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Abstract. Multiply connected bounded quadrature domains, with finite connectivity, are re-
constructed from their quadrature data using conformal mappings that are ratios of products of
Schottky–Klein prime functions. This method provides the natural generalization of the conformal
maps to simply and doubly connected quadrature domains constructed by the first author in a num-
ber of physical applications. The efficacy of the method is demonstrated by the explicit construction
of a range of examples as well as by comparison with alternative constructive methods recently in-
troduced by Crowdy [R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 457 (2001), pp. 2337–2359]
and Richardson [European J. Appl. Math., 12 (2001), pp. 571–599].
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1. Introduction. The mathematical theory of quadrature domains is well de-
veloped (e.g., [1], [2], [3], [4], [5], [6]). The simplest example of a quadrature domain
is a circular disc. Let z = x + iy and suppose that the disc is centered at the origin
z = 0 with radius r. The well-known “mean value theorem” says that, if h(z) is any
function analytic in the disc D and integrable over it, then

∫ ∫
D

h(z)dxdy = πr2h(0).(1)

Equation (1) is a simple example of a quadrature identity. The idea of quadrature
domain theory is to consider more complicated domains satisfying more complicated
quadrature identities. Consider a planar domain D and let h(z) be any function that
is analytic in D and integrable over it. Suppose that

∫ ∫
D

h(z)dxdy =

N∑
k=1

nk−1∑
j=0

cjkh
(j)(zk),(2)

where {zk ∈ C} is a set of points strictly inside D, {cjk ∈ C}, and h(j)(z) denotes
the jth derivative of h. Here, N and {nk ≥ 1} are integers. Then D is known as a
quadrature domain. The quadrature identity (2) generalizes (1).

While quadrature domains are mathematically interesting in their own right, per-
haps more remarkable is the fact that they are relevant to the mathematical study
of a wide range of physical problems. An important early paper of Richardson [7]
was the first to illustrate the connection with the study of the free boundary problem
involving singularity-driven flows in a Hele–Shaw cell. Richardson’s paper involved
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simply connected fluid domains. The essential result is that quadrature domains are
preserved by the dynamics of the physical problem. Since then, quadrature domains
have been found to be useful in a variety of different problems. For example, En-
tov, Etingof, and Kleinbock [8] have discussed a number of generalizations of the
singularity-driven Hele–Shaw problem, including the dynamics of flows in a rotat-
ing Hele–Shaw cell and the problem of “squeeze flow” in a Hele–Shaw cell. Both
problems also preserve quadrature domains [9], [10]. Crowdy [11] has pointed out
the relevance of quadrature domains to a biharmonic-governed (as opposed to the
harmonic-governed Hele–Shaw model) free boundary problem involving slow viscous
flows driven by surface tension. Here, in certain circumstances, the dynamics is also
such as to preserve quadrature domains. Outside the realm of free boundary prob-
lems, it has also been shown [12], [13] that quadrature domains have relevance to the
study of multipolar vortical equilibria of the two-dimensional Euler equations govern-
ing the inviscid flow of an ideal fluid. The problem of finding equilibrium shapes of
free boundaries involving irrotational Euler flows with surface tension (see, e.g., [14])
can also be interpreted in terms of quadrature domain theory.

This compendium of different physical applications suggests a need to be able
to construct quadrature domains of various finite connectivities. Gustafsson [5] has
shown that construction of an N -connected quadrature domain is equivalent to the
construction of a conformal mapping, which is a meromorphic function on a Riemann
surface of genus N − 1. For N = 1 and N = 2, this is possible using the theory of
rational functions and elliptic functions (or, equivalently, loxodromic functions, which
are naturally related to elliptic functions [15]). Indeed, these two cases constitute most
of the existing literature. Richardson used rational function conformal mappings in
his original paper [7] and, more recently, elliptic function conformal mappings for
singularity-driven Hele–Shaw flows of doubly connected fluid regions [16]. Crowdy [9]
has used loxodromic functions to derive exact solutions for the evolution of doubly
connected domains in a rotating Hele–Shaw cell, providing a mathematical model for
some recent experimental results involving a fluid annulus [17]. Elliptic/loxodromic
function theory has also been used to construct exact solutions to the problem of the
surface tension–driven Stokes flow of doubly connected fluid regions [18], [19], [20].

For higher connectivities, the situation is much more challenging. The subject of
constructing multiply connected quadrature domains (of connectivity greater than 2)
has been the focus of much recent activity. Two new methods of construction have
recently been proposed in the context of specific applications. The first author [13]
has implemented a construction based on the fact that the boundaries of quadrature
domains are algebraic curves. This method has been successfully applied, for example,
to the construction of vortical equilibria of the Euler equations [13] and to the squeeze
flow problem in a Hele–Shaw cell [10]. Meanwhile, in considering the related problem
of singularity-driven flow of multiply connected fluid domains (with zero surface ten-
sion) in a Hele–Shaw cell, Richardson [23] has proposed a different method based on
conformal mapping. In this paper we present a new method which, like Richardson’s,
is based on conformal maps. However, our approach is different. In light of all the
recent work on this problem, we also discuss in detail how the new construction differs
from other methods, and how it compares to them in terms of practical application.

To motivate the present work, we recall that it is a standard result [1] that simply
connected quadrature domains can be constructed by rational function mappings from
a unit ζ-disc to the domain. Any rational function with given zeros and poles can be
written as a ratio of products of the fundamental function P (ζ) = 1−ζ. For example,
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if the conformal map has poles {αk|k = 1, . . . , N} and zeros {βk|k = 1, . . . , N}, it can
be written

z(ζ) = R

∏N
k=1 P (ζβ−1

k )∏N
k=1 P (ζα−1

k )
,(3)

where R is a constant. Furthermore, it is also known that a representation of a general
conformal mapping (again with poles {αk|k = 1, . . . , N} and zeros {βk|k = 1, . . . , N})
from the annulus ρ < |ζ| < 1 to a doubly connected quadrature domain can be written
exactly as in (3) but with the fundamental function P (ζ, ρ) defined differently as

P (ζ, ρ) = (1 − ζ)
∞∏
k=1

(1 − ρ2kζ)(1 − ρ2kζ−1).(4)

Note that when ρ = 0, (4) reduces to the function P (ζ) = (1−ζ) relevant for the con-
struction of the rational functions in the simply connected case. In light of this, it is
natural to ask whether the representation (3) can also be used for quadrature domains
with connectivity greater than two but with suitably generalized “fundamental func-
tions.” This is the question addressed in this paper. The generalized “fundamental
functions” needed are known as the Schottky–Klein prime functions [21].

The treatment in this paper is based on the presentation in Chapter 12 of a
monograph by Baker [21]. Our aim here is to show how to apply these general results
for the specific purpose of constructing multiply connected quadrature domains. For
clarity, any general results needed are stated without proof and in modified form
suited to present purposes. The interested reader is referred to [21] for more details.

Richardson’s constructive method also employs the Schottky model and mappings
from the circular domains used here, but his representation of the conformal maps
is different. Richardson does not use, or define, the Schottky–Klein prime function.
Instead, his conformal maps are constructed as ratios of Poincaré series—a method
of constructing meromorphic functions on compact Riemann surfaces described, for
example, by Beardon [22]. The present authors believe the new construction based on
the Schottky–Klein prime function presented herein to be an important alternative
to Richardson’s method for two reasons. First, it is the natural generalization of
the representation (4) used by Crowdy [20] and, moreover, it is closely related to a
representation in terms of ratios of products of generalized theta functions defined on
Riemann surfaces [21], [25]. Note that (4) is the Schottky–Klein prime function in the
genus-1 case. Second, we have found the present method to be easier to implement
than Richardson’s method both conceptually and practically. The majority of the
example domains in this paper have been constructed using both methods. In all
cases considered, the boundaries of the domains are indistinguishable even at very
low orders of truncation.

2. Quadrature domains. Let D denote a bounded g+1-connected quadrature
domain. It is known [5] that the conformal mapping from a conformally equivalent
region (in, say, a parametric ζ-plane) to D is given by a meromorphic function on a
Riemann surface of genus g. This Riemann surface can be identified with the Schottky
double of the region D [5]. These conformal mapping functions will be explicitly
constructed here as ratios of products of Schottky–Klein prime functions [21]. Such
functions are defined in section 4. In order to define them, it is necessary to introduce
Schottky groups [22], [24]; these are discussed in section 3. In what follows, we first
show how Schottky groups are relevant to multiply connected quadrature domains.
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Fig. 1. Schematic of conformal mapping from region H in the ζ-plane to region D in the
physical z-plane.

Consider the integral
∫ ∫

D

h(z)dz̄ ∧ dz,(5)

where h(z) is analytic in D and dz̄ ∧ dz = 2idxdy if z = x + iy. If D is a quadrature
domain, then

∫ ∫
D

h(z)dz̄ ∧ dz =

N∑
k=1

Nk−1∑
j=0

cjkh
(j)(zk)(6)

for some set of complex numbers {cjk, zk}, where the points {zk} are strictly inside

D. {Nk ≥ 1|k = 1, . . . , N} are a set of integers, and
∑N

k=1 Nk is known as the order
of the quadrature identity. Using Green’s theorem,

∫ ∫
D

h(z)dz̄ ∧ dz =

∮
∂D0

h(z)z̄dz −
g∑

j=1

∮
∂Dj

h(z)z̄dz,(7)

where ∂D0 denotes the outer boundary of the bounded quadrature domain and
∂Di, i = 1, . . . , g, denotes the boundaries of the g enclosed holes.

Now let us introduce a conformal mapping z(ζ) to the domain D from a region H
in a parametric ζ-plane bounded by the unit ζ-circle and a set of g smaller nonover-
lapping circles totally contained inside |ζ| = 1. Such a region shall be referred to as
a circular region. Let the unit circle be denoted C0, and let the g enclosed circles be
labeled Ci, i = 1, . . . , g, with centers δi and radii ρi. The circle C0 will map to the
outer boundary ∂D0, while the circle Ci maps to the boundary ∂Di. A schematic
is shown in Figure 1. Note that, by the assumed reflectional symmetry about the
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real axis of the domains considered here, the conjugate conformal map, defined by

z̄(ζ) ≡ z(ζ̄), satisfies

z̄(ζ) = z(ζ).(8)

Using this conformal mapping function, the integral in (7) becomes

∫ ∫
D

h(z)dz̄ ∧ dz =

∮
C0

h(z(ζ))z̄(ζ̄)zζ(ζ)dζ −
g∑

j=1

∮
Cj

h(z(ζ))z̄(ζ̄)zζ(ζ)dζ.(9)

On C0,

ζ̄ = ζ−1,(10)

so that, written as a function of ζ, the first integrand on the right-hand side of (9) is

h(z(ζ))z̄(ζ−1)zζ(ζ).(11)

Let us now consider what is necessary in order that the sum of all the integrals on the
right-hand side of (9) reduces to a single integral of the same integrand (11) around
the entire boundary of H. For this to happen, it is necessary that

z̄(φj(ζ)) = z̄(ζ−1), j = 1, . . . , g,(12)

where, on Cj ,

ζ̄ = φj(ζ) ≡ δ̄j +
ρ2
j

ζ − δj
.(13)

Therefore, defining

θj(ζ) ≡ φj(ζ
−1) = δj +

ρ2
jζ

1 − δ̄jζ
,(14)

we require that the conformal mapping z(ζ) satisfy

z(ζ) = z(θj(ζ)), j = 1, . . . , g.(15)

The g maps {θj} are Mobius maps and generate a free group of transformations known
as a Schottky group [21], [24]. See section 3 to follow. The mapping z(ζ) must be
invariant with respect to the substitutions of this group.

For j = 1, 2, . . . , g, let C ′
j be the circle obtained by reflection of the circle Cj in

the unit circle |ζ| = 1 (i.e., the circle obtained by the transformation ζ �→ 1/ζ̄). C ′
j

lies in the region exterior to the unit ζ-circle. The image of the circle C ′
j under the

transformation θj is the circle Cj . Since the g circles {Cj} are nonoverlapping, so are
the g circles {C ′

j}. Consider the region of the plane exterior to the 2g circles {Cj}
and {C ′

j}; a schematic is shown in Figure 2. This region turns out to have a special
significance. (It is known as the fundamental region associated with the Schottky
group generated by the Mobius maps {θj |j = 1, . . . , g} and their inverses—see the
next section.) This is because the functional relations (15) allow the function z(ζ) to
be analytically continued outside this fundamental region to any point of the plane
which can be reached by a finite number of applications of the transformations {θj}
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Fig. 2. The fundamental region is the unbounded region exterior to all six Schottky circles
C1, C′

1, C2, C′
2, C3, C′

3.

and their inverses to a point in this fundamental region. It is therefore enough to
establish the singularity structure of z(ζ) within just this fundamental region.

Now, if the functional relations (15) hold, we have∫ ∫
D

h(z)dz̄ ∧ dz =

∮
∂H

h(z(ζ))z̄(ζ−1)zζ(ζ)dζ,(16)

where ∂H denotes the whole boundary of H. Now let

zk = z(ᾱ−1
k ), k = 1, . . . , N,(17)

for some points {ᾱ−1
k |k = 1, . . . , N} contained in H. Now if z̄(ζ−1) has poles in H

only at the points {ᾱ−1
k }, then the integral on the right-hand side of (16) produces

the pure sum of residues (6). This means that z(ζ) will have poles in the fundamental
region only at the points {αk}. That is, z(ζ) is meromorphic in the fundamental
region.

3. Schottky groups. Consider the 2g Mobius maps given by

θ1, θ
−1
1 , θ2, θ

−1
2 , . . . , θg, θ

−1
g .(18)
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The Schottky group of transformations will be denoted Θ and is the infinite free group
formed by all possible compositions of the Mobius maps (18). These maps are also
referred to as the primary substitutions. Associated with this group is a fundamental
region mentioned in the previous section. Sometimes we shall refer to the ordinary
and singular points of the group [22], [24]. If a point in the plane can be reached by
a finite number of applications of any of the 2g primary substitutions to a point in
the fundamental region, then it is called an ordinary point of the group. If it can be
reached only by an infinite number of applications, then it is called a singular point.
A very accessible discussion of Schottky groups and their applications can be found
in a recent monograph by Mumford, Series, and Wright [24].

Some special infinite subsets of transformations in a given Schottky group will
be needed in the construction of the conformal mapping functions taking the circular
regions in the ζ-plane to the multiply connected quadrature domains. A special
notation is now introduced. This notation is not standard but is introduced here to
clarify the presentation.

Notation. The full Schottky group is denoted Θ. The notation iΘj is used to
denote all transformations of the full group which do not have a power of θi or θ−1

i on
the left-hand end or a power of θj or θ−1

j on the right-hand end. As a special case of
this, the notation Θj simply means all substitutions of the group which do not have
any positive or negative power of θj at the right-hand end (but with no stipulation
about what appears on the left-hand end). Similarly, jΘ means all substitutions which
do not have any positive or negative power of θj at the left-hand end (but with no
stipulation about what appears on the right-hand end). In addition, the single prime
notation will be used to denote a subset where the identity is excluded from the set;
thus Θ′

1 denotes all substitutions, excluding the identity, and all transformations with
a positive or negative power of θ1 at the right-hand end. The double prime notation
will be used to denote a subset where the identity and all inverse substitutions are
excluded from the set. This means, for example, that if θ1θ2 is included in the set,
the transformation θ−1

2 θ−1
1 must be excluded. Thus, Θ′′ means all substitutions of

the group excluding the identity and all inverses. Similarly, the notation 1Θ
′′
2 denotes

all substitutions of the group, excluding inverses and the identity, which do not have
any power of θ1 or θ−1

1 on the left-hand end or any power of θ2 or θ−1
2 on the right-

hand end. In the same way, Θ′′
j denotes all substitutions of the group, excluding the

identity and all inverses, which do not have any positive or negative power of θj at
the right-hand end.

3.1. The loxodromic group. Consider a mapping to a doubly connected quadra-
ture domain from an annular region ρ1 < |ζ| < 1 in the ζ-plane. In this case, the
mapping must satisfy

z(ζ) = z(ρ2
1ζ).(19)

Meromorphic functions satisfying (19) are known as loxodromic functions [15]. They
are automorphic with respect to the transformations of the loxodromic group generated
by a single map of the form θ1(ζ) = ρ2

1ζ. It should be noted that the fundamental
region in this case can be taken to be the annulus ρ1 < |ζ| < ρ−1

1 , which does not
include the point at infinity. The usual definition of the fundamental region associated
with a classical Schottky group [22] does include the point at infinity. However, we
adopt the convention of considering the loxodromic group to be a special case of a
general Schottky group. Richardson [23] adopts the same convention.
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4. The Schottky–Klein prime function. Following Baker [21], if the ith sub-
stitution of the group Θ acts on some point ζ, then the image point will be denoted
ζi for brevity. Using this notation, the Schottky–Klein prime function is defined as

ω(ζ, γ) = (ζ − γ)
∏
i∈Θ′′

{
ζ,

γ

γi
, ζi

}
,(20)

where the product is over all substitutions in the set Θ′′. The curly bracket notation
denotes the cross-ratio defined in the standard way as

{
ζ,

γ

γi
, ζi

}
≡ (ζi − γ)(γi − ζ)

(ζi − ζ)(γi − γ)
.(21)

The function ω(ζ, γ) is single-valued on the whole ζ-plane, has a zero at γ and all
points equivalent to γ under the substitutions of the group Θ, and, excepting the
singular points of the group, is infinite only at ζ = ∞.

The Schottky–Klein prime function can be regarded as fundamental and is the
generalization to Riemann surfaces of genus g of the irreducible factor (ζ − γ) used
in the construction of meromorphic functions on a genus-0 Riemann surface (i.e., the
rational functions) and the function P (ζ/γ, ρ) (see (4)) used in the construction of
meromorphic functions on a genus-1 Riemann surface (i.e., the loxodromic functions).

4.1. Trivial group. When the Schottky group is just the trivial group, the
definition (20) reduces to ω(ζ, γ) = (ζ−γ). It is well known that any rational function
with poles at the N points {αk|k = 1, . . . , N} and zeros at {βk|k = 1, . . . , N} admits
the representation

R
(ζ − β1)(ζ − β2) · · · (ζ − βN )

(ζ − α1)(ζ − α2) · · · (ζ − αN )
,(22)

where R is a multiplicative constant. Note that in this case there is no restriction on
the locations of the poles and zeros of the function.

4.2. Loxodromic group. When the relevant Schottky group is the loxodromic
group generated by the single substitution θ1(ζ) = ρ2

1ζ, the definition (20) reduces to

ω(ζ, γ) = (ζ − γ)
∞∏
k=1

(ρ2k
1 ζ − γ)(ρ2k

1 γ − ζ)

(ρ2k
1 ζ − ζ)(ρ2k

1 γ − γ)

= (ζ − γ)

∞∏
k=1

(ρ2k
1 ζ/γ − 1)(ρ2k

1 γ/ζ − 1)

(ρ2k
1 − 1)(ρ2k

1 − 1)

=

(
−γ∏∞

k=1(ρ
2k
1 − 1)2

)
P (ζ/γ, ρ1),

so that the relevant Schottky–Klein prime function ω(ζ, γ) in this case is simply
proportional to the function P (ζ/γ, ρ1) given in the introduction. It is well known
[15] that one representation for a loxodromic function with poles at {αk|k = 1, . . . , N}
and zeros at {βk|k = 1, . . . , N} is

R
P (ζ/β1, ρ1)P (ζ/β2, ρ1) · · ·P (ζ/βN , ρ1)

P (ζ/α1, ρ1)P (ζ/α2, ρ1) · · ·P (ζ/αN , ρ1)
,(23)
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provided the poles and zeros satisfy the condition

N∏
k=1

αk =

N∏
k=1

βk,(24)

i.e., there is a single condition on the poles and zeros of the function. It is important
to point out that another representation of a loxodromic function with the same poles
and zeros is given by

Rζ
P (ζ/β1, ρ1)P (ζ/β2, ρ1) · · ·P (ζ/βN , ρ1)

P (ζ/α1, ρ1)P (ζ/α2, ρ1) · · ·P (ζ/αN , ρ1)
,(25)

where we emphasize the appearance of an additional prefactor of ζ in front of the ratio
of products of the P (ζ, ρ)-functions. In this case, the poles and zeros must satisfy the
modified condition

N∏
k=1

αk = ρ2
1

N∏
k=1

βk.(26)

Crowdy [20] has explicitly constructed quadrature domains corresponding to annular
arrays of near-touching cylindrical particles using the second representation (25).

4.3. More general Schottky groups. By a natural extension of the familiar
special cases of sections 4.1 and 4.2, it can be shown [21] that one representation of
a meromorphic function on a Riemann surface of genus g with the poles {αk|k =
1, . . . , N} and zeros {βk|k = 1, . . . , N} is

R
ω(ζ, β1)ω(ζ, β2) · · ·ω(ζ, βN )

ω(ζ, α1)ω(ζ, α2) · · ·ω(ζ, αN )
.(27)

It is natural that in the genus-g case there exist g conditions on the poles and zeros.
These are the generalizations of the single condition (24) or (26) in the g = 1 case.
To ascertain these conditions, introduce Ak and Bk as the two fixed points of the
generating substitution θk defined as

Ak = θ−∞
k ζ, Bk = θ∞k ζ,(28)

where ζ is any given point. Note that Ak and Bk are simply the roots of ζ = θk(ζ),
which is just a quadratic because θk(ζ) is a Mobius transformation. Letting θk = ζ ′,
it is possible to write

ζ ′ −Bk

ζ ′ −Ak
= µke

iκk
ζ −Bk

ζ −Ak
,(29)

where µk, κk ∈ R. The two roots Ak and Bk are then distinguished by the fact
that |µk| < 1 in (29). Now the function (27) is the required meromorphic function,
provided the following g conditions hold:

N∏
j=1

∏
θi∈Θk

(αj − θi(Bk))

(αj − θi(Ak))

/
(βj − θi(Bk))

(βj − θi(Ak))
= 1, k = 1, . . . , g.(30)

Note that the substitutions in the second product are taken from the subset Θk. The
g conditions (30) will be referred to henceforth as the automorphicity conditions.
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In the same way that both (23) and (25) are two different representations of a
loxodromic function with the same distribution of poles and zeros, there are a number
of distinct representations of meromorphic functions on a Riemann surface of genus
g > 1 as shown in Baker [21]. In constructing a particular quadrature domain, it is
necessary to ascertain which representation is the appropriate one needed to construct
the required conformal mapping. One alternative representation (used later in the case
studies) is

⎛
⎝Rζ

∏
i∈Θ′

1

ζ − θi(B1)

ζ − θi(A1)

⎞
⎠ ω(ζ, β1)ω(ζ, β2) · · ·ω(ζ, βN )

ω(ζ, α1)ω(ζ, α2) · · ·ω(ζ, αN )
,(31)

where θ1 denotes the loxodromic transformation given as

θ1(ζ) = ρ2
1ζ.(32)

The poles and zeros also satisfy g automorphicity conditions, one of which is given by

(33)
N∏
i=1

∏
j∈Θ1

(
βi − θj(B1)

βi − θj(A1)

/
αi − θj(B1)

αi − θj(A1)

)
=

1

µ1eiκ1

∏
s∈1Θ′′

1

(
B1 − θs(A1)

A1 − θs(A1)

/
B1 − θs(B1)

A1 − θs(B1)

)2

,

while the remaining g − 1 conditions are given by

(34)
N∏
i=1

∏
j∈Θb

(
βi − θj(Bb)

βi − θj(Ab)

/
αi − θj(Bb)

αi − θj(Ab)

)
=

∏
s∈1Θb

(
θ−1
s (B1) −Ab

θ−1
s (A1) −Ab

/
θ−1
s (B1) −Bb

θ−1
s (A1) −Bb

)

for b = 2, . . . , g, where Ab and Bb denote the fixed points of the mapping θb.
Finally, it is instructive to see how the general condition (30) reduces to (24) in

the g = 1 case, where the Schottky group is the loxodromic group. In this case the
group is generated by the single substitution,

θ1(ζ) = ρ2
1ζ.(35)

The subset Θ1 then contains only the identity. It is also clear that

A1 = ∞, B1 = 0.(36)

With these identifications, it is easy to show that (30) is precisely equivalent to (24).
Indeed, it is also straightforward to show that the factor

ζ
∏
i∈Θ′

1

ζ − θi(B1)

ζ − θi(A1)
(37)

in (31) reduces simply to ζ in the case where the Schottky group is precisely the
loxodromic group, so that (31) reduces to (25). At the same time, the automorphicity
condition (33) reduces to (26).
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5. Equations for the mapping parameters. Only quadrature domains sat-
isfying quadrature identities of the form

∫ ∫
D

h(z)dz̄ ∧ dz = 2i

N∑
k=1

akh(zk)(38)

will be considered here. The equations to be satisfied by the conformal mapping pa-
rameters come from the specified quadrature identity together with any assumptions
made regarding the areas of the enclosed holes. Intuitively, it is useful to think of
specifying the real parameter ρi as equivalent to specifying the area of the ith hole.

From (17) recall that we require

z(ᾱ−1
k ) = zk, k = 1, . . . , N.(39)

Also, recall that we require z̄(ζ−1) to have poles in H only at the points ᾱ−1
k . In this

case, where the quadrature identity is of the form (38), these poles are simple. Thus
near ζ = ᾱ−1

k , z̄(ζ−1) has the form

z̄(ζ−1) =
Pk

ζ − ᾱ−1
k

+ regular,(40)

where Pk ∈ C. We therefore require that

ak = πPkzζ(ᾱ
−1
k ), k = 1, . . . , N.(41)

It is useful to think of the N conditions (39) as being equations for the N poles
{αk|k = 1, . . . , N}, while (41) provides equations for the N zeros {βk|k = 1, . . . , N}.

This leaves only the set {δk|k = 1, . . . , g} to be determined. However, equations
for these can be understood as being given by the g automorphicity conditions (30).
The equation count is therefore very natural, as indicated by the following schematic
encapsulating the correspondence between parameters:

{zk ∈ C|k = 1, . . . , N} → {αk ∈ C|k = 1, . . . , N},
{ak ∈ C|k = 1, . . . , N} → {βk ∈ C|k = 1, . . . , N},

{specifying the area of g holes} → {ρk ∈ R|k = 1, . . . , g},
{g automorphicity conditions} → {δk ∈ C|k = 1, . . . , g}.

(42)

A minor modification of the prime function (20) is needed when the mapping is
required to have a zero or pole at the point at infinity. In this case formula (20) must
be replaced by

ω(ζ,∞) =
∏
i∈Θ′′

(∞i − ζ)

(ζi − ζ)
,(43)

where ∞i denotes the images of the point at infinity under the ith substitution of the
set Θ′′.

Many of the examples to follow possess various rotational symmetries in the dis-
tribution of the poles and zeros of the relevant conformal mapping function. It is
therefore convenient to define ωn(ζ, γ) as

ωn(ζ, γ) ≡
n−1∏
k=0

ω(ζ, e2πik/nγ).(44)

It should be noted that the Schottky–Klein prime function depends implicitly
on the parameters {δk, ρk|k = 1, . . . , g} from which the primary substitutions are
constructed; however, the notation ω(ζ, γ) suppresses this dependence.
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6. Examples. In computing explicit cases it is necessary to truncate the number
of maps used from any of the relevant infinite sets. This is done in a natural way by
picking a level of composition of the primary substitutions up to which all composed
substitutions are included. (Mumford, Series, and Wright [24] discuss various other
methods of truncation.) For example, if a Schottky group has two primary substitu-
tions θ1 and θ2 and all maps up to and including level 2 are used, the following maps
would be included in the definition of ω(ζ, γ):

level 1 : θ1, θ2; level 2 : θ2
1, θ

2
2, θ1θ2, θ2θ1, θ

−1
1 θ2, θ1θ

−1
2 .(45)

Note that the identity is the only map at level 0, and this is excluded in defining the
Schottky–Klein prime function.

Since the zeros and poles in the Schottky–Klein prime function representation are
explicit, construction of a given quadrature domain requires only consideration of the
distribution of the poles and zeros of the conformal mapping in the ζ preimage plane.
Often, the quadrature identity combined with symmetry considerations can be used
to deduce the positions of these poles and zeros. The functional form of the relevant
conformal mapping can then be written down immediately.

6.1. A triply connected quadrature domain. Consider four circular discs of
equal radius r initially less than 1, with centers at ±

√
3 and ±i. For r < 1 the circular

discs are disconnected. If we increase r to 1, then the discs touch. If r ≤ 1, such a
configuration is a disconnected quadrature domain satisfying the quadrature identity
(38) with N = 4, a1 = a2 = a3 = a4 = πr2, and z1 =

√
3 = −z3, z2 = i = −z4.

When r increases above 1, the domain satisfying the quadrature identity (38) with
quadrature data given by a1 = a2 = a3 = a4 = πr2 and z1 =

√
3 = −z3, z2 = i = −z4

can be expected to form a triply connected quadrature domain.
We shall construct a triply connected domain which is close to the case of touching

circular discs. In particular, we take a1 = a2 = a3 = a4 = 1.0010π and z1 =
1.6966, z2 = 0.9969i.

Note that the quadrature domain is symmetric with respect to reflection in both
the real and imaginary axes, and its two holes have their centers on the real axis. It is
natural to expect the same structure in the associated circular region H in the ζ-plane.
If C1 and C2 are the circles mapping to the boundaries of these two holes, we expect
them to have equal radii with centers at δ1, δ2 ∈ R, where δ1 = −δ2. The conformal
mapping will have four poles corresponding to each of the zk for k = 1, 2, 3, 4. We label
these αk for k = 1, 2, 3, 4. It will also have four zeros, which we label βk (k = 1, 2, 3, 4).
Again, it is natural to expect the distribution of the poles of the conformal map in the
ζ-plane to mirror the distribution of the points zk (k = 1, 2, 3, 4) in the physical plane.
We therefore expect α1 = −α3 purely real and α2 = −α4 purely imaginary. Thus, the
combination ω2(ζ, α1)ω2(ζ, α2) will appear in the denominator of the conformal map.
Note that the compact notation ω2(ζ, α1) (defined in (44)) automatically captures
both the pole at α1 and that at −α1. As for the zeros, because we choose ζ = 0
to map to z = 0, one of the zeros (say β3) is at the origin. Thus ω(ζ, 0) appears in
the numerator of the conformal map. By symmetry, one of the remaining three zeros
(say β4) must be at ∞, while the other two, β1 and β2, should be either purely real
or purely imaginary with β1 = −β2. Thus, the combination ω(ζ,∞)ω2(ζ, β1) also
appears in the numerator. In fact, it is found that β1 is purely real. Figure 3 shows
a schematic illustrating the ζ preimage plane and the distribution of poles and zeros
in the fundamental region.
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pole

zero

C2 C1

β1

α1

−β1

−α1

α2

−α2

Fig. 3. Schematic illustrating the ζ preimage plane with distribution of poles and zeros of the
conformal mapping to the triply connected quadrature domain in Figure 4.

Combining the above considerations, the form of the conformal map is deduced
to be

z(ζ) = R
ω(ζ, 0)ω(ζ,∞)ω2(ζ, β1)

ω2(ζ, α1)ω2(ζ, α2)
.(46)

The map contains six parameters: R, β1, α1, α2, δ1, ρ1. We can specify ρ1, which
corresponds to fixing the area of each of the two holes. Then the equations to solve for
the remaining five unknowns come from (30), (39), (41). Note that, due to symmetry,
the two equations given by (30) are actually the same, and (39), (41) each give only
two independent equations. Thus we have five equations for five unknowns. Explicitly,
these are

4∏
j=1

∏
θi∈Θ1

(αj − θi(B1))

(αj − θi(A1))

/
(βj − θi(B1))

(βj − θi(A1))
= 1,(47)

z1 = z(ᾱ−1
1 ),(48)

z2 = z(ᾱ−1
2 ),(49)

a1 = πP1zζ(ᾱ
−1
1 ),(50)

a2 = πP2zζ(ᾱ
−1
2 ),(51)
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Fig. 4. Triply connected domain constructed using the Schottky–Klein prime function (top left)
and Poincaré series (top right) both at level 3. Here R = 2.5215, β1 = 1.4776, α1 = 1.1520, α2 =
1.5969i, δ1 = 0.3160, ρ1 = 0.2000. For comparison, the lower diagram shows a superposition of the
upper two diagrams.

where analytical formulae for P1 and P2 can easily be deduced. For example,

P1 = − R

α2
1

(
ω(α1, 0)ω(α1,∞)ω2(α1, β1)

ω̂(α1, α1)ω(α1,−α1)ω2(α1, α2)

)
,(52)

where ω̂(ζ, γ) is defined as

ω̂(ζ, γ) ≡
∏
i∈Θ′′

{
ζ,

γ

γi
, ζi

}
.(53)

These five equations are solved for the unknown parameters using Newton’s method.
The image of the conformal map is shown in the left-most diagram in Figure 4.

For purposes of comparison with the approach to constructing quadrature do-
mains expounded recently by Richardson [23] we constructed the same quadrature
domain using a conformal map based on the use of Poincaré series as opposed to the
Schottky–Klein prime function. The image of this map is shown in the right-most
diagram in Figure 4. The images of the respective conformal maps are indistinguish-
able, as can be seen from their superposition in the lower diagram in Figure 4. A brief
overview of Richardson’s general method, and details of how it was used to construct
the above triply connected domain, are given in the appendix.

6.2. A quadruply connected quadrature domain. A second example is to
consider three circular discs in an annular array surrounding a smaller circular disc.
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The quadrature identity associated with such a domain is of the form (38) with
N = 4 and z1 purely real, z2 = z1e

2πi/3, z3 = z1e
4πi/3, and z4 = 0. In the case where

the circular discs are touching, we have a1 = a2 = a3 = π, a4 = π(2/
√

3 − 1)2 and
z1 = 2/

√
3, z4 = 0. We shall construct a quadruply connected domain which is close

to the case of touching discs. In particular, we have taken the quadrature data to be
a1 = a2 = a3 = 1.0010π, a4 = 0.0250π and z1 = 1.1488, z4 = 0.

The domain has three holes. Since the holes in the physical plane are rotations
of each other through 2π

3 , we expect the circles in the preimage plane to share these
symmetries. Let C1, C2, and C3 be the circles inside the unit ζ-circle mapping to the
boundaries of the holes. Then C1 will be centered on the ray arg[ζ] = π

3 , and C2 and
C3 will be rotations of this circle through 2π

3 .
If we fix the physical origin to be the image of ζ = 0, then we require the factor

ω(ζ, 0) to appear in the numerator of the conformal map. Note that one of the zk is
zero, namely z4. Thus from (17), we see that we require the pole α4 (corresponding to
the point z4) to be at ∞. Thus we must include the factor ω(ζ,∞) in the denominator
of the map. There will also be three other poles, symmetrically disposed about ζ = 0,
corresponding to the symmetrically disposed points z1, z2, and z3. One of these,
denoted α1, is on the real ζ-axis. There will also be three additional zeros of the
conformal map in the fundamental region, which are also expected to be symmetrically
disposed about ζ = 0. One of these, β1 say, is found to be real.

Using these considerations, the conformal map is deduced to have the form

z(ζ) = R
ω(ζ, 0)ω3(ζ, β1)

ω(ζ,∞)ω3(ζ, α1)
.(54)

The image of this map, constructed to level-3 accuracy, is shown in the left-most
diagram in Figure 5 along with the image of the conformal map constructed using
the Poincaré series method of Richardson [23] to its right (again, to level-3 accuracy).
Their superposition is also shown in Figure 5. The boundaries are indistinguishable.

6.3. A quintuply connected quadrature domain. It is straightforward to
generalize the previous example to a quadrature domain which is close to the case
of four circular discs in an annular array surrounding a smaller circular disc. The
quadrature identity associated with such a domain is of the form (38) with N = 5
and z1 purely real, zk = z1e

(k−1)πi/2, k = 2, 3, 4, and z5 = 0. In the case where
the discs are touching, we have a1 = a2 = a3 = a4 = π, a5 = π(

√
2 − 1)2 and

z1 =
√

2, z5 = 0. We shall construct a quintuply connected domain which is close to
the case of touching circular discs. In particular, we choose quadrature data given by
a1 = a2 = a3 = a4 = 0.9980π, a5 = 0.1716π and z1 = 1.4029, z5 = 0.

Considerations similar to the previous example can be used to deduce that the
associated map has the form

z(ζ) = R
ω(ζ, 0)ω4(ζ, β1)

ω(ζ,∞)ω4(ζ, α1)
.(55)

The image of the conformal map is shown in the left-most diagram in Figure 6 along
with the image of the conformal map constructed using Poincaré series. Both are
constructed to level-3 accuracy. Their superposition is also shown in Figure 6 and,
again, the quadrature domain boundaries are indistinguishable. Crowdy [13] has
considered this class of domains from the point of view of algebraic curves in the
context of constructing multipolar equilibria of the Euler equations, and this will be
considered again later in section 8.
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Fig. 5. Quadruply connected domain constructed using the Schottky–Klein prime function (top
left) and Poincaré series (top right) at level 3, with superposition (lower). Here R = 0.0536, β1 =
3.4038, α1 = 1.2500, δ1 = 0.2608eiπ/3, ρ1 = 0.1275.

6.4. A septuply connected quadrature domain. Richardson [23] has con-
sidered the case of six circular discs in an annular array containing a disc of equal
radius in the center. Such a case is a trivial extension of the examples in sections 6.2
and 6.3. The preceding two examples have conformal mappings of the general func-
tional form

z(ζ) = R
ω(ζ, 0)ωn(ζ, β1)

ω(ζ,∞)ωn(ζ, α1)
,(56)

where section 6.2 deals with n = 3 while section 6.3 treats the case n = 4. The case
of six circular discs surrounding a central one will have a conformal map of the form

z(ζ) = R
ω(ζ, 0)ω6(ζ, β1)

ω(ζ,∞)ω6(ζ, α1)
,(57)

i.e., it is given by a mapping of the form (56) with n = 6. The associated quadrature
identity is of the form (38) with N = 7 and z1 purely real, zk = z1e

(k−1)πi/3, k =
2, . . . , 6, and z7 = 0. In the case of touching circular discs, we have a1 = · · · = a7 = π
and z1 = 2, z7 = 0. For illustration, we construct a septuply connected domain which
is close to the case of touching circular discs with a1 = · · · = a6 = 1.0266π, a7 =
1.0010π and z1 = 2.0002, z7 = 0. Figure 7 shows the results constructed using both
methods to level-2 accuracy.
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Fig. 6. Quintuply connected domain constructed using the Schottky–Klein prime function (top
left) and Poincaré series (top right) at level 3, with superposition (lower). Here R = 0.1849, β1 =
2.0789, α1 = 1.2329, δ1 = 0.3591eiπ/4, ρ1 = 0.1290.

6.5. 3-by-3 square array. More complicated domains are also easy to construct
using the Schottky–Klein prime function representation. Consider, for example, nine
circles in a 3-by-3 square array. The associated quadrature domain is of the form (38)
with N = 9 and z1 real, z2 = z1i, z3 = −z1, z4 = −z1i, and z5 on the π/4 ray, with
z6 = z5i, z7 = −z5, z8 = −z5i, and z9 = 0. In the case where the circular discs are
touching, we have z1 = 2, z5 = 2

√
2eπi/4, and a1 = · · · = a9 = π. We shall construct a

quintuply connected domain which is close to the case of touching circular discs with
a1 = · · · = a9 = 1.0010π and z1 = 1.9533, z5 = 2.7696eπi/4, z9 = 0.

There will be four circles C1, . . . , C4 inside the unit circle in the preimage ζ-plane.
Since the holes in the physical plane are centered on the rays arg[z] = π

4 ,
3π
4 , 5π

4 , 7π
4 ,

we also expect the centers of the circles C1, . . . , C4 to be on these rays in the ζ-plane.
Let ζ = 0 map to z = 0. This means that ω(ζ, 0) must appear in the numerator
of the conformal map. Furthermore, because z9 = 0, there must be a corresponding
pole of the conformal map at infinity in the ζ-plane. Therefore, ω(ζ,∞) must appear
in the denominator. We expect four symmetrically disposed poles in the ζ-plane
corresponding to z1, . . . , z4 . Let one of these be α1 on the real axis. Similarly, let α2

(taken on the ray arg[ζ] = π
4 ) and its rotations through π

2 correspond to z5, . . . , z8.
Thus, the combination ω4(ζ, α1)ω4(ζ, α2) will also appear in the denominator. The
zeros are expected to be similarly distributed in the ζ-plane. Therefore we include
the combination ω4(ζ, β1)ω4(ζ, β2) in the numerator so that the zeros of the map are
β1 (and its three rotations through π

2 ) and β2 (along with its three rotations through
π
2 ). It is found that β1 is real while β2 is on the ray arg[ζ] = π

4 .
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Fig. 7. Septuply connected domain constructed using the Schottky–Klein prime function (top
left) and Poincaré series (top right) at level 2, with superposition (lower). Here R = 0.6089, β1 =
1.5358, α1 = 1.2195, δ1 = 0.4900eiπ/6, ρ1 = 0.1260.

Fig. 8. 3-by-3 square array constructed using the Schottky–Klein prime function at level
2. Here R = 0.7887, β1 = 1.8298, β2 = 1.1828eiπ/4, α1 = 1.3899, α2 = 1.0989eiπ/4, δ1 =
0.5093eiπ/4, ρ1 = 0.2100.

The conformal map therefore has the form

z(ζ) = R
ω(ζ, 0)ω4(ζ, β1)ω4(ζ, β2)

ω(ζ,∞)ω4(ζ, α1)ω4(ζ, α2)
.(58)

The image of the conformal map is shown in Figure 8.
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6.6. Examples with a loxodromic subgroup. If we map H onto a multiply
connected quadrature domain which is rotationally symmetric about the origin and
which has the origin inside one of its holes, then the boundary ∂D1 of this hole will
be centered at the origin, and thus the circle C1 in the associated circular region in
the ζ-plane will be centered at ζ = 0. So, referring to (14), we see that the associated
Schottky group will contain a loxodromic subgroup.

If the quadrature domain is in fact just doubly connected and ∂D1 is its only inner
boundary, then the associated Schottky group will be precisely the loxodromic group.
In this case, the form (23) does not map the circular region to the required image.
However, Crowdy [20] has shown that the appropriate loxodromic function is given
by (25) where the poles and zeros satisfy (26). It is similarly found that if a more
general Schottky group contains the loxodromic group as a subgroup, it is necessary
to use a suitably generalized representation of the required conformal mapping.

We now present an example where the Schottky group has a loxodromic subgroup.
The example chosen is one suggested by Richardson [23]. Consider six circular discs
arranged in a triangular array. The quadrature identity associated with such a domain
is of the form (38) with N = 6 and z1 purely real, z2 = z1e

2πi/3, z3 = z1e
4πi/3, and z4

on the π/3 ray, z5 = z4e
2πi/3, z6 = z4e

4πi/3. In the case where the circular discs are
touching we have a1 = · · · = a6 = π and z1 = 2√

3
, z4 = 4√

3
eπi/3. We shall construct a

quintuply connected domain which is close to the case of touching circular discs with
a1 = · · · = a6 = 1.0500π and z1 = 1.1737, z4 = 2.3536eπi/3.

In this case, there will be a total of four enclosed holes: one centered at the origin
and three others at symmetrically disposed positions about the origin. Let C1 be the
circle in the ζ-plane mapping to the central hole, and let C2, C3, C4 map to the other
three holes. C2 is a circle centered at some point δ2 on the ray arg[ζ] = π

3 , while C3

and C4 are the rotations of this circle through 2π
3 and 4π

3 , respectively. Corresponding
to z1, z2, and z3 we expect three symmetrically disposed poles in the ζ-plane. Let one
of these be α1 on the real axis. Similarly, let α2 (on the ray arg[ζ] = π

3 ) and its two
rotations through 2π

3 correspond to z4, z5, and z6. The combination ω3(ζ, α1)ω3(ζ, α2)
will therefore appear in the denominator of the conformal map. Again, the distribution
of zeros is expected to be similar. Thus, we put ω3(ζ, β1)ω3(ζ, β2) in the numerator
so that β1 and β2 (along with their respective rotations through 2π

3 ) will be the zeros
of the conformal map in the fundamental region. It is found that β1 is real while β2

is on the ray arg[ζ] = π
3 .

A natural choice to make for the mapping is therefore

z(ζ) = R
ω3(ζ, β1)ω3(ζ, β2)

ω3(ζ, α1)ω3(ζ, α2)
.(59)

However, no univalent conformal maps to a quadrature domain with the given quadra-
ture data could be found for a map of this form. Therefore, a modified representation
of a meromorphic function on the same Riemann surface (and with the same poles
and zeros) is required. Such a representation is given by (31). Thus, it is natural to
propose that the conformal mapping has the generalized form

z(ζ) =

⎛
⎝Rζ

∏
i∈Θ′

1

ζ − θi(B1)

ζ − θi(A1)

⎞
⎠ ω3(ζ, β1)ω3(ζ, β2)

ω3(ζ, α1)ω3(ζ, α2)
,(60)

where θ1 denotes the loxodromic transformation

θ1(ζ) = ρ2
1ζ(61)
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Fig. 9. Quintuply connected domain constructed using the Schottky–Klein prime function (top
left) and Poincaré series (top right) at level 2, with superposition (lower). Here R = 0.0302, β1 =
5.3203, β2 = 1.1228eiπ/3, α1 = 1.6393, α2 = 1.0526eiπ/3, δ1 = 0, δ2 = 0.6054eiπ/3, ρ1 =
0.1450, ρ2 = 0.1450.

associated with the circle C1 = {|ζ| = ρ1}. Note that, accordingly, the poles and zeros
must now satisfy g modified automorphicity conditions given (in the general case) by
(33) and (34). The map (60) is indeed found to provide the required univalent map to
a quadrature domain satisfying the given quadrature identity. It is emphasized that
the additional prefactor in (60) relative to (59) is precisely the generalization of the
additional ζ-prefactor in (25) relative to (23).

The image of the conformal map constructed using both conformal mapping meth-
ods is shown in Figure 9 along with their superposition. Although this complicated
domain is only constructed to level-2 accuracy (in both methods), the plots are again
virtually indistinguishable.

7. Nonsymmetric domains. All the examples considered so far have certain
degrees of spatial symmetry. However, the general method also applies to domains
devoid of any such symmetry. Figure 10 shows two typical quadrature domains,
plotted using conformal maps based on Schottky–Klein prime functions, possessing
less symmetry than those in Figure 4. The constructive method is essentially the
same, with only minor differences. For example, with no symmetry, there are now
two independent automorphicity conditions, whereas in the symmetric case there was
just one.
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Fig. 10. More general triply connected quadrature domains.

8. Algebraic curves and uniformization. In the context of steady vortical
equilibria of the Euler equation, Crowdy [13] has recently presented an alternative
construction of multiply connected quadrature domains from their quadrature data.
The method makes use of the result that the boundaries of quadrature domains are
algebraic curves [2]. For completeness, and purposes of comparison, we now use
conformal maps to reconstruct one of the domains of [13].

The quintuply connected quadrature domains constructed in [13] satisfy the iden-
tity

∫ ∫
D

h(z)dxdy = πr2h(z1) + πr2h(z2) + πr2h(z3) + πr2h(z4) + πp2h(0).(62)

To within a finite set of special points [6] (which turn out to be useful in the construc-
tion; see [13]), the boundaries of the domains corresponding to (62) are given by the
algebraic curve

P(z, z̄) = 0,(63)

where

P(z, w) =

5∑
k,j=0

akjz
kwj .(64)

The set of coefficients {akj} form a Hermitian matrix A, where Akj = akj and

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

k 0 0 0 4p2 0
0 g 0 0 0 −4
0 0 f 0 0 0
0 0 0 e 0 0

4p2 0 0 0 −(4r2 + p2) 0
0 −4 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

.(65)

The top-left diagram of Figure 11 features a reproduction of the quadrature domain
in Figure 8 of Crowdy [13] (this reference contains all the information required to
derive the matrix A).

The relevant conformal map will have the form (55). In addition to the quadrature
data, to determine this map we also need to specify the area of the holes. This can
be computed using the algebraic curve, but we employ an alternative (equivalent)
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Fig. 11. A quintuply connected quadrature domain from Crowdy (see Figure 8 of [13]) con-
structed using algebraic curves (top left); the same domain constructed using conformal maps based
on the Schottky–Klein prime function (top right). The superposition is shown in the lower diagram.

method. Following Crowdy [13], it is known that there exists a so-called special point
at some point zs = seiπ/4. At such a point it is known [13] that

z̄s = S(zs),(66)

where S(z) is known as the Schwarz function of the quadrature domain boundary
[13]. It is related to the conformal mapping function by the relation

S(z(ζ)) = z̄(ζ−1).(67)

Crowdy [13] gives the explicit value s = 1.008 for the domain shown in Figure 11 (on
the left). In terms of the conformal map, this point must correspond to the image of

some point δ̂eiπ/4 in the ζ preimage plane, i.e.,

zs = seiπ/4 = z(δ̂eiπ/4).(68)

At the same time, by the property (66), we must have

z̄s = se−iπ/4 = z̄(δ̂−1e−iπ/4).(69)

Therefore, instead of considering the area of the holes, (68) and (69) provide two
equations relating the conformal mapping parameters, one determining the newly
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introduced δ̂ and the other effectively specifying the area of the hole. The top-right
diagram in Figure 11 shows the domain constructed using the conformal map. The
lower figure shows a superposition with the domain constructed using algebraic curves.
Again, the boundaries are indistinguishable.

From a theoretical viewpoint, the conformal map just constructed essentially
provides the uniformization of the algebraic curve (63). That is, given the matrix
A, the conformal map is such that

P(z(ζ), z̄(ζ−1)) = 0.(70)

This relation holds everywhere on the boundary of the quadrature domain, but it
also holds globally by analytic continuation. In this sense, the conformal map has
uniformized the algebraic curve.

9. Discussion. There are a variety of ways in which multiply connected quadra-
ture domains can be constructed from their quadrature data (and information regard-
ing the area of any holes). The algebraic curve method of Crowdy [13] has many
conceptual advantages and requires the least analytical overhead. Using this method,
an implicit description of the boundary is obtained. The idea is to iterate on the
algebraic curve coefficients until equations deriving from the quadrature identity are
satisfied. When the domains have symmetry, the consideration of the special points of
the domain can greatly facilitate the construction by providing explicit sets of equa-
tions to be satisfied by the coefficients of the curve. The special points can also have
physical significance; in Crowdy [13] they corresponded to stagnation points of the
vortical flow.

In this paper, a conceptually different method has been used based on conformal
mapping from a canonical region in a parametric plane. This leads to an explicit
representation of the boundary curve. The Schottky model has been employed and
the mappings written as ratios of products of Schottky–Klein prime functions. These
functions are the natural generalizations of the well-known prime functions in a simply
and doubly connected case, as discussed in the introduction. The conformal mappings
are essentially “uniformizing functions” of the algebraic curves considered in [13].
Richardson [23] has presented an alternative conformal mapping method based on
the use of Poincaré series to represent the mapping functions.

From a mathematical point of view, it is natural to ask questions about the con-
vergence properties of the infinite products used in defining the Schottky–Klein prime
functions. We have not studied such questions in detail. However, the boundaries
of the quadrature domains obtained in the explicit examples of this paper have been
found to be indistinguishable from those obtained using either the algebraic curve
method of Crowdy [13] or the conformal mapping method based on Poincaré series
introduced by Richardson [23]. We consider this to be direct evidence that conver-
gence issues do not necessarily constitute an impediment to the practical use of the
Schottky–Klein prime function in the reconstruction of quadrature domains from their
quadrature data.

Appendix. The method of Richardson [23]. We shall now briefly describe
an alternative construction of the quadrature domains via an approach using Poincaré
series as expounded recently by Richardson [23]. This method also produces maps
from circular regions of a parametric ζ-plane and requires the machinery of the Schot-
tky groups associated with these circular regions. The method differs in the functional
form, and representation, of the conformal mapping functions; Richardson constructs
his maps as a ratio of two automorphic forms which are each constructed as Poincaré
series.
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Definition A.1. A Poincaré series associated with a given Schottky group is of
the form

T (ζ) =

∞∑
i=0

H(θi(ζ))

(ciζ + di)2m
,(71)

where

θi(ζ) ≡
aiζ + bi
ciζ + di

, aidi − bici = 1(72)

denotes the ith Mobius map of the Schottky group, H(ζ) is some rational function
of which none of the poles is at a singular point of the Schottky group, and m is an
integer. Provided ζ = ∞ is not a singular point of the Schottky group, this series
converges for all m ≥ 2.

Definition A.2. A form φ(ζ) is called an automorphic form with respect to the
Schottky group if it has the property

φ(θi(ζ)) = (ciζ + di)
2mφ(ζ)(73)

for all maps θi of the Schottky group, where m is some integer.
If the Schottky group Θ is generated by g basic maps, and φ(ζ) is an automorphic

form with Z zeros and P poles in the fundamental region, then it is known that

Z − P = 2mg.(74)

If φ(ζ) is in fact an automorphic function, then we see Z = P .
Richardson’s construction is to use two different choices of the rational func-

tions Hn(ζ), Hd(ζ) to form the respective Poincaré series for two automorphic forms
Tn(ζ), Td(ζ) corresponding to the same value of m ≥ 2. Then the ratio

Tn(ζ)

Td(ζ)
(75)

and any constant multiple of this give the required automorphic function. Richard-
son’s strategy is precisely the one described by Beardon [22] for the construction of
meromorphic functions on compact Riemann surfaces.

Given a quadrature domain, there are a number of constraints on the relevant
choices for Hn(ζ) and Hd(ζ). These are discussed in the context of a number of specific
examples in Richardson [23]. Here we give very brief details of the construction for
the triply connected example of section 6.1. Following Richardson, we choose m = 2.
Recall that, in this example, there are poles at α1 and α3, where α1 = −α3 (purely
real), and two at α2 and α4, where α2 = −α4 (purely imaginary). Also, g = 2.
Following Richardson [23], we take Hd(ζ) to be 1. From (74) it follows that Td(ζ)
has eight zeros in the fundamental region. Due to the symmetry of the quadrature
domain, we expect these zeros to be arranged in a pattern that is symmetric with
respect to reflection in both axes. Thus we include in Hn(ζ) the polynomial factor
(ζ8 + aζ6 + bζ4 + cζ2 + d), where the four real parameters a, b, c, d are to be chosen
so that Tn(ζ) has the same zeros as Td(ζ) in the fundamental region. Also due to
the symmetry of the quadrature domain, we include a factor of ζ in the numerator of
Hn(ζ). Finally, because none of the zk in the associated quadrature identity are zero,
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the map must be bounded as ζ → ∞; in fact, we require it to behave like 1/ζ at ∞.
So the denominator of Hn(ζ) must be of degree 10. Since we require simple poles at
α1, α2, α3, and α4, we include the factors (ζ −αj) for j = 1, . . . , 4 in the denominator
of Hn(ζ). We must then choose the remaining factors such that α1, α2, α3, α4 are still
the only poles of the map in the fundamental region. This can be done by choosing
to include (ζ − θi(αj)) for i = 1, 2 and j = 1, 2, 3 as the extra factors. Finally, the
form for the map is the ratio (75) multiplied by some constant R to be determined.

In this representation there are nine unknowns, namely R,α1, α2, δ1, ρ1 as well
as a, b, c, d. We can specify a value for ρ1, thus leaving eight unknowns. The eight
equations for the remaining eight unknowns are (39) and (41) plus the four from the
requirement that Tn(ζ) be zero at the zeros of Td(ζ) in the fundamental region. Note
that these zeros are not known explicitly and must therefore be found (numerically)
as part of the solution.

There are a number of comments to be made concerning the two methods:
(i) The zeros of the map are not explicit in the Poincaré series representation,

but are explicit in the Schottky–Klein prime function representation. The
explicitness of the poles and zeros means that the general form of the required
mapping can be written down immediately.

(ii) Once ρ is specified, the Poincaré series representation depends on eight pa-
rameters compared to only five parameters when the Schottky–Klein prime
function representation is used. Moreover, the determination of the eight pa-
rameters in the Poincaré series representation in fact requires the solution of
twelve nonlinear equations, owing to the fact that the four (distinct) zeros
of Td(ζ) (in the fundamental region) must be found numerically during the
solution process. In the prime function representation, exactly five equations
are solved for exactly five unknowns.

(iii) Two of the equations to be solved in either method are the residue equa-
tions (41). With the prime function representation, explicit formulae for
the residues P1, P2 are straightforward to compute (cf. the formula for P1 in
(52)). However, care has to be taken when finding the analogous equations
with the Poincaré series representation because the inclusion of factors such
as (ζ − θi(αj)) in the denominator of Hn(ζ) can mean that more than one
term in the sum Tn(ζ) contributes to the residue at each of the poles.

(iv) As discussed in detail by Richardson [23], the most convenient choice is
Hd(ζ) = 1. However, if the Schottky group has a loxodromic subgroup,
then the Poincaré series Td(ζ) with Hd(ζ) = 1 does not converge. Richard-
son therefore proposes three possible remedial measures in this case, two of
which are not implemented for various reasons. Such complications do not
arise when using the Schottky–Klein prime function representation. In the
latter case, it is simply necessary to pick the appropriate representation for
the mapping, which can involve additional prefactors of the ratio of products
of prime functions, as illustrated explicitly in the context of the example in
section 6.6.

(v) A particular advantage of using the Schottky–Klein prime function represen-
tations concerns changes of topology, particularly in cases where the con-
nectivity of the domain decreases. In the conformal mappings constructed
in this paper, the functional form of the mappings as ratios of products of
prime functions is the same; the only change is the definition of the relevant
Schottky group.
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