. A s
reographic projection in which the north pole maps to infi
ity in a projectedz-plane is therefore appropriate. Figure
shows a schematic illustrating this projection onto a comp
z-plane through the equator. In polar form

z5reif, ~10!

where

r 5cotS u

2D . ~11!

The originz50 corresponds to the south pole of the sphe
It is convenient to observe that

cosu5
zz̄21

zz̄11
,
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24 Phys. Fluids, Vol. 15, No. 1, January 2003 D. Crowdy and M. Cloke
sinu5
2Azz̄

zz̄11
. ~12!

It can be verified that

]

]u
U

f

52
z

sinu

]

]z
U

z̄

2
z̄

sinu

]

]z̄
U

z

~13!

and

]

]fU
u

5 i z
]

]zU
z̄

2 i z̄
]

]z̄
U

z

. ~14!

Using ~13! and ~14!, simple algebraic manipulations reve
that

¹S
2 c5~11zz̄ !2czz̄ , ~15!

where subscripts denote partial differentiation. Using~13!
and ~14! it follows that

u2 iv5
2z

sinu
cz . ~16!

IV. MOTIVATION

In Crowdy,12 a solution of the Euler equation which wa
dubbed ashielded Rankine vortexwas introduced. This so

FIG. 1. Schematic illustrating stereographic projection from the phys
sphere to a complexz-plane and conformal mapping to thez-plane from the
unit-disc in a complexh-plane.
Downloaded 28 Sep 2004 to 133.11.199.17. Redistribution subject to AIP
lution corresponds to the classical Rankine vortex~a circular
vortex patch in pure solid body rotation16! with the addi-
tional feature that a single point vortex, of equal but oppos
circulation to the vortex patch, is placed at the center of
Rankine vortex thus producing a composite monopolar v
tex structure with zero total circulation. In terms of the sta
dard complex coordinatez5x1 iy , the streamfunction asso
ciated with the shielded Rankine vortex can be written

c~z,z̄!5H 2
v

4
~zz̄22 loguzu! uzu<1

0 uzu.1

, ~17!

wherev is the uniform patch vorticity and the Rankine vo
tex is assumed to have unit radius. For purposes of gene
zation, in Ref. 12 the observation was made thatc, as given
in ~17!, can be rewritten as

c~z,z̄!5H 2
v

4 S zz̄2Ez

S~z8!dz82E z̄
S̄~z8!dz8 D uzu<1

0 uzu.1

,

~18!

where

S~z!5
1

z
, ~19!

is theSchwarz function17 of the boundary circleuzu51 of the
Rankine vortex. Instead of calling the solution~17! a
‘‘shielded Rankine vortex,’’ it is equally sensible to refer to
as a ‘‘shielded point vortex,’’ i.e., a point vortex at the orig
is being shielded by a uniform background of constant v
ticity such that the total circulation of the combined structu
is zero.

The latter perspective is instructive when compari
with the notion of a point vortex on a sphere. This is becau
owing to the constraint~9! that the global integral of the
vorticity over the sphere must always equal zero, in orde
generalize the notion of a point vortex solution to the sphe
any single point vortex existing on the sphere mustnecessar-
ily be shielded. The accepted way to perform this shieldin
to place the singular point vortex in a background of unifo
vorticity covering the whole spherical surface.2,3 Such a con-
figuration is more reminiscent of the shielded point vort
solution ~17! rather than the regular planar point vortex s
lution.

To see the analogy mathematically, in Appendix A t
streamfunction associated with a single point vortex on
sphere is derived using the equations presented in Sec. I
terms of the complex stereographic coordinatez introduced
in Sec. III, the streamfunction for a point vortex of streng
2v/2 placed at the south pole is given by

c52
v

4
~ log~11zz̄ !22 loguzu!. ~20!

Equation~20! should be compared with~17!. Identifying the
two complex coordinatesz andz, the streamfunctions take
very similar form. In ~17!, the termzz̄ corresponds to the

l
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uniform vorticity contribution while log(11zz̄) performs this
role in ~20!. The slightly different functional forms are
result of the nonzero curvature effects of the sphere. Me
while, the point vortex contributions loguzu and loguzu clearly
take exactly the same functional form on both the plane
the sphere. The close analogy between~17! and~20! leads us
to suggest that~17! is the natural candidate for the singul
planar point vortex solution which generalizes to a singu
sphericalpoint vortex solution.

While Crowdy12 gives the generalization of the~mo-
nopolar! solution~17! to planar multipolar vortices of highe
order, this paper gives the analogous generalization of
spherical monopolar solution~20!.

V. EXACT MULTIPOLAR VORTICES ON A SPHERE

Consider a simply connected patch of uniform vortic
on the surface of the sphere. LetD denote this vortex patch
and letDp denote the stereographic projection of all points
the domainD onto thez-plane. Assume that the bounda
]D of the vortex patch projects onto a curve]Dp in the
z-plane and that]Dp is an analytic curve. The closure of th
~open! domainDp in the z-plane is denotedD̄p . Define a
streamfunction having the form

c~z,z̄ !55
2v0S log~11zz̄ !2E z

S~z8!dz8

2E z̄S̄~z8!dz8 D zPD̄p

0 z¹D̄p

, ~21!

whereS(z) is to be specified shortly. First observe that su
stitution of ~21! into ~15! shows that it satisfies the equatio

¹S
2 c52v0 , ~22!

except possibly at any singularities ofS(z) inside the vortex
patch.

The fact that]Dp is an analytic curve implies that ther
exists, in an annular neighborhood of the curve]Dp , an
analytic functionS(z) such that

z̄5S~z!, on ]Dp. ~23!

The function S(z) is known as theSchwarz functionof
]Dp .17 Now pick S(z) as follows:

S~z!5
S~z!

~11zS~z!!
, ~24!

then, the form of the streamfunction becomes

c~z,z̄ !55
2v0F log~11zz̄ !2E z S~z8!

11z8S~z8!
dz8

2E z̄ S̄~z8!

11z8S̄~z8!
dz8G zPD̄p

0 z¹D̄p

. ~25!

Consider the velocity field given by~16!. For a consistent
equilibrium solution, it is necessary that the fluid velocity
Downloaded 28 Sep 2004 to 133.11.199.17. Redistribution subject to AIP
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continuous at the patch boundary]D. This implies that it
must be continuous on]Dp . It is immediate, by differentia-
tion of ~25! with respect toz and use of~16!, that the stream-
function ~25! satisfies this condition. It is required, in add
tion, that the boundary of the vortex patch is a streamli
i.e., a c-contour. But on]Dp , it can be verified that~25!
satisfies the equation

dc5czdz1cz̄dz̄50, ~26!

which implies that]Dp is indeed a streamline. The choice
streamfunction~25!, therefore, satisfies both the kinemat
and dynamic conditions at the vortex jump on the pa
boundary.

There is the additional constraint that the global circu
tion on the sphere is zero. Because the region around
north pole of the sphere is stagnant, it is clear that the glo
circulation on the sphere is equal to the circulation arou
the contour]Dp . But the velocity field vanishes everywher
on ]Dp so it is easy to see that this circulation is zero. Hen
the global circulation vanishes, as required.

However, for anarbitrary patchD, the Schwarz function
of the projected curve]Dp will be singular inDp and hence
so will the composite functionS(z). This will mean that the
streamfunction~25! will possess~possibly unphysical! singu-
larities inside the vortex patch. However, to model multip
lar vortices~and to obtain physically consistent solutions!,
consider the possibility of restricting to a special class
vortex patch domainsD with the property that the Schwar
function of the projected curve]Dp is such that the compos
ite function S(z) as defined by~24! has only simple pole
singularities with real residues. For this special class of
mains, the streamfunction~25! will possess a finite distribu-
tion of point vortex singularities. In addition to this con
straint on the vortex patch domains there exists the additio
requirement, dictated by the Helmholtz laws of vortex m
tion, that any and all such point vortices are steady under
effects of the nonself-induced velocity field. This condition
necessary for a consistent equilibrium solution of the d
namical equations and imposes an additional constrain
the admissible class of vortex patches.

A. Conformal mapping

It turns out that such vortex patch domains on the sph
exist. The aim here is to construct the spherical analogue
the planar multipolar vortices found in Crowdy.12 A typical
N11-polar solution in Ref. 12 consists of a patch of unifor
vorticity with a central point vortex~at the patch centroid!
and N satellite point vortices symmetrically disposed abo
this central point vortex.

To construct the spherical analogues explicitly it is e
pedient to introduce a conformal mappingz~h! from a para-
metric h-plane mapping the unith-disc to the~projected!
vortex patchDp in the z-plane. See Fig. 1 for a schemati
Let

z~h!5RS h1
bh

hN2aND , ~27!
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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whereR, a andb are real constants witha.1 andN>2 is an
integer. It will be shown that, for suitable choices of t
parametersR, a, b, andN, the maps~27! provide the appro-
priate conformal parametrization of the boundaries of a c
of (N11)-polar vortices in equilibrium on the surface of
sphere.

The conditiona.1 is specified in order that the confo
mal map is analytic in the unith-disc. Owing to the bijective
nature of the stereographic projection, the requirement
the vortex patch boundary~on the sphere! should not cross
itself translates to a condition that the conformal map~27! be
a univalent conformal map from the unith-circle. It is also
assumed that the projected boundary of the vortex patch i
analytic curve. Note that

z̄~h!5z~h!, ~28!

where the conjugate functionz̄(h) is defined as

z̄~h!5z~h̄ !. ~29!

In terms of the conformal mapping variableh, the Schwarz
function can be written

S~z!5z~h21!, ~30!

where we have used~28! and the fact thath̄5h21 on ]Dp .
In terms of the variablesh, h̄, the functioncz takes the form

cz55
2v0S z̄~ h̄ !

~11z~h!z̄~ h̄ !!

2
z~h21!

~11z~h!z~h21!! D , uhu<1

0 uhu.1

. ~31!

By inspection,S(z(h)) is seen to be analytic everywhe
inside the unith-circle except ath50 and at all pointsh
~with uhu,1) satisfying

11z~h!z~h21!50, ~32!

~32! is equivalent to the following quadratic equation forhN:

c2~a,b,R,N!h2N1c1~a,b,R,N!hN1c0~a,b,R,N!50,
~33!

where

c2~a,b,R,N![R2~b2aN!2aN,

c1~a,b,R,N![11a2N1R21R2~b2aN!2, ~34!

c0~a,b,R,N![R2~b2aN!2aN.

It is instructive to observe that asR→0 ~which, for point
vortices situated close to the south pole, forces the vo
patch to be localized near the south pole! the solutions of
~33! tend tohN5a2N, aN. The solutionhN5aN is discarded
because it yieldsN solutions forh which are not inside the
unit h-circle, while the solutionhN5a2N retrieves the ex-
pected result for the planar case.12

This solution structure for~32! is found to be generic
Let hs denote the positive real root of~33! satisfying uhsu
,1. There existN21 other symmetrically disposed zero
inside the unit circle with the same modulus and with arg
Downloaded 28 Sep 2004 to 133.11.199.17. Redistribution subject to AIP
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ments corresponding to the otherNth roots of unity. At all
such zerosS~z~h!! has a simple pole singularity with a rea
residue. Together, these points correspond to
h-preimages of theN satellite point vortices.

Let zs denote the image ofhs under the conformal map
i.e.,

zs5z~hs!. ~35!

zs , therefore, corresponds to the stereographic projectio
a ~satellite! point vortex on the surface of the sphere. T
singularity ofS~z~h!! at h50 corresponds to a point vorte
at the south pole.

B. Stationarity of the point vortices

By construction, both the kinematic and dynamic boun
ary conditions on the vortex patch boundary have been
isfied. By the Helmholtz laws of vortex motion, it remains
ensure that all point vortices are stationary under the effe
of the nonself-induced terms in the local velocity field. T
impose this condition, it is most convenient to consider
local expansion of the velocity field in Cartesian compone
in the stereographically projectedz-plane. Near a satellite
point vortex atzs , we can write

z~h21!

11z~h!z~h21!
5

Gs

z2zs
1gs1¯ , ~36!

for some real coefficientsGs andgs so that, nearzs

u2 iv52
2v0z

sinu
S z̄

~11zz̄ !
2

Gs

z2zs

2gs1¯ D . ~37!

To find expressions forGs andgs , define the auxiliary func-
tion

G~h![11z~h!z~h21!. ~38!

After some Taylor expansions and algebraic manipulation
follows that

Gs5
z~hs

21!zh~hs!

Gh~hs!
,

gs5
z~hs

21!

Gh~hs!
S zhh~hs!

2zh~hs!
2

Ghh~hs!

2Gh~hs!
2

zh~hs
21!

hs
2z~hs

21!
D . ~39!

In order the determine the condition for stationarity of t
point vortex atzs , it is necessary to subtract off its sel
induced contribution to the velocity field. In terms of th
stereographically projected coordinate, the streamfunc
cp for a point vortex of strengthk at zs is

cp52
k

2
logS ~z2zs!~ z̄2 z̄s!

~11zz̄ !~11zsz̄s!
D . ~40!

See Appendix A for more details. Analogous to~16!, the
associated velocity field on the sphere is given as

up2 ivp5
2z

sinu
cpz52

2z

sinu
S k

2

1

z2zs

2
k

2

z̄

~11zz̄ !
D ,

~41!
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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whereup andvp , respectively, denote the zonal and meri
onal components of the velocity field induced by the po
vortex. The first term on the right-hand side of~41! is singu-
lar at z5zs and corresponds to the point vortex singulari
The second term corresponds to the background of unif
vorticity which must exist in order to satisfy the global co
straint~9!. To see this, note that a uniform patch of vortici
of strengthk/2 satisfies

¹S
2 c52

k

2
. ~42!

Using ~15! this is equivalent to

czz̄52
k

2

1

~11zz̄ !2
, ~43!

which can be integrated with respect toz̄ to give

cz5
k

2 S 1

z~11zz̄ !
1 f ~z!D , ~44!

where f (z) is an arbitrary function. Pickingf (z)521/z so
that the velocity field is regular atz50, yields

cz5
k

2

z̄

~11zz̄ !
, ~45!

which, using~16!, gives precisely the second term on t
right-hand side of~41!. Comparing~37! with ~41! reveals
that the point vortex atzs has strength

ks522v0Gs , ~46!

while the condition for stationarity is

@~u2 iv !2~up2 ivp!#u~zs ,z̄s!50, ~47!

which is equivalent to

~12Gs!z̄s

~11zsz̄s!
2gs50. ~48!

Equation ~48! is henceforth referred to as the stationar
condition. It can be directly verified that, by the symmetry
the configuration and the associated velocity field,~48! is
sufficient to ensure that all other symmetrically dispos
point vortices are also stationary.

It can also be shown that, nearz50

z~h21!

11z~h!z~h21!
5

Gc

z
1gc1¯ , ~49!

where

Gc5
R2~12ba2N!

11R2~12ba2N!
, ~50!

and gc50. This means that there is a point vortex at t
south pole and that it is automatically stationary so that
additional conditions need to be satisfied. The point vorte
the south pole has strength

kc522v0Gc . ~51!
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It is worth remarking that, in the case of the exact soluti
class for multipolar vortices in the plane,12 the analogue to
the stationarity condition~48! was independent of the param
eterR which can be thought of as a normalization parame
on the size of the vortex. This reflects the lack of a char
teristic lengthscale in that problem and hence the fact that
length-scale of the vorticity distribution could be arbitrari
set. This is no longer true in the case of the sphere and
radius now defines a characteristic lengthscale. Con
quently, the relevant stationarity condition~48! is now inex-
tricably dependent onR. It is also noted that whereas th
analogous nonlinear stationarity condition for the planar
lutions could be solved exactly~leading to completely ex-
plicit solutions—see Ref. 13!, this is no longer possible in
the spherical case. Thus, although the solutions can be
scribed in exactly in terms of a finite set of parameters, th
parameters must be determined numerically.

VI. PROPERTIES OF THE SOLUTIONS

To investigate solutions for a givenN, it is natural to
specify the latitudinal angleu0 at which all the satellite vor-
tices are situated. This corresponds to specifying the len
scale of the vortex structure relative to the characteri
lengthscale of the sphere. The value of the parametera is
then varied and solutions sought. For any givena andN, the
specified value ofu0 provides the value ofzs via the formula

zs5cotS u0

2 D . ~52!

This provides one equation relating the three as yet unde
mined parametersR, b and hs . A second relation derives
from the condition of stationarity of the satellite vortices~48!
while a third condition is Eq.~32!. These three nonlinea
equations are solved simultaneously forR, b and hs using
Newton’s method.

Only R and b are required to actually reconstruct th
vortex patch solutions. To plot the solutions on the physi
sphere, the following relations are inverted foru andf, viz:

cotS u

2D5uz~h!u,

f5arg@z~h!#, ~53!

for a discrete set of points on theuhu51 circle. Use of the
formulas

x5sinu cosf,

y5sinu sinf, ~54!

z5cosu,

then produces the physical position of the vortex pa
boundary on the spherical surface. Exactly the same pro
dure is used to find the satellite point vortex positions.

Exact solutions have been found to exist for any posit
integerN>2, theN52 case corresponding to tripolar solu
tions and higher values ofN to higher-order multipolar struc
tures. For purposes of illustrating the general features of
solution class, we present the quadrupolar caseN53 in de-
 license or copyright, see http://pof.aip.org/pof/copyright.jsp



28 Phys. Fluids, Vol. 15, No. 1, January 2003 D. Crowdy and M. Cloke
FIG. 2. Gc* andGs* against latitudinal angleu ~in radi-
ans! for stationary point vortex problem withN53. The
graphs intersect atu05u0

crit570.5° ~to 3 significant fig-
ures!.
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tail. One reason for concentrating on theN53 case is that a
stability analysis13 of the planar configurations found i
Crowdy12 have revealed the quadrupolar solutions to be d
tinguished in that they are neutrally stable in all configu
tions except possibly those that are close to exhibiting cu
in the patch boundaries~the reader is referred to Crowdy an
Cloke13 for more details!. The quadrupolar solutions ar
therefore the most likely solutions to be stable on the sph
~at least for certain configurations—see discussion sectio!.

For fixed N and u0 , it is found that varyinga corre-
sponds to altering the area of the vortex patch. In all ca
examined, the area of the vortex patch increases mono
cally with a. Since the parametera has no obvious physica
significance it is, therefore, more natural to plot solutio
~for given u0) as functions of the total vortex patch areaA.
In Appendix B the formulas used to calculateA are given. It
is also convenient to defineGp as

Gp[v0A, ~55!

which represents the total strength of the vortex patch.
point vortex circulations are renormalized with respect
Gp . In the calculations which follow, we chosev051.

It is found that for largea, the patch area tends to 4p
corresponding to a uniform blanketing of the whole sph
by the uniform patch vorticity. Asa decreases it can, there
fore, be imagined that a growing region of quiescent irro
tional fluid is developing at the north pole. This suggest
useful check on the problem formulation as well as the
merical method used to solve the nonlinear equations der
in the previous section. Asa gets large so that the entir
sphere contains a uniform background patch of vorticity,
problem reduces to a point vortex problem on the sph
This point vortex problem is the spherical generalization
the planar point vortex problem of Morikawa and Swenso18

where a central line vortex is placed at the south pole anN
equal-strength satellites are equispaced in longitudinal a
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around some specified latitudinal circle at angleu5u0 . The
strengthsGc* andGs* , say, of the central and satellite vort
ces, respectively, must be chosen in such a way that
satellites are stationary~for general values of the central lin
vortex circulation one would obtain a relative equilibrium
which the satellites rotate at constant angular velocity!. The
present authors have not found the solution to this point v
tex problem written down in the literature. It is therefo
solved in Appendix C, using stereographically projected
ordinates, and the values ofGs* andGc* are found explicitly
as functions ofN andu0 . A graph ofGs* andGc* againstu0

is shown in Fig. 2.
Figure 2 is instructive because it indicates that, in t

point vortex problem, the point vortex at the south pole is
the same~positive! strength as the uniform background vo
ticity when the satellites are close to it in latitude. As t
satellites move further away from the south pole, the stren
of the point vortex at the south pole goes through zero w
the satellites are at the equator and becomes negative w
the satellites are in the northern hemisphere. The genera
solutions found here are expected to behave similarly. F
ures 3 and 4 show graphs ofGc /Gp andGs /Gp against patch
areaA for various choices ofu0 . These quantities determin
the dynamical nature of the flow because they measure
point vortex strengthsrelative to the total background patc
vorticity. For any givenu0 , these graphs terminate at som
critical area below which no solution can be found. The c
responding limiting solutions display cuspidal singulariti
in the patch boundary and are discussed in more de
shortly. As expected, at large latitude angles~so that the sat-
ellites are in the southern hemisphere and close to the so
ern polar point vortex!, the graphs in Figs. 3 and 4 are qua
tatively similar to those plotted for the planar case in Ref.
However, as the latitudinal angle of the satellites decrea
~so that the satellites move towards the northern hemisph!
 license or copyright, see http://pof.aip.org/pof/copyright.jsp



29Phys. Fluids, Vol. 15, No. 1, January 2003 Analytical solutions for distributed multipolar vortex
FIG. 3. Renormalized point vortex strengthsGc /Gp

~solid lines! and Gs /Gp ~dashed lines! against vortex
patch area forN53 andu05160°, 135°, and 90°. The
values at patch area equal to 4p correspond to those
given in Fig. 2.
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the
a ‘‘cross-over’’ occurs as the relative strength of the po
vortex at the south pole changes from positive to negative
u05u0

crit570.5° ~a value obtained by equatingGc* 5Gs* us-
ing the expressions~C4! and ~C5! obtained in Appendix C!
the value ofGc /Gp equalsGs /Gp when the patch has max
mum area so that all point vortices have the same stren
u0

crit represents a cross-over latitude where the point vorte
the south pole is becoming just as important as the satel
in cancelling out the overall uniform background vorticity

For eachN and u0 , a critical value of the patch are
exists for which physically admissible equilibria can
found. This critical value provides a lower bound on t
admissible values of the patch area. The corresponding
iting states exhibit cusps in the vortex patch boundary.
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analogous situation arises in the planar case.13 The neighbor-
hood of any point on a sphere is locally planar so this obs
vation on the limiting states is consistent with a local ana
sis of Overman19 who studied limiting V-states in the plan
and found that any points of nonanalyticity in the pat
boundary must be either 90°-corners or cusps.

In Fig. 5 the solutions are shown in orthographic proje
tion on the physical sphere in the caseu05160° and for four
different choices of patch area. The associated stereogra
projections are also shown to the right of each orthograp
projection. The smallest patch areaA50.868 ~correct to 3
decimal places! is close to the limiting cuspidal configura
tion, while the largest area shown (A511.805) is close to
the pure point vortex case where the patch entirely covers
FIG. 4. Renormalized point vortex strengthsGc /Gp

~solid lines! and Gs /Gp ~dashed lines! against vortex
patch area forN53 and u0590°, 70.5°(5u0

crit) and
68.7°. The values at patch area equal to 4p correspond
to those given in Fig. 2.
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FIG. 5. Multipolar vortices withN53 satellites at lati-
tude u05160° for different vortex patch areasA
50.868 ~close to cusped configuration!, 1.322, 5.640,
and 11.805~close to point-vortex case!. Each solution is
shown in orthographic projection on the left and in st
reographic projection on the right. The correspondi
point vortex strengths (Gc ,Gs) are given, respectively,
by ~0.001, 0.022!, ~20.013, 0.039!, ~20.189, 0.213!,
and ~20.445, 0.462!.
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sphere. Two intermediate shapes with different areas are
shown. The orthographic projection in these diagrams
been varied in order to highlight the structural features
each solution. Figure 6 shows three typical vortex equilib
for the caseN53 andu05135° while Fig. 7 shows typica
equilibria for N53 andu0590° so that the satellites are o
the equator. Asu0 decreases, the range of possible pa
areas for which solutions can be found decreases as is
dent from Figs. 3 and 4.

Finally, for illustration, some examples of tripolarN
52 solutions are shown in Fig. 8 for point vortices atu0

5160° while Fig. 9 shows similar results for the pentapo
caseN54.
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VII. DISCUSSION

A broad class of analytical solutions for distributed r
gions of vorticity in equilibrium on a sphere has been p
sented. The construction is a generalization of the ma
ematical approach originally expounded in Crowdy12 to
study planar multipolar equilibria. This generalization is s
nificant given that other well-known planar results~e.g., the
exact solution for the rotating Kirchhoff ellipse! do not gen-
eralize to the spherical geometry.

The solutions are presented as a contribution to
mathematical theory of vortex dynamics on a sphere. T
theoretical approach is potentially generalizable to the c
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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FIG. 6. Multipolar vortices withN53 satellites at lati-
tude u05135° for different vortex patch areasA
54.106, 7.476, and 10.544~correct to 3 decimal
places!. The corresponding point vortex strength
(Gc ,Gs) are given, respectively, by~0.007, 0.107!,
~20.133, 0.243!, and~20.281, 0.373!.
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not
struction of distributed vortex equilibria on more gene
closed surfaces. Other generalizations might be feas
Crowdy20 has extended the approach of Ref. 12 to constr
rotating vortex equilibria in the plane which generalize th
classical results of Thomson21 and Morikawa and Swenson.18

Thus, it may similarly be possible to generalize such pla
rotating equilibria to the sphere.

The stability of the spherical multipolar equilibria is o
interest, especially the question of how these stability pr
erties compare to those of the planar case~which has recently
been examined in detail by Crowdy and Cloke13!. Although
the linear stability calculation is made easier by knowled
of closed-form formulas for the equilibrium base-states, i
nevertheless somewhat involved and beyond the scope o
present paper. It can be anticipated that at least some o
equilibria found here will be linearly stable. For example, t
planar quadrupolar solutions of Crowdy12 have recently been
found to be neutrally stable in all configurations13 ~except
possibly those near to limiting where the question of line
stability could not be resolved using the method of Ref. 1!.
For small-area patches with satellites close to the south p
the spherical quadrupolar solutions are close to the pla
case~in the sense that the spherical curvature will have li
effect on such solutions!. They are therefore similarly ex
pected to be stable. How these linear stability proper
Downloaded 28 Sep 2004 to 133.11.199.17. Redistribution subject to AIP
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change as the quadrupoles grow bigger and cover mor
the spherical surface, as well as how they depend on
latitudinal positions of the satellite point vortices, are inte
esting questions. Dritschel and Polvani4 have found that dis-
tributions of vorticity on the sphere can have very differe
stability properties to their planar analogues.

Since the new solutions consist of combinations of u
form vortex patches with superposed point vortices, the n
linear stability and nonlinear evolution of these configu
tions can be studied by simple adaptations of exist
contour dynamics/surgery codes on a sphere.22 It is simply
necessary to add a finite set of ordinary differential equati
governing the point vortex motion to these codes. At t
same time, the analytical solutions herein provide import
nontrivial checks on such numerical codes. This feature a
provides a possible alternative to performing the detailed
ear stability calculation mentioned above; Polvani a
Dritschel,4 for example, have studied the stability of a cla
of ~numerically computed! vortex patch equilibria on the
sphere using contour dynamics to observe the behavio
slightly perturbed equilibria and the same method can,
principle, be used in respect of the present solutions.

On a mathematical note, the present authors have
seen the simple expression~A7! for the streamfunctionc
associated with a point vortex of strengthk ~derived in Ap-
ex
FIG. 7. Multipolar vortices withN53 satellites at lati-
tude u0590° for different vortex patch areasA
511.107 and 12.271. The corresponding point vort
strengths (Gc ,Gs) are given, respectively, by~0.110,
0.258! and ~0.024, 0.318!.
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32 Phys. Fluids, Vol. 15, No. 1, January 2003 D. Crowdy and M. Cloke
pendix A! explicitly written down in the literature in terms o
the complex stereographic coordinatez. Indeed, the use o
stereographic projection to study the dynamics of vortic
on a sphere is rare although Dritschel23 and Kimura24 employ
it in various contexts. Bogomolov2 also mentions the poss
bility of studying spherical point vortex dynamics in th
way. Stereographic projection, combined with conform
mapping theory, has been crucial in the construction of
present solutions and provides a particularly convenient
rametrization thereof. The new solutions would have an
tremely complicated mathematical representation if rewrit
in terms of the original spherical polar angle variablesf and
u.

APPENDIX A: FUNDAMENTAL SOLUTIONS AND
POINT VORTICES

Let the stereographic projections of two points on t
sphere with spherical polar coordinates~1, u, f! and
(1,u8,f8) bez andz8, respectively. The simplest fundame
tal solution~see, e.g., Ref. 3! of

¹S
2 c5d~u,f,u8,f8!2

1

4p
, ~A1!

satisfying the constraint

E vds52E ¹S
2 cds50, ~A2!

FIG. 8. Multipolar vortices withN52 satellites at latitudeu05160° for
vortex patch areasA50.846, 3.272, and 11.007. The corresponding po
vortex strengths (Gc ,Gs) are given, respectively, by~20.001, 0.034!,
~20.056, 0.159!, and~20.275, 0.575!.
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whereds is the area element on the surface of the sph
and integration is over the entire spherical surface, is gi
by

c5
1

4p
log~12cosg!, ~A3!

where

cosg[cosu cosu81sinu sinu8 cos~f2f8!. ~A4!

After some algebra, it can be shown that

12cosg5
2~z2z8!~ z̄2 z̄8!

~11zz̄ !~11z8z̄8!
. ~A5!

Therefore, the streamfunction associated with a point vor
of unit circulation atzs is given, as a function ofz andz̄, by

c52
1

4p
logS 2~z2zs!~ z̄2 z̄s!

~11zz̄ !~11zsz̄s!
D . ~A6!

Alternatively, it is said that the streamfunction associa
with a point vortex ofstrengthk is

c52
k

2
logS 2~z2zs!~ z̄2 z̄s!

~11zz̄ !~11zsz̄s!
D , ~A7!

where the circulationG is related to the strengthk via

t

FIG. 9. Multipolar vortices withN54 satellites at latitudeu05160° for
vortex patch areasA50.838 and 3.239. The corresponding point vort
strengths (Gc ,Gs) are given, respectively, by~0.003, 0.016! and ~20.111,
0.092!.
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k5
G

2p
. ~A8!

APPENDIX B: COMPUTATION OF PATCH AREA

The area elementds in spherical polars on a unit-radiu
sphere is

ds5sinududf. ~B1!

If x and y denote the Cartesian coordinates ofz ~so thatz
5x1 iy) then

dxdy5uJ~x,y;u,f!ududf, ~B2!

where the JacobianJ(x,y;u,f) is

J~x,y;u,f![
]~x,y!

]~u,f!

5
sinu

~12cosu!2 . ~B3!

Using ~12!, the areaA is therefore given by

A5E E
D̃

ds

5E E
D

4dxdy

~11zz̄ !2

5E E
D

]

]z̄
S 4z̄

~11zz̄ !
D dxdy

5
1

2i
R

]D

4z̄

~11zz̄ !
dz, ~B4!

where the last line follows by application of the compl
form of Green’s theorem. More conveniently, in terms of t
conformal mapping variable, the patch area is given by

A5
1

2i R
uhu51

4z~h21!zh~h!

11z~h!z~h21!
dh. ~B5!

As a check, note that the special casez(h)5h corresponds
to a hemispherical shell on a unit-radius sphere which
well-known to have area 2p.

A more convenient way to compute the area is to o
serve that

v0A54p~NGs1Gc!, ~B6!

whereGs andGc are defined in~39! and ~50!, respectively.

APPENDIX C: STATIONARY POINT VORTEX
CONFIGURATIONS

Consider a point vortex configuration on sphere cons
ing of N satellite point vortices of circulationGs* equispaced
in azimuthal anglef around a fixed latitude circleu85u0

with a circulationGc* point vortex fixed at the south pole
Suppose that, at some instant, the satellite point vortices
at ~projected! positionsz j5zsvN

j where zs5cot(u0/2) and
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vN5e2p i /N. Then the instantaneous streamfunction is giv
as a function of the stereographically projected coordina
by

c~z,z̄ !52
Gc*

4p
logS zz̄

11zz̄
D

2
Gs*

4p
(
j 50

N21

logS ~z2z j !~ z̄2 z̄ j !

~11zz̄ !~11z j z̄ j !
D . ~C1!

Assume, without loss of generality, that the integral of t
uniform background vorticity is equal to unity~so that the
vorticity is locally equal to 1/4p everywhere!. The global
constraint on the vorticity distribution, therefore, dictates th

Gc* 1NGs* 1150. ~C2!

We seek solutions which are completely stationary~i.e., non-
rotating!. By the rotational symmetry of the configuration,
is enough to consider the point vortex atzs ~corresponding to
j 50). By the Helmholtz vortex theorems, the condition th
the nonself-induced component of the local velocity field
this point vortex is zero is equivalent to the condition

FGc*

z
2

Gc* z̄

11zz̄
1 (

j 51

N21 F Gs*

z2zsvN
j
2

Gs* z̄

11zz̄
G GU

z5 z̄5zs

50.

~C3!

~C2! and~C3! provide two equations forGs* andGc* as func-
tions of N andzs . Solving these equations gives

Gs* 52
2

~N11!1~N21!zs
2 ~C4!

and

Gc* 52
~N21!~zs

221!

~N11!1~N21!zs
2 . ~C5!

The values given in~C4! and~C5! are precisely the values t
which the renormalized circulationsGs /Gp and Gc /Gp

should tend~respectively! as the patch area tends to 4p.
A graph of Gs* and Gc* against latitudinal angleu0 is

shown in Fig. 2 for the caseN53. Whenu05p ~so that all
point vortices are superposed at the south pole! all satellites
have circulation21/2 while the central line vortex has cir
culation 1/2. The total net circulation at the south pole
therefore, equal to21, as must be the case to cancel out t
total patch vorticity. Asu0 decreases~so that the satellite
move further up the sphere!, the satellites grow weaker unt
they have zero strength when at the north pole while
central vortex strength increases until it becomes posi
and eventually reaches unity as the satellites reach the n
pole. If the satellites have zero strength there, this mus
the case because the point vortex at the south pole is the
only one ‘‘cancelling out’’ the overall patch vorticity.
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