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Abstract

A theoretical connection between reductions of the Benney hierarchy and the Dirichlet problem for Laplace’s e
in the plane is made. The connection is used to deduce general formulas for the uniformizations of two spectral f
associated withN -parameter reductions of the hierarchy. Two types of reduction are considered: one type has been co
by previous authors using alternative arguments, the second type is new. The formulas are general and are express
of the modified Green’s function (for Laplace’s equation) in arbitraryN -connected, reflectionally-symmetric, planar doma
The Benney moments are found to be purely geometrical quantities associated with these domains.
 2005 Elsevier B.V. All rights reserved.
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1. Introduction

A connection has recently been made between
universal Whitham hierarchy and the Dirichlet pro
lem for the Laplace equation in two-dimensional p
nar domains[1,2]. This connection emerged by fir
making an association between conformal mappi
and integrable hierarchies: in particular, a direct th
retical connection was made between the dispers
less Toda hierarchy and the Laplacian growth prob
(or Hele–Shaw problem) in the simply-connected c
[3,4]. It was then noticed that the problem of how t

E-mail address:d.crowdy@imperial.ac.uk(D. Crowdy).
0375-9601/$ – see front matter 2005 Elsevier B.V. All rights reserved
doi:10.1016/j.physleta.2005.06.027
moments of a domain change under deformation of
domain exhibits an integrable structure—a result m
easily understood from the Hadamard variational f
mula involving the (Laplacian) Green’s function of th
domain. Takhtajan[5] has also independently notice
this integrable structure of the Dirichlet problem a
the significance of the associated Green’s function
a result, the first-type Green’s function for the Diric
let boundary value problem for Laplace’s equation
planar domains now has an important role in und
standing the mathematics of the dispersionless T
hierarchy and universal Whitham hierarchy.

It has been known for a long time that the Hel
Shaw problem admits large classes of solutions
which the time evolution depends only on a finite
.

http://www.elsevier.com/locate/pla
mailto:d.crowdy@imperial.ac.uk
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of evolving quantities. Owing to this circumstanc
such solutions are commonly called “exact”. Befo
the connection with integrable systems was made,
exact solutions to the Hele–Shaw problem already
joyed an abstract mathematical interpretation as ti
evolvingquadrature domains[6]. Richardson[7] was
the first to associate Hele–Shaw flows with the t
ory of quadrature domains (it has since been r
ized that quite a number of physically-distinct pro
lems in fluid dynamics can be usefully interpreted
terms of quadrature domain theory[8]). Richardson
considered a set of moment quantities now kno
as the “Richardson moments”. For certain proble
many of these moments are conserved by the
namics. The exact solutions of the Hele–Shaw pr
lems[7,9–11] have an interpretation as the algebr
orbits of the universal Whitham hierarchy[2]. Con-
versely, the methods developed for constructing s
tions to the Hele–Shaw problem (e.g.,[8,9,12]) might
now be profitably employed to construct represen
tions of the algebraic orbits of the Whitham hiera
chy.

A tantalizing parallel to all this exists with an
other fluid dynamical problem: the evolution of lon
wavelength incompressible gravity waves on shal
water. Benney[13] studied this problem and showe
that it has an infinite number of conserved densi
which are polynomials in a set of “moment” qua
tities. In analogy with the “Richardson moments
these are now known as the “Benney moments”. T
satisfy an infinite set of partial differential equatio
dubbed theBenney hierarchyor Benney moment equa
tions. Intriguingly, Gibbons and Tsarev[14] have
shown how the finite reductions of this integrab
hierarchy correspond to conformal mappings to
domains.

A less widely known fact is that the Dirichlet prob
lem for Laplace’s equation in the plane has deep
oretical connections with the general problem of c
formal mapping to slit domains. The seminal work
this is due to Koebe[15]. Given the connection be
tween the planar Dirichlet problem and the univer
Whitham hierarchy, and in light of the connection
the Benney hierarchy to conformal slit mappings
seems natural to ask whether the Benney hierarch
its reductions, can be linked directly with the Diric
let problem of planar domains. It is the purpose of t
Letter to elucidate such a connection.
The focus here is to use the connection we m
to find explicit general formulas for the solutions to
spectral problem associated with two specific type
N -parameter reduction. There has been much re
work [16–18]on finding such formulas. In the conte
of the geometrical interpretation of the reductions
scribed by Gibbons and Tsarev[14], the two reduction
types considered here correspond to the followi
one corresponds to slit mappings from an upper-
plane to another upper half-plane containingN ver-
tical straight-line slits, the other type corresponds
mappings to an upper half-plane containingN concen-
tric circular-arc slits. Our principle result is to sho
that the solutions to both these spectral problems
be written, for anyN , in terms of the modified Green
function of a reflectionally-symmetricN -connected
planar domain in a parametricz-plane. The variable
z plays the role of uniformization parameter.

2. The Benney hierarchy

The Benney equations[13] are

ut + uux −
( y∫

0

ux(x, y′, t) dy′
)

uy + hx = 0,

(1)ht + uhx +
( h∫

0

ux(x, y′, t) dy′
)

uy = 0.

Benney showed that if momentsAn(x, t) are defined
by

(2)An(x, t) =
h∫

0

un dy

then they satisfy the infinite set of equations

(3)
∂An

∂t
+ ∂An+1

∂x
+ nAn−1

∂A0

∂x
= 0, n = 1,2, . . .

which are theBenney moment equations. An identical
set of moment equations can be derived from a Vla
equation

(4)
∂f

∂t2
+ p

∂f

∂x
− ∂A0

∂x

∂f

∂p
= 0,
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wheref (x,p, t) is some distribution function and th
moments are now defined as

(5)An =
∞∫

−∞
pnf dp.

Benney[13] showed that the moment equations ha
an infinite number of conserved densities which
polynomial in the moments{An | n = 0,1, . . .}.

The best way to see this is to consider the gene
ing function of the moments defined by

(6)λR(x,p, t) = p +
∞∑

n=0

An(x, t)

pn+1

which is the asymptotic series asp → ∞ of

(7)p +P
∞∫

−∞

f (x,p′, t)
p − p′ dp′.

The notationP
∫

denotes the principal-value integra
Gibbons and Tsarev[14] have found a method for con
structing a family of solutions to the above equatio
Their method is to define

(8)λ(p) = p +
∫
Λ

f (x,p′, t)
p − p′ dp′,

where Λ is an indented contour passing below t
point p on the realp′-axis. This function has th
same large-p asymptotics as the function defined
(7) but, importantly, it can be analytically continue
into the upper-halfp-plane. Gibbons and Tsarev[14]
have shown thatN -parameter reductions of the int
gral equation(8) correspond to slit-mappings from a
upper-halfp-plane to an upper halfλ-plane having a
collection ofN non-intersecting slits emanating fro
fixed points on the realλ-axis into the upper-halfλ-
plane. Let{cj | j = 1, . . . ,N} be some fixed choice o
Jordan arcs into the upper-halfλ-plane from some se
of fixed points{λ(j)

0 | j = 1, . . . ,N} on the realλ-axis.
TheN -parameter reductions correspond to conform
mappings from the upper-halfp-plane to a collection
of N slits taken along these arcs and having end-po
at some set of points{λ̂j | j = 1, . . . ,N} on these arcs
These points are the Riemann invariants of the sys
and they have characteristic speedsp̂i = p(λ̂i). In this
way, construction of analytical forms forλ(p) corre-
sponds to being able to construct analytical formu
for such slit maps. It is this construction that will b
the focus of the remainder of this Letter.

3. The modified Green’s function

The elements of Dirichlet calculus that will be us
in the sequel will now be introduced. The key ref
ences for the following material are Koebe[15], Ne-
hari [19] and Schiffer[20].

Let Dz be an arbitrary boundedN -connected pla
nar domain. SupposeDz is bounded byN smooth
Jordan curves.C0 is taken as the outermost bounda
while {Ck | k = 1, . . . ,N − 1} denote theN − 1 en-
closed boundaries (or the boundaries of the finite
of “holes” in the domain). Define themodified Green’s
functionas the functionG0(x, y;x0, y0) satisfying the
following properties:

(i) the function

(9)g0(x, y;x0, y0) = G0(x, y;x0, y0) − logr0

is harmonic with respect to(x, y) throughoutDz in-
cluding at the point(x0, y0). Herer0 is

(10)r0 =
√

(x − x0)2 + (y − y0)2;
(ii) if ∂G0/∂n is the normal derivative ofG0 on a

curve then

G0(x, y;x0, y0) = 0, onC0,

G0(x, y;x0, y0) = Ak, onCk, k = 1, . . . ,N − 1,

(11)
∮
Ck

∂G0

∂n
ds = 0, k = 1, . . . ,N − 1,

whereds denotes an element of arc and{Ak} are con-
stants.

It is convenient to introduce complex coordina
z = x + iy andz̄ = x − iy. Thus, if the complex num
ber zα = x0 + iy0 denotes the complex position
the singularity of the Green’s function we will henc
forth writeG0(z, zα) instead ofG0(x, y;x0, y0). Since
G0(z, zα) is a harmonic function ofz in Dz (except
for the single logarithmic singularity atz = zα) then
we defineG̃0(z, zα) to be its analytic extension, ob
tained by adding toG (z, z ) its harmonic conjugate
0 α
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Fig. 1. Schematic illustrating the images of a general quadruply connected domain under the conformal mappingsφ1 andφ2 given in(13) and
(14).
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functionH0(z, zα), i.e.,

(12)G̃0(z, zα) = G0(z, zα) + iH0(z, zα).

It will be in terms of this object that we shall represe
the solutions of the reductions of the Benney hier
chy.

4. Slit mappings

It was shown by Koebe[15] (see also Schiffer[20])
that a univalent conformal mapping of an arbitra
multiply connected domainDz to anN -connected slit
mapping consisting ofN -slits all of which are paralle
to thereal axis in the image domain is given by

φ1(z; zα) ≡ −1

i

∂

∂y0
G̃0(z, zα)

(13)=
[

∂ − ∂
]
G̃0(z, zα).
∂z̄α ∂zα
It is also known[15,20] that a univalent conforma
mapping takingDz to a multiply connected domai
consisting ofN -slits, all of which are parallel to th
imaginaryaxis in the image domain, is given by

φ2(z; zα) ≡ − ∂

∂x0
G̃0(z, zα)

(14)= −
[

∂

∂z̄α

+ ∂

∂zα

]
G̃0(z, zα),

where, again,zα is some point insideDz. Fig. 1 il-
lustrates the images of a general quadruply conne
domainDz under the two mappingsφ1 andφ2.

5. Reflectionally-symmetric domains

The reductions considered by Yu and Gibbons[16]
and Baldwin and Gibbons[17,18]treat the case wher
the slits in theλ-plane are straight vertical lines pe
pendicular to the real axis:[16] treats the genus-1 cas
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sses,
Fig. 2. Schematic illustrating the conformal mapping betweenp andλ planes for the first-type Benney reductions in the genus-2 case. Cro
indicating the branch points, show corresponding points in the two planes.
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[17] tackles the genus-2 case while higher-genus c
are addressed in[18]. Fig. 2 illustrates the required
conformal mappings in the genus-2 case: a confor
mapping from the upper-halfp-plane with 3 finite-
length slits on the realp-axis to the upper-halfλ-plane
containing 3 vertical slits is required. Actually, th
figure illustrates the case in which the wholep-plane
exterior to the three finite-length slits on the realp-
axis maps univalently to the wholeλ-plane exterior to
the three vertical slits with the upper and lower-halfp-
planes mapping to the upper and lower-halfλ-plane,
respectively. This will be the class of mappings to
constructed in what follows.

First, it is necessary to restrict the class of d
mains Dz under consideration. LetDz now be any
boundedN -connected domain in a complexz-plane
which is reflectionally-symmetric about the realz-axis
and such that all the holes in the domain are centre
the real axis. LetG0(z, zα) be the modified Green’
function of Dz with logarithmic singularity at som
point zα insideDz.

6. The generating functions

Equipped with such a reflectionally-symmetric d
mainDz, we now pose that the pair of functionsp(z)

andλ(z) is given by

p(z) = φ1(z; zα) =
[

∂

∂z̄α

− ∂

∂zα

]
G̃0(z, zα),

λ(z) = φ2(z; zα) + C

(15)= −
[

∂

∂z̄α

+ ∂

∂zα

]
G̃0(z, zα) + C,

whereC is some real constant andzα is some point
constrained to be on the realz-axis insideDz (where
z is only taken to be real once derivatives have b
α
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taken). It is claimed that(15) represents a uniformiza
tion, via the parameterz, of the functionsp(z) and
λ(z) solving the spectral problem for the Benney
ductions considered in[16–18].

To see this, first note that, being logarithmic deriv
tives, bothp(z) andλ(z) have simple poles, with un
residue, atz = zα . It therefore follows that, asz → zα ,

(16)λ ∼ p ∼ 1

z − zα

+O(1), asz → zα.

The constantC in (15) can be chosen so thatλ = p +
O(p−1) asz → zα which is the condition required o
λ(p) asp → ∞ [18].

Next, it follows from the assumed reflectional sym
metry of Dz and the choice ofzα to be on the rea
z-axis that the images of the boundaries{Cj | j =
0,1, . . . ,N − 1} under the mappingp(z) will each
be finite-length horizontal slits along the realp-axis.
Let {(aj , bj ) | j = 0,1, . . . ,N − 1} be the two points
at which each of the boundary circles{Cj | j =
0,1, . . . ,N −1} intersects the realz-axis. These points
must map to the two end-points of each slit, that is

p(aj ) = p2j+1,

(17)p(bj ) = p2j+2, j = 0,1, . . . ,N − 1,

where all the values{p2j+1,p2j+2 | j = 0,1, . . . ,

N − 1} are on the realp-axis. It also follows, on use o
the Schwarz reflection principle, that the upper/low
halves ofDz map to the upper/lower halves of thep-
plane, respectively.

In a similar way, the reflectional symmetry ofDz

and the choice ofzα real also implies that the image
of the boundaries{Cj | j = 0,1, . . . ,N − 1} under the
mappingλ(z) will each be finite-length vertical slits
symmetric about the realλ-axis. This time, the pair o
points (aj , bj ) will both map to the point where th
centre-point of each vertical slit intersects the reaλ-
axis (strictly speaking, of course,aj andbj will map
to points on different “sides” of the vertical slit corr
sponding to the image ofCj ). This means that

(18)

λ(aj ) = λ0
j , λ(bj ) = λ0

j , j = 0,1, . . . ,N − 1,

where, in the context of the Benney reductions, the
{λ0

j | j = 0,1, . . . ,N − 1} are a set of fixed constan
[14] determined from the initial conditions. Conside
ing λ now as a function ofp, i.e.,λ = λ(p), it follows
that

λ0
j = λ(p2j+1),

(19)λ0
j = λ(p2j+2), j = 0,1, . . . ,N − 1

which are exactly the conditions required ofλ(p) [18].
Again, it follows from the Schwarz reflection princip
that the upper/lower halves ofDz map, respectively, to
the upper/lower halves of theλ-plane. Thus, we hav
established that(15) are the required expressions f
p(z) andλ(z). Further, it should be clear that we c
also multiply(15) by arbitrary real constants and st
obtain reductions of the Benney system.

Note that it can also be shown that the distrib
tion function can be written in terms of the modifie
Green’s function in the form

(20)f (x,p, t) = 2

π
Im

[
∂

∂z̄α

G̃0(z, zα)

]
.

Inspection of(15) immediately shows that the Ben
ney moments are, in fact, purely geometrical quanti
associated with the domainDz and some given poin
zα inside it. In this respect, the Benney moments
strongly reminiscent of the Richardson moments
the Hele–Shaw problem. The Richardson moments
usually written as integral quantities over the supp
of some multiply connected domain. Equivalently,
use of Green’s theorem, they become line integ
quantities around the boundary of the domain. I
possible to write the Benney moments in the sa
way. On use of the Plemelj formula in(8) asp tends to
the real axis and taking the imaginary part, it follo
that

(21)f = − 1

π
Im[λ].

(21) highlights two properties off : first, on the
real p-axis between the slits{[p2j+1,p2j+2] | j =
0, . . . ,N − 1}, f = 0; second, since the upper si
of each slit in thep-plane corresponds to the upp
vertical segment of the image in theλ-plane with the
lower side of each slit in thep-plane correspondin
to the lower vertical segment in theλ-plane, and ow-
ing to the reflectional symmetry of the arrangemen
also follows from(21)that the values off at any point
on the lower side of each slit in thep-plane is the neg
ative of the value at the corresponding point on
upper side. These two properties off , together with
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the expression(5) for An, can be used to deduce tha

(22)An = 1

2

∮
∂Dz

pnf
dp

dz
dz

or, on use of(21),

(23)An = 1

2π

∮
∂Dz

pn Im[λ̄]dp
dz

dz

which shows that the Benney moments are con
integrals around the boundary ofDz of an integrand
purely expressible in terms of the modified Gree
function ofDz. Indeed, on use of(15) and(20), it fol-
lows that

An = 1

2πi

∮
∂Dz

(
∂G̃0

∂z̄α

− ∂G̃0

∂zα

)n(
∂G̃0

∂z̄α

− ∂G̃0

∂z̄α

)

(24)×
(

∂2G̃0

∂z∂z̄α

− ∂2G̃0

∂z∂zα

)
dz.

6.1. The elliptic reduction

As a check on our formulation, it is appropriate
check that the new expressions(15) are equivalent to
those already derived, using alternative arguments
previous authors. We therefore now consider the s
cial case of the elliptic reduction previously analyz
by Yu and Gibbons[16].

Consider a doubly connected, reflectionally-sym
etric domain. By the Riemann mapping theorem, ev
such domain is conformally equivalent to a concen
annulus in a parametric plane[19]. Since the boundar
value problem satisfied by the modified Green’s fu
tion is conformally invariant then picking differen
choices of conformally equivalent domainsDz sim-
ply corresponds to inconsequential reparametrizat
of the uniformizing variable. It is therefore enoug
to construct the modified Green’s function associa
with this annulus. Let it beρ < |ζ | < 1. Since we have
now specified a definite domain, we denote it byDζ

(reserving the notationDz for discussion of a genera
domain).ρ is the conformal modulus[19] of the dou-
bly connected domain. The pointz = zα corresponds
to ζ = α.

First, introduce the function

(25)P(ζ ) ≡ (1− ζ )P ′(ζ ),
where

(26)P ′(ζ ) ≡
∞∏

k=1

(
1− ρ2kζ

)(
1− ρ2kζ−1).

For brevity, we have suppressed the dependenc
P(ζ ) onρ. It follows directly from(25)and(26) that

P
(
ρ2ζ

) = −ζ−1P(ζ ),

(27)P
(
ζ−1) = −ζ−1P(ζ ).

The modified Green’s functionG0(ζ,α) for this do-
main is

(28)G0(ζ,α) = log

∣∣∣∣|α|P(ζα−1)

P (ζ ᾱ)

∣∣∣∣,
whereα is a point insideDζ . It can be verified tha
(28) satisfies all the requirements of the modifi
Green’s function described in Section3. It follows that
the analytic extension of this function is

(29)G̃0(ζ,α) = log

(
|α|P(ζα−1)

P (ζ ᾱ)

)
.

Given (28), expressions forp(ζ ) andλ(ζ ) follow
from the general results(15). Since

∂G̃0

∂α
= 1

2α
− 1

α2

ζPζ (ζα−1)

P (ζα−1)
,

(30)
∂G̃0

∂ᾱ
= 1

2ᾱ
− ζPζ (ζ ᾱ)

P (ζ ᾱ)
,

wherePζ (ζ ) denotes the derivative ofP(ζ ) with re-
spect toζ , it follows that

p(ζ ) = 1

α

(
K

(
ζα−1) − K(ζα)

)
,

(31)λ(ζ ) = 1

α

(
K

(
ζα−1) + K(ζα) − 1

) + C,

whereK(ζ) is defined as

(32)K(ζ) ≡ ζPζ (ζ )

P (ζ )

and where we have now takenᾱ = α. Formulas(31)
give an explicit expressions of the functionsp andλ

in terms of the uniformizing parameterζ . The constan
C is chosen to ensure thatλ ∼ p +O(p−1) asζ → α.
Straightforward algebra produces

(33)C = 1

α

(
1− 2K

(
α2)).
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Fig. 3. An illustration of the first type of reduction in the elliptic case. The figures shows the images of the annulus under the co
mappings(31) with parameter valuesρ = 0.05 andα = 0.25.
ex-
s,

s
ffel
-
der
ider

of
ose
Yu and Gibbons[16] use a different uniformizing
parameterχ and report their results as

p(χ) = p4 − 1

P(χ) −P(χ0)
,

(34)λ(χ) = 1

k

(
γ (χ + χ0) + γ (χ − χ0)

) + C,

wherep4, χ0 andC are constants,P(χ) is the Weier-
strass ellipticP-function[21] with periodsω1 andω2
and

(35)γ (χ) = −ζ̃ (χ) + ζ̃ (ω1)

ω1
χ,

whereζ̃ (χ) is the Weierstrass zeta-function[21]. It is
possible to verify that(34)are equivalent to(31) if the
following identifications are made:

χ = logζ, χ0 = logα,

(36)ω1 = πi, ω2 = 2 logρ.
This confirms the correctness of the newly-derived
pressions(15). To illustrate the conformal mapping
Fig. 3 shows how the annulus in theζ -plane maps to
the two types of slit domains in thep andλ-planes.
The parameter valuesρ = 0.05 andα = 0.25 are cho-
sen.

7. New reductions

In [16–18], theN -parameter vertical-slit reduction
just considered were viewed as Schwarz–Christo
mappings between thep andλ planes. A natural ex
tension of Schwarz–Christoffel maps is to consi
mappings to circular-arc regions. Therefore, cons
now a mapping from the upper-halfp-plane to an
upper-halfλ-plane withN slits emanating from the
real λ-axis that are all circular arcs. The “centres”
theN circular arcs must be specified. Here we cho
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all the circular arcs to be concentric, with an arbitrar
chosen centre.

Another result of[15] (also described by Schif
fer [20]) is that conformal mappings from anyN -
connected domainDz to a conformally equivalent un
bounded domain consisting ofN concentric arcs o
circles can also be written in terms of the modifi
Green’s function ofDz. To do so, choose two poin
zα andzβ insideDz and consider the analytic functio
of z given by

(37)φ3(z; zα, zβ) ≡ exp
[
G̃0(z, zβ) − G̃0(z, zα)

]
.

φ3 mapsDz, in a one-to-one fashion, to an unbound
domain consisting ofN concentric arcs of circles. W
now pose that

p(z) = φ1(z, zα) =
[

∂

∂z̄α

− ∂

∂zα

]
G̃0(z, zα),

λ(z) = Aφ3(z; zα, zβ) + C

(38)= Aexp
[
G̃0(z, zβ) − G̃0(z, zα)

] + C,

where bothzα andzβ are now restricted to be distin
points on the realz-axis insideDz. It follows from(38)
that, asz → zα , p → ∞ andλ → ∞. ConstantsA and
C should therefore be chosen so thatλ ∼ p +O(p−1)

asz → zα .
As before, the image ofDz under the mapping

given byp(z) is a set ofN real intervals on the rea
axis in the image plane. Further, by the choice of t
ing zβ real, it also follows that the common “centre
of the circular arcs will be on the realλ-axis and
that the image ofDz underλ(z) consists ofN con-
centric circular arcs, each of finite length, which a
reflectionally-symmetric about the realλ-axis. Indeed,
picking the parameterzβ can be thought of as spec
fying the common centre of the circular arcs. By t
Schwarz reflection principle, it also follows that th
upper/lower halves ofDz maps to the upper/lowe
halves of thep andλ-planes. Therefore, all the con
ditions required ofp(z) andλ(z) are satisfied and the
are given by(38) with z as the natural uniformizing
variable.

It is possible to show, using arguments analog
to those concerning the first-type reduction, that f
mula(23)expressing the Benney moments in terms
p and λ holds in this case as well. Again this giv
an expression for the{A } as contour integrals aroun
n
∂Dz of an integrand dependent only on the modifi
Green’s function ofDz.

7.1. The elliptic case

Let Dζ be the annular domainρ < |ζ | < 1 as in
Section6.1. On use of(29) in (38) it follows that

p(ζ ) = 1

α

(
K

(
ζα−1) − K(ζ ᾱ)

)
,

(39)λ(ζ ) = Ã
P (ζβ−1)P (ζ ᾱ)

P (ζ β̄)P (ζα−1)
+ C̃

for some real constants̃A andC̃ which must be chose
so thatλ ∼ p+O(p−1) asp → ∞. A local expansion
of (39)yields

Ã = − P(αβ)P ′(1)

αP (αβ−1)P (α2)
,

C̃ = 1

α

(
1− K

(
α2))

(40)+ αÃ
d

dζ

(
P(ζα)P (ζβ−1)

P (ζβ)P ′(ζα−1)

)∣∣∣∣
ζ=α

.

where we have now taken̄α = α andβ̄ = β. To illus-
trate the conformal mappings,Fig. 4 shows how the
annulus in theζ -plane maps to the two types of s
domains in thep andλ-planes. The parameter valu
ρ = 0.05,α = 0.25 andβ = −0.25 are chosen.

8. Discussion

The key new formulas of this Letter for the two d
ferent reduction types are(15) and(38) whereG̃0 is
the analytic extension of the modified Green’s fun
tion of an N -connected planar domainDz which is
reflectionally-symmetric about the real axis and w
all its holes centred on this axis. The specific ma
festations of(15) and(38) in the elliptic caseN = 2
have been explicitly constructed. One of these el
tic reductions corresponds to that derived by Yu a
Gibbons[14], the other is new. Given these explic
expressions one could now, in principle, make use
the hodograph method of Tsarev[22] to solve the ini-
tial value problem. This was done by Yu and Gibbo
[16] in the case of the first-type elliptic reduction.

We believe the general results(15) and (38) to
be significant for the following reason. Associat
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onformal
Fig. 4. An illustration of the second type of reduction in the elliptic case. The figures shows the images of the annulus under the c
mappings(38) with parameter valuesρ = 0.05 andα = 0.25, β = −0.25.
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with any multiply connected planar domainDz (let
us assume, having boundary components that ar
smooth Jordan curves) is a compact, symmetric R
mann surface known as theSchottky double. It is a Rie-
mann surface consisting of two identical “halves” a
endowed with an anti-holomorphic involution provi
ing a mapping from one “half” to the other. It is po
sible to write an expression for the modified Gree
function associated with a given planar domain
terms of the prime form on the Schottky double. F
mulas for the Green’s function are given, for examp
in Krichever et al.[23] where they are represented
terms of the Riemann theta function. Analogous f
mulas exist for the modified Green’s function (sin
the Green’s function and the modified Green’s fu
tions are solutions to “dual” problems, as discusse
[23]) which, together with(15) and(38) for the two
types of reduction considered here, give formulas
the required uniformizations ofp andλ.
l
Indeed, based on the results of the present Le

the present author[24] has produced explicit formula
for the generalN -parameter case of the two reducti
types considered here. The method is based on fin
explicit formulas for the modified Green’s functions
the canonical class of reflectionally-symmetric mu
ply connectedcircular domains(i.e., domains whose
boundaries are all circles) and then making use of(15)
and(38).

The formulation here also suggests that the
ductions of the Benney hierarchy can be interpre
as a special class of flows in the extended mo
space of analytic curves. This mirrors recent wo
in [1,2] where an identification between exact so
tions of the equations governing Laplacian grow
are reinterpreted as special reductions, known as
gebraic orbits”, of the universal Whitham hierarch
There, the flows are generated by certain merom
phic differentials defined on the Schottky double
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the multiply connected planar domain. Here, the g
erating differentialsdp and dλ of the two reduction
types are both second-kind Abelian differentials w
two second-order poles (of vanishing residue), one
each half of the Schottky double of the planar dom
Dz. Crowdy and Marshall[12] have already used th
Schottky model to represent time-evolving quadrat
domains (or, as we now understand[2], the algebraic
orbits of the universal Whitham hierarchy). The wo
in Crowdy[24] extends this mode of representation
N -parameter reductions of the Benney hierarchy.
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