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Explicit formulae for the Kirchhoff–Routh path functions (or Hamiltonians) governing
the motion of N-point vortices in multiply connected domains are derived when all
circulations around the holes in the domain are zero. The method uses the Schottky–
Klein prime function to find representations of the hydrodynamic Green’s function in
multiply connected circular domains. The Green’s function is then used to construct the
associated Kirchhoff–Routh path function. The path function in more general multiply
connected domains then follows from a transformation property of the path function
under conformal mapping of the canonical circular domains. Illustrative examples are
presented for the case of single vortex motion in multiply connected domains.
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1. Introduction

The study of point vortex dynamics is an important area of fluid dynamics
already commanding a vast literature. The review by Aref et al. (2002) provides
a recent survey of results involving vortex equilibria (or vortex crystals), mainly
in unbounded and periodic configurations, while the recent monograph by
Newton (2002) gives a broader perspective of the general N-vortex problem,
including discussions of vortex motion in unbounded and bounded planar
domains, as well as on curved surfaces such as the surface of a sphere.

Although the motion of point vortices in unbounded domains has received
much attention, the theory of point vortex motion in domains bounded by
impenetrable walls is much less developed. The simplest example is a single-point
vortex adjacent to an infinite straight wall. Such a vortex translates at constant
speed, maintaining a constant distance from the wall. This motion is
conveniently understood as being induced by an opposite circulation ‘image’
vortex behind the wall. This is perhaps the simplest example of the celebrated
‘method of images’ (Milne-Thomson 1968). Several more elaborate examples
involving simply connected fluid regions are given in ch. 3 of Newton (2002)
while others are described by Saffman (1992). Many of these examples rely on the
transformation properties, under conformal mapping, of what is known as the
Kirchhoff–Routh path function, which is essentially the Hamiltonian governing
the vortex motion. The Hamiltonian formulation of point vortex dynamics and
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the Kirchhoff–Routh path function date back to the work of Kirchhoff & Routh
(Routh 1881). It was reappraised much later by Lin (1941a,b), who considered
multiply connected domains, and more recently by Flucher & Gustafsson (1997)
(see also ch. 15 of Flucher 1999), who have analysed various aspects of the
general boundary-value problem arising from the problem of point vortex motion
in bounded domains.

The motion of a single vortex in bounded, simply connected domains is
relatively well studied. Gustafsson (1979) and Richardson (1980) have shown
that the Kirchhoff–Routh path function satisfies an elliptic Liouville equation in
the bounded domain D and is infinite everywhere on the boundary. On the
subject of N-vortex motion in multiply connected domains, the literature is
sparse. Lin (1941a) established the existence and uniqueness of a generalized
Kirchhoff–Routh path function in this case, but does not construct it explicitly or
give any specific examples.

In this paper, an analytical formula for the hydrodynamic Green’s function
introduced by Lin (1941a) is found in the class of multiply connected circular
domains. This is achieved using a special transcendental function called the
Schottky–Klein prime function (Baker 1995). A circular domain is a planar
domain all of whose boundary components are circles. By using this Green’s
function, formulae for the associated Kirchhoff–Routh path function for general
N-vortex motion in such circular domains can be constructed. However, Lin
(1941b) has also shown how to derive formulae for the Kirchhoff–Routh path
function in conformally equivalent, multiply connected domains. Thus, if a
formula for the conformal mapping from a given circular multiply connected
domain to a more general domain is known, then the path function in the new
domain can be constructed in an analytical form.
2. The hydrodynamic Green’s function

Lin (1941a) introduced a special Green’s function G(x, y; x0, y0) with respect to
the two points (x, y) and (x0, y0) in a fluid domain D in the following way. Three
separate cases of domain D (cases 1–3 below) are considered depending on
whether D is bounded or unbounded. Let MR0 be an integer. Suppose D is
bounded by MC1 impenetrable walls, and let these boundaries of D be
fCj jjZ0; 1;.;Mg. If D is bounded, then C0 will be taken as the outer boundary
with fCk jkZ1;.;Mg denoting the M enclosed boundaries. If D is unbounded
but has a boundary extending to infinity, then this infinite-length boundary
will be denoted C0. Lin’s special hydrodynamic Green’s function is the function
G(x, y; x0, y0) satisfying the following properties.
(i)
Proc.
The function

gðx; y; x0; y0ÞZKGðx; y; x0; y0ÞK
1

2p
log r0; (2.1)

is harmonic with respect to (x, y) throughout the region D including at the
R. Soc. A (2005)
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Proc.
point (x0, y0). Here, r0 is

r0 Z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxKx0Þ2CðyKy0Þ2

q
: (2.2)
(ii)
 If vG/vn is the normal derivative of G on a curve, then

Gðx; y; x0; y0ÞZAk; on Ck; k Z 1;.;M ;

#
Ck

vG

vn
dsZ 0; k Z 1;.;M ;

9>=
>; (2.3)

where ds denotes an element of arc and fAk jkZ1;.;Mg are constants.

(iii)
 Case 1. If D has a closed outer boundary C0, then

Gðx; y; x0; y0ÞZ 0 on C0: (2.4)

Case 2. If D is unbounded and extends to infinity in all directions, then over
(iv)

a very large circle of radius r0, G behaves as follows:

Gðx; y; x0; y0ÞZK
1

2p
log r0 COð1=r0Þ;

vG

vs
ZOð1=r20 Þ;

vG

vn
ZK

1

2pr0
COð1=r20 Þ;

9>>>>>>>=
>>>>>>>;

(2.5)

where vG/vs is the tangential derivative along the circle.

(v)
 Case 3. If D is unbounded but has boundaries extending to infinity, then G

behaves as follows:

Gðx; y; x0; y0ÞZ 0; on C0;

Gðx; y; x0; y0ÞZ oð1Þ; on a very large circle of radius r0:

)
(2.6)

n also established the following two lemmas.
Li
Lemma 2.1. The function G(x, y; x0, y0) defined by conditions (i)–(v) above
exists uniquely and is a generalized Green’s function satisfying the reciprocity
condition

Gðx; y; x0; y0ÞZGðx0; y0; x; yÞ: (2.7)

Lemma 2.2. If N vortices of strengths fGk j kZ1;.;Ng are present in
an incompressible fluid at the points {(xk, yk)jkZ1,.,N } in a general
region D bounded by fixed boundaries, the streamfunction of the fluid motion is
given by

jðx; y; x1; y1;.; xN ; yN ÞZj0ðx; yÞC
XN
kZ1

GkGðx; y; xk; ykÞ; (2.8)

where the properties of G are given in lemma 2.1 and j0(x, y) is the
streamfunction due to outside agencies and satisfying the boundary conditions
R. Soc. A (2005)
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of no flow through the domain boundaries. j0 is independent of the point vortex
positions.

Finally, Lin establishes the following theorem.

Theorem 2.3. For the motion of vortices of circulations fGk jkZ1;.;Ng in a
general region D bounded by fixed boundaries, there exists a Kirchhoff–Routh
function H(x1, y1,., xN, yN) such that

Gk

dxk
dt

Z
vH

vyk
; Gk

dyk
dt

ZK
vH

vxk
; (2.9)

where H(x1, y1,., xN, yN) is given by

Hðx1;y1;.;xN ;yN ÞZ
XN
kZ1

Gkj0ðxk;ykÞC
XN

k1;k2Z1

k1Ok2

Gk1Gk2Gðxk1 ;yk1 ;xk2 ;yk2Þ

K
1

2

XN
kZ1

G2
kgðxk ;yk;xk ;ykÞ: ð2:10Þ

In rescaled coordinates ð
ffiffiffiffiffi
Gk

p
xk ;

ffiffiffiffiffi
Gk

p
ykÞ equation (2.9) is a Hamiltonian system

in canonical form.
Flucher & Gustafsson (1997) refer to Lin’s special Green’s function as the

hydrodynamic Green’s function and we will adopt this terminology. They also
consider an associated function called the Robin function. It is the regular part of
the above hydrodynamic Green’s function evaluated at the singularity. If the
hydrodynamic Green’s function G is decomposed into a radially symmetric
singular part and a regular part as in equation (2.1), then the Robin function
R(x0, y0) is defined as

Rðx0; y0Þhgðx0; y0; x0; y0Þ: (2.11)

This implies that, near the singularity at (x0, y0), G can be expanded as

Gðx; y; x0; y0ÞZK
1

2p
log r0 KRðx0; y0ÞCOðr0Þ: (2.12)

It is more convenient for what follows to introduce complex coordinates zZxCiy
and �zZxK iy. Thus, if the complex number aZx0Ciy0 denotes the complex
position of the singularity of the Green’s function we will henceforth write
G(z; a) instead of G(x, y; x0, y0).
3. Construction of G in circular domains

We will now show how to construct an explicit representation for G in a general,
multiply connected circular domain of arbitrary finite connectivity. Let Dz be
the interior of the unit z-disc with M smaller circular discs excised. MZ0 is the
simply connected case. Let the boundaries of these smaller circular discs be
denoted fCj jjZ1;.;Mg. Let the unit circle jzjZ1 be denoted C0. The complex
Proc. R. Soc. A (2005)
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numbers fdj jjZ1;.;Mg are the centres of the enclosed circular discs while the
real numbers fqj jjZ1;.;Mg will denote their radii.

This special class of multiply connected domains is significant for two reasons.
First, such circular domains are known to be canonical domains for conformal
mapping to general multiply connected domains (Nehari 1952). That is, any
given multiply connected domain can be obtained by conformal mapping of a
circular domain of the same connectivity for some choice of the parameters
fdj jjZ1;.;Mg and fqj jjZ1;.;Mg. These parameters must be determined as
part of the construction of the conformal mapping and, in the latter context, are
referred to as the conformal moduli of the domain (Nehari 1952). Second, Lin
(1941b) gives explicit formulae for the transformation properties of the
Kirchhoff–Routh path function under conformal mapping. In particular, if
a conformal map z(z) maps a given region Dz in a z-plane to a region Dz in a

z-plane, and H (z) and H (z), respectively, denote the Hamiltonians in the z and
z-planes, then these Hamiltonians are related by the formula

H ðzÞðz1; �z1;.; zN ; �zN ÞZH ðzÞðz1; �z1;.; zN ; �zN ÞC
XN
kZ1

G2
k

4p
logjzzðzkÞj; (3.1)

where fzk jkZ1;.;Ng and fzkZzðzkÞjkZ1;.;Ng are the point vortex
positions in the z- and z-planes, respectively.

In combination, these two facts mean that the formulae to be derived in this
paper will theoretically yield formulae for the Kirchhoff–Routh path function for
N vortices in any multiply connected domain for which a conformal mapping
from a circular preimage region is known explicitly.
4. Schottky groups

First, define M Möbius maps ffj jjZ1;.;Mg corresponding to the conjugation
map for points on the circle Cj. That is, if Cj has equation

jzKdj j2 Z ðzKdjÞð�zK�djÞZ q2j ; (4.1)

then

�zZ �dj C
q2j

zKdj
; (4.2)

and so

fjðzÞh�dj C
q2j

zKdj
: (4.3)

If z is a point on Cj , then its complex conjugate is given by �zZfjðzÞ.
Next, introduce the Möbius maps

qjðzÞh �fjðzK1ÞZ dj C
q2j z

1K�djz
: (4.4)

Let C 0
j be the circle obtained by reflection of the circle Cj in the unit circle jzjZ1

(i.e. the circle obtained by the transformation z11=�z). It is easily verified that
the image of the circle C 0

j under the transformation qj is the circle Cj . Since the M
Proc. R. Soc. A (2005)



Figure 1. A typical circular region Dz is the region interior to the unit circle C0 (shown as a dotted
line) and exterior to the three circles C1, C2 and C3. In the case shown, Dz is quadruply connected.
The fundamental region is the unbounded region exterior to all six Schottky circles C1, C

0
1, C2, C

0
2,

C3, C
0
3. The radius of circle Cj is denoted qj while the position of its centre is dj.
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circles {Cj} are non-overlapping, so too are the M circles fC 0
j g. The (classical)

Schottky group Q is defined to be the infinite free group of mappings generated
by compositions of the M basic Möbius maps fqj jjZ1;.;Mg and their
inverses fqK1

j jjZ1;.;Mg and including the identity map. The 2M circles
fCj ;C

0
j jjZ1;.;Mg are known as the Schottky circles. Beardon (1984) gives a

general discussion of such groups. A very accessible discussion of Schottky groups
and their mathematical properties can also be found in a recent monograph by
Mumford et al. (2002).

Consider the (generally unbounded) region of the plane exterior to the 2M
circles {Cj} and fC 0

j g. A schematic is shown in figure 1. This region is known as
the fundamental region associated with the Schottky group. This fundamental
region can be understood as having two ‘halves’—the half that is inside the unit
circle but exterior to the circles {Cj} is the physical region (which we are calling
Dz), and the region that is outside the unit circle and exterior to the circles fC 0

j g
is the non-physical half.

There are two important properties of these Möbius maps that can easily be
established. The first is that

qK1
j ðzÞZ 1

fjðzÞ
; cz: (4.5)

This can be verified using the definitions (4.3) and (4.4) (or, alternatively, by
considering the geometrical effect of each map). The second property, which
follows from the first, is that

qK1
j ðzK1ÞZ 1

fjðzK1Þ
Z

1

�fjð�z
K1Þ

Z
1

qjð�zÞ
Z

1
�qjðzÞ

; cz: (4.6)
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Some special infinite subsets of mappings in a given Schottky group will be
needed in what follows. A special notation is now introduced. This notation is not
standard but is introduced here to clarify the presentation.

The full Schottky group is denoted Q. The notation iQj is used to denote all
mappings in the full group, which do not have a power of qi or q

K1
i on the left-hand

end or a power of qj or q
K1
j on the right-hand end. As a special case of this, the

notationQj simplymeans allmappings in the group that do not have any positive or
negative power of qj at the right-hand end (but with no stipulation about what
appears on the left-hand end). Similarly, jQ means all mappings that do not have
any positive or negative power of qj at the left-hand end (but with no stipulation
about what appears on the right-hand end). In addition, the single prime notation
will be used to denote a subset where the identity is excluded from the set; thus,Q0

1
denotes allmappings, excluding the identity and all transformationswith a positive
or negative power of q1 at the right-hand end. The double prime notation will be
used to denote a subset where the identity and all inverse mappings are excluded
from the set. This means, for example, that if q1q2 is included in the set, then
the mapping qK1

2 qK1
1 must be excluded. Thus, Q 00 means all mappings excluding

the identity and all inverses. Similarly, the notation 1Q
00
2 denotes all mappings,

excluding inverses and the identity, which do not have any power of q1 or q
K1
1 on

the left-hand end or any power of q2 or q
K1
2 on the right-hand end. Likewise, Q00

j

denotes allmappings, excluding the identity and all inverses, which do not have any
positive or negative power of qj at the right-hand end.
5. The Schottky–Klein prime function

Following Baker (1995), the Schottky–Klein prime function is defined as

uðz;gÞZ ðzKgÞu0ðz;gÞ; (5.1)

where the function u 0(z, g) is given by

u0ðz;gÞZ
Y
qi2Q00

ðqiðzÞKgÞðqiðgÞKzÞ
ðqiðzÞKzÞðqiðgÞKgÞ ; (5.2)

and where the product is over all mappings qi in the set Q00; u0 can also be
written as

u0ðz;gÞZ
Y
qi2Q00

fz; qiðzÞ;g; qiðgÞg; (5.3)

where the brace notation denotes a cross-ratio of the four arguments. This will be
useful later. The function u(z, g) is single valued on the whole z-plane and has a
zero at g and all points equivalent to g under the mappings of the group Q. The
prime notation is not used here to denote differentiation.

The Schottky–Klein prime function has some important transformation
properties. One such property is that it is antisymmetric in its arguments,
that is,

uðz;gÞZKuðg; zÞ: (5.4)
Proc. R. Soc. A (2005)
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This is clear from inspection of equations (5.1) and (5.2). A second important
property is given by

uðqjðzÞ;g1Þ
uðqjðzÞ;g2Þ

Z bjðg1;g2Þ
uðz;g1Þ
uðz;g2Þ

; (5.5)

where qj is any one of the basic maps of the Schottky group. A detailed derivation
of this result is given in ch. 12 of Baker (1995). A formula for bj(g1, g2) is

bjðg1;g2ÞZ
Y
qk2Qj

ðg1 KqkðBjÞÞðg2KqkðAjÞÞ
ðg1 KqkðAjÞÞðg2KqkðBjÞÞ

; (5.6)

where Aj and Bj are the two fixed points of the mapping qj satisfying

qjðAjÞZAj ; qjðBjÞZBj : (5.7)

Aj and Bj satisfy an equation of the form

qjðzÞKBj

qjðzÞKAj

Zmj e
ikj

zKBj

zKAj

; (5.8)

for some real constants mj , kj , and are distinguished by the fact that jmjj!1 in
equation (5.8). For the distribution of Schottky circles fCj ;C

0
j g considered in §4,

the prime function also has the property that

�uðzK1;gK1ÞZK
1

zg
uðz;gÞ; (5.9)

where the conjugate function �uðz;gÞ is defined by

�uðz;gÞZuð�z; �gÞ: (5.10)

A derivation of equation (5.9) is given in appendix A.
It is convenient to categorize all possible compositions of the basic maps

according to their level. As an illustration, consider the case in which there are
four basic maps fqj jjZ1; 2; 3; 4g. The identity map is considered to be the level-
zero map. The four basic maps, together with their inverses, fqK1

j jjZ1; 2; 3; 4g
constitute the eight level-one maps. All possible combinations of any two of these
eight level-one maps which do not reduce to the identity, for example,

q1ðq1ðzÞÞ; q1ðq2ðzÞÞ; q1ðq3ðzÞÞ; q1ðq4ðzÞÞ; q2ðq1ðzÞÞ; q2ðq2ðzÞÞ;.;

(5.11)

will be called the level-two maps; all possible combinations of any three of
the eight level-one maps that do not reduce to a lower-level map will be called
the level-three maps, and so on.

On a practical note, to write a function routine to calculate u(z,g)
numerically, it is necessary to truncate the infinite product in equation (5.1).
This is achieved in a natural way by including all Möbius maps up to some
chosen level and truncating the contribution to the product from all higher-level
maps. The truncation, which includes all maps up to level three, has been used to
compute the examples in this paper. The software programme MATLAB is
Proc. R. Soc. A (2005)
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particularly suited to construction of the Schottky–Klein prime function because
the action of an element of the Schottky group on the point z can be written as
multiplication by a 2!2 matrix on the vector (z, 1)T—a linear algebra operation
that is performed very efficiently in MATLAB.
6. Explicit solution for G

Given a circular domain Dz with given moduli (such as that shown in figure 1),
the associated Schottky–Klein prime function u(z, g) can be constructed. Let the
singularity of the hydrodynamic Green’s function G in this domain be at a. The
complex potential W(z; a) for the flow is such that

Gðz;aÞZ Im½W ðz;aÞ�; (6.1)

and an explicit expression for it is

W ðz;aÞZK
i

4p
log

uðz;aÞ�uðzK1;aK1Þ
uðz; �aK1Þ�uðzK1; �aÞ

� �
: (6.2)

It is natural to choose the branch of the logarithm so that the branch points at a
and �aK1 are joined by a branch cut, as are all image-pairs of these two points
under the transformations of the group (i.e. in all regions ‘equivalent’ to the
fundamental region). An explicit representation for G(z;a) is

Gðz;aÞZ Im½W ðz;aÞ�ZK
1

4p
log

uðz;aÞ�uðzK1;aK1Þ
uðz; �aK1Þ�uðzK1; �aÞ

����
����: (6.3)

Formulae (6.2) and (6.3) are the principal new results of this paper.
In order to prove that equations (6.2) and (6.3) satisfy the conditions outlined

above, consider the function

Sðz;aÞhuðz;aÞ�uðzK1;aK1Þ
uðz; �aK1Þ�uðzK1; �aÞ

: (6.4)

S(z;a) has a second-order zero at zZa (as well as at all points in the plane
equivalent to a under the action of the group). S(z;a) also has a second-order
pole at the point �aK1 (and all equivalent points). Let a be a point in the physical
half of the fundamental region. It follows that �aK1 will be in the non-physical
half. Since

Gðz;aÞZK
1

4p
logjSðz;aÞj; (6.5)

this means that, in the physical half of the fundamental region Dz, G(z;a) has a
single isolated logarithmic singularity at zZa, as required. Given that the zero of
S at a is second order, locally, G(z;a) has the expansion

Gðz;aÞZK
1

2p
logjzKajCOð1Þ; (6.6)

again as required.
Proc. R. Soc. A (2005)
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It has yet to be verified that equation (6.3) satisfies the required boundary
conditions on all the circles fCj jjZ0; 1;.;Mg. On C0,

Sðz;aÞ Z �uðzK1; �aÞuðz; �aK1Þ
�uðzK1;aK1Þuðz;aÞ

Z
1

Sðz;aÞ ; (6.7)

where we have used the fact that �zZzK1 on C0. Since jS(z;a)jZ1 on C0, then it
follows from equation (6.5) that

Gðz;aÞZ 0; on C0: (6.8)

This is the normalization condition stipulated in equation (2.4).
On the other hand, on any one of the interior circles fCj jjZ1;.;Mg,

Sðz;aÞ Z
�uðfjðzÞ; �aÞuðfjðzÞK1; �aK1Þ
�uðfjðzÞ;aK1ÞuðfjðzÞK1;aÞ

Z
�uð�qjðzK1Þ; �aÞuð�qjðzK1ÞK1; �aK1Þ
�uð�qjðzK1Þ;aK1Þuð�qjðzK1ÞK1;aÞ

Z
�uð�qjðzK1Þ; �aÞ�uð�qjðzK1Þ; �aÞ

jaj2 �uð�qjðzK1Þ;aK1Þ�uð�qjðzK1Þ;aK1Þ
:

(6.9)

However, we can now use equation (5.5) to give

Sðz;aÞ Zbjða; �aK1Þ2 �uðzK1; �aÞ�uðzK1; �aÞ
jaj2 �uðzK1;aK1Þ�uðzK1;aK1Þ

Zbjða; �aK1Þ2 uðz; �a
K1Þ�uðzK1; �aÞ

uðz;aÞ�uðzK1;aK1Þ
Z

bjða; �aK1Þ2

Sðz;aÞ :

(6.10)

Formula (6.10) immediately implies that, on Cj ,

jSðz;aÞjZ bjða; �aK1Þ; (6.11)
so that

Gðz;aÞZK
1

4p
logjSðz;aÞjZK

1

4p
log bjða; �aK1Þ; on Cj : (6.12)

This means the parameters fAj jjZ1;.;Mg of equation (2.3) are

Aj ZK
1

4p
log bjða; �aK1Þ: (6.13)

Utilizing equation (5.6), a formula for bjða; �aK1Þ is

bjða; �aK1ÞZ
Y
qk2Qj

ðaKqkðBjÞÞð�aK1KqkðAjÞÞ
ðaKqkðAjÞÞð�aK1 KqkðBjÞÞ

: (6.14)

From equation (6.10), bjða; �aK1Þ must be a real quantity, but it is not clear from
inspection whether the right-hand side of equation (6.14) is always real. For
completeness, a demonstration of this is given in appendix B. It turns out that for
any a2C, fbjða; �aK1Þg are all real positive quantities. Finally, some algebraic
Proc. R. Soc. A (2005)
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manipulations reveal that the associated Robin function is given by

Rða; �aÞZ 1

4p
log

u0ða;aÞ�u0ðaK1;aK1Þ
a2uða; �aK1Þ�uðaK1; �aÞ

����
����: (6.15)

(a ) Normalization and symmetry

Lemma 2.1 states that the hydrodynamic Green’s function satisfies a
reciprocity relation given by

Gðz;aÞZGða; zÞ: (6.16)

It is appropriate to verify that the explicit formula given in equation (6.3)
satisfies equation (6.16) because it is not obvious by inspection. To this end,
consider

Gða; zÞZK
1

4p
log

uða; zÞ�uðaK1; zK1Þ
uða; �zK1Þ�uðaK1; �zÞ

�����
�����: (6.17)

Note first that, by using equation (5.4),

juða; zÞ�uðaK1; zK1ÞjZ juðz;aÞ�uðzK1;aK1Þj: (6.18)

Next, note that

juða; �zK1ÞjZ j�uð�a; zK1ÞjZ j�uðzK1; �aÞj; (6.19)

where the first equality is simply a statement of the fact that the moduli of
complex conjugate numbers are equal and the second equality follows from the
use of equation (5.4). By similar manipulations

j�uðaK1; �zÞjZ juð�aK1; zÞjZ juðz; �aK1Þj: (6.20)

By using equations (6.18)–(6.20) in equation (6.17), the reciprocity relation
(6.16) is confirmed.

Utilizing equation (5.9), it is also possible to write W(z; a), and hence G(z; a),
in the alternative equivalent forms

W ðz;aÞZK
i

2p
log

1

jaj
uðz;aÞ
uðz; �aK1Þ

� �
; Gðz;aÞZK

1

2p
log

1

a

uðz;aÞ
uðz; �aK1Þ

����
����: (6.21)

However, we prefer the representations given in equations (6.2) and (6.3),
because it is easily seen from these formulae that the normalization GZ0 on C0

has been enforced. This normalization is crucial not only for the uniqueness of the
hydrodynamic Green’s function, but also so that the reciprocity condition (6.16)
is satisfied (Flucher & Gustafsson 1997).
(b ) Conditions on R on the boundaries

A result given in Flucher & Gustafsson (1997) is that the Robin function
Rða; �aÞ is singular on all boundaries of the domain. It is appropriate to verify this
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for the Robin function (6.15) found for the case of multiply connected circular
domains.

First, note that as a tends to a point on C0, it is clear that because a and �aK1

have the same argument, they will approach each other as jaj/1. Thus, the
denominator in the argument of the logarithm in equation (6.15) will tend to zero
in this limit. This verifies that Rða; �aÞ is singular on C0.

Similarly, for a point a on fCj jjZ1;.;Mg, note that

juða; �aK1ÞjZ juðfjðaÞ; �aK1ÞjZ juðfj ð�aÞ; �aK1ÞjZ juðqjð�aK1Þ; �aK1Þj: (6.22)

However, this final term is zero using the fact that uðz; �aK1Þ has a zero at �aK1 and
at all transformations of this point under the mappings of the group Q. In
particular, it will have a zero at qjð�aK1Þ. Given that juða; �aK1Þj appears as the
denominator of the argument of the logarithm in equation (6.15), and because
the numerator is easily seen not to vanish, it follows that Rða; �aÞ is singular at all
points on the boundaries fCj jjZ1;.;Mg.
(c ) Round-island circulations

The circulation around the j th island is by definition

Re

�
#
Cj

dW

dz
dz

�
ZRe

�
#
Cj

dW

�
ZRe½W �Cj

; (6.23)

where the notation ½W �Cj
denotes the change in value of W on making a

single circuit around the closed curve Cj . By the choice of logarithmic branch
cuts in the z-plane made earlier, none of the branch cuts across any of the
circles fCj jjZ1;.;Mg; hence W does not change value on making a circuit of
any of these circles. The round-island circulations are therefore all zero.
However, the same is not true of the unit circle C0, because a branch cut crosses
C0 in order to join a to �aK1. If it is also required to render the circulation around
C0 equal to zero (case 2 of the definition in §2), then another point vortex of
opposite circulation KG must be added in the physical half of the fundamental
region. Let this additional vortex be at a point b. The complex potential for a
vortex of circulation G will then become

W ðz;a; bÞZK
iG

4p
log

uðz;aÞ�uðzK1;aK1Þ
uðz; �aK1Þ�uðzK1; �aÞ

� �

C
iG

4p
log

uðz; bÞ�uðzK1; bK1Þ
uðz; �bK1Þ�uðzK1; �bÞ

 !
;

(6.24)

where the branch of the function is chosen so that branch cuts join a to b inside
the physical half of the fundamental region, while another branch cut joins �aK1 to
�b
K1

in the non-physical half (with analogous choices of cuts being made in all
other equivalent regions). This construction is particularly useful in the case of
unbounded flows, where C0 is conformally mapped to an (MC1)th island and
there is a point zN in Dz mapping to infinity. If it is required to make the
circulation around this island zero (so that all round-island circulations are zero),
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then it is usual to add an additional point vortex of circulation KG to the point
at infinity, with b being taken to be zN. In their studies of vortex motion past
two circular islands, Johnson & McDonald (2004a) also introduce a point vortex
singularity at infinity to render the circulation around both islands equal to zero.
(d ) Inter-island fluxes

It is well known that the difference between two values of G evaluated on two
different islands gives the (time-dependent) ‘inter-island flux’ of fluid between the
two islands. Let Fij denote the flux between islands i and j, then by using
equation (6.12), we can obtain explicit formulae for the values of these fluxes. In
particular,

Fij ZK
1

4p
log

bið�a;aK1Þ
bjð�a;aK1Þ

� �
; (6.25)

where the explicit formula (6.14) can be used.
7. The Kirchhoff–Routh path function

Using the representations for the hydrodynamic Green’s and Robin functions in
circular domains derived in §6, it is now possible to write down formulae for the
Kirchhoff–Routh path function as given in equation (2.10) for any finite number
N of vortices in a multiply connected circular region. However, our result is
stronger than this once we exploit the second result (3.1) from Lin (1941b)
showing how the Hamiltonian transforms under conformal mapping.

We summarize our results in a more explicit statement of theorem 2.3.

Theorem 7.1. For the motion of vortices of strengths fGkjkZ1;.;Ng in a
general region Dz bounded by fixed boundaries, first construct the Kirchhoff–
Routh path function H ðzÞða1; �a1;.;aN ; �aN Þ in a conformally equivalent circular
region Dz of the form

H ðzÞða1; �a1;.;aN ; �aN Þ

Z
XN
kZ1

Gkj0ðakÞC
XN
k1;k2Z1

k1Ok2

Gk1Gk2Gðak1 ;ak2ÞK
1

2

XN
kZ1

G2
kRðak ; �akÞ;

(7.1)

where G(z; a) is given in equation (6.3), Rða; �aÞ is given in equation (6.15) and
j0(z) is the contribution to the Hamiltonian from external agencies such as
background flows or non-zero round-island circulations. Then, if z(z) is the
conformal map from Dz to Dz, the Kirchhoff–Routh path function for the N-vortex
motion is

H ðzÞðz1; �z1;.; zN ; �zN ÞZH ðzÞða1; �a1;.;aN ; �aN ÞC
XN
kZ1

G2
k

4p
logjzzðakÞj; (7.2)

where zkZz(ak) for kZ1,.,N.
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In cases where both j0(z) and the conformal mapping z(z) are known
explicitly, it follows that the Hamiltonian will also be given in analytical form by
using equation (7.2). Even when either of the functions j0(z) and z(z) is not
known analytically (and must be computed numerically), these two functions are
independent of the instantaneous point vortex positions, and can be computed at
the start of any calculation (assuming the boundaries of the flow domain and the
flow due to external agencies are not changing in time). In any case, the
Hamiltonian given in equation (7.2) can still facilitate numerical calculation of
even very complicated N-vortex flows.
8. The single vortex case

To illustrate the usefulness of the formulae derived in this paper, we include some
examples for the motion of a single vortex. This also provides us the opportunity
to examine how our general formulation reduces to the simply and doubly
connected studies that have already appeared in the literature.

First, we write down the Hamiltonians for single-vortex flow in the three types
of domain (cases 1–3) considered in §2.

Case 1. When just a single vortex is present, the double sum in equation (2.10)
disappears and the Kirchhoff–Routh path function, in the absence of external
sources of vorticity, for a circulation-G point vortex reduces to

H ðzÞða; �aÞZK
G2

2
Rða; �aÞ: (8.1)

By using equation (6.15), this becomes

H ðzÞða; �aÞZK
G2

8p
log

u0ða;aÞ�u0ðaK1;aK1Þ
a2uða; �aK1Þ�uðaK1; �aÞ

����
����: (8.2)

Let z(z) be any map from the circular domain to a (conformally equivalent)
multiply connected domain. Then, by equation (3.1), the Hamiltonian in the
z-plane is given by

H ðzÞðza; �zaÞZH ðzÞða; �aÞC G2

4p
logjzzðaÞj; (8.3)

where zaZz(a). Equivalently,

H ðzÞðza; �zaÞZK
G2

8p
log

1

a2

u0ða;aÞ�u0ðaK1;aK1Þ
uða; �aK1Þ�uðaK1; �aÞ

1

zzðaÞ2

�����
�����: (8.4)

If the conformal map z(z) is known explicitly, then equation (8.4) gives the
Hamiltonian in explicit form.

Case 2. In the case where D is unbounded but has a single boundary that
extends to infinity, C0 is taken to map to the infinite boundary (so that the
Green’s function is zero on this boundary as required in the definition given in
§2), and the Hamiltonian is again given by equation (8.4).

Case 3. In the case where D is unbounded in all directions, it is necessary to
add a point vortex at infinity with circulation KG in order to render zero the
Proc. R. Soc. A (2005)
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circulation around all islands. Let zN be the point in Dz mapping to physical
infinity. Then, the complex potential for the point vortex at infinity is

WNðzÞZ
iG

4p
log

uðz; zNÞ�uðzK1; zK1
N Þ

uðz; �zK1
N Þ�uðzK1; �zNÞ

 !
; (8.5)

and the Hamiltonian equation (8.4) must be modified by the addition of

HNða; �aÞZG Im½WNðaÞ�; (8.6)

thereby yielding

H ðzÞðza; �zaÞZK
G2

8p
log

1

a2

u0ða;aÞ�u0ðaK1;aK1Þu2ða; �zK1
N Þ�u2ðaK1; �zNÞ

uða; �aK1Þ�uðaK1; �aÞu2ða; zNÞ�u2ðaK1; zK1
N Þ

1

zzðaÞ2

�����
�����:

(8.7)

In the case of a single vortex, the Hamiltonian H ðzÞðza; �zaÞ is a conserved quantity
and the trajectories of the vortex are simply its level lines.

(a ) The simply connected case

Consider a simply connected domain. In this case, the Schottky group is the
trivial group and the associated Schottky–Klein prime function is just

uðz;gÞZ ðzKgÞ: (8.8)

The hydrodynamic Green’s function in a bounded domain reduces to

Gðz;aÞZK
1

4p
log

ðzKaÞðzK1KaK1Þ
ðzK �aK1ÞðzK1K �aÞ

����
����ZK

1

2p
log

1

a

ðzKaÞ
ðzK �aK1Þ

����
����

ZK
1

2p
logjzKajK 1

2p
log

1

a

1

ðzK �aK1Þ

����
����:

(8.9)

The Robin function is

Rða; �aÞZ 1

2p
log

1

1Ka�a

����
����: (8.10)

The Hamiltonian for a single vortex in a domain mapping from the unit z-circle
via a mapping z(z) (with the inverse mapping zZz(z)) is then

Hðza; �zaÞZK
G2

8p
log

z0ðzaÞ �z0 ð�zaÞ
ð1KzðzaÞ�zð�zaÞÞ2

����
����: (8.11)

It is now easy to verify directly that this Hamiltonian satisfies the elliptic
Liouville equation

V2Hh4
v2H

vzav�za
ZK

G2

p
eK8pH=G2

: (8.12)

Indeed, the Hamiltonian can be characterized as a solution of equation (8.12) in
Dz which satisfies the boundary condition that it is everywhere infinite on the
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boundary of Dz. This result for a single vortex in a simply connected domain was
pointed out by Flucher & Gustafsson (1997) and Richardson (1980).

On the other hand, the complex potential for a flow in which the round-island
circulation is zero would be

W ðz;aÞZK
i

2p
log

ðzKaÞ
jajðzK �aK1Þ

� �
C

i

2p
log z; (8.13)

where an opposite circulation point vortex has been added at zZ0 in order to
render the total circulation around the circular cylinder equal to zero. Under a
conformal mapping zZzK1, which maps the interior of the unit z-circle to the
exterior of the unit z-circle, we obtain the complex potential

wðz; bÞhW ð1=z; 1=bÞZK
1

2p
log

z

jbj
ðzKbÞ
ðzK �b

K1Þ

 !
; (8.14)

where bZaK1 is the image in the z-plane of the point vortex at zZa. Equation
(8.14) is the usual formula, which can be obtained by the Milne–Thomson circle
theorem (Acheson 1990), for the complex potential of a single vortex at zZb
outside a circular cylinder in the case when the round-island circulation is taken
to be zero.
(b ) The doubly connected case

A doubly connected domain can be obtained by a conformal mapping from
some annulus q!jzj!1 in a parametric z-plane (the value of the parameter q is
determined by the domain itself). In this case, the Schottky group is generated
by the Möbius map

q1ðzÞZ q2z; (8.15)

and its inverse. Then,

uðz;gÞZK
g

C2
Pðz=g; qÞ; (8.16)

where

Pðz; qÞhð1KzÞ
YN
kZ1

ð1Kq2kzÞð1Kq2kzK1Þ (8.17)

and

Ch
YN
kZ1

ð1Kq2kÞ: (8.18)

Note that because �q1ðzÞZq1ðzÞ, then �uðz;gÞZuðz;gÞ.
In the case of a bounded doubly connected domain, the streamfunction

becomes

G ZK
1

4p
log

PðzaK1; qÞPðazK1; qÞ
Pðz�a; qÞPðzK1�aK1; qÞ

����
����: (8.19)
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Using the (easily established) property thatPðzK1; qÞZKzK1Pðz; qÞ, this reduces to

G ZK
1

2p
log

aPðzaK1; qÞ
Pðz�a; qÞ

����
����: (8.20)

The function P(z, q) is related to the first Jacobi theta function Q1 (Whittaker &
Watson 1927). Indeed, if we define

tZKlog z; ta ZKlog a; (8.21)

then the annulus in the z-plane is mapped to a rectangle in the t-plane. It can be
shown (see Whittaker & Watson 1927) that

Pðz; qÞZK
iC eKt=2

q1=4
Q1ðit=2; qÞ: (8.22)

Using equation (8.22), it follows that

PðzaK1; qÞZKiCqK1=4

ffiffiffiffi
z

a

r
Q1ðiðtKtaÞ=2; qÞ;

Pðz�a; qÞZKiCqK1=4
ffiffiffiffiffiffi
z�a

p
Q1ðiðtC �taÞ=2; qÞ;

9>=
>; (8.23)

which, on substitution into equation (8.20), yields

G ZK
1

2p
log

Q1ðiðtKtaÞ=2; qÞ
Q1ðiðtC �taÞ=2; qÞ

����
����: (8.24)

This is precisely the imaginary part of the complex potential given in eqn (2.11) of
Johnson & McDonald (2004a).
(c ) Higher-connected examples

To illustrate the usefulness of the formulae derived here, figures 2–5 show
a series of examples in which the trajectories of a single vortex in various
different bounded circular domains are computed. This is achieved by a straight-
forward calculation of the contours of H ðzÞðza; �zaÞ as given by equation (8.4) in
the case where the conformal map z(z) is taken to be the identity (i.e. z(z)Zz).
Figures 2 and 3, respectively, show two and four equal-sized circular cylinders
equispaced on the real axis inside the unit disc. These figures show the existence
of critical vortex trajectories splitting the flow into paths which encircle one or
the other of the enclosed cylinders, none of the enclosed cylinders or both of the
enclosed cylinders. Figure 4 shows four equal cylinders arranged at the four
corners of a square. Figure 5 shows a case involving two different-sized cylinders.

The domains just considered have a reflectional symmetry about the real axis so
that the Schottky–Klein prime functions satisfy the condition �uðz;gÞZuðz;gÞ.
As examples of cases in which this symmetry is not present, figure 6 shows
the vortex trajectories around two non-symmetrically disposed cylinders of
various diameters. Two general results on the motion of isolated point vortices
established in corollary 10 of Flucher & Gustafsson (1997) are that there is
always at least one stagnation point of the flow and that almost all trajectories
Proc. R. Soc. A (2005)



Figure 2. Typical vortex paths in the unit disc with two islands of radius 0.1 centred at G0.2. The
domain Dz is triply connected.

Figure 3. Typical vortex paths in the unit disc with four islands of radius 0.1 centred at G0.2,
G0.5. The domain Dz is quintuply connected.
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are periodic. All of the vortex paths shown in figures 2–6 are seen to be consistent
with these general results.

Finally, we have not discussed in any detail the convergence properties of the
infinite products defining the Schottky–Klein prime function. This is a detailed
Proc. R. Soc. A (2005)



Figure 4. Typical vortex paths in the unit disc with four islands of radius 0.1 centred at G0.4,
G0.4i. The domain Dz is quintuply connected.

Figure 5. Typical vortex paths in the unit disc with two islands; one of radius 0.1 centred at K0.2
and another of radius 0.2 centred at 0.5. The domain Dz is triply connected.
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mathematical issue. Roughly speaking, it is known that these products generally
converge well, provided that the Schottky circles in the z-plane are well
separated. In the examples above, as a numerical check on the choice of
truncation at level three, the products are truncated at higher levels to verify
that the choice of truncation is acceptable.
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Figure 6. Typical vortex paths in the unit disc with two islands; one of radius 0.25 centred at 0.3
and another of radius 0.2 centred at 0.6i. The domain Dz is triply connected.
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9. Discussion

The general formulae derived here are relevant to the motion of N-point vortices
in any M-connected regions for which a conformal map z(z) to the region from
some M-connected circular preimage region is known. If the conformal map is not
known in analytical form, then a numerical determination of this map can still be
used in the formulae above. The numerical determination of conformal maps is a
standard procedure (Henrici 1986; DeLillo et al. 1999).

Referring back to the familiar ‘method of images’ mentioned in §1, it is worth
pointing out that the Schottky–Klein prime functions that appear in the
formulae for the Hamiltonians automatically place an appropriate distribution of
‘image vortices’ throughout the plane so that the streamline conditions on all the
disjoint boundaries are simultaneously satisfied. The positioning of these image
singularities is induced by the action of the Schottky group elements on the point
vortex position a.

A limitation of the formulae derived here is that the round-island circulations
are zero. This situation is relevant when a point vortex approaches an island
cluster from far away so that the flow around the islands is initially quiescent.
However, there are certain physical situations in which non-zero round-island
circulations are appropriate. It would be of interest to generalize the formulae
herein to this more general case (it turns out to be straightforward to do this in
the special case of doubly connected regions).

The efficacy of our method has been demonstrated by a series of examples.
It should be pointed out, however, that we have proceeded under the
assumption that the infinite products defining the functions u and �u converge.
In fact, these products do not converge for all choices of the parameters
Proc. R. Soc. A (2005)
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fqj ; dj jjZ1;.;Mg. Broadly speaking, their convergence depends on the
distribution of circles fCj jjZ1;.;Mg in the preimage plane. If the circles
are ‘well-separated’, then good convergence is assured. There is a large region
of the parameter space fqj ; dj jjZ1;.;Mg where the convergence is completely
adequate for practical purposes. This region of parameter space is large
enough to capture many physically interesting fluid domains. Examples of
these can be found in a companion article by the authors (Crowdy & Marshall
2005), where the formulae of this paper have been combined with various
choices of conformal maps to unbounded fluid domains of interest in
applications.

On the subject of applications, we conclude by mentioning a few. In a
recent paper, Johnson & McDonald (2004a) consider the motion of a vortex
in the doubly connected region exterior to two circular cylinders whose
boundaries act as impenetrable barriers for the flow. The motivation for this
study was to provide a simple model to understand how an oceanic eddy/vortex
interacts with topography (Simmons & Nof 2000). Such flow scenarios occur in a
range of geophysical situations such as the interaction of Mediterranean salt
lenses (‘Meddies’) with seamounts in the Canary basin (Dewar 2002) or
the collision of North Brazil current rings with the islands of the Caribbean
(Simmons & Nof 2002). In their study, Johnson & McDonald (2004a) consider
the case in which the circulation around each island is zero, which is precisely the
case considered here. An important result of Johnson & McDonald (2004a) was
that, in many cases, the motion of the centroid of a finite-area vortex patch
around topography is well-approximated by a point vortex model in the same
domain. Thus, one application of our results will be to provide useful checks on
numerical calculations of the motion of finite-area vortex patches around
topography. Other studies of geophysical interest involve the motion of vortices
near gaps in an impenetrable barrier (Nof 1995; Johnson & McDonald 2004b,
2005). The results here generalize the formulae of Johnson & McDonald (2004a)
to any number of circular islands, and we expect our results to be of practical use
in geophysical applications. Indeed, we have used the new formalism to study a
number of island configurations of geophysical interest, including islands off an
infinite coastline as well as island clusters in unbounded oceans (Crowdy &
Marshall 2005).

J.M. acknowledges the support of an EPSRC studentship.
Appendix A. Proof of transformation property (5.9)

From the definition given in equations (5.1)–(5.3),

uðz;gÞZ ðzKgÞ
Y
qj2Q00

fz; qjðzÞ;g; qjðgÞg: (A 1)

By using equation (A 1),

uðzK1;gK1ÞZ ðzK1KgK1Þ
Y
qj2Q00

fzK1; qjðzK1Þ;gK1; qjðgK1Þg: (A 2)
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Consider a general term of the form qj(z
K1). This is some composition of the

generators of the Schottky group. Suppose, for example, that

qjðzK1ÞZ qpðqqðqrðzK1ÞÞÞ; (A 3)

for some sequence of integers (p, q, r) labelling the level-one maps (such a
sequence of integers is sometimes called a ‘word’; Mumford et al. 2002). Recall
from equation (4.6) that if qk is one of the basic level-one maps, then

qK1
k ðzK1ÞZ 1

�qkðzÞ
: (A 4)

Equivalently,

qkðzK1ÞZ 1

�q
K1
k ðzÞ

: (A 5)

By using equation (A5) repeatedly in equation (A 3),

qjðzK1ÞZ qpðqqðqrðzK1ÞÞÞZ qp qq
1

�q
K1
r ðzÞ

 ! !
Z qp

1

�q
K1
q ð�qK1

r ðzÞÞ

 !

Z
1

�q
K1
p ð�qK1

q ð�qK1
r ðzÞÞÞ

Z
1

qrqqqp
K1ðzÞ

:

(A 6)

We now introduce a general subscript ‘r ’ notation; given the map qj (e.g.
corresponding to the word (p, q, r)), then qjr will denote the map corresponding
to the reversed word. In this example, the reversed word is (r, q, p) so that

qjr Z qrðqqðqpðzÞÞÞ: (A 7)

Then, equation (A 6) can be written

qjðzK1ÞZ 1

qjr
K1ðzÞ

: (A 8)

It should be clear that the result in equation (A8) will be true for any map qj .
It follows that

uðzK1;gK1ÞZðzK1 KgK1Þ
Y
qj2Q00

1

z
;

1

qjr
K1ðzÞ

;
1

g
;

1

qjr
K1ðgÞ

( )

ZðzK1 KgK1Þ
Y
qj2Q00

z; qjr
K1ðzÞ;g; qjr

K1ðgÞ
n o

;

(A 9)

where we have used the invariance of cross-ratios to Möbius transformation of all
four arguments. Now, using the fact that inverses are excluded from the product,
Proc. R. Soc. A (2005)
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equation (A 9) can also be written

uðzK1;gK1ÞZ ðzK1 KgK1Þ
Y
qj2Q00

fz; qjrðzÞ;g; qjrðgÞg; (A 10)

where we have simply relabelled the maps in the product. Furthermore, if a
mapping qj is included in the product, then it is easy to check that it can be
arranged that the mapping qjr is also in the product. Thus, under a further
relabelling of the maps, equation (A10) becomes

uðzK1;gK1ÞZ ðzK1 KgK1Þ
Y
qj2Q00

fz; qj ðzÞ;g; qj ðgÞg: (A 11)

Thus,

�uðzK1;gK1ÞZuð�zK1
; �gK1Þ

ZðzK1 KgK1Þ
Y
qj2Q00

fz; qjðzÞ;g; qjðgÞg

ZðzK1KgK1Þ uðz;gÞðzKgÞ

ZK
1

zg
uðz;gÞ: (A 12)

This completes the proof. &
Appendix B. Proof that {bj(a; �a
K1)} are real and positive

We now verify that the formula on the right-hand side of equation (6.14) gives a
real positive quantity.

First, note that the product in equation (6.14) defining bjða; �aK1Þ is over maps
in the set Qj , which excludes those maps in Q with a power of qj or qK1

j on the
right-hand end. Consider a typical term in the product, tkða; �aÞ say, associated
with the map qk ,

tkða; �aÞZ
aKqkðBjÞ
aKqkðAjÞ

� �
�aK1 KqkðAjÞ
�aK1 KqkðBjÞ

� �
: (B 1)

Its complex conjugate is

tkða; �aÞ Z
�aK �qkð �BjÞ
�aK �qkð �AjÞ

 !
aK1K �qkð �AjÞ
aK1K �qkð �BjÞ

 !
: (B 2)

However, from equation (A 8), it is known that for all mappings in the group

qK1
k ðzK1ÞZ 1

�qkrðzÞ
; (B 3)
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which implies, in particular, that

�qkð �AjÞZ
1

qK1
kr ð �A

K1
j Þ

; �qkð �BjÞZ
1

qK1
kr ð �B

K1
j Þ

: (B 4)

By using these in equation (B 2) and after some rearrangement, we get

tkða; �aÞ Z
aKqK1

kr ð �A
K1
j Þ

aKqK1
kr ð �B

K1
j Þ

 !
�aK1 KqK1

kr ð �B
K1
j Þ

�aK1 KqK1
kr ð �A

K1
j Þ

 !
: (B 5)

Now, observe that if Aj and Bj are the fixed points of qj (and hence also of qK1
j ),

then �Aj , �Bj are necessarily the fixed points of �qj (and hence also of �q
K1
j ).

Substituting zZ �Aj ; �Bj in equation (B 3) yields

qK1
j ð �AK1

j ÞZ �A
K1
j ; qK1

j ð �BK1
j ÞZ �B

K1
j ; (B 6)

from which we deduce the relations

Aj Z
1
�Bj

; Bj Z
1
�Aj

; (B 7)

where we have enforced the ordering jAjjOjBjj. By using equation (B 7) in
equation (B 5), we deduce

tkða; �aÞ Z
aKqK1

kr ðBjÞ
aKqK1

kr ðAjÞ

 !
�aK1 KqK1

kr ðAjÞ
�aK1 KqK1

kr ðBjÞ

 !
: (B 8)

However, the right-hand side of equation (B 8) is precisely the term appearing in
the product associated with the map qK1

kr . It is straightforward to verify that if qk
is in the set Qj , then so is the map qK1

kr . Thus, these two terms in the product are
mutual complex conjugates and combine in pairs to give a positive real quantity.

qk and qK1
kr are distinct except if qk is the identity. The outstanding term is

simply

ðaKBjÞð�aK1 KAjÞ
ðaKAjÞð�aK1 KBjÞ

: (B 9)

Given that AjZBj
K1

, this can be rewritten in the form

jAj j2
aKBj

aKAj

����
����2; (B 10)

which is clearly real, and positive.
In summary, the products defining the quantities fbjða; �aK1Þg are therefore

real and positive. &
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Flucher, M. & Gustafsson, B. 1997 Vortex motion in two dimensional hydrodynamics TRITA-

MAT-1997-MA 02. Stockholm: Royal Institute of Technology.
Gustafsson, B. 1979 On the motion of a vortex in two-dimensional flow of an ideal fluid in simply

and multiply connected domains TRITA-MAT-1979-7. Stockholm: Royal Institute of
Technology.

Henrici, P. 1986 Applied and computational complex analysis. New York: Wiley Interscience.
Johnson, E. R. & McDonald, N. R. 2004 The motion of a vortex near two circular cylinders. Proc.

R. Soc. A 460, 939–954. (doi:10.1098/rspa.2003.1193.)
Johnson, E. R. & McDonald, N. R. 2004b The motion of a vortex near a gap in a wall. Phys. Fluids

16, 462–469.
Johnson, E. R. & McDonald, N. R. 2005 Vortices near barriers with multiple gaps. J. Fluid Mech.

31, 355–358.
Lin, C. C. 1941a On the motion of vortices in two dimensions. I. Existence of the Kirchhoff–Routh

function. Proc. Natl Acad. Sci. 27, 570–575.
Lin, C. C. 1941b On the motion of vortices in two dimensions. II. Some further investigations on

the Kirchhoff–Routh function. Proc. Natl Acad. Sci. 27, 575–577.
Milne-Thomson, L. M. 1968 Theoretical hydrodynamics. London: Macmillan.
Mumford, D., Series, C. & Wright, D. 2002 Indra’s Pearls. Cambridge: Cambridge University

Press.
Nehari, Z. 1952 Conformal mapping. New York: McGraw-Hill.
Newton, P. K. 2002 The N-vortex problem. New York: Springer.
Nof, D. 1995 Choked flows from the Pacific to the Indian Ocean. J. Phys. Oceanogr. 25, 1369.
Richardson, S. 1980 Vortices, Liouville’s equation and the Bergman kernel function. Mathematika

27, 321–334.
Routh, E. J. 1881 Some applications of conjugate functions. Proc. R. Soc. A 12, 73–89.
Saffman, P. G. 1992 Vortex dynamics. Cambridge: Cambridge University Press.
Simmons, H. L. & Nof, D. 2000 Islands as eddy splitters. J. Mar. Res. 58, 919–956.
Simmons, H. L. & Nof, D. 2002 The squeezing of eddies through gaps. J. Phys. Oceanogr. 32, 314.
Whittaker, E. T. & Watson, G. N. 1927 A course of modern analysis. Cambridge: Cambridge

University Press.

As this paper exceeds the maximum length normally permitted,
the authors have agreed to contribute to production costs.
Proc. R. Soc. A (2005)

http://dx.doi.org/doi:10.1098/rspa.2003.1193

	Analytical formulae for the Kirchhoff-Routh path function in multiply connected domains
	Introduction
	The hydrodynamic Greens function
	Construction of G in circular domains
	Schottky groups
	The Schottky-Klein prime function
	Explicit solution for G
	Normalization and symmetry
	Conditions on R on the boundaries
	Round-island circulations
	Inter-island fluxes

	The Kirchhoff-Routh path function
	The single vortex case
	The simply connected case
	The doubly connected case
	Higher-connected examples

	Discussion
	J.M. acknowledges the support of an EPSRC studentship.
	Proof of transformation property (5.9)
	Proof that betaj(alpha,alpha-1) are real and positive
	References


