M4A32: Vortex dynamics
Problem Sheet 5: SOLUTIONS
(Distributed vorticity)

1.(a) Let

AO=%+5C (1)

with a and S real. Then, for any point z on the ellipse, the reflected point Z
(in the real axis) is also on the ellipse. Moreover, if z is the image of ¢ then
7 is the image of (. To see this note that

z = 2(¢) = Z(¢) = 2(¢) (2)

because

Z(¢) = 2(¢) = 2(¢) (3)
owing to the fact that o and g are real. These results mean that the ellipse
is reflectionally symmetric about the z-axis.

The image of ( =1 is

z(l)=a+p (4)
while the image of —i is
2(—i) === = Bi=ila—B). (5)

Note that if |¢| = 1 is traversed anticlockwise then the boundary of the ellipse
is traversed clockwise. Therefore we let

a=a+p, b=a-—0. (6)

Multiplying the mapping by ¢ produces the following quadratic for (:

B¢ —2(+a=0 (7)
yielding
+ 24
¢ = ZEVE )

We must pick the — sign because we require ( — 0 as z — oo. Hence the

inverse mapping is
2 — /2% —4af
= )

((z) =



Or

b —b
ab:a2—ﬁ2, a:a;_ ) ﬁ:a2 (10>
Hence
z— /22— (a? = b2
0 s et L (1)

2. The mapping from || < 1 to the exterior of the Kirchhoff ellipse is

%+ﬁc (12)

where o, 8 € R. Take o = a and § = € < 1 then the ellipse is close to

circular. Then
e (1) (509

=a’+apC®+ Og—f + O(€?)
=a’+aB(*+ () + 0

(13)

Let ¢ = €% then
r? = a® + 208 cos(2¢) + O(e?) = a® + 2ace cos(2¢) + O(€?) (14)
On taking a square root
r=a+ ecos(2¢) + O(e?) (15)

Let 6 be the angle between the positive real axis and the major axis of the
ellipse. The major axis of the ellipse corresponds to ¢ = 0 in the (-plane and
the ellipse rotates steadily with angular velocity €2 so

0= ¢+t (16)

therefore
r=a-+ecos2(0 — Q). (17)

Now, as a — b (so that the Kirchhoff ellipse is close to circular), and

Qmﬁ%»——:% (18)



so, from (17), the time dependence of the perturbation to the Rankine vortex
is of the form e?* where )
o = 2i0) = % (19)

This is consistent with the eigenvalue of the e(? perturbation to the Rankine
vortex as performed in the linear stability analysis in lectures; there it was
shown that if the Rankine vortex is perturbed as follows:

z=(+eC"e™, neZZ’ (20)

then ' .
o, = % (21)

For n = 2 this gives iw/2.

3. If u ~ —ey and v ~ —ex then

u—iv ~ie(x +iy) = 212—25. (22)

Let

Dz —(w/4)Cy(2) + (¢/2)z =z ¢ D. (23)

Here C,(2) decays as |z| — oco. The continuity of the velocity on 0D implies

Qg:{—wmﬁ—wmww)zep

Z+ —E= Co(z) — Ci(2). (24)
Let o
A=z +5C (25)
then, on |¢| =1 (which corresponds to 0D)
E:aC—l—?:(a—%z)C—l—gz (26)



and recognize

o w o
Since
2 =a+ B¢
then
2 — /22 —4ap
and
042 _ 52 5
Co(z) = 5ad (z— z —4045)
But from Q1,
o a+b 5= a—>b
27 2
Therefore By 9
a— €
Cilz) = = <a—|—b Z) :
2ab
_ _ 2 _
Co(2) PR (z z 4a,8>

As verification, note that

1 2 dz'
Ci(z) = —— (7 + —Ez’> il
27 Jap w 2 —z

First consider

1 f o2 2
omi Jop w2 — 2w
by the residue theorem.
Next consider
LY OO N N (SO R (S
2mi Jop 2 — 2z 2mi Jigo 2(Q) —z d¢
Now with
a dz(() a P
ZC:_+/8C7 :__+67 ZC :@C+—

4

(29)

(30)

(31)

(37)

(38)



then . 5 .
(8]
"l (ag ! Z) (‘? ¥ B) 20— (39)

The term 1/(z(¢) — 2) has no singularity inside |(| < 1 because z € D and
|| < 1 corresponds to the exterior of D. Hence the only pole is at { = 0.
Computing the residue leads to

b _ab_ o 5_2] IS
omi S { ¢ Tt | T B
1 af] (1 (2¢—BE¢)
_ B
T
(40)
Addition of (36) and (40) as in (35) yields
B 8 2e B a—b 2e
Ci(z)——(a+z)2——(a+b+;>z (41)
4. Let a
A0 =7 + B¢+ ¢ (42)
Now we must have
o { —(w/4)z — (w/4)Ci(2) z€ D (43)
9z | —(w/4)Cs(2) 2¢D
Continuity of velocity implies
—Z=Ci(z) — Cy(2) (44)
On 0D 8
But . 3
_2_P_ 0
s=i-f-lo (46)



SO

:ag+@_ﬁ_2C_7@C2+_2+7522C2 (47)
o o o a a
28920 29%(2Q)C | 2897
+ o? o? o? + o?
Now use
2 =a+ B¢+ (48)

to substitute for z(:

FE (e D) (e
a2 (0%

z= o o? o o?

25 (49)

Y (a4 B +4¢%) - (aC+BC3+vC )
We recognize
a =20 B 07
a a o« 50)
P\ (B, B e 200

CO(Z):(Q_E_?>§ <a a2>€_ @2 a2

5. Consider a conformal map from a unit disc || < 1 to the exterior of a
time-evolving ellipse. Assuming its centroid remains fixed at the origin the
map will have the form

a(t)
¢

To use the rotational degree of freedom in the Riemann mapping theorem,
instead of insisting the « is real (as we do in the case of a mapping to a
steady ellipse in a corotating frame) we will insist instead that ( = 1 always
maps to the same point (call it A) at the end of one of the principal axes of
the ellipse with distance a from the origin. Then

2(¢,1) = + B(t)¢ (51)

a+ B =ae? o — 3 = bel (52)



where 6 is the angle made by this principal axis to the real axis. Since the
ellipse is a uniform vortex patch and since 20y /0z — (ie + )z as |z| = 0o
we can write

M _ { —(w/4)Z — (w/4)Ci(2) 2eD,
0z —(w/4)Co(2) + (e —1v) /22 2 ¢ D,

where C;(z) is analytic inside the patch, C,(2) is analytic outside the patch
and decaying in the far-field. Continuity of velocity on the boundary of the
patch implies that on 0D

(53)

2 2i
z+ <§ - %) 2= Cy(2) — Cy(2) (54)
Solving in the usual way gives
- (1 (-2)-
(6] |B|2 w w (55>
et = (7= )

This means that, on 0D,

0 iw 2 o
u—iszia—f:—E (@—%) C(2) + (e + ) (Z—i-ﬂC) (56)

Use of this in the kinematic condition that the normal velocity of the patch
equals the normal fluid velocity leads to

Re | 2264(0)] = Rellu~ )¢/ 57
But

Jdz o . poa o«

EZZ‘FﬂCa CZ(C)——Z+/BC (58)

so the boundary condition is

wf(t00) (2] {50 (0]

where

X =ie+7, Y:ﬁX—%"(a—w/a). (60)
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This becomes

—ad+ BB — z—f —aBC* —aa+ B —ape® + (Z_—f
— (61)
— _O‘zf —aY + Y + aBfX —a* X —aY + BC—}; +aBX.

The constant term gives

d 2 2\ __
S (18P = lal?) =0 (62

which is a statement of conservation of area of the patch. The coefficients of
¢? gives

BY — X = —ab+af = B (%) . (63)
This implies
s gy W (5 1P _ pd (@
X +p°X 5 (a - _Bdt 5) (64)
Now let ;
a  fa+ 20 _ p i
ﬂ_<a—b)e = Re (65)
so R=(a+0b)/(a—b) and ¢ = —20. Then
d a’— iw(a B
_ Py _y_—_Y_Z(Z_Z=L
7 (Re) iz 5 ( 3 a) (66)
which implies
S5 i | cpid 2% 2i¢ 1w 1 i
Re'? +iRpe® = X — R Xe -5 R—E e, (67)
Now divide by e'¢:
) . . — . i 1
R+iR¢ = Xe ¢ — R?X e — % (R — E) . (68)
Thus
. . ' 1
R—2iR0 = (y+i€)(cos 20+i sin 20) — R* (y—ie) (cos 20—i sin 29)—% (R %
(69)



The imaginary part of this equation gives

—2R0 = (1 + R?) cos 20 + (1 + R?)sin 20 — ‘5" (R - %) :

Now using the facts that

2(a® + b?) 1 4ab
1 2 7 0 7/ 1 — —
TR =T R (a+b)p
then ; 2, g2 2 2
. wa a” + a” + .
0 = (0t b7 —e<a2_b2>cos29—7(a2_62) sin 26.

This is as required.

The real part of (69) gives
R=7(1 — R?)cos20 — e(1 — R?)sin 26.
But .
B 2(ab — ba)
(a —b)?

thus .
ab — ba = 2ab (7 cos 20 — esin 20)

But mab = constant so

ab+ab =0
hence
2ab = 2ab (y cos 20 — e sin 26)
or
a = a (y cos 20 — esin 26)
Similarly

b= —b(vcos20 — esin 26)

This means that
ai — bb = (a® 4 b%) (7 cos 20 — esin 26) ,

as required.

(74)

(75)
(76)
(77)
(78)

(79)

(80)



6. From the lecture notes, the velocity field for the Kirchhoff ellipse in a
fixed frame is u — iv = 2i0vy/0z where

o _ { —(w/4)z + (w2/4)62/oz, z€ D, (81)
0z — (/4o = p*/lC(2), =z ¢ D.
From Q1,
a:a;—b, ﬂ:a;b (82)
and the limit b — 0 corresponds to § — «. Thus
5_%02 { —(w/4)z+ (w/4)(a —Db)z/(a+Db), z€ D, (83)
0z —(w/4)[2ab/(a + b)]¢(2), z¢ D.
The angular velocity is
Q= % — % (84)

in the limit. Therefore the velocity on the boundary of the patch in a coro-
tating frame is

. 0y ikz iwab

U—iv =21— = — —

5
0z 2a a+ bC (85)
In the limit 5 — « the conformal map tends to the slit mapping

2(¢) = g (C+¢™). (86)

This means that, if x is real,

(=2 /(a/ap—1 (87)

where the two signs correspond to the top and bottom of the slit. Substituting
this into the velocity field on the boundary gives

u—iv:qig (x/a)? —1 (88)
But 2%/a? < 1 so
u—iv = q:g 1— (z/a)2. (89)

Therefore v = 0 everywhere on the slit (as expected) and the jump in tan-
gential velocity (i.e., the vortex sheet strength) is

/1= (x/a)?. (90)
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The angular velocity of the sheet is Q = k/(2a).

7. If
1 = log(coshy — € cos z) (91)
Then P .
o _ esinx (92)
Oxr  coshy — ecosx
and
o’ €COST B €2 sin’ x (93)
O0x?  coshy —ecosz  (coshy — ecos x)?
This can be simplified to
0% _ ecoszcoshy — €? (04)
J0z?  (coshy — ecosx)?
Similarly it can be shown that
0% _ 1 —ccoshycosx (95)
0y?  (coshy — ecosx)?
Therefore
0%y 0% 1—é
= =(1—¢€)e . 96
0x? * 0y?  (coshy — ecosx)? (1=€)e (96)
When e =1
2=z Z+7Z
1 = log (coshy — cosx) = log [cosh ( 5 ) — cos ( 5 )] :
= log(sin(z/2)) + log(sinz/2) + cst (97)
= Im [w(2)]
where
w(z) = 2ilog(sin(z/2)) (98)

Since the complex potential for a singly periodic row of circulation I' point
vortices at z = na is known to be

ir’

w(z) = —5- log(sin(rz/a)) (99)

11



then we recognize the ¢ = 1 solution as a row of point vortices all of circulation
I'=—4m at z = 2nm.

Verification that 1 satisfies

1—¢2

Vi) = — sinh(2¢)) (100)
(%)

is by direct differentiation as above.
When e =1
1 = log(coshy — € cos z) — log(coshy + € cos x)
= log (2sin(z/2) sin(z/2)) — log (2 cos(z/2) cos(z/2)) (101)
= Im[w(2)]
where
w(z) = 2ilog(sin(z/2)) — 2ilog(sin((z + 7)/2)) (102)

which corresponds to an alternating street of vortices of strengths 44w sep-
arated by distance 7.
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