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A formula for the generalized Schwarz–Christoffel mapping from a bounded multiply
connected circular domain to a bounded multiply connected polygonal domain is derived.
The theory of classical Schottky groups is employed. The formula for the derivative of
the mapping function contains a product of powers of Schottky–Klein prime functions
associated with a Schottky group relevant to the circular pre-image domain. The formula
generalizes, in a natural way, the known mapping formulae for simply and doubly
connected polygonal domains.
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1. Introduction

The construction of the conformal mapping from the upper-half plane or unit disc
in a pre-image plane to a given simply connected polygonal region is a well-
known classical result of complex analysis (Nehari 1952; Ablowitz & Fokas
1997). The conformal mappings are known as Schwarz–Christoffel maps and the
subject, being of very general applicability, already commands an extensive
literature. The monograph by Driscoll & Trefethen (2002) provides a recent
review of the study of such mappings and gives a comprehensive list of references.
It also surveys some of the many applications of the formula in various branches
of science.

A natural and long-standing question is how to generalize the classical
Schwarz–Christoffel mapping formula to the case of multiply connected
polygonal regions. Only a few results addressing this question currently exist
and almost all of these pertain to the case of mapping to doubly connected
polygonal regions. Given the general applicability of Schwarz–Christoffel
mappings (henceforth abbreviated to S–C mappings), it is clear that the
derivation of generalized formulae mapping to polygonal regions of arbitrary
finite connectivity is of some interest.

Embree & Trefethen (1999) have used ideas involving S–C mappings of
multiply connected domains to construct the first-type Green’s function in such
domains. However, the domains considered have reflectional symmetry about the
real axis, thereby allowing use of the Schwarz reflection principle to reduce
the problem to one of constructing a simply connected S–C mapping to ‘half’
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the domain. Another study that addresses the more general question of mapping
to polygonal domains of connectivity greater than two is the recent paper by
DeLillo et al. (2005). In the latter paper, the authors derive a formula for
mapping from a finitely connected unbounded circular pre-image region to an
unbounded conformally equivalent polygonal region. The derivation relies on an
extension of an idea originally presented in DeLillo et al. (2001) involving
consideration of an infinite sequence of reflections in circles needed to satisfy the
relevant argument conditions (on the derivative of the mapping function) on the
segments of each pre-image circle mapping to the sides of the polygonal region.

If one is interested in an S–C mapping from a bounded multiply connected
circular pre-image region to a bounded multiply connected polygonal region, no
such formula currently exists in the literature. The derivation of such a formula
is the subject of this paper. Further, the theoretical approach used here is
conceptually different to that used by DeLillo et al. (2005) for the unbounded
case. Here, results from classical function theory are used to construct the
mapping. In principle, it should also be possible to extend the approach of
DeLillo et al. (2005) to the case of mapping to bounded polygonal domains.

Although our mathematical approach is different, the reader will nevertheless
discern certain common mathematical threads in the two constructions. In
particular, although this is not mentioned in their paper, the infinite sequences of
reflections in circles appearing in the construction presented by DeLillo et al.
(2005) is naturally associated with the theory of classical Schottky groups of
Möbius mappings (Beardon 1984). In turn, associated with any such Schottky
group is a fundamental function known as the Schottky–Klein prime function
(Baker 1995). The key result of this paper is to show that an S–C mapping to
bounded polygonal domains can be written, in a natural way, as a product of
powers of this prime function.

The Schottky groups associated with the simply and doubly connected cases
are, respectively, the trivial group and the loxodromic group of Möbius mappings
(the latter is defined more precisely later). In these cases, the product of powers
of Schottky–Klein prime functions associated with the two groups naturally
reduce to the formulae for the simply and doubly connected cases that have
already appeared in the literature (Driscoll & Trefethen 2002). The final form of
the mapping formula derived in this paper is

zðzÞZACB

ðz
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Yn0
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ð0Þ
k
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Ynj
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ðjÞ
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with
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jZ1 uðz;g

ðjÞ
1 Þuðz;gðjÞ

2 Þ

 !
; (1.2)

and where u(z,g) is the relevant Schottky–Klein prime function. MC1 is the
connectivity of the domain. All other parameters appearing in (1.1) and (1.2) are
explained in the main body of the paper. What we wish to emphasize here is that
the single formula (1.1) encapsulates all S–C mappings to finitely connected
bounded polygonal regions. All that differs from one topology to the next is
Proc. R. Soc. A (2005)



2655Multiply connected Schwarz–Christoffel mappings
the relevant Schottky group and hence the definition of the Schottky–Klein
prime function u(z,g). This generality in the formula (1.1) would seem
attractive from both a conceptual and an implementational viewpoint.

For example, in the simply connected case when the Schottky group is just the
trivial group, the associated prime function is

uðz;gÞZ ðzKgÞ; (1.3)

while the function S(z) is just a constant when MZ0. With these identifications,
it should be clear that (1.1) then has the same functional form as the well-known
S–C mapping formula from a unit disc as given in eqn (2.4) of Driscoll &
Trefethen (2002). In a similar way, it will be shown in §8b how (1.1) reduces to
the formula for mappings from an annulus to doubly connected polygonal
domains as recorded in eqn (4.21) of Driscoll & Trefethen (2002).
2. Mathematical formulation

Let the target region Dz in a complex z-plane be a bounded (MC1)-connected
polygonal region. MZ0 is the simply connected case. Let P0 denote the outer
boundary polygon and let the M smaller enclosed polygons be fPj jjZ1;.;Mg.
Let Pj have nj edges where njR2 are integers. The set of interior angles at each
vertex of polygon Pj are

pðbðjÞk C1Þ; k Z 1;.;nj ; (2.1)

where Xn0
kZ1

b
ð0Þ
k ZK2;

Xnj
kZ1

b
ðjÞ
k Z 2; j Z 1;.;M : (2.2)

The parameters fpbðjÞk jjZ0; 1;.;Mg are the turning angles (Driscoll &
Trefethen 2002). Let the straight-line edges of polygon Pj be given by the
following linear equations

�z Z e
ðjÞ
k zCk

ðjÞ
k ; k Z 1;.;nj ; (2.3)

where e
ðjÞ
k and k

ðjÞ
k are a set of complex constants and jeðjÞk jZ1. For a given target

polygon, the parameters feðjÞk ; k
ðjÞ
k g are specified.

We seek a conformal mapping to Dz from a conformally equivalent multiply
connected circular domain Dz. Let Dz be the unit z-disc with M smaller circular
discs excised. Let the boundaries of these smaller circular discs be denoted
fCj jjZ1;.;Mg and let jzjZ1 be denoted C0. The complex numbers
fdj jjZ1;.;Mg will be taken to denote the centres of the enclosed circular
discs, while the real numbers fqj jjZ1;.;Mg will denote their radii. Figure 1
shows a schematic.

To proceed with the construction, an intermediate h-plane will be introduced.
Consider a conformal mapping h(z) taking the multiply connected circular
domain Dz to a conformally equivalent circular-slit domain Dh. Figure 2 shows a
schematic. Let the image of C0 under this mapping be the unit circle in the
h-plane which will be called L0. The M circles fCj jjZ1;.;Mg will be taken to
have finite-length circular-slit images, centred on hZ0, and labelled
Proc. R. Soc. A (2005)
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Figure 2. Schematic of the three complex planes for the case of a triply connected domain. The
circular domain Dz in the z-plane, the circular-slit domain Dh in the h-plane and the polygonal
domain Dz in the z-plane are shown. The schematic shows the circles C0, C1 and C2, the slits L0, L1

and L2 and the corresponding polygons P0, P1 and P2.
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Figure 1. A multiply connected circular region Dz. The case shown, with three enclosed circles, is
quadruply connected. C0 denotes the unit circle. There are M interior circles (the case MZ3 is
shown here), each labelled fCj jjZ1;.;Mg. The centre of circle Cj is dj and its radius is qj.
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fLj jjZ1;.;Mg. Let the arc Lj be specified by the conditions

jhjZ rj ; arg½h�2½fðjÞ
1 ;f

ðjÞ
2 �: (2.4)

It is clear that, for jZ1,.,M, there will be two pre-image points on the circle Cj

in the z-plane corresponding to the two endpoints of the circular-slit Lj. These

two pre-image points, labelled g
ðjÞ
1 and g

ðjÞ
2 , satisfy the conditions

hðgðjÞ
1 ÞZ rje

if
ðjÞ
1 ; hzðg

ðjÞ
1 ÞZ 0;

hðgðjÞ
2 ÞZ rje

if
ðjÞ
2 ; hzðg

ðjÞ
2 ÞZ 0;

j Z 1;.;M :

9=
; (2.5)
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2657Multiply connected Schwarz–Christoffel mappings
These 2M zeros of hz are all simple zeros since the points g
ðjÞ
1 and g

ðjÞ
2 map to

the ends of a slit and the arguments of hðzÞKhðgðjÞ
1 Þ and hðzÞKhðgðjÞ

2 Þ change by
2p as z passes through these points. This fact will be important later.

The idea of the construction of the S–C mapping is to consider conditions on
the derivative of the mapping function in the intermediate h-plane. These
conditions turn out to be easier to handle than those in the original z-plane,
basically because the conditions take the same functional form on all boundaries
(which is not the case in the original z-plane). Once these conditions on z(h) are
satisfied in the h-plane, the functional form of the required mapping function
z(z)Zz(h(z)) can be deduced.
3. Schottky groups

To proceed with the construction, first define M Möbius maps ffj jjZ1;.;Mg
corresponding, respectively, to the conjugation maps on the circles
fCj jjZ1;.;Mg. That is, if Cj has equation

jzKdj j2 Z ðzKdjÞð�zK�djÞZ q2j ; (3.1)

then

�zZ �dj C
q2j

zKdj
; (3.2)

and so

fjðzÞh�dj C
q2j

zKdj
: (3.3)

If z is a point on Cj, then its complex conjugate

�zZfjðzÞ: (3.4)

Next, introduce the Möbius maps

qjðzÞh �fjðzK1ÞZ dj C
q2j z

1K�djz
; (3.5)

where the conjugate function �fj is defined by

�fjðzÞZfjð�zÞ: (3.6)

For jZ1,.,M, let C 0
j be the circle obtained by reflection of the circle Cj in the

unit circle jzjZ1 (i.e. the circle obtained by the transformation z11=�z). It is
easily verified that the image of the circle C 0

j under the transformation qj is the
circle Cj. Since the M circles {Cj} are non-overlapping, so are the M circles fC 0

j g.
The (classical) Schottky group Q is defined to be the infinite free group of
Möbius mappings generated by compositions of the M basic Möbius maps
fqj jjZ1;.;Mg and their inverses fqK1

j jjZ1;.;Mg and including the identity

map. Beardon (1984) gives a general discussion of such groups. A very accessible
Proc. R. Soc. A (2005)
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Figure 3. The set of Schottky circles associated with a quadruply connected domain. The region
exterior of all six circles fCj ;C

0
j jjZ1; 2; 3g is the fundamental region. The part of the fundamental

region interior to the unit circle C0 is Dz.
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discussion of Schottky groups and their mathematical properties can also be
found in a recent monograph by Mumford et al. (2002).

Consider the (generally unbounded) region of the plane exterior to the 2M
circles {Cj} and fC 0

j g. A schematic is shown in figure 3. This region is known
as the fundamental region associated with the Schottky group. This
fundamental region can be understood as having two ‘halves’—the half that
is inside the unit circle but exterior to the circles Cj is Dz, and the region that
is outside the unit circle and exterior to the circles C 0

j is the other half.
The region is called fundamental because the whole complex plane is
tessellated by an infinite sequence of ‘copies’ of this region obtainable by
conformally mapping the fundamental region by elements of the Schottky
group. Any point in the plane that can be reached by the action of a finite
composition of the basic generating maps on a point in the fundamental region
is called an ordinary point of the group. Any point not obtainable in this way
is a singular point of the group. The set of 2M circles fCj ;C

0
j jjZ1;.;Mg are

known as the set of Schottky circles.
There are two important properties of the Möbius maps introduced above.

The first is that

qK1
j ðzÞZ 1

fjðzÞ
; cz: (3.7)

This can be verified using the definitions (3.3) and (3.5) (or, alternatively, by
considering the geometrical effect of each map). The second property, which
follows from the first, is that

qK1
j ðzK1ÞZ 1

fjðzK1Þ
Z

1

�fjð�z
K1Þ

Z
1

qjð�zÞ
Z

1
�qjðzÞ

; cz: (3.8)
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2659Multiply connected Schwarz–Christoffel mappings
4. The Schottky–Klein prime function

Following the discussion in ch. 12 of Baker (1995), the Schottky–Klein prime
function is defined as

uðz;gÞZ ðzKgÞu0ðz;gÞ; (4.1)

where the function u 0(z,g) is given by

u0ðz;gÞZ
Y
qi2Q00

ðqiðzÞKgÞðqiðgÞKzÞ
ðqiðzÞKzÞðqiðgÞKgÞ ; (4.2)

and where the product is over all mappings in Q 00—the set of all mappings in Q
excluding the identity map and all inverses. It is emphasized that the prime
notation is not used here to denote differentiation. The function u(z,g) is single-
valued on the whole z-plane and has a zero at g and all points equivalent to g
under the mappings of the group Q. Again following Baker (1995), we proceed
under the assumption that the infinite product defining the prime function is
convergent. Whether this is true will depend, in general, on the distribution of
Schottky circles in the z-plane. A basic rule of thumb is that convergence is good
provided the Schottky circles are well-separated in the z-plane. Of course, the
final formula derived here will only be valid provided such convergence criteria
are satisfied. Similar convergence criteria arise in the construction of DeLillo
et al. (2005).

The Schottky–Klein prime function has some important transformation
properties that will be needed in the construction of the S–C mapping. One
such property is that it is antisymmetric in its arguments, that is,

uðz;gÞZKuðg; zÞ: (4.3)

This is clear from inspection of (4.1) and (4.2). A second important property is
given by

uðqjðzÞ;g1Þ
uðqjðzÞ;g2Þ

Zbjðg1;g2Þ
uðz;g1Þ
uðz;g2Þ

; (4.4)

where qj is one of the generating maps of the group. A detailed derivation of this
result is given in ch. 12 of Baker (1995). A formula for bj(g1,g2) is

bjðg1;g2ÞZ
Y
qk2Qj

ðg1KqkðBjÞÞðg2 KqkðAjÞÞ
ðg1KqkðAjÞÞðg2 KqkðBjÞÞ

; (4.5)

where the set Qj denotes all compositions of the basic mappings of the group Q
which do not have a positive or negative power of qj at the right-hand end. Aj and
Bj are the two fixed points of the mapping qj satisfying

qjðAjÞZAj ; qjðBjÞZBj : (4.6)

Aj and Bj are the two solutions of a quadratic equation and satisfy an equation
of the form

qjðzÞKBj

qjðzÞKAj

Zmje
ikj

zKBj

zKAj

; (4.7)
Proc. R. Soc. A (2005)



D. Crowdy2660
for some real constants mj , kj . Aj and Bj are distinguished by the condition that
jmjj!1 in (4.7). A third property of u(z,g) which will also be useful later is

�uðzK1;gK1ÞZK
1

zg
uðz;gÞ; (4.8)

where the conjugate function �uðz;gÞ is defined by

�uðz;gÞZuð�z; �gÞ: (4.9)

A detailed derivation of (4.8) is given in an appendix to Crowdy & Marshall
(2005).

It is convenient to categorize all possible compositions of the basic maps
according to their level. As an illustration, consider the case in which there are
four basic maps fqj jjZ1; 2; 3; 4g. The identity map is considered to be the level-
zero map. The four basic maps, together with their inverses, fqK1

j jjZ1; 2; 3; 4g
constitute the eight level-one maps. All possible combinations of any two of these
eight level-one maps that do not reduce to the identity, e.g.

q1ðq1ðzÞÞ; q1ðq2ðzÞÞ; q1ðq3ðzÞÞ; q1ðq4ðzÞÞ; q2ðq1ðzÞÞ; q2ðq2ðzÞÞ;.; (4.10)

will be called the level-two maps, all possible combinations of any three of the
eight level-one maps that do not reduce to a lower level map will be called the
level-three maps, and so on.

On a practical note, to write a function routine to numerically calculate
u(z,g), it is necessary to truncate the infinite product in (4.2). This is done in a
natural way by including all Möbius maps up to some chosen level and
truncating the contribution to the product from all higher-level maps. The
truncation that includes all maps up to level three have been used to compute the
examples in this paper. The software program MATLAB is particularly suited to
construction of the Schottky–Klein prime function, since the action of an element
of the Schottky group on the point z can be written as multiplication by a 2!2
matrix on the vector (z, 1)T—a linear algebra operation that is performed very
efficiently in MATLAB.
5. Three special functions

In this section, a series of propositions will outline the properties of three special
functions, which will be called fFjðz; z1; z2ÞjjZ1; 2; 3g, needed in the construc-
tion of the S–C mapping formula. These special functions are all constructed as
ratios of Schottky–Klein prime functions as defined in the previous section.

Proposition 5.1. If z1 and z2 are any two distinct points on C0, then the
function

F1ðz; z1; z2Þh
uðz; z1Þ
uðz; z2Þ

; (5.1)

has constant argument on each of the circles fCj jjZ0; 1;.;Mg.
Proc. R. Soc. A (2005)
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Proof. First consider points z on C0. There,

F1ðz;z1;z2ÞZ
uðz;z1Þ
uðz;z2Þ

Z
�uðzK1;zK1

1 Þ
�uðzK1;zK1

2 Þ
;

Z
z2

z1

uðz;z1Þ
uðz;z2Þ

; by ð4:8Þ;

Z
z2

z1
F1ðz;z1;z2Þ ;

9>>>>>>>>=
>>>>>>>>;

(5.2)

which implies that the argument of F1ðz; z1; z2Þ is constant on C0.
Now consider points z on any of the enclosed circles fCj jjZ1;.;Mg. On Cj ,

F1ðz;z1;z2ÞZ
uðz;z1Þ
uðz;z2Þ

Z
�uðfjðzÞ;zK1

1 Þ
�uðfjðzÞ;zK1

2 Þ
; by ð3:4Þ;

Z
�uð�qjðzK1Þ;zK1

1 Þ
�uð�qjðzK1Þ;zK1

2 Þ
; by ð3:5Þ:

9>>>>=
>>>>;

(5.3)

But now (4.4) can be used to deduce that

F1ðz;z1;z2ÞZbjð�z
K1
1 ;�z

K1
2 Þ �uðz

K1;zK1
1 Þ

�uðzK1;zK1
2 Þ

; by ð4:4Þ;

Zbjð�z
K1
1 ;�z

K1
2 Þz2

z1
F1ðz;z1;z2Þ ; by ð4:8Þ;

9>>>=
>>>;

(5.4)

so the argument of F1ðz; z1; z2Þ is therefore constant on each of the circles
fCj jjZ0; 1;.;Mg. &

Proposition 5.2. If z1 and z2 are two distinct points on a particular choice of
enclosed circle Cj (for some jZ1,.,M ), then the function

F2ðz; z1; z2Þh
uðz; z1Þ
uðz; z2Þ

; (5.5)

has constant argument on each of the circles fCk jkZ0; 1;.;Mg.
Proof. First consider points z on C0. There,

F2ðz;z1;z2ÞZ
uðz;z1Þ
uðz;z2Þ

Z
�uðzK1;fjðz1ÞÞ
�uðzK1;fjðz2ÞÞ

; by ð3:4Þ;

Z
�uðfjðz1Þ;zK1Þ
�uðfjðz2Þ;zK1Þ

; by ð4:3Þ;

Z
�uð�qjðzK1

1 Þ;zK1Þ
�uð�qjðzK1

2 Þ;zK1Þ
; by ð3:5Þ;

9>>>>>>>>>=
>>>>>>>>>;

(5.6)
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but we can now use the transformation property (4.4) to deduce

F2ðz;z1;z2ÞZbjð�z
K1

;�z
K1Þ �uðz

K1
1 ;zK1Þ

�uðzK1
2 ;zK1Þ

Z
�uðzK1;zK1

1 Þ
�uðzK1;zK1

2 Þ
; by ð4:3Þ;

Z
z2

z1
F2ðz;z1;z2Þ ; by ð4:8Þ:

9>>>>>>>>=
>>>>>>>>;

(5.7)

Now consider points z on any of the enclosed circles fCk jkZ1;.;Mg. On Ck ,

F2ðz;z1;z2ÞZ
uðz;z1Þ
uðz;z2Þ

Z
�uðfkðzÞ;fjðz1ÞÞ
�uðfkðzÞ;fjðz2ÞÞ

; by ð3:4Þ;

Z
�uð�qkðzK1Þ;�qjðzK1

1 ÞÞ
�uð�qkðzK1Þ;�qjðzK1

2 ÞÞ
; by ð3:5Þ:

9>>>>=
>>>>;

(5.8)

Now, on use of the transformation property (4.4),

F2ðz;z1;z2ÞZbkðqjð�z
K1
1 Þ;qjð�z

K1
2 ÞÞ

�uðzK1;�qjðzK1
1 ÞÞ

�uðzK1;�qjðzK1
2 ÞÞ

;

Zbkðqjð�z
K1
1 Þ;qjð�z

K1
2 ÞÞ

�uð�qjðzK1
1 Þ;zK1Þ

�uð�qjðzK1
2 Þ;zK1Þ

; by ð4:3Þ:

Zbkðqjð�z
K1
1 Þ;qjð�z

K1
2 ÞÞbjð�z

K1
;�z

K1Þ �uðz
K1
1 ;zK1Þ

�uðzK1
2 ;zK1Þ

; by ð4:4Þ;

Zbkðqjð�z
K1
1 Þ;qjð�z

K1
2 ÞÞ �uðz

K1;zK1
1 Þ

�uðzK1;zK1
2 Þ

; by ð4:3Þ and ð4:5Þ;

Zbkðqjð�z
K1
1 Þ;qjð�z

K1
2 ÞÞz2

z1
F2ðz;z1;z2Þ; by ð4:8Þ:

9>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>;

(5.9)

Thus, F2ðz; z1; z2Þ has constant argument on each of the circles fCk jkZ
0; 1;.;Mg. &

Proposition 5.3. Let z1 and z2 be any two distinct ordinary points of a given
Schottky group. Then the function

F3ðz; z1; z2Þh
uðz; z1Þuðz; �z

K1
1 Þ

uðz; z2Þuðz; �z
K1
2 Þ

; (5.10)

has constant argument on each of the circles fCkjkZ0; 1;.;Mg.
Proof. The proof is analogous to those of the previous two propositions. &
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6. Conformal mapping to circular slit domain

Koebe (1914) established the existence of a conformal mapping from a given
multiply connected region to a circular disc contained concentric circular arc slits
(see also Schiffer 1950; Nehari 1952) but gives no explicit formulae. It turns out
that the conformal mapping from the circular domain Dz in the z-plane to the
circular-slit domain Dh in the h-plane can be constructed using the Schottky–
Klein prime function. The author has not found an explicit construction of this
particular mapping (from a circular domain to a circular-slit domain) anywhere
in the literature so what follows appears to be a subsidiary new result of the
present paper.

Suppose that the point a in the domain Dz is to map to hZ0. Provided that
the correspondence between no other points between the z and z-planes has been
specified, one is free to arbitrarily specify the value of a. The conformal map h(z)
taking the circular domain Dz to the circular-slit domain Dh is given by

hðzÞZ uðz;aÞ
jajuðz; �aK1Þ : (6.1)

First, let us verify that h(z) has constant modulus on all the circles
fCj jjZ0; 1;.;Mg. For points z on C0,

hðzÞ Z
1

jaj
�uðzK1; �aÞ
�uðzK1;aK1Þ

;

Z jaj uðz; �a
K1Þ

uðz;aÞ ; by ð4:8Þ;

Z
1

hðzÞ ;

9>>>>>>>>=
>>>>>>>>;

(6.2)

where we have used the fact that �zZzK1 on C0. Thus the image of C0 lies on the
unit circle L0 in the h-plane.

On the other hand, for points z on any one of the interior circles fCj jjZ
1;.;Mg,

hðzÞ Z
1

jaj
�uðfjðzÞ; �aÞ
�uðfjðzÞ;aK1Þ ; by ð3:4Þ;

Z
1

jaj
�uð�qjðzK1Þ; �aÞ
�uð�qjðzK1Þ;aK1Þ

; by ð3:5Þ:

9>>>>=
>>>>;

(6.3)

But now the transformation property (4.4) can be used to deduce that

hðzÞ Z
1

jaj bjða; �a
K1Þ �uðzK1; �aÞ

�uðzK1;aK1Þ
; by ð4:4Þ;

Z bjða; �aK1Þjaj uðz; �a
K1Þ

uðz;aÞ ; by ð4:8Þ;

Z bjða; �aK1Þ 1

hðzÞ :

9>>>>>>>>=
>>>>>>>>;

(6.4)
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(6.4) immediately implies that, on Cj ,

jhðzÞj2 Zbjða; �aK1Þ: (6.5)

On use of (4.5), a formula for bjða; �aK1Þ is

bjða; �aK1ÞZ
Y
qk2Qj

ðaKqkðBjÞÞð�aK1KqkðAjÞÞ
ðaKqkðAjÞÞð�aK1 KqkðBjÞÞ

: (6.6)

It is clear from (6.5) that the quantities bjða; �aK1Þ must be real and positive, but
this is not immediately apparent from the formula (6.6). This is shown explicitly
in an appendix of Crowdy & Marshall (2005).

We now briefly outline why C0 maps to the whole of L0 while the circles
fCj jjZ1;.;Mg map to finite-length circular slits. Since h(z) is meromorphic in
Dz, by the argument principle, since h(z) has just one simple zero in Dz then

1Z
1

2pi #
vDz

hz

h
dzZ

1

2pi
½log hðzÞ�vDz

; (6.7)

where vDz denotes the directed boundary of Dz (i.e. C0 traversed in an
anticlockwise direction and all the fCj jjZ1; .; Mg traversed in a clockwise
direction) and the square brackets denote the change in value of the function
enclosed in the brackets on making a single traversal of this boundary. But a
natural way to pick a branch of the function log h(z) is to join the logarithmic
singularities at a and �aK1 with a branch cut in the fundamental region and to
similarly join all pairs of equivalent points in all equivalent regions. Then log h(z)
does not change value on traversing any of the Cj for jZ1,.,M since Cj does not
cross any of these branch cuts. This means that the circles fCj jjZ1;.;Mg map
to circular slits in the h-plane because the change in argument of h(z) is zero on
traversing fCj jjZ1;.;Mg (so the image in the h-plane does not encircle the
origin). The same is not true of C0 owing to the presence of the branch cut joining
a and �aK1. Since the integral around all the enclosed circles is zero, it can be
deduced from (6.7) that the change in argument of h(z) around C0 is precisely 2p.
This means that the image of C0 under the map h(z) encircles hZ0 exactly once
so that the image is the entire unit circle L0.

The function h(z) in (6.1) is an explicit construction of a function f(z; a)
introduced in a more abstract setting in eqn (A1.21) of Schiffer (1950). There, it
is constructed from the first-type Green’s function of some given domain and it is
proven that this function conformally maps that given domain univalently on to
the interior of a unit circle slit along M circular arcs around the origin. Here, we
have essentially chosen the given domain to be Dz and explicitly constructed the
relevant f(z; a) (here, the function h(z)).

Finally, the zeros, fgðjÞ
1 ;g

ðjÞ
2 jjZ1;.;Mg, of hz are purely functions of the

chosen a and the conformal moduli fqj ; dj jjZ1;.;Mg.
7. Properties of the S–C mapping function

Let the conformal map z(h) map the circular-slit domain Dh to the bounded
polygonal region Dz. In this section, the properties required of this function will
be outlined.
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First, by definition, z(h) must be an analytic function everywhere inside Dh.
Furthermore, it must have branch point singularities on the circular arcs
fLj jjZ0; 1;.;Mg. Define the prevertices (Driscoll & Trefethen 2002) in the
z-plane to be the points

fað0Þk jk Z 1;.;n0g (7.1)

on C0, and the points

faðjÞk jk Z 1;.;njg (7.2)

on each of the enclosed circles fCj jjZ1;.;Mg.
Now let the image of the point a

ðjÞ
k under the mapping h(z) be ~a

ðjÞ
k so that

~a
ðjÞ
k ZhðaðjÞk Þ: (7.3)

Then, locally, we must have

zhð~a
ðjÞ
k ÞZ ðhK ~a

ðjÞ
k Þb

ðjÞ
k f ðhÞ; (7.4)

where f (h) is some function that is analytic at hZ ~a
ðjÞ
k . Equivalently, if

considering the composed function z(z)Zz(h(z)), we must have

zzða
ðjÞ
k ÞZ ðzKa

ðjÞ
k Þb

ðjÞ
k gðzÞ; (7.5)

where g(z) is some function that is analytic at zZa
ðjÞ
k . Except for these branch

point singularities, the mapping must be analytic at all other points on the
circular arcs.

Next, in order that the segments of the circular arcs fLj jjZ0; 1;.;Mg
between these branch point singularities map to straight-line segments in the z-
plane, the mapping function must satisfy the property that the quantity

hzhðhÞ (7.6)

has piecewise-constant argument on all the circular arcs fLj jjZ0; 1;.;Mg. To
see this, consider the kth line segment of the polygon Pj in the z-plane. On this
line, it is known from (2.3) that

�z Z e
ðjÞ
k zCk

ðjÞ
k ; (7.7)

for some constants e
ðjÞ
k and k

ðjÞ
k . This means that, on the portion of the circular arc

Lj mapping to this line segment, differentiation with respect to z means that we
must have

d�z

dh

dz

dh

� �K1

Z e
ðjÞ
k : (7.8)

But, on this portion of Lj , we also have

�z Z zðhÞ Z �zð�hÞZ �zðr2j hK1Þ: (7.9)
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Therefore, (7.8) becomes

r2j h
K1�zhðr2j hK1Þ
hzhðhÞ

ZKe
ðjÞ
k : (7.10)

Since �hZr2j h
K1 on Lj , (7.10) is equivalent to

hzhðhÞ ZKhzhðhÞe
ðjÞ
k (7.11)

on Cj. Thus, on this portion of Lj, hzh(h) has a constant argument. Clearly, hzh
must have piecewise constant argument on all segments of each of the arcs
fLj jjZ0; 1;.;Mg.

Similar arguments reveal that the equivalent conditions in the original z-plane
are that, on Cj, the quantity

ðzKdjÞzzðzÞ (7.12)

must have piecewise constant argument. A difficulty then arises because it is
different functions of z which must have piecewise constant argument on the
various circles in the z-plane. The transformation to the h-plane ensures at least
that it is the same function of h, i.e. the function hzh, which must have piecewise
constant argument on all the circular arcs in the h-plane.
8. Construction of the S–C mapping function

The conformal mapping z(z) from Dz to Dz will now be constructed. First, pick
an arbitrary point gj on each of the circles fCj jjZ0;.;Mg. It is required to
construct a mapping from Dh to Dz satisfying the condition that hzh(h) has
piecewise constant argument on the segments of the circular arcs fLj jjZ
0;.;Mg between the prevertices f~aðjÞk g. But this is equivalent to the condition
that hzh has piecewise constant argument on the segments of the original circles

fCj jjZ0;.;Mg between the prevertices faðjÞk g. We must also ensure that hzh
has the requisite branch point singularities on these circles in the z-plane.

Consider the function

Yn0
kZ1

ðF1ðz; a
ð0Þ
k ;g0Þb

ð0Þ
k

YM
jZ1

Ynj
kZ1

ðF2ðz; a
ðjÞ
k ;gjÞÞb

ðjÞ
k : (8.1)

Since this function is a product of various powers of the special functions F1 and
F2 considered in propositions 5.1 and 5.2 then it will have piecewise constant
argument on all the circles fCj jjZ0;.;Mg. It also has the correct branch point

singularities at the points faðjÞk jkZ1;.;njg. However, in addition to the required
branch points, on use of the two relations (2.2) it is easy to check that this
function also has a second-order zero at g0 andM second order poles at the points
fgj jjZ1;.;Mg.

Now multiply (8.1) by the quantity

YM
jZ1

F2ðz;gj ;g
ðjÞ
1 ÞF2ðz;gj ;g

ðjÞ
2 Þ; (8.2)
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which can be seen to have a second-order zero at the M points fgj jjZ1;.;Mg
and simple poles at the 2M points fgðjÞ

1 ;g
ðjÞ
2 jjZ1;.;Mg. Multiplying (8.1) by

this function therefore has the effect of shifting the M second order poles at the
arbitrarily chosen points fgj jjZ1;.;Mg to produce instead 2M simple poles of

the function at the points fgðjÞ
1 ;g

ðjÞ
2 jjZ1;.;Mg. Recall from (2.5) that the latter

set of points are precisely the positions of the zeros of the conformal mapping
hz(z)—a fact that will be useful in what follows. Note crucially that since (8.2) is
a product of F2-functions, we have effected this shift in the poles of the function
without affecting the important property that it has piecewise constant argument
on the circles fCj jjZ0;.;Mg.

The new modified function, which can be written

Yn0
kZ1

ðF1ðz; a
ð0Þ
k ;g0ÞÞb

ð0Þ
k

YM
jZ1

F2ðz;gj ;g
ðjÞ
1 ÞF2ðz;gj ;g

ðjÞ
2 Þ
Ynj
kZ1

ðF2ðz; a
ðjÞ
k ;gjÞÞb

ðjÞ
k ; (8.3)

is now multiplied by a second function given by

F3ðz;a;g0Þ: (8.4)

This removes the second-order zero at the arbitrarily chosen point g0 and
replaces it with two first-order zeros at the points a and �aK1. Recall that a is the
point in the z-plane which maps to hZ0 in Dh. Again, because (8.4) is one of the
F3-functions introduced in proposition 5.3, this shift in the zeros of the function
has been effected without altering the property that it has piecewise
constant argument on the circles fCj jjZ0;.;Mg. The new function can now
be written as

F3ðz;a;g0Þ
Yn0
kZ1

ðF1ðz;a
ð0Þ
k ;g0Þb

ð0Þ
k

YM
jZ1

F2ðz;gj ;g
ðjÞ
1 ÞF2ðz;gj ;g

ðjÞ
2 Þ
Ynj
kZ1

ðF2ðz;a
ðjÞ
k ;gjÞÞb

ðjÞ
k :

(8.5)

This representation as a product of the functions F1, F2 and F3 highlights the fact
that it has piecewise constant argument on the circles fCj jjZ0;.;Mg.
However, it can be rewritten, after cancellations, as

UðhÞh uðz;aÞuðz; �aK1ÞQM
jZ1 uðz;g

ðjÞ
1 Þuðz;gðjÞ

2 Þ

Yn0
kZ1

½uðz; að0Þk Þ�b
ð0Þ
k

YM
jZ1

Ynj
kZ1

½uðz; aðjÞk Þ�b
ðjÞ
k ; (8.6)

an equation which defines the function U(h). Consider now the function

V ðhÞZUðhÞ
hzh

; (8.7)

where zh is the derivative of the S–C mapping we are seeking. First, note that
V(h) is analytic everywhere inside and on the unit h-circle L0. This is because
both U(h) and hzh have the same branch point singularities at the prevertices

f~aðkÞj g on fLj jjZ0; 1;.;Mg and so these cancel in the quotient. Note also that
the zero of the denominator at hZ0 is removed by the zero of U(z) at zZa.
Further, by the construction of U(h), both U(h) and hzh have piecewise constant
argument on each segment between the branch points on L0 and have the same
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changes in argument on passing through the branch points fað0Þj jjZ1;.;n0g.
From this we can deduce that, everywhere on L0, the argument of V(h) is a
constant. Equivalently,

V ðhÞ Z eV ðhÞ; on L0; (8.8)

for some complex constant e. But (8.8) can be written

�V ðhK1ÞZ eV ðhÞ; (8.9)

which furnishes the analytic continuation of V(h) to the exterior of L0. In
particular, V(h) is seen to be analytic everywhere outside the unit h-circle L0 and
is bounded at infinity. V(h) is therefore an entire function bounded at infinity
and, by Liouville’s theorem, is necessarily a constant. It can be concluded that

hzhðhÞZ ~B
uðz;aÞuðz; �aK1ÞQM

jZ1 uðz;g
ðjÞ
1 Þuðz;gðjÞ

2 Þ

Yn0
kZ1

½uðz; að0Þk Þ�b
ð0Þ
k

YM
jZ1

Ynj
kZ1

½uðz; aðjÞk Þ�b
ðjÞ
k ; (8.10)

where ~B is some complex constant. But, by the chain rule,

hzhðhÞZhðzÞ dz
dz

dz

dh
; (8.11)

which implies the following expression for dz/dz:

dz

dz
Z

~B

hðzÞ
dhðzÞ
dz

uðz;aÞuðz; �aK1ÞQM
jZ1 uðz;g

ðjÞ
1 Þuðz;gðjÞ

2 Þ

Yn0
kZ1

½uðz; að0Þk Þ�b
ð0Þ
k

YM
jZ1

Ynj
kZ1

½uðz; aðjÞk Þ�b
ðjÞ
k :

(8.12)

To check the consistency of the formula, first note that the pole of the right-hand
side at zZa (arising because h(z) vanishes there) is a removable pole owing to
the presence of u(z, a) in the numerator. Second, the simple zeros of dh/dz at the

points fgðjÞ
1 g

ðjÞ
2 jjZ1;.;Mg (cf. §2) do not produce unwanted zeros of dz/dz at

these points since they are exactly cancelled by the simple zeros appearing in the
denominator. By direct calculation based on the formula (6.1), we obtain

dh

dz
Z

1

jaj
uzðz;aÞuðz; �aK1ÞKuzðz; �aK1Þuðz;aÞ

uðz; �aK1Þ2
� �

: (8.13)

On substitution into (8.12),

dz

dz
ZBSðzÞ

Yn0
kZ1

½uðz; að0Þk Þ�b
ð0Þ
k

YM
jZ1

Ynj
kZ1

½uðz; aðjÞk Þ�b
ðjÞ
k ; (8.14)

where

SðzÞh uzðz;aÞuðz; �aK1ÞKuzðz; �aK1Þuðz;aÞQM
jZ1 uðz;g

ðjÞ
1 Þuðz;gðjÞ

2 Þ

 !
; (8.15)
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and B is some constant. Equation (8.14) is the required formula for dz/dz.
On integration of (8.14) with respect to z, the final formula (1.1) is obtained,
with A being a constant of integration.
(a) The simply connected case

In the case of a simply connected domain there are no enclosed circles and
hence no non-trivial generating Möbius maps. The Schottky group is therefore
the trivial group and the associated Schottky–Klein prime function is just

uðz;gÞZ ðzKgÞ: (8.16)

Moreover, S(z) reduces to a constant in this case. In turn, (1.1) reduces to the
well-known S–C mapping from the unit disc (Driscoll & Trefethen 2002).
(b) The doubly connected case

Without loss of generality, any doubly connected domain can be obtained by a
conformal mapping from some annulus q!jzj!1 in a parametric z-plane where
the value of the parameter q is determined by the image domain. In this case,
d1Z0 and q1Zq, so that the single Möbius map given by (3.5) is

q1ðzÞZ q2z: (8.17)

The Schottky group in this case has just one generator and is sometimes referred
to as the loxodromic group. Clearly, its elements are fqj1jj2Zg. The associated
Schottky–Klein prime function is

uðz;gÞZK
g

C2
Pðz=g; qÞ; (8.18)

where

Pðz; qÞhð1KzÞ
YN
kZ1

ð1Kq2kzÞð1Kq2kzK1Þ (8.19)

and

Ch
YN
kZ1

ð1Kq2kÞ: (8.20)

The transformation properties of P(z, q) corresponding to (4.4) and (4.8),
respectively, are

Pðq2zgK1
1 ; qÞ

Pðq2zgK1
2 ; qÞ Z

g1

g2

PðzgK1
1 ; qÞ

PðzgK1
2 ; qÞ ;

PðzK1; qÞZKzK1Pðz; qÞ:

9>=
>; (8.21)

It can also be shown directly from the infinite product definition that

Pðq2z; qÞZKzK1Pðz; qÞ: (8.22)

By using a rotational degree of freedom in the mapping function we can assume,
without loss of generality, that the point a mapping to hZ0 is real. Then, on use
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of the relations

uðz;aÞ ZKaCK2PðzaK1; qÞ; uðz;aK1Þ ZKaK1CK2Pðza; qÞ;

uzðz;aÞZKCK2PzðzaK1; qÞ; uzðz;aK1ÞZKCK2Pzðza; qÞ;

)
(8.23)

S(z) then takes the form

SðzÞZ aK1PzðzaK1; qÞPðza; qÞKaPzðza; qÞPðzaK1; qÞ
g1g2PðzgK1

1 ; qÞPðzgK1
2 ; qÞ : (8.24)

Consider now the function T(z, q)hz2S(z), which, after some rearrangement, can
be written

Tðz; qÞZ z
KðzaK1; qÞKKðza; qÞ

Lðz; qÞ

� �
; (8.25)

where

Kðz; qÞZ z
Pzðz; qÞ
Pðz; qÞ ; Lðz; qÞZ PðzgK1

1 ; qÞPðzgK1
2 ; qÞ

PðzaK1; qÞPðza; qÞ : (8.26)

Note first that T(z, q) is a meromorphic function everywhere except at zZ0 or
N, which are singular points of the loxodromic group. It is easy to make use of
(8.21) and (8.22) to verify that

Kðq2z; qÞZKðz; qÞK1; Lðq2z; qÞZg1g2Lðz; qÞ: (8.27)

On use of (8.27), it follows that

Tðq2z; qÞZ q2

g1g2

Tðz; qÞ: (8.28)

But, by the choice of taking a to be real, the mapping h(z) satisfies

�hðzÞZ hðzÞ; �hzðzÞZhzðzÞ: (8.29)

Therefore, if g1 is a zero of hz so that hz(g1)Z0, then

hzðg1Þ Z �hzð�g1ÞZhzð�g1ÞZ 0: (8.30)

Thus, �g1 is also a zero of hz so that g2Z �g1. Also, since g1 is on the circle jzjZq, it
is clear that g1g2Zg1�g1Zq2. It follows from (8.28) that

Tðq2z; qÞZTðz; qÞ: (8.31)

Meromorphic functions satisfying the functional equation (8.31) are known as
loxodromic functions (Valiron 1947). (Alternatively, using a simple logarithmic
transformation, the analysis here can be rephrased in terms of the more familiar
elliptic functions.) The fundamental region for this group is the annulus q!jzj!
qK1. Note that T(z, q) is analytic everywhere in this fundamental region. It
follows from Liouville’s theorem for loxodromic functions (Valiron 1947) that
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T(z, q) must be a constant function. Thus, (8.14) produces the result

zz Z
~B

z2

Yn0
kZ1

½Pðz=að0Þk ; qÞ�b
ð0Þ
k

Yn1
kZ1

½Pðz=að1Þk ; qÞ�b
ð1Þ
k ; (8.32)

for some constant ~B. On further use of the transformation property (8.22), as
well as (2.2), this can be rewritten as

zz ZB
Yn0
kZ1

½Pðz=að0Þk ; qÞ�b
ð0Þ
k

Yn1
kZ1

½Pðq2z=að1Þk ; qÞ�b
ð1Þ
k ; (8.33)

for some constant B. The formula given in DeLillo et al. (2001) and Driscoll &
Trefethen (2002) is

zðzÞZACB

ðzYm
kZ1

Q
z0

qz0;k

� �� �Kb0;k Yn
kZ1

Q
qz0

z1;k

� �� �b1;k
dz0; (8.34)

where

QðzÞh
YN
kZ0

ð1Kq2kC1zÞð1Kq2kC1zK1Þ; (8.35)

and where A and B are constants. It is easy to check from (8.19) and (8.35) that

QðzqK1ÞZPðz; qÞ: (8.36)

Finally, on use of (8.36), the integral of (8.33) is seen to be identical to (8.34)
with appropriate identification of the respective notations. This provides an
important check on the validity of the new formula (1.1). It also provides a new
derivation of the S–C mapping to doubly connected polygonal domains.
9. Analysis of a triply connected example

Consider the construction of S–C mappings to simply connected polygonal
regions. While the functional form of the mapping function is known up to the
specification of a finite set of parameters, the actual construction of the map to
any given target polygonal region requires the solution of a parameter problem to
determine the location of the pre-vertices in the z-plane. Chapter 1 of the
monograph by Driscoll & Trefethen (2002) provides an instructive general
discussion of this parameter problem. For multiply connected domains, there is
still a parameter problem to solve, but now there are additional parameters—the
conformal moduli fqj ; dj jjZ1;.;Mg in the pre-image z-plane—which must also
be determined. The parameter problem has been well-studied in the case of
simply connected domains, and even for doubly connected domains (Dappen
1987, 1988; Hu 1998), and much work remains to be done to find effective
numerical methods to solve the parameter problem in the multiply connected
case now that general formulae for the mapping have been found.

To check the validity and viability of formula (1.1) we now present a triply
connected example which negotiates the parameter problem in the simplest way.
The target domain is chosen to have sufficient geometrical symmetry that the
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Figure 4. Definition sketch of the parameters f1, f2 and f3 in the z-plane for the triply connected
example. The circles denote the positions of the prevertices.
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complications of solving the parameter problem are significantly reduced. This is
not a limitation of the derived formula; more complicated non-symmetric
domains can also be constructed on solution of the relevant parameter problem.

Consider a triply connected target region consisting of an outer rectangle,
centred at the origin zZ0, with two equal enclosed rectangles excised. The domain
is taken to be reflectionally symmetric about both the real and imaginary axes in
the z-plane. A conformal mapping from a conformally equivalent triply connected
circular domain to this target domain will be constructed based on (1.1).

The parameter A can be chosen so that the origin is correctly placed
(i.e. z(0)Z0), while B can be thought of as governing the area of the outer
rectangle. Here we chose B so that the outer rectangle extends horizontally
between G1. By the symmetry of the target domain, we expect the
prevertices on the unit z-circle to be symmetrically disposed. We therefore take
them to be at

eGif1 ; eGiðpKf1Þ; (9.1)

where f1 is an adjustable real parameter. Figure 4 shows a schematic illustrating
f1 as the argument of the branch point onC0. It can be thought of as governing the
aspect ratio (or height) of the outer rectangle.

With regard to the enclosed polygons, by the symmetry we expect

q1 Z q2 Z q; d1 ZKd2 Z d; (9.2)

where d is taken to be real so that C1 and C2 are centred on the real axis. The two
real parameters q and d will be picked arbitrarily. This can be thought of as
specifying the centre and area of the two symmetrically enclosed rectangles.

It is easy to deduce from the interior angles of the polygonal region that we
must take

b
ð0Þ
k ZK1

2
; k Z 1; 2; 3; 4; b

ðjÞ
k Z 1

2
; k Z 1; 2; 3; 4; and j Z 1; 2: (9.3)
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We also make the choice aZ0. In this case, the formula (6.1) is not well defined
and must be replaced by the formula

hðzÞZ uðz; 0Þ
uðz;NÞ Z

zu0ðz; 0Þ
u0ðz;NÞ ; (9.4)

which is the appropriate limit of (6.1) as a/0. With a, q and d now specified, the

values of g
ðjÞ
1 and g

ðjÞ
2 for jZ1, 2 can now be determined. This is done using a

simple one-dimensional Newton iteration on the argument, f̂ say, of the point

g
ð1Þ
1 relative to the point d. The equation to be solved is that hz as given by the

derivative of (9.4) vanishes at zZdCq eif̂. Then it follows from the symmetry
that

g
ð1Þ
1 Z dCq eif̂; g

ð1Þ
2 Z dCq eKif̂;

g
ð2Þ
1 ZKdCq eiðpKf̂Þ; g

ð2Þ
2 ZKdCq eKiðpKf̂Þ:

(9.5)

With q and d specified so that the area and centre of the enclosed rectangles have
essentially been set, one expects there to remain only a single real degree of
freedom associated with each of the enclosed rectangles. This degree of freedom
can be thought of as governing the aspect ratio of these rectangles. By the
symmetry, we therefore take the prevertices on C1 to be at

dCq eGif2 ; dCq eGiðpKf3Þ; (9.6)

where f2 and f3 are real parameters. Only one of these two parameters, f2 say,
should be freely specifiable. The value of f3 is then determined by the condition
that the lengths of the sides of the image polygon should be such that the polygon
closes. By the symmetry, we expect the pre-vertices on C2 to be at

KdCq eGif3 ; KdCq eGiðpKf2Þ: (9.7)

Figure 4 shows a schematic. In this way, the parameter problem reduces to
that of finding the value of the single parameter f3.

Figure 5 shows the z- and h-planes for qZ0.2 and dZ0.5 under the mapping
(9.4). Figure 6 shows triply connected polygonal regions for different choices of
f2 with f1Zp/4. When f2Z0, f3Z0 and the outer rectangle contain two
horizontal slits sitting on the real axis. As f2 increases, these slits turn into
rectangles with large aspect ratios. Eventually, it is found that there is a critical
value of f2 at which f2 and f3 coalesce and sum to p. This means that the two
square root branch points at f2 and f3 have coalesced to produce a simple zero
on the interior circles C1 and C2, which results in the formation of a vertical slit
centred on the real axis in the z-plane. As f2 increases from zero to this critical
value, the aspect ratio of the enclosed rectangles decreases. Various
configurations between the two limiting cases of horizontal and vertical
enclosed slits are shown in figure 6. A graph of the solution of the parameter
problem for f3 as a function of f2 is shown in figure 7. For comparison, a
similar set of polygonal regions for the case of conformal moduli given by
qZ0.15 and dZ0.6 are shown in figure 8.
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Figure 6. Typical polygons for qZ0.2, dZ0.5, f1Zp/4 and f2Z0, 0.5, 0.75, 1, 1.25 and 1.6. The
interior polygons exhibit a gradual transition, through a sequence of rectangles of differing aspect
ratios, from a horizontal slit to a vertical slit.
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Figure 5. The z-plane and h-plane under the map (9.4) for parameter values qZ0.2, dZ0.5. The circles
C1 and C2 are shown along with their images, L1 and L2, under the conformal mapping (9.4).
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10. Discussion

By use of elements of classical function theory, the formula (1.1) for the S–C
mapping from a bounded, multiply connected circular domain to a bounded,
multiply connected polygonal domain has been constructed. It reduces to well-
known formulae in the case of simply and doubly connected domains. Some
example triply connected domains have been constructed to demonstrate the
efficacy of the formula in practice. The formulation extends naturally to the case
of unbounded polygonal domains and the details are presented elsewhere
(Crowdy submitted).
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There have been a number of different derivations of the formula (8.34) for the
S–C mapping of a doubly connected annulus. Akhiezer (1928; see also Akhiezer
1970) appeared to be the first to derive it using elements of elliptic function
theory. Komatu (1945) independently derived it much later using the Villat
integral representation for functions analytic in the annulus. The monograph by
Henrici (1986) contains another derivation based on use of the argument
principle. DeLillo et al. (2001) give yet another argument based on consideration
of a pre-Schwarzian function and use of the maximum principle for harmonic
functions. Also, Driscoll & Trefethen (2002) have provided a geometrical
interpretation of the construction in DeLillo et al. (2001). In this paper, as a
special case of a more general formula giving the S–C formula for multiply
connected polygons of arbitrary finite connectivity, yet another construction of
the doubly connected formula, distinct from all those just listed, has been
presented. Here, the approach was motivated by recognition of the function Q(z)
defined in (8.35) as the particular manifestation of a Schottky–Klein prime
function relevant to the annulus. By considering prime functions relevant to
more general circular domains, and by making use of an intermediate h-plane,
the mapping formula (1.1) has been constructed in a natural way.

The consequence of all this is that it is now possible to write down, in a concise
fashion, a general formula for the S–C mapping to a bounded polygonal domain
in any finite connectivity. It is

zðzÞZACB

ðz
SM ðz0Þ

Yn0
kZ1

½uðz0; að0Þk Þ�b
ð0Þ
k

YM
jZ1

Ynj
kZ1

½uðz0; aðjÞk Þ�b
ðjÞ
k dz0; (10.1)

where the second double product is not included, of course, if MZ0. Only the
definition of SM(z) changes with the connectivity, specifically,

SM ðzÞZ

1 M Z 0;

1

z2
M Z 1;

uzðz;aÞuðz; �aK1ÞKuzðz; �aK1Þuðz;aÞQM
jZ1 uðz;g

ðjÞ
1 Þuðz;gðjÞ

2 Þ
MR2:

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

(10.2)

It is expected that the function SM(z) for MR2 can be rewritten in a number of
different ways. In particular, it should be possible to rewrite it so that there is
ultimately no evidence of the intermediate h-plane used in the construction (note
that (10.2) contains vestiges of the slit-mapping h(z) in the appearance of

parameters a and fgðjÞ
1 ;g

ðjÞ
2 g). One way of rewriting this function has been found

in Crowdy (submitted), but the subject requires further investigation. While any
such re-expression of SM(z) is desirable, it is no impediment to the direct
implementation of formula (10.1) in practice.

A principal contribution of this paper is the association of the general S–C
formula with the Schottky–Klein prime function. We believe this association to
be significant, especially when it comes to optimizing the numerical implemen-
tation of the S–C mapping formula to multiply connected domains. This is
because the Schottky–Klein prime function has intimate connections with the
Proc. R. Soc. A (2005)
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more commonly employed Riemann theta functions, which often have better
convergence properties than the former. Baker (1995) cites explicit relations
between the Schottky–Klein prime function and the Riemann theta function.
Indeed, Q(z, q) defined in (8.35) is related to the first Jacobi theta function
Q1(t, q) by

QðzqK1; qÞZK
ieKt=2

Cq1=4
Q1ðit=2; qÞ (10.3)

where tZKlog z and C is defined in (8.20) (Whittaker & Watson 1927). Just as
Hu (1998) has found that different representations of the first Jacobi theta
function can lead to improved convergence properties when performing a
numerical implementation of the doubly connected mapping formula (8.34),
similar benefits of convergence may be afforded by rewriting formula (10.1) in
terms of Riemann theta functions. This is a subject of ongoing investigation.
There are many interesting open questions to be answered concerning the
numerical issues associated with the construction of multiply connected S–C
mappings based on the formula (10.1).

The author acknowledges useful discussions with J. Marshall. The author also thanks Alan Elcrat
for sending him a preprint of DeLillo et al. (2005).
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