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A new constructive method for computing the motion of a single point vortex around an arbitrary
finite number of circular islands in the special case when the circulations around all the islands are
zero is presented. In this case, explicit representations for the governing Hamiltonians can be found
and used to study the vortex trajectories. An example application is to geophysical flows and this
study provides a simple model of the interaction of ocean eddies with topography. A wide range of
illustrative examples are given, including the case of various multi-island configurations lying off an
infinite coastline as well as in an unbounded ocean. The critical trajectoriessor separatricesd dividing
the flow domain into regions of qualitatively different dynamics of the vortices can be computed in
a systematic and unified fashion irrespective of the number of islands present. ©2005 American
Institute of Physics. fDOI: 10.1063/1.1900583g

I. INTRODUCTION

The study of point vortex dynamics is an important area
of fluid dynamics already commanding a vast literature. The
review of Aref et al.1 provides a recent survey of results
involving vortex equilibria or “vortex crystals,” mainly in
unbounded and periodic configurations, while the recent
monograph of Newton2 gives a broader perspective of the
generalN-vortex problem including discussions of vortex
motion in unbounded and bounded planar domains as well as
on curved surfaces such as the surface of a sphere.

While the motion of point vortices in unbounded do-
mains has received much attention, much less developed is
the theory of point vortex motion in domains bounded by
impenetrable walls. The simplest example is a single point
vortex adjacent to an infinite straight wall. Such a vortex
translates at constant speed maintaining a constant distance
from the wall. This motion is conveniently understood as
being induced by an equal and opposite “image” vortex be-
hind the wall. Another result in this area is the “Milne–
Thomson circle theorem”3 applying to the case of point vor-
tices situated exterior to a circular cylinder. The famous
solution known as the “Foppl vortex pair”2,4 modeling the
wake behind a cylinder in uniform flow is an example of a
flow which can be derived using this general theorem.

A number of more elaborate examples involving simply
connected fluid regions are given by NewtonsChapter 3d,2

others are described by Saffman.4 Many of these examples
rely on the transformation properties, under conformal map-
ping, of what is known as the Kirchhoff–Routh path function
which is another designation of the Hamiltonian governing
the vortex motion. The Hamiltonian formulation of point
vortex dynamics, and the Kirchhoff–Routh path function,
dates back to the work of Kirchhoff and Routh.5 It was re-
appraised much later by Lin6,7 who extended the Kirchhoff–

Routh approach to multiply connected domains, and more
recently by Flucher and Gustafsson8 who analyze various
aspects of the general boundary value problem arising from
point vortex motion in bounded domains.

The motion of a single vortex in bounded simply con-
nected domains is relatively well studied. Flucher and
Gustafsson8 have shown that the Kirchhoff–Routh path func-
tion in this case satisfies an elliptic Liouville equation in the
bounded domain and is infinite everywhere on its boundary.
On the subject ofN-vortex motion in multiply connected
domains very little literature exists. Lin6 establishes the ex-
istence and uniqueness of a generalized Kirchhoff–Routh
path function in this case, but gives no explicit examples. In
a recent paper, Johnson and McDonald9 consider the motion
of a vortexswhich they model both as a point vortex and a
vortex patchd in the doubly connected region exterior to two
circular cylinders whose boundaries act as impenetrable bar-
riers for the flow. The motivation for their study is to provide
a simple model to understand how an oceanic eddy/vortex
interacts with topography.10 Such flow scenarios occur in a
range of geophysical situations such as the interaction of
Mediterranean salt lensessMeddiesd with seamounts in the
Canary basin11 or the collision of North Brazil Current rings
with the islands of the Caribbean.12 In their study, Johnson
and McDonald9 consider the case in which the circulation
around each island is zero. By Kelvin’s circulation theorem,
if this is true initially it will remain true at all subsequent
times since all round-island circulations are conserved by the
dynamics of the Euler equations. Other studies of geophysi-
cal interest involve the motion of vortices near gaps in an
impenetrable barrier.13,14With oceanographic applications in
mind, the case of point vortex motion, involving boundaries,
on the surface of a sphere has also received attention.15

The present study generalizes the work of Johnson and
McDonald9 to the case of an essentially arbitrary finite num-
ber of circular islandssor cylindersd. The treatment exploits
some recent new mathematical results developed in Crowdy
and Marshall.16 There, explicit analytical formulas for the
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Kirchhoff–Routh path functions for theN-vortex problem in
circular domains of arbitrary finite connectivity are found in
the special case in which all round-island circulations vanish.
These formulas for the path function are reproduced here
without proof, the interested reader being referred to Crowdy
and Marshall16 for full details of the mathematical deriva-
tion. While the derivation is involved, application of the final
formula is relatively straightforward. It is one of the pur-
poses of the present paper to highlight the efficacy of the
formula, and its ease of application in modeling practical
situations of geophysical interest, without obfuscating the
presentation with the underlying mathematical proofs.

II. MATHEMATICAL FORMULATION

Let Dz be a bounded circular domain with the outer
boundary given byuzu=1. Let M be a non-negative integer
and let the boundaries ofM enclosed circular disks be de-
notedhCju j =1,… ,Mj. M =0 corresponds to the simply con-
nected case where there are no enclosed circular disks. Let
the radius of circleCj be qj PR and let its center be atz
=d j PC. Such a domain issM +1d connected. An example of
a quadruply connected domain is shown in Fig. 1.

Let Wsz ,ad be the complex potential associated with an
incompressible flow inDz which is irrotational except for a
single point vortex singularity atz=a. The point vortex will
be taken to have unit circulation while all the circulations
around theM enclosed islands will be taken to be zero.
Wsz ,ad must be analytic, but not necessarily single valued,
everywhere inDz except for a logarithmic singularity atz
=a corresponding to the point vortex. It must also be such
that

ImfWsz,adg = 0 on uzu = 1 s1d

and

ImfWsz,adg = b jstd on Cj, j = 1,…,M , s2d

where the parametershb jstdj depend possibly on time but not
space. Conditionss1d and s2d ensure that all boundaries are
streamlines. The choices1d provides a normalization which
uniquely determines Wsz ,ad. The values of hb jstdu j
=1,… ,Mj are dictated by the zero-circulation conditions
around the islands. Flucher and Gustafsson8 give a compre-
hensive discussion of the mathematical problem of point vor-
tex motion in multiply connected domains.

Crowdy and Marshall16 show that an explicit formula for
the complex potentialWsz ,ad satisfying all the conditions
above is

Wsz,ad = −
i

4p
lnSvsz,adv̄sz −1,a−1d

vsz,ā−1dv̄sz −1,ād
D , s3d

wherev andv̄ are two special functions to be defined below.
Let c be the streamfunction associated with the incompress-
ible flow. Then

c = ImfWsz,adg. s4d

Formulas3d is the key result from Ref. 16 to be employed in
what follows.

The functionsvsz ,ad andv̄sz ,ad are defined as follows.
For each interior circlehCju j =1,… ,Mj of the domainDz

ssee Fig. 1d, define the conformal map

u jszd =
ajz + bj

cjz + dj
, j = 1,…,M , s5d

where

aj = qj −
ud ju2

qj
, bj =

d j

qj
, cj = −

d j

qj
, dj =

1

qj
. s6d

Conformal maps of the linear-fractional forms5d are known
as Möbius maps.17 With the M basic Möbius mapss5d to-
gether with theirM inverseshu j

−1u j =1,… ,Mj swhich are
also easily shown to be Möbius mapsd, an infinite number of
additional Möbius maps can be generated by composition of
these 2M basic mapssit is easy to verify that the composition
of two Möbius maps is another Möbius mapd. The infinite set
of maps constructed in this way can be categorized according
to their level. The level one maps will be the 2M maps

u1,u2,…,uM,u1
−1,u2

−1,…,uM
−1, s7d

the level twomaps will be all compositions of any two of the
above level one maps that do not reduce to a lower level map
si.e., the identityd. Some level two maps include

u1
2,u1u2,u1u2

−1,…,uM−1uM,uM
2 . s8d

The level threemaps are all those compositions of any three
of the basic maps which do not reduce to a lower-level map.
All higher level maps are defined similarly.

We define the conjugate mapsū jszd to be

FIG. 1. Schematic of typical multiply connected circular regionDz. The
case shown, with three enclosed circles, is quadruply connected. There is a
single point vortex at positionastd. C0 denotes the unit circle. There areM
interior circles sthe case M =3 is shown hered, each labeledhCju j
=1,… ,Mj. The center of circleCj is d j and its radius isqj.
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u jszd = u jsz̄d s9d

so that

ū jszd =
ājz + b̄j

c̄jz + d̄j

, j = 1,…,M . s10d

Again, a second infinite set of Möbius maps can be generated
by compositions of the 2M basic mapshu j ,u j

−1u j =1,… ,Mj.
Given these two infinite sets of Möbius maps, the function
vsz ,gd is defined to be

vsz,gd = sz − gdv8sz,gd, s11d

where

v8sz,gd = p
uk

fukszd − ggfuksgd − zg
fukszd − zgfuksgd − gg

, s12d

and where the product is over all compositions of the basic
mapshu j ,u j

−1u j =1,… ,Mj excludingthe identity map and all
inverse maps. This means, for example, that if it is decided to
include the level two mapu1fu2szdg, then the mapu2

−1fu1
−1szdg

must not be included. Note that the prime notation is not
used in this paper to denote derivatives.

The functionv̄sz ,ad is defined similarly to be

v̄sz,gd = sz − gdv̄8sz,gd, s13d

where

v̄8sz,gd = p
ūk

fūkszd − ggfūksgd − zg

fūkszd − zgfūksgd − gg
, s14d

and where the product is over all compositions of the basic

mapshū j , ū j
−1u j =1,… ,Mj, again excluding the identity map

and all inverse maps.
In writing a numerical subroutine to compute the above

functions, it is necessary to truncate the infinite products de-
fining them. This can be done in a natural way by including
all Möbius maps up to some levelsas defined earlierd. All the
examples in this paper are computed by truncating the infi-
nite products at level four, keeping all maps up to level three
in the product. The truncation was checked by reevaluating
various quantities by truncating at a higher level to make
sure that convergence was reached.

We remark that while we have omitted any formal math-
ematical proofs thatWsz ,ad as given in s3d satisfies the
boundary conditions listed earliersthe proofs are in Ref. 16d,
the interested reader can nevertheless verify this numerically,
for a chosenDz, now that the functionsv and v̄ have been
defined. A further check on the validity ofs3d appears later
when we retrieve known results for the simply and doubly
connected scenarios from our more general formulasssee
Secs. III A and III Bd.

From s3d the associated streamfunction for the flow is
given by the formula

c = ImfWsz,adg = −
1

4p
lnUvsz,adv̄sz −1,a−1d

vsz,ā−1dv̄sz −1,ād
U . s15d

Now let Hszdsa ,ād denote the Hamiltoniansor Kirchhoff–
Routh path functiond for the motion of the vortex inDz. The
existence and uniqueness of such a function is established by
Lin.6 Following Lin6 ssee also Ref. 8d and on use ofs15d, a
formula for Hszdsa ,ād can be derived by decomposing the
streamfunction as

c = −
1

2p
lnuz − au − ĉsz,z̄;a,ād, s16d

where the functionĉ is regular at the point vortex singular-
ity. The Hamiltonian for a point vortex of circulationG is
then

Hszdsa,ād = −
G2

2
ĉsa,ā;a,ād s17d

or, on use ofs15d in s16d,

Hszdsa,ād = −
G2

8p
lnU 1

a2

v8sa,adv̄8sa−1,a−1d
vsa,ā−1dv̄sa−1,ād

U . s18d

This is an explicit formula for the Hamiltonian of a single
vortex in the bounded circular domainDz. All the geometri-
cal information on the shape ofDz is neatly encoded in the
functionsv andv̄. Referring back to the familiar “method of
images”4 mentioned in the Introduction, these special func-
tions do all that is necessary to place an appropriate distri-
bution of “image vortices” in the plane in such a way that all
boundary conditions are simultaneously satisfied. In the mul-
tiply connected case, an infinite number of image vortices
must be introduced and disposed in a complicated arrange-
ment throughout the plane.

In order to find the Hamiltonian for motion in the more
physically interesting case of vortex motion inunbounded
circular domains, it is useful to employ a second result of
Lin7 showing how the HamiltonianHszdsa ,ād transforms un-
der arbitrary conformal mapping of the domainDz. Indeed, if
Dz maps to a domainDz by means of a one-to-one conformal
mapz=zszd, then the HamiltonianHszd in the image domain
Dz is

Hszdsza,z̄ad = Hszdsa,ād +
G2

4p
lnuzzsadu, s19d

whereza=zsad. Explicitly,

Hszdsza,z̄ad = −
G2

8p
lnU 1

zzsad2a2

v8sa,adv̄8sa−1,a−1d
vsa,ā−1dv̄sa−1,ād

U ,

s20d

where it should be recalled that the one-to-one conformal
mappingz=zszd is invertible so that, in principle,z can be
written as a function ofz, i.e.,z=zszd, or as is more relevant
for the formulas20d, a=aszad.

Finally, if there is an externally imposed background
flow with associated complex potentialWBszd, the Hamil-
tonianHT

szdsza , z̄ad of the total flow field becomes
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HT
szdsza,z̄ad = Hszdsza,z̄ad + HBsza,z̄ad, s21d

where

HBsza,z̄ad = G ImfWBszadg. s22d

In this single degree-of-freedom Hamiltonian system in
which HT

szdsza , z̄ad is conserved by the dynamics, the trajec-
tories of the vortex are simply the contours ofHT

szdsza , z̄ad.

III. ISLANDS OFF A COASTLINE

The purpose of the next two sections is to demonstrate
how readily the vortex trajectories around greatly differing
island configurations can be found by exploiting the formu-
las above. The basic construction is the same irrespective of
the number of islands present. This affords us a flexible and
versatile means of constructing the vortex paths whatever the
topology of the island configuration. All that changes from
one example to the next is the set of preimage circleshCju j
=1,… ,Mj in thez plane and therefore the functionsv andv̄
appearing in the Hamiltonian.

First, consider the case in which a chain of islands exists
off an infinite coastline. Let the imaginary axis in thez plane
represent the coastline and consider a chain ofM circular
islands in the right half plane. This is the domainDz. By the
Riemann mapping theorem for multiply connected
domains,18 such a domain is conformally equivalent tosome
bounded circular domainDz of the type considered earlier.18

Given a distribution ofM islands inDz, it remains to deter-
mine the geometrical arrangement of theM circles hCju j
=1,… ,Mj characterizingDz.

It is known17 that Möbius maps take circles to circles, so
to mapDz to Dz we seek a Möbius map. Letuzu=1 map to the
imaginary axis. Ifz=1 maps toz=0 andz=−1 maps to in-
finity in the z plane, the relevant conformal mapping is

zszd =
1 − z

1 + z
. s23d

The given centers and radii of the circles in thez plane
dictate the values of the parametershqj ,d ju j =1,… ,Mj in the
preimagez plane. Once the latter parameters are known, the
functionsv and v̄ can be constructed.

On use ofs23d in both s18d ands19d, the Hamiltonian in
this case is

Hszdsza,z̄ad = −
G2

8p
lnU s1 + ad4

4a2

v8sa,adv̄8sa−1,a−1d
vsa,ā−1dv̄sa−1,ād

U ,

s24d

whereza=zsad.
Let Qj be the radius andDj the position of the center of

the j th circle in the z plane. To determinehqj ,d ju j
=1,… ,Mj from the specified parametershQj ,Dju j
=1,… ,Mj, note thats23d is self-inverse so that

zszd =
1 − z

1 + z
. s25d

Now, the equation forCj is

zz̄ − d jz̄ − d̄ jz + ud ju2 − qj
2 = 0. s26d

Substitutings25d into s26d yields the following equation re-
lating z, z̄:

uz− Dju2 = Qj
2, s27d

where

Dj =
1 − ud ju2 + qj

2 + d̄ j − d j

1 + ud ju2 − qj
2 + d̄ j + d j

s28d

and

Qj =
2qj

1 + ud ju2 − qj
2 + d̄ j + d j

. s29d

Two equations provided bys28d ands29d are to be solved for
hqj ,d ju j =1,… ,Mj given the parametershQj ,Dju j =1,… ,Mj.

A. The simply connected case

It is instructive to see how our general approach for any
finite connectivity reduces to the case of simply and doubly
connected domains previously studied in the literature. This
also provides an important check on the preceding analysis.

In the simply connected case, there are no enclosed
circles to generate any Möbius maps so that

v8sz,gd = v̄8sz,gd = 1,

s30d
vsz,gd = v̄sz,gd = sz − gd.

Substituting this intos24d yields

Hszdsza,z̄ad = −
G2

8p
lnU s1 + ad4

4

1

saā − 1d2U . s31d

But

za =
1 − a

1 + a
, a =

1 − za

1 + za

s32d

so that

aā − 1 = −
2sza + z̄ad

s1 + zads1 + z̄ad
,

s33d

1 + a =
2

1 + za

.

Substitutings33d into s31d yields

Hszdsza,z̄ad =
G2

4p
lnuza + z̄au, s34d

which is well knownse.g., Ref. 2d to be the Hamiltonian for
a single vortex near an infinite vertical wall.
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B. The doubly connected case

A doubly connected domain can be obtained by a con-
formal mapping from some annulusq, uzu,1 in a paramet-
ric z plane. The value ofq is determined by the domain
itself. In this case,d1=0 andq1=q, so that the single Möbius
map given bys5d is

u1szd = q2z. s35d

Then,

vsz,gd = sz − gdp
k=1

`
sq2kz − gdsq2kg − zd
sq2kz − zdsq2kg − gd

= −
g

C2Psz/g,qd,

s36d

where

Psz,qd ; s1 − zdp
k=1

`

s1 − q2kzds1 − q2kz −1d s37d

and

C ; p
k=1

`

s1 − q2kd. s38d

Note also that sinceū1szd=u1szd thenv̄sz ,gd=vsz ,gd in this
case.

For a bounded doubly connected domain, the stream-
function becomes

c = −
1

4p
lnUPsza−1,qdPsaz −1,qd

Pszā,qdPsz −1ā−1,qd
U . s39d

On use of the property thatPsz −1,qd=−z −1Psz ,qd fwhich is
easily established directly from the definitions37dg, this re-
duces to

c = −
1

2p
lnUaPsza−1,qd

Pszā,qd
U . s40d

Psz ,qd is related to the first Jacobi theta functionU1.
19 In-

deed, defining

t = − ln z, ta = − ln a s41d

then the annulus in thez plane is mapped to a rectangle in
the t plane. It can be shownssee Ref. 19d that

Psz,qd = −
iC−1e−t/2

q1/4 U1fit/2,qg. s42d

On use ofs42d it follows that

Psza−1,qd = − iC−1q−1/4Î z

a
U1fist − tad/2,qg,

s43d
Pszā,qd = − iC−1q−1/4ÎzāU1fist + t̄ad/2,qg,

which, on substitution intos40d, yields

c = −
1

2p
lnUU1fist − tad/2,qg

U1fist + t̄ad/2,qg
U . s44d

This is precisely the imaginary part of the complex potential
given in Eq.s2.11d of Johnson and McDonald.9

C. The higher-connected case

Since the doubly connected case has been treated in de-
tail in Ref. 9, no further examples are considered here. In-
stead, consider a triply connected fluid domain in which two
circular islands are situated off an infinite coastline. Figure 2
shows the critical vortex trajectory for two islands, each of
unit diameter, in horizontal alignment off a coastline. The
first island is unit distance from the coast while the second
island is separated by unit distance from the first. Figure 3
shows a more detailed distribution of trajectories. The criti-
cal vortex trajectories, or separatrices, can be found by iden-
tifying the position of the saddle points and finding the value
of c associated with the contours passing through such
points. This is done by using Newton’s method to find the
zeros of the derivative of the Hamiltonian at points on the
realz axis between the circleshCjj. It follows from the sym-
metry in this case that the saddle points are on the realz axis.
No arrows are shown in the various figures of this paper but
are determined by the sign ofG. For example, ifG.0, the
vortex travels down fromy→ +`.

When the vortex is far from the two islands, it is ex-
pected that the vortex paths should become parallel to the
coastline since the effect of the island cluster will be negli-
gible and the vortex will see only its single image vortex in

FIG. 2. Critical vortex trajectories for two islands of unit diameter off a
coastline. The interisland separationd=1.
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the straight coastline. As mentioned in the Introduction, the
vortex will translate at constant speed maintaining a constant
distance from the coastline. In terms of geophysical applica-
tion, an interesting question is to ascertain how far from the
coastline a distant approaching vortex must be in order to
trace out qualitatively different paths as it approaches the
island cluster. To perform such a study, consider two equal-
sized islands of unit diameter in horizontal alignment in
which one island is fixed to be unit distance from the coast-
line. Let d, an adjustable parameter, denote the horizontal
separation of the two islands. Letd1 andd2 be the distances
from the coastline of the two critical streamlines far away
from the island cluster. Figure 4 shows a schematic. Using
the above formulation, it is straightforward to systematically
examine howd1 andd2 vary for differing interisland separa-
tions d sor indeed for any other geometrical parameter that
one might choose to varyd. Figure 5 shows the critical vortex
trajectory for the four valuesd=0.5, 1.5, 2.5, and 3.5. Figure
6 shows a graph ofd1 and d2 againstd. It is found thatd1

remains almost constant asd is varied whiled2 increases
near-linearly with increasingd. This means that as the sec-
ond island draws farther away from the coastline, vortices far
upstream of the island cluster must also be farther away from
the coastline in order to avoid traveling between the islands.

Additional islands can readily be incorporated into the
approach. Figure 7 gives the critical vortex trajectory for
three islands while Fig. 8 gives a more detailed path distri-
bution in this case. These figures show three unit-diameter
islands each separated from each othersin horizontal align-
mentd by unit distance, the leftmost island being unit dis-
tance from the coast. Even greater numbers of islands can be

treated analogously without difficulty. Figures 9 and 10, re-
spectively, show the critical vortex trajectories in the cases of
four and five horizontally aligned islands. An interesting fea-
ture is that the area of vortex paths that encircle any given
island gets larger for islands farther away from the coastline.

Other alignments of islands are also amenable to analy-
sis. Figure 11 show vortex trajectories for the cases of two,
three, and four islands in vertical alignment near a coastline.
All islands have unit diameter and are separated from one
another, and from the coastline, by unit distance. An interest-
ing feature of these trajectories is that a vortex just to the left
of the critical trajectory travels between the coastline and the
island cluster with very little disturbance to what would be
its path in the absence of the island cluster. However, vorti-
ces on paths just to the right of the critical trajectory diverge
wildly from a straight vertical trajectory and, in passing to
the right of each island, the vortex can be significantly drawn
into each interisland region, getting very close to the coast-
line, and then moving back out again before being drawn
back to the coastline in the region between the next two
islands.

Besides horizontally and vertically aligned island clus-
ters, staggered configurations are also of interest. Figures 12
and 13 show two and three islands, respectively, in various
geometrical arrangements along the coastline. Note that the
reflectional symmetry of the horizontally and vertically
aligned configurations considered earlier are such that the
circles in thez plane are also reflectionally symmetric about
the realz axis so thatv̄sz ,gd=vsz ,gd and only one such
function needs to be defined. However, the case shown in

FIG. 3. Distribution of vortex trajectories around two unit-diameter islands
off a coastline.

FIG. 4. Schematic for problem of two circular islands, separated by distance
d, off a coastline. The two critical trajectories have far-field distances from
the coast ofd1 andd2.
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Fig. 12 is an example in whichv̄sz ,gdÞvsz ,gd, but the
method encounters no additional difficulty. Figure 14 shows
another example of trajectories around a randomly chosen
three-island configuration with no geometrical symmetries
at all.

IV. ISLANDS IN UNBOUNDED OCEAN

In the case ofM +1 islands in an unbounded ocean, each
of the M enclosed circleshCju j =1,… ,Mj will be taken to
map to the boundary of one of the islands. The circulation

around these islands will be zero. The unit circle,uzu=1, will
be taken to map to the final island. In order that the image
domain is unbounded, there must be a point denotedz` such
that zszd has a simple pole at that point.

The circulation around the island corresponding to the
image of uzu=1 will not, in general, be zero. In the calcula-
tions to follow, we choose to impose that the circulations
aroundall M +1 islands are zero. Such a situation arises, for
example, when a vortex approaches the island cluster from
far away, the initial flow around the islands being zero. To
arrange this, it is necessary to add a point vortex of circula-

FIG. 5. Critical vortex trajectories for two unit-diameter islands at various
separationsd=0.5, 1.5, 2.5, and 3.5.

FIG. 6. Critical far-field distances away from coast—d1 and d2—as func-
tions of the two-island separationd.

FIG. 7. Critical vortex trajectories for three unit-diameter islands separated
by unit distance.
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tion −G to the point at infinity in thez plane. Johnson and
McDonald9 employ a similar strategy in their study of the
doubly connected case. The complex potential for the back-
ground flow associated with this point vortex at infinity is

WBszd =
iG

4p
lnSvsz,z`dv̄sz −1,z `

−1d

vsz,z̄ `
−1dv̄sz −1,z`d

D . s45d

On a minor technical point, note that in the particular
case whenz`=0 swhich will in fact be the choice in the
examples to followd then the functionvsz ,`d as given in
s11d is not well defined. In this case, we instead use the
modified formulas

vsz,0d
vsz,`d

= z
v8sz,0d
v8sz,`d

,
v̄sz,0d
v̄sz,`d

= z
v̄8sz,0d
v̄8sz,`d

s46d

in s49d below. These are the appropriate generalizations since
the functions on the right-hand sides of the two equations in
s46d have a zero atz=0 and a pole atz=`. The general form
of the Hamiltonian in a conformally mappedz plane is then

Hszdsza,z̄ad = −
G2

8p
lnU 1

a2uzzsadu2
v8sa,adv̄8sa−1,a−1dv2sa,z̄ `

−1dv̄2sa−1,z̄`d
vsa,ā−1dv̄sa−1,ādv2sa,z`dv̄2sa−1,z `

−1d
U , s47d

where we have useds20d and s45d in s21d and s22d.
The class of conformal maps to be used in the following examples is

FIG. 10. Critical vortex trajectories
for five unit-diameter islands off a
coastline. The islands are separated by
unit distance. The region of recircula-
tion around the islands is greater for
islands further from the coastline.

FIG. 8. Distribution of vortex trajectories for three unit-diameter islands off
a coastline. The islands are separated by unit distance.

FIG. 9. Critical vortex trajectories for four unit-diameter islands off a coast-
line. The islands are separated by unit distance.
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FIG. 11. Trajectories for two, three, and four unit-diameter islands aligned vertically at unit separation and at unit distance from a coastline. Vortices
sufficiently close to the coastline travel close to the straight path they would take in the absence of the island cluster. Trajectories just to the right of the critical
trajectory diverge wildly from this straight path.
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zszd =
a

z
+ b, s48d

where the real parametera is chosen to fix the radius of the
island corresponding to the image ofuzu=1 and thesgenerally

complexd parameterb is chosen to appropriately locate its
center. Clearly,z=0 maps to physical infinity so we have
chosenz`=0. On use ofs48d in s47d, the Hamiltonian is

Hszdsza,z̄ad = −
G2

8p
lnUa2

a2

v8sa,adv̄8sa−1,a−1dv2sa,`dv̄2sa−1,0d
vsa,ā−1dv̄sa−1,ādv2sa,0dv̄2sa−1,`d

U , s49d

where the formulas ins46d must be used.
Again, let Qj be the radius andDj the position of the

center of thej th circle s j =1,… ,Md in the physical plane. It
remains to determine the parametershqj ,d ju j =1,… ,Mj from
the known parametersa,b,hQj ,Dju j =1,… ,Mj. It is straight-
forward to show that the equations relating these parameters
are given by

Dj = b +
ad̄ j

ud ju2 − qj
2 s50d

and

Qj =
qjuau

ud ju2 − qj
2 . s51d

Sincez=0 maps to infinity, and therefore cannot be inside
any of the circleshCju j =1,… ,Mj, then necessarilyud ju2
.qj

2 for all j =1,… ,M so thatQj .0 as required.
By way of examples, Figs. 15 and 16 show the cases of

three and four unit-diameter islands equispacedswith unit
separationd in an unbounded ocean. All vortex paths are
closed and the critical trajectory separates vortex paths that
encircle one or other of the islands from vortex paths that
encircle all of the islands. Figure 17 shows the trajectories
around a randomly chosen island configuration with no geo-
metrical symmetries so that, again,v̄Þv. It is the same

FIG. 12. Typical trajectories for two staggered islands near a coastline. Both
have unit diameter, one is centered at 1.5+i and the other at 3.5−i.

FIG. 13. Trajectories for three islands near a coastline. All have unit diam-
eter, two are centered at 1.5±2i and the other is centered at 3.5.
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island configuration as in Fig. 14 but with no coastline
present.

In the case of unbounded oceans, more interesting vortex
trajectories would be obtained if a background flow is incor-
porated. The effect of background flows requires the addition
of another contributions22d to the total Hamiltonianfsee
s21dg. However, finding a complex potentialWBszd satisfying
the no normal-flow boundary conditions on the islands even

for simple uniform or straining flows presents further math-
ematical challenges. Such extensions of the present work are
currently under investigation.

V. DISCUSSION

The formulas used in this paper, specifically,s20d and
s47d, are very general and are relevant to the flow of a single
vortex inanymultiply connected regions for which a confor-
mal mapzszd to the region from some multiply connected
circular preimage region is known. Here, the two conformal
maps s23d and s48d have been used to investigate various
multi-island configurations in unbounded oceans and in
oceans bounded by a coastline. It should be mentioned, how-
ever, that multiply connected circular preimage regions of
the type exemplified in Fig. 1 are a standard set of canonical
domains for general multiply connected conformal
mappings.18 Therefore, the formulas used in this paper are
also those relevant to single-vortex motion inarbitrary mul-
tiply connected regions. If a mappingzszd to the domain of
interest is known explicitly, then the Hamiltonian is also
known explicitly on use ofs20d or s47d. If zszd is not known
in analytical form, a numerical determination of such a map
can nevertheless be used in the formulas above. The numeri-
cal determination of conformal maps is a standard
procedure.20,21We also mention that while we have restricted
attention here to the motion of a single vortex, the formula-
tion presented in Crowdy and Marshall16 extends to the gen-
eral N-vortex problem.

A limitation of the formulas used in this paper is that the
round-island circulations are zero. In certain physical situa-
tions, non-zero round-island circulations are relevant. We
have not yet succeeded in generalizing the formulas of Ref.
16 to the general case of nonzero round-island circulations
salthough it turns out to be straightforward to do so in the
special case of doubly connected domainsd. However, Lin6

has demonstrated that this circumstance simply implies the
addition of a further contribution to the total Hamiltonian—
one that does not depend on the instantaneous point vortex
positions. Lin refers to the contribution of nonzero round-

FIG. 14. Typical trajectories for vortices near three nonsymmetrically
placed islands off a coastline. One island is centered at 2+i with diameter 1,
another is centered at 3−2i with diameter 2, and a third centered at 5 with
diameter 1.5.

FIG. 15. Typical trajectories for three
unit-diameter islands in an unbounded
ocean and no background flow. The is-
lands are separated by unit distance.
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island circulations as being due to “external agencies” of
vorticity sin general, these round-island circulations are fixed
in time as a consequence of Kelvin’s circulation theoremd.
The fact that this additional Hamiltonian does not depend on
the point vortex positions means that it can be determined
se.g., numerically, perhaps using boundary integral methodsd
at the start of any calculation and will remain fixed during
the calculation if the contribution from the external agencies
is time invariant. The explicit formulas of this paper can still
be employed to give the “point vortex contribution” to the
Hamiltonian. In this way, the formulas employed here should
simplify the numerical computation of vortex trajectories
even in the presence of nonzero round-island circulations.

The efficacy of our method has been demonstrated by a
series of examples. It should be pointed out, however, that
we have proceeded under the assumption that the infinite
products defining the functionsv and v̄ converge. In fact,
these products do not converge for all choices of the param-
eters hqj ,d ju j =1,… ,Mj—broadly speaking, their conver-
gence depends on the distribution of circleshCju j =1,… ,Mj
in the preimage plane. If the circles are “well separated”sin
a sense that will be left imprecise hered then good conver-
gence is assured. There is a large region of the parameter
space hqj ,d ju j =1,… ,Mj where the convergence is com-
pletely adequate for practical purposes, as we have demon-
strated by example. This region of parameter space is large
enough to capture all of the physically interesting fluid do-
mains investigated herein.

This paper has made use of a general analytical frame-
work in which to study the motion of a single vortex in
general multiply connected flow domains. Given its general-
ity, we expect the methodology to be useful in a variety of
fluid dynamical contexts. We believe the power and useful-
ness of the method lies in the fact that it is algorithmically
identical for flow regions of all finite connectivities.
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