M4A32: Vortex dynamics
 Problem Sheet 5: SOLUTIONS

(Distributed vorticity)
1.(a) Let

$$
\begin{equation*}
z(\zeta)=\frac{\alpha}{\zeta}+\beta \zeta \tag{1}
\end{equation*}
$$

with α and β real. Then, for any point z on the ellipse, the reflected point \bar{z} (in the real axis) is also on the ellipse. Moreover, if z is the image of ζ then \bar{z} is the image of $\bar{\zeta}$. To see this note that

$$
\begin{equation*}
\bar{z}=\overline{z(\zeta)}=\bar{z}(\bar{\zeta})=z(\bar{\zeta}) \tag{2}
\end{equation*}
$$

because

$$
\begin{equation*}
\bar{z}(\zeta)=\overline{z(\bar{\zeta})}=z(\zeta) \tag{3}
\end{equation*}
$$

owing to the fact that α and β are real. These results mean that the ellipse is reflectionally symmetric about the x-axis.

The image of $\zeta=1$ is

$$
\begin{equation*}
z(1)=\alpha+\beta \tag{4}
\end{equation*}
$$

while the image of -i is

$$
\begin{equation*}
z(-\mathrm{i})=-\frac{\alpha}{\mathrm{i}}-\beta \mathrm{i}=\mathrm{i}(\alpha-\beta) \tag{5}
\end{equation*}
$$

Note that if $|\zeta|=1$ is traversed anticlockwise then the boundary of the ellipse is traversed clockwise. Therefore we let

$$
\begin{equation*}
a=\alpha+\beta, \quad b=\alpha-\beta . \tag{6}
\end{equation*}
$$

Multiplying the mapping by ζ produces the following quadratic for ζ :

$$
\begin{equation*}
\beta \zeta^{2}-z \zeta+\alpha=0 \tag{7}
\end{equation*}
$$

yielding

$$
\begin{equation*}
\zeta=\frac{z \pm \sqrt{z^{2}-4 \alpha \beta}}{2 \beta} \tag{8}
\end{equation*}
$$

We must pick the $-\operatorname{sign}$ because we require $\zeta \rightarrow 0$ as $z \rightarrow \infty$. Hence the inverse mapping is

$$
\begin{equation*}
\zeta(z)=\frac{z-\sqrt{z^{2}-4 \alpha \beta}}{2 \beta} \tag{9}
\end{equation*}
$$

Or

$$
\begin{equation*}
a b=\alpha^{2}-\beta^{2}, \quad \alpha=\frac{a+b}{2}, \quad \beta=\frac{a-b}{2} \tag{10}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\zeta(z)=\frac{z-\sqrt{z^{2}-\left(a^{2}-b^{2}\right)}}{a-b} . \tag{11}
\end{equation*}
$$

2. The mapping from $|\zeta|<1$ to the exterior of the Kirchhoff ellipse is

$$
\begin{equation*}
\frac{\alpha}{\zeta}+\beta \zeta \tag{12}
\end{equation*}
$$

where $\alpha, \beta \in \mathbb{R}$. Take $\alpha=a$ and $\beta=\epsilon \ll 1$ then the ellipse is close to circular. Then

$$
\begin{align*}
r^{2}=z \bar{z} & =\left(\frac{\alpha}{\zeta}+\beta \zeta\right)\left(\alpha \zeta+\frac{\beta}{\zeta}\right) \\
& =\alpha^{2}+\alpha \beta \zeta^{2}+\frac{\alpha \beta}{\zeta^{2}}+\mathcal{O}\left(\epsilon^{2}\right) \tag{13}\\
& =a^{2}+\alpha \beta\left(\zeta^{2}+\zeta^{-2}\right)+\mathcal{O}\left(\epsilon^{2}\right)
\end{align*}
$$

Let $\zeta=e^{i \phi}$ then

$$
\begin{equation*}
r^{2}=a^{2}+2 \alpha \beta \cos (2 \phi)+\mathcal{O}\left(\epsilon^{2}\right)=a^{2}+2 a \epsilon \cos (2 \phi)+\mathcal{O}\left(\epsilon^{2}\right) \tag{14}
\end{equation*}
$$

On taking a square root

$$
\begin{equation*}
r=a+\epsilon \cos (2 \phi)+\mathcal{O}\left(\epsilon^{2}\right) \tag{15}
\end{equation*}
$$

Let θ be the angle between the positive real axis and the major axis of the ellipse. The major axis of the ellipse corresponds to $\phi=0$ in the ζ-plane and the ellipse rotates steadily with angular velocity Ω so

$$
\begin{equation*}
\theta=\phi+\Omega t \tag{16}
\end{equation*}
$$

therefore

$$
\begin{equation*}
r=a+\epsilon \cos 2(\theta-\Omega t) . \tag{17}
\end{equation*}
$$

Now, as $a \rightarrow b$ (so that the Kirchhoff ellipse is close to circular), and

$$
\begin{equation*}
\Omega(a, b) \rightarrow \frac{\omega a^{2}}{4 a^{2}}=\frac{\omega}{4} \tag{18}
\end{equation*}
$$

so, from (17), the time dependence of the perturbation to the Rankine vortex is of the form $e^{\sigma t}$ where

$$
\begin{equation*}
\sigma=2 \mathrm{i} \Omega=\frac{\mathrm{i} \omega}{2} \tag{19}
\end{equation*}
$$

This is consistent with the eigenvalue of the $\epsilon \zeta^{2}$ perturbation to the Rankine vortex as performed in the linear stability analysis in lectures; there it was shown that if the Rankine vortex is perturbed as follows:

$$
\begin{equation*}
z=\zeta+\epsilon \zeta^{n} e^{\sigma_{n} t}, \quad n \in \mathbb{Z}^{+} \tag{20}
\end{equation*}
$$

then

$$
\begin{equation*}
\sigma_{n}=\frac{\mathrm{i} \omega(n-1)}{2} \tag{21}
\end{equation*}
$$

For $n=2$ this gives $\mathrm{i} \omega / 2$.
3. If $u \sim-\epsilon y$ and $v \sim-\epsilon x$ then

$$
\begin{equation*}
u-\mathrm{i} v \sim \mathrm{i} \epsilon(x+\mathrm{i} y)=2 \mathrm{i} \frac{\partial \psi}{\partial z} . \tag{22}
\end{equation*}
$$

Let

$$
\frac{\partial \psi}{\partial z}= \begin{cases}-(\omega / 4) \bar{z}-(\omega / 4) C_{i}(z) & z \in D \tag{23}\\ -(\omega / 4) C_{o}(z)+(\epsilon / 2) z & z \notin D\end{cases}
$$

Here $C_{o}(z)$ decays as $|z| \rightarrow \infty$. The continuity of the velocity on ∂D implies

$$
\begin{equation*}
\bar{z}+\frac{2 \epsilon}{\omega} z=C_{o}(z)-C_{i}(z) . \tag{24}
\end{equation*}
$$

Let

$$
\begin{equation*}
z(\zeta)=\frac{\alpha}{\zeta}+\beta \zeta \tag{25}
\end{equation*}
$$

then, on $|\zeta|=1$ (which corresponds to ∂D)

$$
\begin{equation*}
\bar{z}=\alpha \zeta+\frac{\beta}{\zeta}=\left(\alpha-\frac{\beta^{2}}{\alpha}\right) \zeta+\frac{\beta}{\alpha} z \tag{26}
\end{equation*}
$$

where we have used (25) to substitute for $1 / \zeta$. We can also write

$$
\begin{equation*}
\left(\alpha-\frac{\beta^{2}}{\alpha}\right) \zeta+\left(\frac{\beta}{\alpha}+\frac{2 \epsilon}{\omega}\right) z=C_{o}(z)-C_{i}(z) \tag{27}
\end{equation*}
$$

and recognize

$$
\begin{equation*}
C_{i}(z)=-\left(\frac{\beta}{\alpha}+\frac{2 \epsilon}{\omega}\right) z, \quad C_{o}(z)=\left(\alpha-\frac{\beta^{2}}{\alpha}\right) \zeta \tag{28}
\end{equation*}
$$

Since

$$
\begin{equation*}
z \zeta=\alpha+\beta \zeta^{2} \tag{29}
\end{equation*}
$$

then

$$
\begin{equation*}
\zeta(z)=\frac{z-\sqrt{z^{2}-4 \alpha \beta}}{2 \beta} \tag{30}
\end{equation*}
$$

and

$$
\begin{equation*}
C_{o}(z)=\frac{\alpha^{2}-\beta^{2}}{2 \alpha \beta}\left(z-\sqrt{z^{2}-4 \alpha \beta}\right) . \tag{31}
\end{equation*}
$$

But from Q1,

$$
\begin{equation*}
\alpha=\frac{a+b}{2}, \quad \beta=\frac{a-b}{2} . \tag{32}
\end{equation*}
$$

Therefore

$$
\begin{gather*}
C_{i}(z)=-\left(\frac{a-b}{a+b}+\frac{2 \epsilon}{\omega}\right) z \tag{33}\\
C_{o}(z)=\frac{2 a b}{a^{2}-b^{2}}\left(z-\sqrt{z^{2}-4 \alpha \beta}\right) . \tag{34}
\end{gather*}
$$

As verification, note that

$$
\begin{equation*}
C_{i}(z)=-\frac{1}{2 \pi \mathrm{i}} \oint_{\partial D}\left(\bar{z}^{\prime}+\frac{2 \epsilon}{\omega} z^{\prime}\right) \frac{d z^{\prime}}{z^{\prime}-z} \tag{35}
\end{equation*}
$$

First consider

$$
\begin{equation*}
\frac{1}{2 \pi \mathrm{i}} \oint_{\partial D} \frac{2 \epsilon}{\omega} \frac{z^{\prime} d z^{\prime}}{z^{\prime}-z}=\frac{2 \epsilon z}{\omega} \tag{36}
\end{equation*}
$$

by the residue theorem.
Next consider

$$
\begin{equation*}
\frac{1}{2 \pi \mathrm{i}} \oint_{\partial D} \frac{\bar{z}^{\prime} d z^{\prime}}{z^{\prime}-z}=-\frac{1}{2 \pi \mathrm{i}} \oint_{|\zeta|=1} \frac{\bar{z}\left(\zeta^{-1}\right)}{z(\zeta)-z} \frac{d z(\zeta)}{d \zeta} d \zeta . \tag{37}
\end{equation*}
$$

Now with

$$
\begin{equation*}
z(\zeta)=\frac{\alpha}{\zeta}+\beta \zeta, \quad \frac{d z(\zeta)}{d \zeta}=-\frac{\alpha}{\zeta^{2}}+\beta, \quad \bar{z}\left(\zeta^{-1}\right)=\alpha \zeta+\frac{\beta}{\zeta} \tag{38}
\end{equation*}
$$

then

$$
\begin{equation*}
-\frac{1}{2 \pi \mathrm{i}} \oint_{|\zeta|=1}\left(\alpha \zeta+\frac{\beta}{\zeta}\right)\left(-\frac{\alpha}{\zeta^{2}}+\beta\right) \frac{1}{z(\zeta)-z} d \zeta . \tag{39}
\end{equation*}
$$

The term $1 /(z(\zeta)-z)$ has no singularity inside $|\zeta|<1$ because $z \in D$ and $|\zeta|<1$ corresponds to the exterior of D. Hence the only pole is at $\zeta=0$. Computing the residue leads to

$$
\begin{align*}
& -\frac{1}{2 \pi \mathrm{i}} \oint_{|\zeta|=1}\left[-\frac{\alpha \beta}{\zeta^{3}}-\frac{\alpha^{2}}{\zeta}+\alpha \beta \zeta+\frac{\beta^{2}}{\zeta}\right] \frac{\zeta d \zeta}{\alpha-z \zeta+\beta \zeta^{2}} \\
& =-\frac{1}{2 \pi \mathrm{i}} \oint_{|\zeta|=1}\left[\left(\beta^{2}-\alpha^{2}\right)+\alpha \beta \zeta^{2}-\frac{\alpha \beta}{\zeta^{2}}\right]\left(\frac{1}{\alpha}+\frac{\left(z \zeta-\beta \zeta^{2}\right)}{\alpha^{2}}+\mathcal{O}\left(\zeta^{2}\right)\right) d \zeta \\
& =\frac{\beta z}{\alpha} \tag{40}
\end{align*}
$$

Addition of (36) and (40) as in (35) yields

$$
\begin{equation*}
C_{i}(z)=-\left(\frac{\beta}{\alpha}+\frac{2 \epsilon}{\omega}\right) z=-\left(\frac{a-b}{a+b}+\frac{2 \epsilon}{\omega}\right) z \tag{41}
\end{equation*}
$$

4. Let

$$
\begin{equation*}
z(\zeta)=\frac{\alpha}{\zeta}+\beta \zeta+\gamma \zeta^{2} \tag{42}
\end{equation*}
$$

Now we must have

$$
\frac{\partial \psi}{\partial z}= \begin{cases}-(\omega / 4) \bar{z}-(\omega / 4) C_{i}(z) & z \in D \tag{43}\\ -(\omega / 4) C_{o}(z) & z \notin D\end{cases}
$$

Continuity of velocity implies

$$
\begin{equation*}
-\bar{z}=C_{i}(z)-C_{o}(z) \tag{44}
\end{equation*}
$$

On ∂D

$$
\begin{equation*}
\bar{z}=\alpha \zeta+\frac{\beta}{\zeta}+\frac{\gamma}{\zeta^{2}} \tag{45}
\end{equation*}
$$

But

$$
\begin{equation*}
\frac{1}{\zeta}=\frac{z}{\alpha}-\frac{\beta}{\alpha} \zeta-\frac{\gamma}{\alpha} \zeta^{2} \tag{46}
\end{equation*}
$$

$$
\begin{align*}
\bar{z} & =\alpha \zeta+\beta\left[\frac{z}{\alpha}-\frac{\beta}{\alpha} \zeta-\frac{\gamma}{\alpha} \zeta^{2}\right]+\gamma\left[\frac{z}{\alpha}-\frac{\beta}{\alpha} \zeta-\frac{\gamma}{\alpha} \zeta^{2}\right]^{2} \\
& =\alpha \zeta+\frac{\beta z}{\alpha}-\frac{\beta^{2} \zeta}{\alpha}-\frac{\gamma \beta \zeta^{2}}{\alpha}+\frac{\gamma z^{2}}{\alpha^{2}}+\frac{\gamma \beta^{2} \zeta^{2}}{\alpha^{2}} \tag{47}\\
& +\frac{\gamma^{3} \zeta^{4}}{\alpha^{2}}-\frac{2 \beta \gamma(z \zeta)}{\alpha^{2}}-\frac{2 \gamma^{2}(z \zeta) \zeta}{\alpha^{2}}+\frac{2 \beta \gamma^{2} \zeta^{3}}{\alpha^{2}}
\end{align*}
$$

Now use

$$
\begin{equation*}
z \zeta=\alpha+\beta \zeta^{2}+\gamma \zeta^{3} \tag{48}
\end{equation*}
$$

to substitute for $z \zeta$:

$$
\begin{align*}
\bar{z} & =\frac{\beta z}{\alpha}+\frac{\gamma z^{2}}{\alpha^{2}}+\zeta\left(\alpha-\frac{\beta^{2}}{\alpha}\right)+\left(\frac{\gamma \beta^{2}}{\alpha^{2}}-\frac{\gamma \beta}{\alpha}\right) \zeta^{2}+\frac{\gamma^{3} \zeta^{4}}{\alpha^{2}}+\frac{2 \beta \gamma^{2} \zeta}{\alpha^{2}} \tag{49}\\
& -\frac{2 \beta \gamma}{\alpha^{2}}\left(\alpha+\beta \zeta^{2}+\gamma \zeta^{3}\right)-\frac{2 \gamma^{2}}{\alpha^{2}}\left(\alpha \zeta+\beta \zeta^{3}+\gamma \zeta^{4}\right)
\end{align*}
$$

We recognize

$$
\begin{align*}
& C_{i}(z)=\frac{2 \beta \gamma}{\alpha}-\frac{\beta z}{\alpha}-\frac{\gamma z^{2}}{\alpha^{2}} \\
& C_{o}(z)=\left(\alpha-\frac{\beta^{2}}{\alpha}-\frac{2 \gamma^{2}}{\alpha}\right) \zeta-\left(\frac{\beta \gamma}{\alpha}+\frac{\beta^{2} \gamma}{\alpha^{2}}\right) \zeta^{2}-\frac{2 \beta \gamma^{2} \zeta^{3}}{\alpha^{2}}-\frac{\gamma^{3} \zeta^{4}}{\alpha^{2}} \tag{50}
\end{align*}
$$

5. Consider a conformal map from a unit disc $|\zeta|<1$ to the exterior of a time-evolving ellipse. Assuming its centroid remains fixed at the origin the map will have the form

$$
\begin{equation*}
z(\zeta, t)=\frac{\alpha(t)}{\zeta}+\beta(t) \zeta \tag{51}
\end{equation*}
$$

To use the rotational degree of freedom in the Riemann mapping theorem, instead of insisting the α is real (as we do in the case of a mapping to a steady ellipse in a corotating frame) we will insist instead that $\zeta=1$ always maps to the same point (call it A) at the end of one of the principal axes of the ellipse with distance a from the origin. Then

$$
\begin{equation*}
\alpha+\beta=a e^{\mathrm{i} \theta}, \quad \alpha-\beta=b e^{\mathrm{i} \theta} \tag{52}
\end{equation*}
$$

where θ is the angle made by this principal axis to the real axis. Since the ellipse is a uniform vortex patch and since $2 \mathrm{i} \partial \psi / \partial z \rightarrow(\mathrm{i} \epsilon+\gamma) z$ as $|z| \rightarrow \infty$ we can write

$$
\frac{\partial \psi}{\partial z}= \begin{cases}-(\omega / 4) \bar{z}-(\omega / 4) C_{i}(z) & z \in D \tag{53}\\ -(\omega / 4) C_{o}(z)+(\epsilon-\mathrm{i} \gamma) / 2 z & z \notin D\end{cases}
$$

where $C_{i}(z)$ is analytic inside the patch, $C_{o}(z)$ is analytic outside the patch and decaying in the far-field. Continuity of velocity on the boundary of the patch implies that on ∂D

$$
\begin{equation*}
\bar{z}+\left(\frac{2 \epsilon}{\omega}-\frac{2 \mathrm{i} \gamma}{\omega}\right) z=C_{o}(z)-C_{i}(z) \tag{54}
\end{equation*}
$$

Solving in the usual way gives

$$
\begin{align*}
& C_{i}(z)=-\left(\frac{\bar{\beta}}{\alpha}+\left(\frac{2 \epsilon}{\omega}-\frac{2 \mathrm{i} \gamma}{\omega}\right)\right) z \tag{55}\\
& C_{o}(z)=\left(\bar{\alpha}-\frac{|\beta|^{2}}{\alpha}\right) \zeta(z)
\end{align*}
$$

This means that, on ∂D,

$$
\begin{equation*}
u-\mathrm{i} v=2 \mathrm{i} \frac{\partial \psi}{\partial z}=-\frac{\mathrm{i} \omega}{2}\left(\bar{\alpha}-\frac{|\beta|^{2}}{\alpha}\right) \zeta(z)+(\mathrm{i} \epsilon+\gamma)\left(\frac{\alpha}{\zeta}+\beta \zeta\right) \tag{56}
\end{equation*}
$$

Use of this in the kinematic condition that the normal velocity of the patch equals the normal fluid velocity leads to

$$
\begin{equation*}
\operatorname{Re}\left[\frac{\partial \bar{z}}{\partial t} \zeta z^{\prime}(\zeta)\right]=\operatorname{Re}\left[(u-\mathrm{i} v) \zeta z^{\prime}(\zeta)\right] \tag{57}
\end{equation*}
$$

But

$$
\begin{equation*}
\frac{\partial z}{\partial t}=\frac{\dot{\alpha}}{\zeta}+\dot{\beta} \zeta, \quad \zeta z^{\prime}(\zeta)=-\frac{\alpha}{\zeta}+\beta \zeta \tag{58}
\end{equation*}
$$

so the boundary condition is

$$
\begin{equation*}
\operatorname{Re}\left[\left(\frac{\dot{\alpha}}{\zeta}+\dot{\beta} \zeta\right)\left(-\frac{\alpha}{\zeta}+\beta \zeta\right)\right]=\operatorname{Re}\left[\left(\frac{\alpha X}{\zeta}+Y \zeta\right)\left(-\frac{\alpha}{\zeta}+\beta \zeta\right)\right] \tag{59}
\end{equation*}
$$

where

$$
\begin{equation*}
X=\mathrm{i} \epsilon+\gamma, \quad Y=\beta X-\frac{\mathrm{i} \omega}{2}\left(\bar{\alpha}-\beta^{2} / \alpha\right) . \tag{60}
\end{equation*}
$$

This becomes

$$
\begin{align*}
& -\alpha \bar{\alpha}+\beta \bar{\beta}-\frac{\alpha \bar{\beta}}{\zeta^{2}}-\bar{\alpha} \beta \zeta^{2}-\bar{\alpha} \dot{\alpha}+\bar{\beta} \dot{\beta}-\bar{\alpha} \dot{\beta} \zeta^{2}+\frac{\dot{\alpha} \bar{\beta}}{\zeta^{2}} \tag{61}\\
& \quad=-\frac{\alpha^{2} X}{\zeta^{2}}-\alpha Y+\beta Y \zeta^{2}+\alpha \beta X-\bar{\alpha}^{2} \bar{X} \zeta^{2}-\bar{\alpha} \bar{Y}+\frac{\overline{\beta Y}}{\zeta^{2}}+\bar{\alpha} \overline{\beta \bar{X}}
\end{align*}
$$

The constant term gives

$$
\begin{equation*}
\frac{d}{d t}\left(|\beta|^{2}-|\alpha|^{2}\right)=0 \tag{62}
\end{equation*}
$$

which is a statement of conservation of area of the patch. The coefficients of ζ^{2} gives

$$
\begin{equation*}
\beta Y-\overline{\alpha^{2}} \bar{X}=-\bar{\alpha} \dot{\beta}+\bar{\alpha} \beta=\beta^{2} \frac{d}{d t}\left(\frac{\bar{\alpha}}{\beta}\right) . \tag{63}
\end{equation*}
$$

This implies

$$
\begin{equation*}
-\bar{\alpha}^{2} \bar{X}+\beta^{2} X-\frac{\mathrm{i} \omega \beta}{2}\left(\bar{\alpha}-\frac{|\beta|^{2}}{\alpha}\right)=\beta^{2} \frac{d}{d t}\left(\frac{\bar{\alpha}}{\beta}\right) . \tag{64}
\end{equation*}
$$

Now let

$$
\begin{equation*}
\frac{\bar{\alpha}}{\beta}=\left(\frac{a+b}{a-b}\right) e^{-2 i \theta}=R e^{\mathrm{i} \phi} \tag{65}
\end{equation*}
$$

so $R=(a+b) /(a-b)$ and $\phi=-2 \theta$. Then

$$
\begin{equation*}
\frac{d}{d t}\left(R e^{\mathrm{i} \phi}\right)=X-\frac{\bar{\alpha}^{2}}{\beta^{2}} \bar{X}-\frac{\mathrm{i} \omega}{2}\left(\frac{\bar{\alpha}}{\beta}-\frac{\bar{\beta}}{\alpha}\right) \tag{66}
\end{equation*}
$$

which implies

$$
\begin{equation*}
\dot{R} e^{\mathrm{i} \phi}+\mathrm{i} R \dot{\phi} e^{\mathrm{i} \phi}=X-R^{2} \bar{X} e^{2 \mathrm{i} \phi}-\frac{\mathrm{i} \omega}{2}\left(R-\frac{1}{R}\right) e^{\mathrm{i} \phi} . \tag{67}
\end{equation*}
$$

Now divide by $e^{\mathrm{i} \phi}$:

$$
\begin{equation*}
\dot{R}+\mathrm{i} R \dot{\phi}=X e^{-\mathrm{i} \phi}-R^{2} \bar{X} e^{\mathrm{i} \phi}-\frac{\mathrm{i} \omega}{2}\left(R-\frac{1}{R}\right) . \tag{68}
\end{equation*}
$$

Thus
$\dot{R}-2 \mathrm{i} R \dot{\theta}=(\gamma+\mathrm{i} \epsilon)(\cos 2 \theta+\mathrm{i} \sin 2 \theta)-R^{2}(\gamma-\mathrm{i} \epsilon)(\cos 2 \theta-\mathrm{i} \sin 2 \theta)-\frac{\mathrm{i} \omega}{2}\left(R-\frac{1}{R}\right)$.

The imaginary part of this equation gives

$$
\begin{equation*}
-2 R \dot{\theta}=\epsilon\left(1+R^{2}\right) \cos 2 \theta+\gamma\left(1+R^{2}\right) \sin 2 \theta-\frac{\omega}{2}\left(R-\frac{1}{R}\right) . \tag{70}
\end{equation*}
$$

Now using the facts that

$$
\begin{equation*}
1+R^{2}=\frac{2\left(a^{2}+b^{2}\right)}{(a-b)^{2}}, \quad 1-\frac{1}{R^{2}}=\frac{4 a b}{(a+b)^{2}} \tag{71}
\end{equation*}
$$

then

$$
\begin{equation*}
\dot{\theta}=\frac{\omega a b}{(a+b)^{2}}-\epsilon\left(\frac{a^{2}+b^{2}}{a^{2}-b^{2}}\right) \cos 2 \theta-\gamma\left(\frac{a^{2}+b^{2}}{a^{2}-b^{2}}\right) \sin 2 \theta . \tag{72}
\end{equation*}
$$

This is as required.
The real part of (69) gives

$$
\begin{equation*}
\dot{R}=\gamma\left(1-R^{2}\right) \cos 2 \theta-\epsilon\left(1-R^{2}\right) \sin 2 \theta . \tag{73}
\end{equation*}
$$

But

$$
\begin{equation*}
\dot{R}=\frac{2(a \dot{b}-b \dot{a})}{(a-b)^{2}} \tag{74}
\end{equation*}
$$

thus

$$
\begin{equation*}
\dot{a} b-\dot{b} a=2 a b(\gamma \cos 2 \theta-\epsilon \sin 2 \theta) \tag{75}
\end{equation*}
$$

But $\pi a b=$ constant so

$$
\begin{equation*}
\dot{a} b+a \dot{b}=0 \tag{76}
\end{equation*}
$$

hence

$$
\begin{equation*}
2 \dot{a} b=2 a b(\gamma \cos 2 \theta-\epsilon \sin 2 \theta) \tag{77}
\end{equation*}
$$

or

$$
\begin{equation*}
\dot{a}=a(\gamma \cos 2 \theta-\epsilon \sin 2 \theta) \tag{78}
\end{equation*}
$$

Similarly

$$
\begin{equation*}
\dot{b}=-b(\gamma \cos 2 \theta-\epsilon \sin 2 \theta) \tag{79}
\end{equation*}
$$

This means that

$$
\begin{equation*}
a \dot{a}-b \dot{b}=\left(a^{2}+b^{2}\right)(\gamma \cos 2 \theta-\epsilon \sin 2 \theta), \tag{80}
\end{equation*}
$$

as required.
6. From the lecture notes, the velocity field for the Kirchhoff ellipse in a fixed frame is $u-\mathrm{i} v=2 \mathrm{i} \partial \psi / \partial z$ where

$$
\frac{\partial \psi}{\partial z}= \begin{cases}-(\omega / 4) \bar{z}+(\omega / 4) \beta z / \alpha, & z \in D \tag{81}\\ -(\omega / 4)\left[\alpha-\beta^{2} / \alpha\right] \zeta(z), & z \notin D .\end{cases}
$$

From Q1,

$$
\begin{equation*}
\alpha=\frac{a+b}{2}, \quad \beta=\frac{a-b}{2} \tag{82}
\end{equation*}
$$

and the limit $b \rightarrow 0$ corresponds to $\beta \rightarrow \alpha$. Thus

$$
\frac{\partial \psi}{\partial z}= \begin{cases}-(\omega / 4) \bar{z}+(\omega / 4)(a-b) z /(a+b), & z \in D, \tag{83}\\ -(\omega / 4)[2 a b /(a+b)] \zeta(z), & z \notin D .\end{cases}
$$

The angular velocity is

$$
\begin{equation*}
\Omega=\frac{\omega a b}{(a+b)^{2}} \rightarrow \frac{\kappa}{2 a} \tag{84}
\end{equation*}
$$

in the limit. Therefore the velocity on the boundary of the patch in a corotating frame is

$$
\begin{equation*}
u-\mathrm{i} v=2 \mathrm{i} \frac{\partial \psi}{\partial z}=\frac{\mathrm{i} k \bar{z}}{2 a}-\frac{\mathrm{i} \omega a b}{a+b} \zeta \tag{85}
\end{equation*}
$$

In the limit $\beta \rightarrow \alpha$ the conformal map tends to the slit mapping

$$
\begin{equation*}
z(\zeta)=\frac{a}{2}\left(\zeta+\zeta^{-1}\right) \tag{86}
\end{equation*}
$$

This means that, if x is real,

$$
\begin{equation*}
\zeta=\frac{x}{a} \pm \sqrt{(x / a)^{2}-1} \tag{87}
\end{equation*}
$$

where the two signs correspond to the top and bottom of the slit. Substituting this into the velocity field on the boundary gives

$$
\begin{equation*}
u-\mathrm{i} v=\mp \frac{\mathrm{i} \kappa}{2} \sqrt{(x / a)^{2}-1} \tag{88}
\end{equation*}
$$

But $x^{2} / a^{2}<1$ so

$$
\begin{equation*}
u-\mathrm{i} v=\mp \frac{\kappa}{2} \sqrt{1-(x / a)^{2}} \tag{89}
\end{equation*}
$$

Therefore $v=0$ everywhere on the slit (as expected) and the jump in tangential velocity (i.e., the vortex sheet strength) is

$$
\begin{equation*}
\kappa \sqrt{1-(x / a)^{2}} \tag{90}
\end{equation*}
$$

The angular velocity of the sheet is $\Omega=\kappa /(2 a)$.
7. If

$$
\begin{equation*}
\psi=\log (\cosh y-\epsilon \cos x) \tag{91}
\end{equation*}
$$

Then

$$
\begin{equation*}
\frac{\partial \psi}{\partial x}=\frac{\epsilon \sin x}{\cosh y-\epsilon \cos x} \tag{92}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial^{2} \psi}{\partial x^{2}}=\frac{\epsilon \cos x}{\cosh y-\epsilon \cos x}-\frac{\epsilon^{2} \sin ^{2} x}{(\cosh y-\epsilon \cos x)^{2}} \tag{93}
\end{equation*}
$$

This can be simplified to

$$
\begin{equation*}
\frac{\partial^{2} \psi}{\partial x^{2}}=\frac{\epsilon \cos x \cosh y-\epsilon^{2}}{(\cosh y-\epsilon \cos x)^{2}} \tag{94}
\end{equation*}
$$

Similarly it can be shown that

$$
\begin{equation*}
\frac{\partial^{2} \psi}{\partial y^{2}}=\frac{1-\epsilon \cosh y \cos x}{(\cosh y-\epsilon \cos x)^{2}} \tag{95}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\frac{\partial^{2} \psi}{\partial x^{2}}+\frac{\partial^{2} \psi}{\partial y^{2}}=\frac{1-\epsilon^{2}}{(\cosh y-\epsilon \cos x)^{2}}=\left(1-\epsilon^{2}\right) e^{-2 \psi} \tag{96}
\end{equation*}
$$

When $\epsilon=1$

$$
\begin{align*}
\psi=\log (\cosh y-\cos x) & =\log \left[\cosh \left(\frac{z-\bar{z}}{2 \mathrm{i}}\right)-\cos \left(\frac{z+\bar{z}}{2}\right)\right] . \\
& =\log (\sin (z / 2))+\log (\sin \bar{z} / 2)+\mathrm{cst} \tag{97}\\
& =\operatorname{Im}[w(z)]
\end{align*}
$$

where

$$
\begin{equation*}
w(z)=2 \mathrm{i} \log (\sin (z / 2)) \tag{98}
\end{equation*}
$$

Since the complex potential for a singly periodic row of circulation Γ point vortices at $z=n a$ is known to be

$$
\begin{equation*}
w(z)=-\frac{\mathrm{i} \Gamma}{2 \pi} \log (\sin (\pi z / a)) \tag{99}
\end{equation*}
$$

then we recognize the $\epsilon=1$ solution as a row of point vortices all of circulation $\Gamma=-4 \pi$ at $z=2 n \pi$.

Verification that ψ satisfies

$$
\begin{equation*}
\nabla^{2} \psi=-\left(\frac{1-\epsilon^{2}}{2}\right) \sinh (2 \psi) \tag{100}
\end{equation*}
$$

is by direct differentiation as above.
When $\epsilon=1$

$$
\begin{align*}
\psi & =\log (\cosh y-\epsilon \cos x)-\log (\cosh y+\epsilon \cos x) \\
& =\log (2 \sin (z / 2) \sin (\bar{z} / 2))-\log (2 \cos (z / 2) \cos (\bar{z} / 2)) \tag{101}\\
& =\operatorname{Im}[\hat{w}(z)]
\end{align*}
$$

where

$$
\begin{equation*}
\hat{w}(z)=2 \mathrm{i} \log (\sin (z / 2))-2 \mathrm{i} \log (\sin ((z+\pi) / 2)) \tag{102}
\end{equation*}
$$

which corresponds to an alternating street of vortices of strengths $\pm 4 \pi$ separated by distance π.

