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What attracted you to mathematics?

A few things, I guess. It may sound strange
but, contrary to the common perception that
mathematicians are ‘geeks; as a teenager I re-
member thinking it was really cool that people
could be fluent in, and communicate ideas

in, some weird esoteric language of symbols.
When I was tourteen, I remember we had a
maths class at school straight after the upper
sixth formers so, when we walked in the room,
the board was always covered in all kinds of
calculus stuff that, at that time, I had no idea
about. I remember wanting to learn it.

Was there anyone in particular who in-
spired you to pursue a maths career?
Now that you ask, I don’t recall making any
conscious decision at any time to ‘pursue’ a
maths career. I guess I subconsciously floated
into it, urged on by people around me who
recognized my talent. I've just turned 34,

and sometimes I think I should stop messing
around with mathematics and get a proper
job. I'm only just realising that this is a proper
job: it’s just a really great one. I'm paid to think
about whatever I think is interesting and give a
few lectures.

What motivates you to do the research
that you do?

In my last two years as an undergraduate I
focused on applied mathematics — I wanted to
do something that was usetul to the real world.
To be honest, I felt disappointed by what I
learned. The real world is messy, the govern-
ing equations are difficult, and few have nice
closed-form solutions. Science was losing its
attraction for me. I first learned about complex
analysis in my second year at Cambridge, from
a lecturer called Alan Beardon — one of the
truly great expositors of the subject. Then, to
my delight, I realized that a small group of ‘ap-
plied mathematicians’ use those beautiful ideas
from complex analysis to find remarkable solu-
tions to problems arising in the physical sci-
ences. Forget Fermat’s Last Theorem: you can
also use ideas from algebraic geometry to solve
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one of the two recent recipients of the Leverhulme prize
in the Mathematics department, and finds out about
complex analysis and its real applications.

problems that physical scientists actually care
about! My love of applying complex analysis to
problems arising in physics has never deserted
me, and it guides all my research.

Why is it important to study complex
analysis?

When I'm in the pub and people ask me what
I do, after telling them (and after they’ve then
told me how crap at maths they were), one of
the most frequent questions is “what the hell
are complex numbers all about?” I was even
asked this by an immigration officer when I
re-entered the US on the way back to Caltech
after one Christmas break! People think: you

can’t just make up new “imaginary” numbers to

solve your mathematical problems and incon-
sistencies. Well, that’s true. Just making up new
numbers to patch things up would be a sham.
But the beauty of it all is that you only have to
invent one new number. Invent the square root

of -1, make it obey some natural mathematical
rules, and everything fits into place.

Complex analysis is one of the most beauti-
ful, rationally coherent, powerful and widely-
used areas of mathematics that exists. Have
you ever wondered why every decent scientific
university everywhere in the world teaches its
undergraduates, not just mathematicians but
physical scientists and engineers, to under-
stand complex numbers? It’s because it’s so im-
portant and powerful. Unfortunately, a typical
undergraduate never gets to fully experience
its true power. In the fifties and sixties theories
of complex analysis were studied really hard.
Computers weren't anything like they are now,
and scientists spent their lives trying to find
nice analytical results: complex analysis was re-
ally powertul. In this day and age people have
veered away from it, and they just do things
numerically now. It always disappoints me that
most engineers see of complex analysis is a few
boring inverse Fourier transforms.

| see that one of the problems you have
applied complex analysis to is the study
of bubbles. Can you tell me more about
your research in this area?

One of the cases where bubbles arise is in very
viscous flows. For example, think of something
like glass heated up to a very high temperature
so that it becomes molten. If you want objects
with rather complicated shapes it’s often not
efficient to machine them, so people usually
get glass or metal powder, put it in a kiln and
then heat it up (this process is called sinter-
ing). What happens is that the connecting
region between the spherical powder particles
becomes a region of fluid and, since there are
surface tension forces on the boundaries, this
opens it all up. Gradually, the regions or pores
in between the particles will close up, and
eventually you'll get a contiguous object with
no holes and in the right shape.

This process can take quite a long time, so
manufacturers want to minimise the time it’s
in the kiln and optimise the time to full den-
sification (when all the pores have closed up).
They don’t want any holes inside the material
after the process has finished because it will
compromise its strength properties and, if it’s
a metal, its conductivity. So people need to
understand how regions of very viscous fluid
move around when the driving force is surface
tension on the boundaries.

In 1990 this guy showed that the problem,
if you start with two cylindrical particles just
touching, can be reduced, using complex
analysis, to two easily solvable ordinary
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A conformal mapping translates the unit circle to the interface between two bubbles.
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A conformal mapping translates the unit annulus maps to the interface between three bubbles.
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Complex analysis techniques facilitate the study of involute time-evolving fluid-air interfaces.
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differential equations (ODEs) using conformal
maps. These maps take a simple geometric
region like the unit circle and translate it to the
more complicated interface between the coa-
lescing particles. The maps therefore encode
all the information about your changing fluid-
air interface. You can then study the dynamics
of these maps, which is a lot more analytically
tractable because you can apply the known
techniques of complex analysis. Previously,
people have been using things like the finite el-
ement method, 256x256 meshes, and you can
now do it by integrating two ODEs! Do you see
the power of these things?

'The question that my adviser put me onto
was whether any results that are as impressive
as these exist for the more general problem.
The problem with the 1990 solution is that it
only applies to two particles, so there are no
pores between them, and you need at least
three to have a pore. Topologically, in the two-
particle problem you have a simply-connected
region, which means it hasn’t got any holes, but
in a three-particle case it’s doubly-connected,
which means it has one hole. From a math-
ematical point of view you need completely
different technologies to cope with these.

Does it not matter that you're modelling
this in 2D?

In the viscous sintering problem, where you
have spherical particles, the three-dimen-
sionality is of course crucial. But many of the
insights that you have tfrom how the pores
evolve in two dimensions can be carried over
in a qualitative way in three dimensions and
because studying the 2D problem becomes so
easy now, you can do lots of simulations really
quickly. Most complex analysis problems are
in 2D, but that’s OK. For example, in vortex
dynamics, if you're modelling the atmosphere,
its stratification means that actually storm sys-
tems are quasi-2D. So a lot of vortex dynamics
that you model for meteorological purposes is
done using 2D models with extra effects added
in to account for the 3-dimensionality.

How do you attack a new maths problem?
‘There’s only one way to solve a problem. Think
of a theory or idea and find whatever way

you can to test it, starting with the simplest
cases first. That's how most mathematicians,
pure or applied, operate. The most important
thing you learn as a researcher is that the

path to discovery, even of the most elegant
end-results, often involves hopelessly clumsy,
circuitous and long-winded routes. You piece
together clues, experiment, and see where it
leads. The most important thing a PhD student
must learn, for example, is to trust his or her
own instincts and never to be afraid to invest
time testing their own ideas.

Have you been tempted to try any of the
Millennium problems?

No. I'm aware of them, as any professional
mathematician should be, but they're too
difficult for me. In any case, it’s my natural
instinct to be turned oft by something that’s in
the public consciousness, It’s the same reason I
haven’t read any of the Harry Potter books.

Gauss famously declared that maths is
the queen of all the sciences. Do you
think that’s true and why?

Undoubtedly. Physicists, in particular, are
famous for coming up with wacky new theo-
ries often based on hand-waving arguments
and a smattering of empirical evidence. But
it'’s not usually considered an established and
accepted theory unless it is underpinned by
a mathematical formulation, which can make
verifiable predictions. In that respect, math-
ematics rules.
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