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The classic exact solution due to Lagally (Lagally, M. 1929 Die reibungslose strömung im
aussengebiet zweier kreise. Z. Angew. Math. Mech. 9, 299–305.) for streaming flow past
two cylindrical aerofoils (or obstacles) is generalized to the case of an arbitrary finite
number of cylindrical aerofoils. Given the geometry of the aerofoils, the speed and
direction of the oncoming uniform flow and the individual round-aerofoil circulations, the
complex potential associated with the flow is found in analytical form in a parametric
pre-image region that can be conformally mapped to the fluid region. A complete
determination of the flow then follows from knowledge of the conformal mapping
between the two regions. In the special case where the aerofoils are all circular, the
conformal mapping from the parametric pre-image region to the fluid domain is a Möbius
mapping. The solution for the complex potential in such a case can then be used, in
combination with the Blasius theorem, to compute the distribution of hydrodynamic
forces on the multi-aerofoil configuration.
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1. Introduction

The problem of steady streaming flows past objects—or aerofoils—is an
important basic problem in elementary fluid dynamics and of fundamental
importance in aerodynamics. Perhaps still one of the clearest presentations of
the early theory of aerofoils from the first quarter of the twentieth century is
the classic monograph by Glauert (1947). This reference includes background
on the basic theory of two-dimensional aerofoils featuring chapters on
monoplane aerofoils (consisting of a single aerofoil in a planar flow), biplane
aerofoils (comprising two aerofoils) and even a chapter on interference effects on
aerofoils due to the walls of a wind tunnel. Another good reference to the
fundamentals of wing theory, including discussions of the biplane case (which is
particularly relevant to what follows), is the monograph by Robinson (1956).

One of the basic results of aerofoil theory is the Kutta–Joukowski lift theorem
(Milne-Thomson 1968; Acheson 1990) stating that the vertical lift force, Fy say,
on a single aerofoil of arbitrary shape in a uniform flow with speed U is

Fy ZKrGU ; ð1:1Þ
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D. Crowdy1388
where r is the density of the fluid and G is the circulation around the aerofoil.
This result is most easily derived by considering the complex potential w(z),
where zZxCiy, for the steady potential flow exterior to the aerofoil and
combining this with the Blasius theorem (Acheson 1990) which provides a
formula for the complex force on the aerofoil in the form

FxKiFy Z
ir

2 #vD

dw

dz

� �2

dz; ð1:2Þ

where Fx is the horizontal force component and vD denotes the aerofoil
boundary. As usual, w(z)Zf(x, y)Cij(x, y), where 4 and j are, respectively, the
velocity potential and streamfunction associated with the incompressible flow.
The velocity field is uZ(u, v), where uKivZdw/dz.

In the case of a single circular aerofoil of unit radius, the complex potential is
well-known to be given by

wðzÞZU zC
1

z

� �
K

iG

2p
log z: ð1:3Þ

On substitution of (1.3) into (1.2), the result is

FxKiFy Z irGU ; ð1:4Þ

which yields the lift force (1.1), as well as the result that the aerofoil experiences
zero drag. The latter result is known as D’Alembert’s paradox/theorem.

The proof of the Kutta–Joukowski theorem relies on the fact that the
integration contour around the aerofoil can be deformed (by Cauchy’s theorem)
away from the aerofoil and around the point at infinity where it is seen that the
residue there is always independent of the shape of the aerofoil (the calculation
reduces, in essence, to the computation of a residue of the integrand at infinity).
This proof fails, however, when multiple aerofoils are present: when computing
the lift around any one of the aerofoils the other aerofoils impede the process of
being able to continuously deform the contour surrounding the chosen aerofoil to
a contour around the point at infinity. The lift force on a particular aerofoil is
therefore no longer derivable from a simple residue calculation at infinity.
Rather, it now depends in a rather complicated way on the global geometry of
the aerofoil configuration, the far-field flow conditions and the separate round-
aerofoil circulations. In light of this, it is of some advantage to have at hand a
flexible analytical approach to the computation of such lift forces. This paper
presents such an approach.

The Kutta–Joukowski lift force result (1.1) also holds in the case of an infinite,
vertically periodic stack of identical aerofoils (Acheson 1990). This can be
demonstrated by considering a momentum balance argument, based on an
integrated form of the Euler equation, in a periodic control volume containing
just a single aerofoil. A further consequence of the same argument is that each
aerofoil experiences a non-zero drag force (Acheson 1990).

But what happens between these two extremes of a single aerofoil and an
infinite periodic array of aerofoils? What are the forces on a finite number of
aerofoils placed in an oncoming streaming flow and around which there may exist
non-zero circulatory flows? While it remains true that the total lift, summed over
Proc. R. Soc. A (2006)



1389Finite stack of cylindrical aerofoils
all aerofoils, on a finite stack will be furnished by the Kutta–Joukowski result
KrGTU, where GT denotes the sum of circulations around all the aerofoils, and
also that the total drag on the multi-component system will be zero, there will
nevertheless be an (in general, complicated) internal distribution of hydro-
dynamic forces acting on the individual components of the aerofoil system. In the
wing theory literature, such internal force distributions are referred to as
interference forces (Robinson 1956). The determination of such forces is
important in the structural design of multi-component aerofoils since it is
usually required that the aerofoil configuration remains rigid so that the internal
forces on a configuration of aerofoils must be appropriately counterbalanced (in a
third dimension, so to speak) if the configuration is to remain rigid.

In the case of a finite stack of aerofoils, the lack of any periodicity obstructs a
straightforward generalization of the above-mentioned momentum balance
argument to determine the forces on individual aerofoils since the streamline
distribution now has a complicated (aperiodic and asymmetric) structure. It
therefore becomes generally impossible to invoke any symmetry arguments to
identify an appropriate control volume in the flow that can yield any definite
quantitative information on the force balance. Indeed, the only way to determine
forces in this case is by direct calculation performed, most conveniently, by
exploiting the Blasius theorem. But this requires a determination of the relevant
complex potential, w(z), governing the flow around the aerofoils.

For a single aerofoil, up to conformal mapping, the solution is given by (1.3).
Lagally (1929) presented an analytical solution to the problem of uniform flow
past two circular obstacles, a solution in which both round-obstacle circulations
can be individually specified. At about the same time, Ferrari (1930) considered
the same two-obstacle problem by finding a conformal mapping from the exterior
of two circular discs to the exterior of two parallel line segments. Lagally’s
solution makes use of the theory of elliptic functions and is an elegant extension
of the single obstacle solution (1.3). Of course, Lagally’s solution lends itself
naturally to the calculation of lift on biplane aerofoils and this was recognized,
and implemented, by Garrick (1936) who constructed the relevant conformal
mappings needed to complete the solution. Analytical solutions for more than
two aerofoils do not appear to have been reported previously in the literature.

This paper presents analytical formulae for the complex potentials when there
are more than two aerofoils, thereby generalizing Lagally’s solution to any finite
number of aerofoils. The method is to introduce a parametric z-plane and to
determine the required complex potential, W(z)Zw(z(z)), as a function of z in
some bounded multiply connected circular domain which we call Dz. Dz maps,
under some conformal mapping z(z), to the unbounded domain, here called Dz,
outside any given finite arrangement of aerofoils. It is known, from general
results in conformal mapping theory, that any such Dz is conformally equivalent
(in the manner just described) to some choice of multiply connected circular
domain Dz. Moreover, the boundary value problem we solve here for the complex
potential in Dz is conformally invariant. This means that the complex potential
W(z) is then also the required complex potential around the aerofoils in the
domain Dz. As a result, up to knowledge of the conformal mapping z(z), the
solution to the problem in the fluid domain Dz is complete.

We restrict attention here to a study of examples involving circular aerofoils
since, in such a case, the mapping z(z) from the circular domain Dz to Dz is then
Proc. R. Soc. A (2006)
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just a linear fractional transformation (or Möbius mapping) which is easily
determined. With analytical knowledge of both W(z) and z(z), the Blasius
theorem can be directly employed to calculate the forces on each of the aerofoils.

Finally, we remark that while we have elected to present these results in the
context of aerodynamics, the mathematical results have relevance in many other
areas. For example, there are civil engineering applications where it is important
to compute the forces due to steady laminary flow around a series of obstacles
(such as bridge piers or offshore drill rig supports). Yamamoto (1976) lists a
number of other real flow situations in which this idealized flow model is
relevant. Some further applications to geophysical fluid dynamics are discussed
later in §10.
2. A finite stack of aerofoils

Consider the unbounded region Dz exterior to a collection of MC1 aerofoils of
bounded extent. The aerofoils will be denoted {DjjjZ0, 1,., M} and their
boundaries will be {vDjjjZ0, 1,.,M}. The region Dz will be supposed to be
filled with an incompressible fluid, of density r, in steady irrotational motion. It
is supposed that the aerofoils are sitting in a uniform flow with speed U and
making angle c to the positive real axis. Suppose that there is a circulation Gk

around the kth aerofoil Dk . Such a combination of a streaming flow with a non-
zero round-aerofoil circulation is expected to produce lift forces on the aerofoils.

To make progress in solving this problem, let Dz be a bounded circular domain
in a parametric z-plane. A circular domain is a domain whose boundaries are all
circular. Let the outer boundary, given by jzjZ1, be called C0. Let M be a non-
negative integer and let the boundaries of M smaller circular discs enclosed by C0

be denoted {CjjjZ1,., M}. MZ0 will correspond to the single aerofoil case in
which there are no enclosed circular discs and the pre-image domain Dz is just
the unit z-disc. Let the radius of circle Cj be qj2R and let its centre be at dj2C.
Such a domain Dz is (MC1)-connected.

It will be supposed that z(z) is a conformal mapping from some circular domain
Dz to the fluid region Dz. The values of the parameters {qj, djjjZ1,.,M} will be
determined by the choice of the target domain Dz. Since Dz is unbounded there
must be some point in Dz at which z(z) has a simple pole. This point will be the
pre-image of the point zZN. Suppose zZb is this point and that, as z/b,

zðzÞZ a

zKb
COð1Þ ð2:1Þ

for some constant a. A rotational degree of freedom of the Riemann mapping
theorem allows us to assume a is real. The point b can be chosen arbitrarily.

Solving the above flow problem in the region Dz exterior to the aerofoils
{DjjjZ0, 1,., M} is equivalent to finding a function w(z), a complex potential
that is analytic everywhere in Dz except at infinity where

wðzÞwU eKiczCOð1Þ; as z/N ð2:2Þ
for real constants U and c. Condition (2.2) ensures that the flow speed at infinity
is U and makes an angle c with the positive real axis. w(z) must also satisfy the
Proc. R. Soc. A (2006)
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boundary conditions that Im[w(z)] is constant on the aerofoil boundaries. The
latter conditions ensure that all the aerofoil boundaries are streamlines. These
constant values can, in general, be different on the different aerofoils and these
degrees of freedom are associated with the freedom to specify the round-aerofoil
circulations. Here, the constants will be determined by the conditions, stipulated
earlier, that the circulation around Dj is Gj.

The aim is to find w(z) as a function of z in the region Dz; that is, the function
W(z, b)hw(z(z)) will be determined. The notation reflects the dependence of the
complex potential on the choice of the point b in Dz mapping to infinity. By
linear superposition, W(z, b) is the sum of a complex potential WU (z, b)
corresponding to the uniform streaming flow and a complex potential WG(z, b)
associated with the imposed circulations around the aerofoils, i.e.

W ðz; bÞZWU ðz; bÞCWGðz; bÞ: ð2:3Þ
W(z, b) must be analytic (but not necessarily single-valued) everywhere in Dz. It
must also be such that

Im½W ðz; bÞ�Zgj ; on Cj ; j Z 0; 1;.;M ; ð2:4Þ

where {gjjjZ0, 1,., M} are a set of constants.
3. The special function u(z, g)

To construct WU (z, b) and WG(z, b) a special transcendental function u(z, g)
associated with the choice of circular domain Dz will be needed. It was
introduced in Crowdy & Marshall (2005a), and further exploited in Crowdy &
Marshall (2005b), to study problems arising in the motion of point vortices in
bounded multiply connected domains. Here, we briefly review its definition.

Given some circular domain Dz uniquely specified by some choice of the
parameters {(qj, dj)jjZ1,.,M}, define the set of M Möbius maps given by

qjðzÞZ
ajzCbj
cjzCdj

; j Z 1;.;M ; ð3:1Þ

where

aj Z qjK
jdj j2

qj
; bj Z

dj

qj
; cj ZK

�dj
qj
; dj Z

1

qj
: ð3:2Þ

These M maps, together with their inverses which are also Möbius maps, can be
composed in an infinite number of ways to generate an infinite group of Möbius
maps. See Crowdy & Marshall (2005a) for more details. This infinite group of
Möbius maps can be used to define the special function u(z, g) as an infinite
product. Indeed, u(z, g) is defined to be

uðz;gÞZ ðzKgÞu0ðz;gÞ; ð3:3Þ
where

u0ðz;gÞZ
Y
qk

ðqkðzÞKgÞðqkðgÞKzÞ
ðqkðzÞKzÞðqkðgÞKgÞ ; ð3:4Þ
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and where the product is over all compositions of the basic maps {qj, qj
K1 jjZ

1,., M} excluding the identity map and all inverse maps. For more information
on this function the reader should consult Crowdy & Marshall (2005a,b). The
function is also discussed, in a much more general context, in ch. 12 of Baker
(1995).
4. Complex potential for uniform flow

It is shown in Crowdy (in press) that the complex potential for uniform flow,
with speed U and making an angle c with the positive real axis, is

WU ðz;bÞZUa eic
v

v�b
KeKic v

vb

� �
W0ðz; bÞ; ð4:1Þ

where

W0ðz; bÞZ log
uðz;bÞ

jbjuðz; �bK1Þ

 !
; ð4:2Þ

This result will be used here without proof. The reader is referred to Crowdy
(in press) for the derivation.
5. Imposing round-aerofoil circulations

The following section describes the principal new mathematical results of this
paper. Suppose it is required to impose circulation Gk around the obstacle Dk.
The complex potential corresponding to this will be denoted WG(z). It is given by
the formula

WG z; bð ÞZ
XM
kZ0

iGk

2p
log Rkðz;bÞ; ð5:1Þ

where

Rkðz;bÞZ
uðz; bÞ

uðz; qkðb
K1ÞÞ

; k Z 0; 1;.;M ; ð5:2Þ

and where, in addition to the maps {qkjkZ1, .,M} defined in §3, we define q0(z)
to be the identity map, i.e. q0(z)Zz.

It is important to note that Rk(z, b) has a simple zero at the point zZb and a
simple pole at the point qkð�b

K1Þ. On use of properties of the maps {qkjkZ1,.,M}
described in detail in Crowdy & Marshall (2005a), it turns out that the latter point
corresponds to the reflection of the point b in the circle Ck. As a result, the simple
pole of Rk(z, b) does not lie in the circular region Dz; rather, it lies inside the circle
Ck. To understand this, note that if one maps the region Dz using the reflection
mapping z1 �z

K1
then the image lies in a region exterior to the unit disc in the

z-plane. Under a further composition with the mapping qk this region exterior to
the unit disc is mapped to a bounded region inside the circle Ck (this is how we
deduce that the point qkð�b

K1Þ is inside Ck). It turns out that the union of the latter
region and the original region Dz constitute what is known as a fundamental region
for the group of transformations generated by the maps and their inverses. This
means that the whole of the complex plane can be tessellated by the images, under
Proc. R. Soc. A (2006)
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all the maps generated by the basic maps {qjjjZ1,.,M}, of this fundamental
region. It is natural to choose the branch of the logarithm in each term of the sum
in (5.1) so that the zero at zZb is joined by a branch cut to the pole at zZqkð�b

K1Þ
in the fundamental region and that the image of this pair of points in each of the
‘image regions’ of the fundamental region should similarly be joined pairwise by
branch cuts.

Having chosen the branch in this way, to get a circulation Gk around the aerofoil
corresponding to Ck we must construct a function with a logarithmic singularity of
strengthKiGk=2p inside the aerofoil Dk. This is so that the change in argument of
this function as the aerofoil Dk is traversed in an anticlockwise sense is Gk . Since
going anticlockwise around any of the interior circles {CkjkZ1,.,M} corresponds
to going anticlockwise around the cylinders Dk , it is natural to consider the
function given by XM

kZ1

K
iGk

2p
log½Rkðz;bÞ�K1: ð5:3Þ

Also, since going anticlockwise around D0 means that C0 must be traversed in a
clockwise direction, it is natural to add in the contribution

K
KiG0

2p

� �
log R0ðz; bÞ: ð5:4Þ

The total complex potentialWG(z, b) given in (5.1) is then the sum of (5.3) and (5.4).
While (5.1) has the correct distribution of logarithmic singularities, it remains

to ascertain that it satisfies the additional requirement that it has constant
imaginary part on the circles {CkjkZ0, 1,., M}. These important conditions
can be seen to be satisfied by (5.1) on use of some transformation properties of
the special function u(z, $) reported in Crowdy & Marshall (2005a). The details
are omitted here since the proofs are very similar to proofs of related results
presented in detail in Crowdy & Marshall (2005a); we refer the reader there for
an indication of how to demonstrate this result analytically. To substantiate the
result here however, we offer some numerical corroboration. Figure 1 shows
graphs of the imaginary parts of W(z, b), evaluated on the boundaries of three
cylinders (each of unit radius and centred at 0,G4) for the example situation in
which UZ1, G0ZG1ZG2ZK5 and cZ0 (we have also arbitrarily taken bZ0.1).
The graphs in figure 1 have been computed by truncating the infinite product
defining the function u(z, b) at level four (keeping all Möbius maps up to level 3
and ignoring all higher-level mappings. For an explanation of this terminology,
see Crowdy & Marshall (2005a)).
6. Calculation of the forces on the aerofoils

By the Blasius theorem (Milne-Thomson 1968), if w(z) is the complex potential for
flow past an obstacle with boundary vD, then the complex force FxKiFy exerted
by the fluid of density r on the body is given in (1.2). Let F

ðjÞ
x K iF

ðjÞ
y denote the

complex force exerted by the fluid on the j th aerofoil. Then it follows that

F ðjÞ
x K iF ðjÞ

y Z
ir

2 #vDj

dw

dz

� �2

dz: ð6:1Þ
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Figure 1. Graph showing the imaginary parts of the complex potential W (z, b)ZWU (z, b)C
Wr(z, b) as a function of q, where points on the jth circle Cj are parameterized by djCqj e

iq. The
cylinders all have unit radius and are centred at 0, G4. The solid line corresponds to the values on
the central cylinder, the dotted and dashed lines corresponds to values on the cylinders with
centres 4 and K4, respectively. Here UZ1, G0ZG1ZG2ZK5, cZ0 (and we have taken bZ0.1).
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It follows, in turn, that

F ð0Þ
x K iF ð0Þ

y ZK
ir

2 #C0

dW

dz

� �2 dz

dz

� �K1

dz; ð6:2Þ

while for jZ1,.,M,

F ðjÞ
x K iFðjÞ

y Z
ir

2 #Cj

dW

dz

� �2 dz

dz

� �K1

dz; ð6:3Þ

where, on changing variables in the integrals, account has been taken of any
change in sense of the direction of integration. The most effective way to compute
the lift based on (6.2) and (6.3) is to use the analytical expressions for W(z, b)
determined earlier and to perform the numerical quadrature using the trapezoidal
rule which gives exponential accuracy for periodic functions integrated over a
period, which is the precisely the case here once the contour integrals are
parameterized in terms of q, where zZdjCqj e

iq. The calculation of torques,
especially on non-circular obstacles, can be computed in a similar way if required.
7. The case of a single aerofoil

To retrieve the well-known result (1.3) within the context of the present theory
note that, in the simply connected case, there are no enclosed circular discs and
therefore no non-trivial Möbius maps. Thus, u(z,g)Z(zKg). Making the choice
bZ0 then leads, after some manipulation, to (1.3). Typical streamlines, for
different values of the round-aerofoil circulation, are shown in figure 2.
An important feature is that, as the circulation increases, two stagnation points
on the aerofoil move to the lower side of the aerofoil until, at a critical value of
the circulation, they coalesce and move off the aerofoil into the flow.
Proc. R. Soc. A (2006)
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Figure 2. Uniform flow past a single unit-radius cylindrical aerofoil with UZ1 and GZ0, K10 and
K20. As the circulation becomes increasingly negative the two stagnation points move to the lower
side of the cylinder and, when the circulation is sufficiently strong, coalesce and move off the
aerofoil into the flow.
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8. The case of two (biplane) aerofoils

It is instructive to examine how the general theory just presented retrieves
known formulae in the biplane case comprising two aerofoils. In this way, we
reproduce the classic solution of Lagally (1929) who, in contrast to our own
function theoretic approach, employed the theory of elliptic functions. It should
also be mentioned that, with geophysical (rather than aerodynamical)
motivation in mind, Johnson & McDonald (2004) have generalized the Lagally
solution to include the effects of a finite set of point vortices evolving in the flow
around two circular islands.

It is well-known that any doubly connected domain is conformally equivalent
to an annular region q!jzj!1 for some value of the conformal modulus q (Nehari
1952). In this case, d1Z0 and q1Zq, so that the relevant Möbius map is
q1(z)Zq2z. It can then be shown that

uðz;gÞZK
g

C2
Pðz=g; qÞ; ð8:1Þ

where

Pðz; qÞhð1KzÞ
YN
kZ1

ð1Kq2kzÞð1Kq2kzK1Þ; C h
YN
kZ1

ð1Kq2kÞ: ð8:2Þ

It is straightforward to verify, directly from the definition (8.2), that

PðzK1; qÞZKzK1Pðz; qÞ; Pðq2z; qÞZKzK1Pðz; qÞ: ð8:3Þ
It follows that

R0ðz;bÞZ
uðz;bÞ
uðz; �bK1Þ

Z jbj2 Pðzb
K1; qÞ

Pðz�b; qÞ
;

R1ðz; bÞZ
uðz; bÞ

uðz; q2�bK1Þ
Z

jbj2

q2
PðzbK1; qÞ
Pðz�bqK2; qÞ

:

9>>>>>=
>>>>>;

ð8:4Þ
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Suppose now that it is required to impose a circulation G0 around the obstacle
corresponding to C0 and a circulation G1 around the obstacle corresponding to
C1. Then, by the theory presented above, the associated complex potential is

WGðz; bÞZ
iG0

2p
log R0ðz; bÞC

iG1

2p
log R1ðz; bÞ: ð8:5Þ

On use of the properties (8.3) it can then be shown that R1(z, a)fzK1R0(z, a).
This implies that, to within an unimportant constant, (8.5) is equivalent to

WGðz;bÞZ
iðG0CG1Þ

2p
log R0ðz;bÞK

iG1

2p
log z: ð8:6Þ

The conformal mapping from the annulus q!jzj!1 to two equal obstacles, of
unit radius, symmetrically disposed with respect to the origin on the real axis is
given by

zðzÞZR
1Kq

4
ffiffiffi
q

p
� �

zC
ffiffiffi
q

p

zK
ffiffiffi
q

p
� �

; ð8:7Þ

where RZ1 if considering two aerofoils aligned along the x -axis or RZKi if
considering vertically aligned aerofoils. It is clear that, in respect of (2.1), we can
identify

bZ
ffiffiffi
q

p
; a Z

Rð1KqÞ
2

: ð8:8Þ

Adjusting q changes the separation of the two unit-radius aerofoils. The
contribution, WU (z, b), to the complex potential due to the uniform flow is

WU ðz;
ffiffiffi
q

p ÞZU
1Kq

2
ffiffiffi
q

p
� �

eKicKðz= ffiffiffi
q

p
; qÞKeicKðz ffiffiffi

q
p

; qÞ
� �

; ð8:9Þ

where

Kðz; qÞh zPzðz; qÞ
Pðz; qÞ : ð8:10Þ

The total complex potential can therefore be written

W ðz; bÞZ iðG0CG1Þ
2p

log R0ðz;
ffiffiffi
q

p ÞKiG1

2p
log z

CU
1Kq

2
ffiffiffi
q

p
� �

eKicKðz= ffiffiffi
q

p
; qÞKeicKðz ffiffiffi

q
p

; qÞ
� �

: ð8:11Þ

The complex potential, WL(Z ) say, given by Lagally (1929) as a function of a
complex variable Z, takes the form

WLðZÞZK
iG

2p
log

sðZÞ
sðZ C2gÞ

� �
C2cðwNzðZÞKwNzðZ C2gÞÞC ikZ ; ð8:12Þ

where G, g, c, wN and k are appropriate constants, while s(Z ) and z(Z ) represent
the Weierstrass sigma and zeta functions, respectively (Whittaker & Watson
1927). Identifying the complex variable Z with log z, the function P(z, q) with the
Weierstrass s-function, the function K(z, q) with the Weierstrass z-function and
with appropriate identification of constants, it can be shown that (8.11) is
equivalent to Lagally’s solution (8.12).
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Figure 3. Streamline distribution past two equal cylindrical vertically aligned aerofoils, with unit
diameter, corresponding to rZ0.05 with UZ1, cZ0 and (a) G0ZG1Z0, (b) K1 and (c) K5. The
centres of the aerofoils are at G1.1739i. The lower aerofoil corresponds to the image of C0.
Streamlines drawn at intervals of 0.3.
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(a ) Unstaggered biplane aerofoils

Figure 3 depicts several streamline distributions associated with uniform flow of
strength UZ1 parallel to the x -axis (so that cZ0) past two identical vertically
aligned circular aerofoils of unit radius. Glauert (1947) describes such a
configuration of aerofoils as ‘unstaggered biplane aerofoils’. The value of rZ0.05
is chosen arbitrarily (so the distance of the centre of each aerofoil from the origin
turns out to be 1.1763). The circulations around each aerofoil are assumed to be
equal so that G0ZG1ZG and the figure shows the three cases GZ0,K1 andK5. As
for the forces, neither aerofoil experiences any drag. This is to be expected since, by
Bernoulli’s theorem, the pressure distribution p is given by

pZHK
1

2
juj2 ZHK

1

2

dw

dz

����
����2 ZHK

1

2

dW

dz

� �
dz

dz

� �K1����
����
2

; ð8:13Þ

where H is the Bernoulli constant. However, it is clear from the streamline
distribution in figure 3 that the velocity field is symmetric fore and aft of the centre-
line of the vertical stack of aerofoils so any net force on any of them can only
act vertically.

Figure 4 graphs these vertical forces on the two aerofoils as functions of the
separations of the aerofoil centres. The case GZ0 is shown and reveals that, even
with no circulation around either of the aerofoils, there is a net lift on the lower
aerofoil and a net downward force on the upper aerofoil. Thus, the presence of a
neighbouring aerofoil clearly causes an increase in streaming velocity of the fluid
in the gap between the aerofoils thereby decreasing the fluid pressure there
Proc. R. Soc. A (2006)
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(by Bernoulli’s theorem). This leads to a net attractive force between the
aerofoils. This is a manifestation of a phenomenon sometimes referred to as
‘ground effect’: in this symmetrical case of streaming flow past the two equal
cylinders, the lower aerofoil can be interpreted as an ‘image’ aerofoil and the
central straight streamline which perpendicularly bisects the line-of-centres
between the aerofoils can effectively be replaced by a wall or runway (i.e. the
‘ground’). The effect of the ground (‘ground effect’) is to pull the aerofoil towards
it. The same phenomenon is observed by Yamamoto (1976) and Wang (2004).

As the circulation G around the aerofoils increases it is seen that, eventually,
the lift forces on the upper aerofoil dominate those on the lower aerofoil at all
values of the separation. Two things should be noted: first, as the separation of
the aerofoils tends to infinity the lift on each aerofoil tends to the Kutta–
Joukowski value of KrGU; second, irrespective of their separation, the sum of
their respective lift forces always equals twice the Kutta–Joukowski value. This
is to be expected from a straightforward application of the Blasius theorem to
both aerofoils and a deformation of the associated integration contour, justified
by Cauchy’s theorem, to a large contour surrounding the point at infinity (just as
in the proof of the Kutta–Joukowski theorem in the case of a single aerofoil).
(b ) Tandem biplane aerofoils

Figure 5 shows streamline distributions in the case where the two equal
aerofoils are now aligned in the direction of the flow (i.e. horizontally). Glauert
(1947) refers to this geometrical arrangement as ‘tandem aerofoils’. The round-
aerofoil circulations are taken to be equal. As this circulation value increases, it is
again observed that the two stagnation points on each aerofoil move to the lower
side of each aerofoil until they eventually move off into the flow.
Proc. R. Soc. A (2006)
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Figure 5. Streamline distribution past two equal cylindrical horizontally aligned aerofoils, with unit
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As for the forces in this case, since it is known that the total lift force must
sum to twice the Kutta–Joukowski value whatever the separation of the
aerofoils, it follows from the symmetry of the configuration that the lift on each
aerofoil must equal the Kutta–Joukowski value regardless of how far apart the
aerofoils are. This is found to be the case. It is the horizontal forces that are more
interesting in this case. Of course, since the total horizontal force on the two-
aerofoil configuration must be zero, if there are any horizontal forces on each
aerofoil they must be equal and opposite. This is found to be the case. Figure 6
graphs the horizontal force on the right-hand aerofoil as a function of separation
of the aerofoils. In contrast to the vertical alignment, when horizontally aligned
the aerofoils are found to repel each other, the strength of repulsion increasing as
the separation decreases. This means that in the gap between the aerofoils the
overall fluid speed must be smaller than that to either side thereby leading to
higher pressures in the gap region (by Bernoulli’s theorem). Again, Yamamoto
(1976) and Wang (2004) have observed the same phenomenon using rather
separate methods.
Proc. R. Soc. A (2006)
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9. The case of three (triplane) aerofoils

This section studies the effect of adding a third aerofoil (even more aerofoils can
be added, if desired, and be treated analogously). Such considerations are
relevant to the study of lift on triplane aerofoils (Munk 1927).

Consider the case of streaming flow around three circular aerofoils. The
conformal map to be used in the following examples is

zðzÞZ a

zKb
Cg; ð9:1Þ

where b is chosen arbitrarily while the real parameters a and g are chosen to
ensure that the image of C0 is a unit radius cylinder centred at the origin in the
z-plane. In all the following calculations we take UZ1 and rZ1.
(a ) Unstaggered triplane aerofoils

Figure 7 shows the steady streamline distribution for uniform potential flow,
in the direction of the x-axis, past three equal-sized cylindrical aerofoils aligned
vertically. There are two pre-image circles C1 and C2 inside the unit disc in this
case and C0 is taken to map to the central aerofoil. C1 is taken to map to the
lower aerofoil. In the first diagram the round-aerofoil circulations are all zero
with subsequent diagrams showing various instances in which the round-aerofoil
circulations are no longer zero. In the second diagram, the circulations are all
equal and taken to be K5. In this case, there are two stagnation points on the
lower side of each aerofoil. In the next diagram, the circulations are again equal
but are taken to be K15. These circulations are sufficiently strong that, while
there are still two stagnation points on the upper two aerofoils, the two
stagnation points that were on the lower aerofoil have now moved off the aerofoil
and into the flow to produce a single stagnation point below the aerofoil
Proc. R. Soc. A (2006)
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configuration. In the fourth diagram of figure 7, the round-aerofoil circulations
have all been increased to K25. Now, the two stagnation points on the middle
aerofoil have also moved off into the flow.

As for the forces exerted on the aerofoils, for all cases shown in figure 7 it is
found that the net horizontal force on each aerofoil is zero. There is therefore no
drag on any of the aerofoils. Again, this follows from the fore–aft symmetry of the

flow. Figure 8 shows the vertical lift forces F
ðjÞ
y ; jZ0; 1; 2, on the aerofoils as a

function of the separation of their centres in the case where all the round-aerofoil
circulations are equal to K1. As the separation gets large, so that the interaction
effect between aerofoils is slight, the lift tends to the Kutta–Joukowski value of
KrGUZ1, as expected. As the separation distance decreases it is found that the
lift forces diverge from this value with the lifts on the upper cylinder always
being greatest. The sum of the vertical forces on all three aerofoils is again found
to always equal three irrespective of the separations of the aerofoils. It is
interesting to note that, when the separation is sufficiently small, the vertical
force on the lowest aerofoil actually becomes negative thus corresponding to a
down-thrust instead of a lift. This is because, even without circulation, there is a
net down-thrust on the upper aerofoil which gets larger as the aerofoils get closer
together. For sufficiently small separations, the circulation imposed in this case is
not large enough to counteract this downward force.

Figure 9 shows the vertical forces on the aerofoils, as a function of the
separation of the centres, in the case where all the round-aerofoil circulations are
now equal to K5. Again, as the separation gets large, all vertical forces tend to
the Kutta–Joukowski value of five although it should be observed that this
asymptotic value is reached much more slowly than in figure 8. In this case,
however, as the separation decreases the force on the lower aerofoil no longer
becomes negative. Indeed, the graphs of the vertical forces on both the upper
and lower aerofoils exhibit turning point behaviours. As expected, it is again
found that the sum of the vertical forces is 15 irrespective of the separation of
the aerofoils.
(b ) Tandem triplane aerofoils

By contrast, figure 10 shows the case of streaming flow past a horizontally
aligned arrangement of circular aerofoils (the tandem configuration). The upper
diagram of figure 10 shows the case in which all round-aerofoil circulations are
zero, the middle and lower diagrams show the cases when the circulations are all
equal to K5 and K10, respectively. In the middle diagram each aerofoil exhibits
two stagnation points on its surface. In the lower diagram, the two stagnation
points on the middle aerofoil have moved off to form a single stagnation point in
the flow. There remain, however, two stagnation points on each of the side
aerofoils.

As for the forces, the key observation is that now the streamline distribution is
no longer symmetric fore and aft of the two side aerofoils in the configuration
(although it remains symmetric fore and aft of the central aerofoil). In the zero-
circulation case, as expected, there is no lift on any of the aerofoils and no net
force at all on the central aerofoil. However, the two side aerofoils experience
non-zero net horizontal forces; in fact the aerofoils repel each other. Figures 11
and 12 show the forces on the aerofoils, as a function of aerofoil separation, for
Proc. R. Soc. A (2006)
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round-aerofoil circulations equal to K1 and K5. As the circulation becomes
increasingly negative, the lift on the aerofoils becomes non-zero and equal in
magnitude in the case of the two side aerofoils. The latter lift forces are always
slightly greater than that on the central aerofoil. Again, the lift forces tend to the
respective Kutta–Joukowski values as the separation between the aerofoils gets
large. As the separation decreases, the horizontal forces on the two side aerofoils
is found to increase in magnitude.

There is no difficulty in adding more aerofoils. One simply considers circular
pre-image domains Dz with greater numbers of excised circular regions thereby
increasing the connectivity of the pre-image domain. It is worth emphasizing
that, although no illustrative examples have been given, the formulae can also be
Proc. R. Soc. A (2006)
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used to analyse more general aerofoil configurations (this is, ones that are not
necessarily aligned horizontally or vertically) as well as streaming flows with
non-zero angles of attack (that is, cs0).
10. Discussion

This paper has presented the mathematical generalization, to an arbitrary
number of circular aerofoils, of the classic solution of Lagally (1929) for the
steady streaming flow past two circular aerofoils with circulation. An analytical
Proc. R. Soc. A (2006)
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approach to finding the complex potentials of the flow around a finite array of
aerofoils in a parametric z-plane has been devised. This leads to analytical
expressions for the integrand in the Blasius integral which can then be readily
integrated numerically to determine the forces on the circular aerofoils.

The case of multiple circular aerofoils has been analysed in detail for two
reasons. The first is that the mathematical solutions to such problems have not,
to the best of our knowledge, been previously recorded in the literature (beyond
Lagally’s two circle solution (Lagally 1929)). The second is that the conformal
mappings z(z) from Dz to the fluid region Dz assume a particular simple form in
this case. Physically, of course, aerofoils of more realistic (‘streamlined’) shape
are of interest and it should be clear that, in principle, aerofoils with more
complicated geometries can be treated by the same methods. To treat such cases
analytically, however, the functional form of the relevant conformal mapping
z(z) must be found. The challenges encompassed in the determination of the
relevant conformal mappings z(z) to monoplane and biplane aerofoils should not
Proc. R. Soc. A (2006)
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be underestimated. Indeed, this very problem has commanded a large amount of
attention in the wing theory literature. Theodorssen (1932) and Garrick (1936)
made seminal contributions in this area. Theodorssen (1932) devised numerical
methods based on mapping a monoplane aerofoil to a near-circle and then
iterating towards a conformal mapping that takes this near-circle to an exact
circle. Garrick (1936) extended this to the biplane case and, unsurprisingly, to
complete the solution, combined his conformal mapping construction with
Lagally’s solution. Further contributions in this area have been made by
Theodorssen & Garrick (1933) and Ives (1976).

While we have focussed on streaming flows past aerofoils, analogous flow
problems arise in geophysical applications where the motion of vortices around
topography is of great interest. Such problems are relevant, for example, in the
modelling the motion of oceanic eddies around topography (such as islands,
headlands and coastlines). Indeed, this provided the motivation for the study
by Johnson & McDonald (2004) on the motion of point vortices (and vortex
patches) around two circular islands. In their study, the motion of the vortex
in the presence of imposed background flows and non-zero round-island
circulations was also computed. Recently, Crowdy & Marshall (2005a,b) have
presented a generalized theory of point vortex motion in fluid domains having
any finite connectivity in the special case in which there are no imposed
background flows and in which all the round-island circulations vanish. This is
the simplest manifestation of a general theory expounded originally, in
multiply connected domains, by Lin (1941). Significantly, if one wishes to
incorporate the effects of non-zero background flows and non-zero round-island
circulations, it turns out that additional contributions arising from these
sources (referred to by Lin as due to ‘external agencies’ (Lin 1941)) can simply
be added to the Hamiltonians already found in Crowdy & Marshall (2005a).
These additions to the Hamiltonian are given in terms of the complex
potentials for the background flows and round-island circulations. But such
Proc. R. Soc. A (2006)
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complex potentials are exactly what have been derived, in analytical form, in
the present paper. Thus, the results here can be combined with the analysis in
Crowdy & Marshall (2005a,b) to give a very general analytical framework in
which to study the motion of point vortices (any number thereof) in multiply
connected domains (of arbitrary finite connectivity) and including the effects
of background flows and non-zero circulations around the obstacles/islands.

Finally, it should be mentioned that there has been much recent interest
(Burton et al. 2004; Wang 2004) in computing the interaction of two moving
cylindrical obstacles interacting in a potential flow. It is therefore of some
interest to extend the methodology of the present paper to incorporate the effect
of unsteady relative motion when more than two cylindrical obstacles are
present.

The author acknowledges useful discussions with J. S. Marshall.
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