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Abstract. Explicit analytical formulae for the conformal mappings from the
canonical class of multiply connected circular domains to canonical classes
of multiply connected slit domains are constructed. All the formulae can be
expressed in terms of the Schottky-Klein prime function associated with the
multiply connected circular domains.
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1. Introduction

Since the classical work of Koebe [13] several classes of multiply connected planar
domains (in particular, those involving slit regions) have now become “canonical”
in the sense that they are characterized by simple geometries and are uniquely
determined by specifying just a few parameters (or moduli). These canonical
domains are often found listed in standard texts on classical function theory and
conformal mapping [16, 11, 17]. There are deep theoretical connections between
the Dirichlet and Neumann problems for Laplace’s equation in multiply con-
nected domains, conformal slit mappings, potential theory and various extremal
problems [13, 17, 16].

Let M ≥ 0 be an integer. The five most important (M + 1)-connected canonical
slit domains are:

(a) the parallel slit domain consisting of M+1 finite-length slits aligned at some
fixed angle χ to the real axis in the image domain;

(b) the circular-arc domain comprising M + 1 finite-length circular-arc slits all
centred on the origin in the image domain;

(c) the radial slit domain in which M + 1 finite-length slits are situated on rays
emanating from the origin in the image domain;
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(d) a circular disc with M enclosed circular-arc slits all centred on the centre of
the disc;

(e) a concentric circular ring with M−1 finite-length concentric circular-arc slits
between the two circumferences of the ring.

These are the canonical multiply connected domains listed in standard texts (e.g.
Nehari [16]).

The purpose of this paper is as follows. In terms of practical applications, it is
very useful to have at hand explicit analytical formulae for conformal mappings
from some canonical class of multiply connected planar domains to the various
canonical classes of slit domains just listed. The present authors have not found
any such formulae documented in the literature. Indeed, while conformal map-
ping theory is widely used in applications, multiply connected conformal map-
ping formulae are conspicuous by their absence in standard catalogs of conformal
mappings [12].

A circular domain is a multiply connected domain all of whose boundaries are
circles. The class of circular domains is itself a canonical class and is uniquely
determined by specifying the centres and radii of the boundary circles. It is a
convenient class of multiply connected domains on which to do analysis since
there exists a special transcendental function — known as the Schottky-Klein
prime function [2] — which is naturally associated with any such circular domain.
In this paper concrete analytical formulae for the conformal mapping from a
given circular domain to the five classes (a)–(e) of canonical slit domains will be
described. In Section 9 we discuss a number of mathematical problems, arising in
practice, in which these new formulae have already found important application.

2. The modified Green’s function

Schiffer [17] demonstrates some important connections between canonical slit
domains and the modified Green’s function associated with multiply connected
planar domains. Given the modified Green’s function of a planar domain there
exist formulae producing conformal slit mappings from the original planar do-
main to many of the canonical slit domains just cited. This fact will be exploited
in the sequel. We now introduce the key elements of Dirichlet calculus that will
be needed in the construction of the formulae.

Let D be an arbitrary bounded and (M + 1)-connected planar domain in a ζ-
plane. Introduce a modified Green’s function G0(ζ;α) with respect to the two
points ζ and α in D in the following way: suppose D is bounded by M+1 smooth
Jordan curves Cj, j = 0, 1, . . . ,M . The curve C0 is taken as the outermost
boundary so that Ck, k = 1, . . . ,M , denote the M enclosed boundaries (or the
boundaries of the finite set of “holes” in the domain). The modified Green’s
function is defined as the function G0(ζ;α) satisfying the following properties:
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(i) the function
g0(ζ;α) = G0(ζ;α) + log r0

is harmonic with respect to ζ throughout the region D including at the
point α. Here r0 is

r0 = |ζ − α|;
(ii) if ∂G0/∂n is the normal derivative of G0 on a curve then

G0(ζ;α) = 0, on C0,

G0(ζ;α) = γ0k(α), on Ck, k = 1, . . . ,M,∮
Ck

∂G0

∂n
ds = 0, k = 1, . . . ,M

where ds denotes an element of arc and γ0k(α), k = 1, . . . ,M , are constants.
It should be noted that the values of these constants are determined by these
integral constraints on the normal derivative of G0.

The results of Koebe [13] imply that the function G0(ζ;α) defined by conditions
(i)–(ii) above exists uniquely and satisfies the reciprocity condition

G0(ζ;α) = G0(α; ζ).

It is clear from the definition that the boundary C0 has a special significance
with respect to the function G0(ζ;α) defined above. It is the boundary on which
G0(ζ;α) is normalized to vanish and is the only choice of boundary for D for
which the quantity ∮

C0

∂G0

∂n
ds

does not vanish. The subscript of G0 reflects this special significance of C0. But
it should be clear that there are M alternative modified Green’s functions that
can also be defined analogously: one simply makes the boundary component Cj

the one which has the special significance afforded to C0 in the definition of G0.
Extending the subscript notation, these additional modified Green’s functions
will be denoted Gj(ζ;α), j = 1, . . . ,M . In particular, Gj(ζ;α) will have a
logarithmic singularity at α, will be taken to vanish on Cj, while the quantities∮

Ck

∂Gj

∂n
ds

will be non-zero only for k = j. The results of Koebe [13] imply that the function
Gj(ζ;α) defined by these conditions exists uniquely.

It is important, for later use, to define the analytic extension of the modified
Green’s function Gj(ζ;α). Let this function be denoted G̃j(ζ;α). It is given by
the formula

G̃j(ζ;α) = Gj(ζ;α) + iHj(ζ;α)

where Hj(ζ;α) is the harmonic conjugate of Gj(ζ;α).
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3. Circular domains

As already mentioned, a circular domain is defined as a finitely connected domain
all of whose boundary components are circles. Let Dζ denote a bounded circular
domain in the ζ-plane. Specifically, let Dζ be the interior of the unit ζ-disc with
M smaller circular discs excised. M = 0 is the simply connected case. With the
notation of Section 2, let the boundaries of the smaller excised circular discs be
Cj, j = 1, . . . ,M . The outer unit circle |ζ| = 1 is denoted C0.

To uniquely specify an (M + 1)-connected Dζ the centres and radii of the Cj,
j = 1, . . . ,M , are needed. Let δj ∈ C, j = 1, . . . ,M , be the centres of these circles
and let qj ∈ R, j = 1, . . . ,M , be their radii. A definition sketch illustrating a
quadruply connected circular domain is shown in Figure 1.
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Figure 1. A typical circular domain. The case shown is quadru-
ply connected.

4. Schottky groups

Now define M Möbius maps φj, j = 1, . . . ,M , corresponding to the conjugation
map for points on the circle Cj. That is, if Cj has equation

|ζ − δj|2 = (ζ − δj)(ζ̄ − δ̄j) = qj
2
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then

ζ̄ = δ̄j +
qj

2

ζ − δj

and so

(1) φj(ζ) ≡ δ̄j +
qj

2

ζ − δj
.

If ζ is a point on Cj then its complex conjugate is ζ̄ = φj(ζ). If ζ is on C0, we
also define φ0(ζ) ≡ ζ−1.

Next, introduce the Möbius maps

(2) θj(ζ) ≡ φj(ζ
−1) = δj +

qj
2ζ

1− δ̄jζ
.

Let C ′
j be the circle obtained by reflection of Cj in the unit circle C0, i.e. the circle

obtained by the transformation ζ 7→ ζ̄−1. It is easy to verify that the image of the
circle C ′

j under the transformation θj(ζ) is Cj. Since the M circles Cj are non-
overlapping, so are the M circles C ′

j. The classical Schottky group Θ is defined to
be the infinite free group of mappings generated by compositions of the 2M basic
Möbius maps θj, j = 1, . . . ,M , and their inverses θ−1

j , j = 1, . . . ,M , including
the identity map. Beardon [3] contains a general discussion of such groups.
An accessible discussion of Schottky groups and their mathematical properties
appears in a recent monograph by Mumford, Series and Wright [15].

Consider the (generally unbounded) region of the plane exterior to the 2M cir-
cles Cj and C ′

j. A schematic is shown in Figure 2. This region is known as
the fundamental region associated with the Schottky group generated by the
Möbius maps θj, j = 1, . . . ,M , and their inverses. This fundamental region can
be understood as having two “halves” — the half that is inside the unit circle
but exterior to the circles Cj is the region we call Dζ , the region that is outside
the unit circle and exterior to the circles C ′

j is the other half. The reason for it
being called fundamental is that the rest of the ζ-plane is a tessellation of an infi-
nite number of “equivalent” regions which are obtained by transformation of the
fundamental region under the elements of the Schottky group. Another choice
of fundamental region is given by the union of Dζ and the domain obtained by
reflection of Dζ in any of the interior circles.

The Möbius maps introduced above have two important properties that can
easily be established. The first is that

(3) θ−1
j (ζ) =

1

φj(ζ)
for all ζ.

This can be verified using the definitions (1) and (2) (or, alternatively, by con-
sidering the geometrical effect of each map). The second property, which follows
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Figure 2. Schematic of the fundamental region associated with
a typical quadruply connected circular domain. The fundamental
region is the unbounded region exterior to the six Schottky circles
C1, C

′
1, C2, C

′
2, C3, C

′
3.

from the first, is that

θ−1
j (ζ−1) =

1

φj(ζ−1)
=

1

φ̄j(ζ̄−1)
=

1

θj(ζ̄)
=

1

θ̄j(ζ)
for all ζ.

5. The Schottky-Klein prime function

Following Baker [2], the Schottky-Klein prime function is defined as

(4) ω(ζ, γ) = (ζ − γ)ω′(ζ, γ)

where

(5) ω′(ζ, γ) =
∏

θi∈Θ′′

(θi(ζ)− γ)(θi(γ)− ζ)

(θi(ζ)− ζ)(θi(γ)− γ)
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and where the product is over all mappings θi in the set Θ′′ of all mappings in
the group Θ excluding the identity and all inverse maps. This means that if θ1θ2

is included, say, then θ−1
2 θ−1

1 (its inverse) must be excluded.

Following Baker [2], the presentation here proceeds under the assumption that
the infinite product defining the Schottky-Klein prime function converges. In
fact this is not always the case. To the best of our knowledge, the extent of
what is known on this issue is covered by [2, Chapter 12], [4, Chapter 5] and
[18, Chapter 2]. These describe results on the convergence of infinite series known
as Poincaré theta series, the prime function being derivable from a particular such
series [2]. The convergence properties of the product depend on the distribution
of circles Cj, j = 1, . . . ,M , in the ζ-plane. Conditions sufficient for convergence
are known; broadly speaking these state that convergence is guaranteed if the
circles are sufficiently small and “well separated”. However, these conditions are
not especially sharp, and obtaining improved convergence criteria is an area for
further research. The infinite products do converge, however, for a large and
useful subset of the parameter space {qj, δj : j = 1, . . . ,M}. The fact that
the infinite product representation (5) of the prime function does not converge
for all choices of the above parameters certainly does not preclude its practical
application in constructing Green’s functions in broad classes of domain as is
illustrated by the examples presented later — it simply precludes its universal
applicability to all domains.

Now note that ω′ can also be written as

ω′(ζ, γ) =
∏

θi∈Θ′′

{ζ, θi(ζ), γ, θi(γ)}

where the brace notation denotes a cross-ratio of the four arguments. This will
be useful later. The function ω(ζ, γ) is single-valued on the whole ζ-plane and
has a simple zero at γ as well as at all points equivalent to γ under the mappings
of the group Θ. The prime notation is not used here to denote differentiation.

The Schottky-Klein prime function has some important transformation proper-
ties. One such property is that it is anti-symmetric in its arguments, i.e.

ω(ζ, γ) = −ω(γ, ζ).

This is clear from inspection of (4) and (5). A second important property is
given by

(6)
ω(θj(ζ), γ1)

ω(θj(ζ), γ2)
= βj(γ1, γ2)

ω(ζ, γ1)

ω(ζ, γ2)

where θj is any one of the basic maps of the Schottky group. A detailed derivation
of this result is given in [2, Chapter 12]. A formula for βj(γ1, γ2) is

βj(γ1, γ2) =
∏

θk∈Θj

(γ1 − θk(Bj))(γ2 − θk(Aj))

(γ1 − θk(Aj))(γ2 − θk(Bj))
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where Aj and Bj are the two fixed points of the mapping θj satisfying

θj(Aj) = Aj, θj(Bj) = Bj,

and Θj stands for the collection of all mappings in the group which do not have
any positive or negative power of θj at the right hand end. Note that Aj and Bj

are the two solutions of a quadratic equation. It follows that

(7)
θj(ζ)−Bj

θj(ζ)− Aj

= µje
iκj
ζ −Bj

ζ − Aj

for some real parameters µj and κj. The roots Aj and Bj are ordered such that
|µj| < 1 in (7).

Finally, with the distribution of Schottky circles given by the construction de-
scribed in Section 4, the prime function also satisfies the functional equation

(8) ω̄(ζ−1, γ−1) = − 1

ζγ
ω(ζ, γ).

A proof of this can be found in Crowdy and Marshall [5].

6. Explicit solution for Gj

Given a circular domainDζ , the associated Schottky-Klein prime function ω(ζ, γ)
can be constructed. As discussed earlier, there are M + 1 modified Green’s
functions that can be defined. Let Gj(ζ;α) be the modified Green’s function
that satisfies the conditions

(9)

Gj(ζ;α) = 0, on Cj,

Gj(ζ;α) = γjk(α), on Ck, k 6= j,∮
Ck

∂Gj

∂n
ds = 0, k 6= j.

It is straightforward to show as in [13] that any function satisfying these require-
ments is unique. Indeed, if there are two functions with these properties then
their difference is harmonic everywhere in Dζ including at α, and zero on the
whole boundary of Dζ . Hence the difference is identically zero in Dζ by the
minimum and maximum principles for harmonic functions.

It will now be argued that an explicit expression for the required function is

(10) Gj(ζ;α) = −1

2
log

∣∣∣∣∣ω(ζ, α)ω(φj(ζ), φj(α))

ω(ζ, φj(ᾱ))ω(φj(ζ), ᾱ)

∣∣∣∣∣ .
It follows that the analytic extensions G̃j(ζ, α) of these modified Green’s function
are then given by

(11) G̃j(ζ;α) = −1

2
log

(
ω(ζ, α)ω(φj(ζ), φj(α))

ω(ζ, φj(ᾱ))ω(φj(ζ), ᾱ)

)
.
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First, define the M + 1 functions

(12) R̃j(ζ;α) =
ω(ζ, α)ω(φj(ζ), φj(α))

ω(ζ, φj(ᾱ))ω(φj(ζ), ᾱ)

where j = 0, 1, . . . ,M so that

Gj(ζ;α) = −1

2
log |R̃j(ζ;α)|.

Consider the fundamental region generated by Dζ and the reflection of Dζ in the
j-th circle. Then since α is in the half of this fundamental region corresponding
to Dζ , φj(ᾱ) will be in the other half. Gj(ζ;α) has a single isolated logarithmic

singularity in Dζ at ζ = α as required. Since the zero of R̃j is second-order,
locally Gj(ζ;α) has the expansion

Gj(ζ;α) = − log |ζ − α|+O(1),

again as required.

It remains to verify that (10) satisfies the required boundary conditions on all
the circles Cj, j = 0, 1, . . . ,M . It can be shown that, on the circle Ck,

(13) |R̃j(ζ;α)| =
∣∣∣∣βj(φj(ᾱ), α)

βk(φj(ᾱ), α)

∣∣∣∣ .
This formula is established in the appendix and holds for all integers j and k
(between 0 and M) provided we adopt the convention that β0(ζ, α) ≡ 1. It is
immediate that, on Cj, |R̃j(ζ;α)| = 1 so Gj(ζ;α) = 0 there. On Ck with k 6= j,
we have

(14) Gj(ζ;α) = −1

2
log

∣∣∣∣βj(φj(ᾱ), α)

βk(φj(ᾱ), α)

∣∣∣∣
which yields formulae for the constants γjk(α) defined in (9).

Finally, the integral constraints on the normal derivative of Gj must be verified.
It is clear that

(15)

∮
Ck

d[G̃j] =

∮
Ck

∂G̃j

∂s
ds =

∮
Ck

(
∂Gj

∂s
+ i

∂Hj

∂s

)
ds

= i

∮
Ck

∂Hj

∂s
ds = i

∮
Ck

∂Gj

∂n
ds

where the third equality follows from the fact that Gj is constant on Ck, and
the fourth equality follows from the Cauchy-Riemann relations satisfied by Gj

and Hj. Note that, the integral on the left-hand side of (15) is the change in G̃j

on traversing Ck. Now consider (11). In any fundamental region associated
with the Schottky group, the function G̃j(ζ, α) given by (11) has precisely two
logarithmic singularities of equal and opposite strength: one at α in Dζ , the

other at the point φj(ᾱ) in the other half of the fundamental region. A natural
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way to define a branch of G̃j is therefore to join by a branch cut each such
pair of logarithmic singularities in the fundamental region, and in each region
equivalent to it under the elements of the group. It follows that the change in G̃j

on traversing Ck is zero for all k except k = j. Hence from (15) it follows that∮
Ck

∂Gj

∂n
ds

will be non-zero only for k = j, as required.

Having identified a function satisfying all the conditions required of a modified
Green’s function we now exploit the fact that the latter function is unique. Thus,
it can be deduced that the functions we have constructed are indeed the required
set of M+1 modified Green’s functions. The special case of the function G0(ζ, α)
takes the form

G0(ζ;α) = −1

2
log

∣∣∣∣ω(ζ, α)ω(ζ−1, α−1)

ω(ζ, ᾱ−1)ω(ζ−1, ᾱ)

∣∣∣∣
which, on use of (8), reduces to

(16) G0(ζ;α) = − log

∣∣∣∣ ω(ζ, α)

αω(ζ, ᾱ−1)

∣∣∣∣ .
Its analytic extension is then simply

(17) G̃0(ζ;α) = − log

(
ω(ζ, α)

|α|ω(ζ, ᾱ−1)

)
.

It should be noted that the present authors have previously derived formula (16)
in an application of the modified Green’s function to vortex dynamics [5]. The
derivation given in [5] is the same as that presented here. It should also be
mentioned that formulae for the first-type Green’s function of a general multiply
connected circular domain have been constructed using other methods [14].

7. The conformal mappings

In this section, we use the formalism just introduced to construct formulae for five
of the most commonly studied types of canonical conformal mappings. These
are all discussed in standard texts, for example Nehari [16, Chapter 7]. For
convenience, we follow the notation of [16] as closely as possible.

7.1. The circle with concentric circular slits. The maps denoted Rj(ζ;α)
by Nehari [16] are those mapping to a circle with concentric circular arc slits.
According to Schiffer [17] such maps are given, up to a constant factor, by

(18) Rj(ζ;α) = exp(−G̃j(ζ;α))
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which can be seen to correspond to the functions R̃j(ζ;α)1/2 introduced in (12).
Formulae for the required mappings are therefore given by

(19) Rj(ζ;α) =

[
ω(ζ, α)ω(φj(ζ), φj(α))

ω(ζ, φj(ᾱ))ω(φj(ζ), ᾱ)

]1/2

.

The mappings (19) have been normalized to take the boundary circle Cj to the
unit circle in the image domain. In the special case j = 0, (19) simplifies to

R0(ζ;α) =
1

|α|
ω(ζ, α)

ω(ζ, ᾱ−1)
.

7.2. The circular slit domain. Borrowing the notation from Nehari [16], let
P (ζ;α, β) be the conformal mapping to a circular slit domain where the point
ζ = α maps to the origin in the image plane while ζ = β maps to infinity.
Following Schiffer [17], up to a constant factor, the required mapping is

(20) P (ζ;α, β) =
exp(−G̃j(ζ;α))

exp(−G̃j(ζ; β))

where G̃j is the analytic extension of the j-th modified Green’s function of the

pre-image domain. Again, we choose to use G̃0 so that, on use of (17), for the
circular domains an explicit formula for the required mapping is

P (ζ;α, β) = A(α, β)
ω(ζ, α)ω(ζ, β̄−1)

ω(ζ, β)ω(ζ, ᾱ−1)

where A(α, β) is a normalization constant. Nehari [16] chooses to specify that
the residue of the function (20) at β is unity, in which case,

A(α, β) =
ω′(β, β)ω(β, ᾱ−1)

ω(β, α)ω(β, β̄−1)
.

7.3. The circular ring with concentric circular slits. Nehari [16] intro-
duces the notation Sij(ζ) to denote a conformal mapping in which the i-th bound-
ary component maps to the outer circumference of a circular ring domain in the
image domain while the j-th component maps to the inner circumference. All
other boundary components map to finite-length circular arc slits between these
two bounding circumferences. Nehari [16] also points out that

(21) Sij(ζ) = Bij(α)
Ri(ζ;α)

Rj(ζ;α)

where the functions Ri and Rj are given by (18) and Bij(α) is a normalization
constant. On use of (19), explicit formulae for the mappings Sij(ζ) follow im-
mediately. Note also that on use of (13), if we require the outer circumference
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in the image plane to be the unit circle, the required normalization constants in
(21) are given by

Bij(α) =

∣∣∣∣∣βj(φj(ᾱ), α)

βi(φj(ᾱ), α)

∣∣∣∣∣
1/2

.

7.4. The parallel slit domain. Consider the conformal mapping to a parallel
slit domain where each slit makes an angle χ to the real axis in the image domain.
Let this conformal mapping be φχ(ζ;α) where α is the point mapping to infinity.
It is shown in Schiffer [17] that such a mapping is given by

(22) φχ(ζ;α) = eiχ [cosχφ(ζ;α)− i sinχψ(ζ;α)]

where

(23)
φ(ζ;α) =

1

i

∂

∂y0

G̃j(ζ;α),

ψ(ζ;α) =
∂

∂x0

G̃j(ζ;α)

with α = x0+iy0 and where the function G̃j(ζ;α) is the analytic extension of the
modified Green’s function Gj(ζ;α) of the original multiply connected circular

domain. Note that any of the M + 1 functions G̃j(ζ;α) can be used in these

formulae. Here we choose to use G̃0(ζ;α) since it has the simple form (17). By
a simple change of variables, (23) can also be written

φ(ζ;α) = −
(
∂

∂ᾱ
− ∂

∂α

)
G̃0(ζ;α),

ψ(ζ;α) =

(
∂

∂ᾱ
+

∂

∂α

)
G̃0(ζ;α)

so that (22) takes the form

φχ(ζ;α) =

[
∂

∂α
− e2iχ ∂

∂ᾱ

]
G̃0(ζ;α).

From (17) it follows that

∂G̃0(ζ;α)

∂α
=

1

2α
− ωα(ζ, α)

ω(ζ, α)
,

∂G̃0(ζ;α)

∂ᾱ
=

1

2ᾱ
− 1

ᾱ2

ωα(ζ, ᾱ−1)

ω(ζ, ᾱ−1)

where the notation ωα(ζ, α) denotes the derivative of ω(ζ, α) with respect to its
second argument. Combining all this leads to the final formula

φχ(ζ;α) = −e2iχ

(
1

2ᾱ
− 1

ᾱ2

ωα(ζ, ᾱ−1)

ω(ζ, ᾱ−1)

)
+

1

2α
− ωα(ζ, α)

ω(ζ, α)
.
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7.5. The radial slit domain. Again borrowing Nehari’s notation [16], let
Q(ζ;α, β) be the conformal mapping to a radial slit domain where the point
ζ = α maps to the origin in the image plane while ζ = β maps to infinity. Nei-
ther Schiffer [17] nor Nehari [16] give a simple way to construct this mapping
from the modified Green’s functions, but the required conformal mapping in this
case turns out to be

Q(ζ;α, β) = C(α, β)
ω(ζ, α)ω(ζ, ᾱ−1)

ω(ζ, β)ω(ζ, β̄−1)
.

To establish this, the transformation formulae (6) and (8) can be used repeatedly
to demonstrate that, on each boundary circle Cj, j = 0, 1, . . . ,M , the argument

of Q(ζ;α, β) is constant (this is easily done by computing Q(ζ;α, β) on each circle
and showing that it is proportional to Q(ζ;α, β)). This shows that the images of
each circle are rays emanating from the origin. Then, standard arguments based
on the argument principle and following those in Nehari [16] can be used to show
the univalency of the mapping using the fact that it has just one zero and one
pole inside the original circular domain.

The normalization constant C(α, β) can be chosen as required. Nehari [16] again
elects to set the residue of Q(ζ;α, β) at β equal to unity, in which case

C(α, β) =
ω′(β, β)ω(β, β̄−1)

ω(β, α)ω(β, ᾱ−1)
.

8. Examples

Since the formulae in the construction involve various infinite products it is
necessary, for any numerical implementation, to truncate them in a sensible way.
To do this, it is convenient to categorize all possible compositions of the basic
maps according to their level. As an illustration, consider the case in which
there are four basic maps θj, j = 1, 2, 3, 4. The identity map is considered to
be the level-zero map. The four basic maps, together with their inverses, θ−1

j ,
j = 1, 2, 3, 4, constitute the eight level-one maps. All possible combinations of
any two of these eight level-one maps which do not reduce to the identity, e.g.

θ1(θ1(ζ)), θ1(θ2(ζ)), θ1(θ3(ζ)), θ1(θ4(ζ)), θ2(θ1(ζ)), θ2(θ2(ζ)), . . . .

will be called the level-two maps, all possible combinations of any three of the
eight level-one maps that do not reduce to a lower-level map will be called the
level-three maps, and so on.

As illustrative examples of the above mapping formulae in action, Figure 3 shows
the case of an arbitrarily chosen triply connected circular domain and its images
under the five mappings of Subsections 7.1–7.5. Figure 4 shows the case of a
quadruply connected domain. These figures were drawn by keeping all maps in
the set Θ′′ up to and including the level-three maps.
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Figure 3. Conformal mappings from a triply connected circular
domain with parameters δ1 = 0.4, q1 = 0.075, δ2 = 0.5e3πi/4,
q2 = 0.075 with parameters χ = π/4, α = −0.15 and β = 0.1 to
five types of conformally equivalent slit domains.

9. Discussion

In this paper we have systematically derived analytical formulae for the confor-
mal maps from the canonical class of multiply connected circular domains to
various canonical classes of multiply connected slit domains. These should prove
useful in applications, and have indeed been used already in a variety of con-
texts. To mention a few examples, it has recently been recognized [8] that the
parallel slits maps of Subsection 7.4 can be used to provide a natural uniformiza-
tion of a spectral problem associated with the integrable system known as the
Benney hierarchy of moment equations [9]. On the other hand, the mappings
to radial slit domains of Subsection 7.2 have formed the basis for an analyti-
cal study of the motion of point vortices through gaps in walls [6], a problem
of importance in geophysical fluid dynamics. In the context of a more general
problem of constructing multiply connected conformal mappings, the mappings
to a circular disc with concentric circular arcs of Subsection 7.1 have provided a
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Figure 4. Conformal mappings from a quadruply connected cir-
cular domain with parameters δ1 = 0.4, q1 = 0.075, δ2 = 0.5i,
q2 = 0.05, δ3 = 0.4e5πi/4, q4 = 0.05 with parameters χ = π/4,
α = −0.15 and β = 0.1 to the five types of conformally equivalent
slit domains.

crucial analytical ingredient in a recent construction of new formulae for general-
ized Schwarz-Christoffel mappings from circular domains to multiply connected
polygonal regions [7].

Appendix: Properties of Gj on the boundary circles

In this appendix, properties of the Schottky-Klein prime function are used to
establish the properties of the functions Gj(ζ;α) given in (10).

First, consider the complex conjugate of R̃j(ζ;α) as defined in (12) for ζ on Cj.
Then

R̃j(ζ;α) =
ω(ζ̄ , ᾱ)ω(φj(ζ̄), φj(ᾱ))

ω(ζ̄ , φj(α))ω(φj(ζ̄), α)
.
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But, for ζ on Cj,
ζ̄ = φj(ζ)

so that

R̃j(ζ;α) =
ω(φj(ζ), ᾱ)ω(ζ, φj(ᾱ))

ω(φj(ζ), φj(α))ω(ζ, α)
=

1

R̃j(ζ;α)
.

This confirms that
|R̃j(ζ;α)| = 1 on Cj.

Consider next points ζ on C0. In this case, we have

(24) R̃j(ζ;α) =
ω(ζ−1, ᾱ)ω(φj(ζ

−1), φj(ᾱ))

ω(ζ−1, φj(α))ω(φj(ζ
−1), α)

=
ω(ζ−1, ᾱ)ω(θj(ζ), φj(ᾱ))

ω(ζ−1, φj(α))ω(θj(ζ), α)

where we have used that ζ̄ = ζ−1 for ζ on C0 and the identity φj(ζ
−1) = θj(ζ).

But

(25)
ω(θj(ζ), φj(ᾱ))

ω(θj(ζ), α)
= βj(φj(ᾱ), α)

ω(ζ, φj(ᾱ))

ω(ζ, α)

where we have used (6), and

ω(θj(ζ
−1), ᾱ)

ω(θj(ζ−1), φj(α))
= βj(ᾱ, φj(α))

ω(ζ−1, ᾱ)

ω(ζ−1, φj(α))

which implies that

(26)
ω(ζ−1, ᾱ)

ω(ζ−1, φj(α))
=

1

βj(ᾱ, φj(α))

ω(φj(ζ), ᾱ)

ω(φj(ζ), φj(α))
.

On use of (25) and (26) in (24), we get

R̃j(ζ;α) =
βj(φj(ᾱ), α)

βj(ᾱ, φj(α))

1

R̃j(ζ;α)

or
|R̃j(ζ;α)| = |βj(φj(ᾱ), α)|.

Finally, consider points ζ on Ck where k 6= j. Then, we have

R̃j(ζ;α) =
ω(φk(ζ), ᾱ)ω(φj(φk(ζ)), φj(ᾱ))

ω(φk(ζ), φj(α))ω(φj(φk(ζ)), α)

=
ω(θk(ζ

−1), ᾱ)

ω(θk(ζ−1), φj(α))

ω(θj((φk(ζ))
−1), φj(ᾱ))

ω(θj((φk(ζ))−1), α)

= βj(φj(ᾱ), α))βk(ᾱ, φj(α))
ω(ζ−1, ᾱ)

ω(ζ−1, φj(α))

ω((φk(ζ))
−1, φj(ᾱ))

ω((φk(ζ))−1, α)

= βj(φj(ᾱ), α))βk(ᾱ, φj(α))
ω(ζ−1, ᾱ)

ω(ζ−1, φj(α))

ω(θ−1
k (ζ), φj(ᾱ))

ω(θ−1
k (ζ), α)

(27)
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where, in the last equation, we have made use of (3). But,

(28)
ω(ζ, φj(ᾱ))

ω(ζ, α)
= βk(φj(ᾱ), α)

ω(θ−1
k (ζ), φj(ᾱ))

ω(θ−1
k (ζ), α)

.

On use of (26) and (28) in (27)

R̃j(ζ;α) =
βj(φj(ᾱ), α)βk(ᾱ, φj(α))

βj(ᾱ, φj(α))βk(φj(ᾱ), α)

1

R̃j(ζ;α)
,

or

|R̃j(ζ;α)| =

∣∣∣∣∣βj(φj(ᾱ), α)

βk(φj(ᾱ), α)

∣∣∣∣∣ .
To summarize all the above results, we conclude that

|R̃j(ζ;α)| =
∣∣∣∣βj(φj(ᾱ), α)

βk(φj(ᾱ), α)

∣∣∣∣ on Ck.

This formula holds for all j and k provided we adopt the convention β0(ζ, α) ≡ 1.
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