
M4A32: Vortex dynamics

Problem Sheet 5: SOLUTIONS

(Distributed vorticity)

1.(a) Let

z(ζ) =
α

ζ
+ βζ (1)

with α and β real. Then, for any point z on the ellipse, the reflected point z
(in the real axis) is also on the ellipse. Moreover, if z is the image of ζ then
z is the image of ζ. To see this note that

z = z(ζ) = z(ζ) = z(ζ) (2)

because
z(ζ) = z(ζ) = z(ζ) (3)

owing to the fact that α and β are real. These results mean that the ellipse
is reflectionally symmetric about the x-axis.

The image of ζ = 1 is
z(1) = α + β (4)

while the image of −i is

z(−i) = −α
i
− βi = i(α− β). (5)

Note that if |ζ| = 1 is traversed anticlockwise then the boundary of the ellipse
is traversed clockwise. Therefore we let

a = α + β, b = α− β. (6)

Multiplying the mapping by ζ produces the following quadratic for ζ:

βζ2 − zζ + α = 0 (7)

yielding

ζ =
z ±

√
z2 − 4αβ

2β
(8)

We must pick the − sign because we require ζ → 0 as z → ∞. Hence the
inverse mapping is

ζ(z) =
z −

√
z2 − 4αβ

2β
(9)



Or

ab = α2 − β2, α =
a+ b

2
, β =

a− b
2

(10)

Hence

ζ(z) =
z −

√
z2 − (a2 − b2)
a− b

. (11)

2. The mapping from |ζ| < 1 to the exterior of the Kirchhoff ellipse is

α

ζ
+ βζ (12)

where α, β ∈ R. Take α = a and β = ε � 1 then the ellipse is close to
circular. Then

r2 = zz =

(
α

ζ
+ βζ

)(
αζ +

β

ζ

)
= α2 + αβζ2 +

αβ

ζ2
+O(ε2)

= a2 + αβ(ζ2 + ζ−2) +O(ε2)

(13)

Let ζ = eiφ then

r2 = a2 + 2αβ cos(2φ) +O(ε2) = a2 + 2aε cos(2φ) +O(ε2) (14)

On taking a square root

r = a+ ε cos(2φ) +O(ε2) (15)

Let θ be the angle between the positive real axis and the major axis of the
ellipse. The major axis of the ellipse corresponds to φ = 0 in the ζ-plane and
the ellipse rotates steadily with angular velocity Ω so

θ = φ+ Ωt (16)

therefore
r = a+ ε cos 2(θ − Ωt). (17)

Now, as a→ b (so that the Kirchhoff ellipse is close to circular), and

Ω(a, b)→ ωa2

4a2
=
ω

4
(18)
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so, from (17), the time dependence of the perturbation to the Rankine vortex
is of the form eσt where

σ = 2iΩ =
iω

2
(19)

This is consistent with the eigenvalue of the εζ2 perturbation to the Rankine
vortex as performed in the linear stability analysis in lectures; there it was
shown that if the Rankine vortex is perturbed as follows:

z = ζ + εζneσnt, n ∈ Z+ (20)

then

σn =
iω(n− 1)

2
. (21)

For n = 2 this gives iω/2.

3. If u ∼ −εy and v ∼ −εx then

u− iv ∼ iε(x+ iy) = 2i
∂ψ

∂z
. (22)

Let
∂ψ

∂z
=

{
−(ω/4)z − (ω/4)Ci(z) z ∈ D
−(ω/4)Co(z) + (ε/2)z z /∈ D. (23)

Here Co(z) decays as |z| → ∞. The continuity of the velocity on ∂D implies

z +
2ε

ω
z = Co(z)− Ci(z). (24)

Let
z(ζ) =

α

ζ
+ βζ (25)

then, on |ζ| = 1 (which corresponds to ∂D)

z = αζ +
β

ζ
=

(
α− β2

α

)
ζ +

β

α
z (26)

where we have used (25) to substitute for 1/ζ. We can also write(
α− β2

α

)
ζ +

(
β

α
+

2ε

ω

)
z = Co(z)− Ci(z) (27)
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and recognize

Ci(z) = −
(
β

α
+

2ε

ω

)
z, Co(z) =

(
α− β2

α

)
ζ (28)

Since
zζ = α + βζ2 (29)

then

ζ(z) =
z −

√
z2 − 4αβ

2β
(30)

and

Co(z) =
α2 − β2

2αβ

(
z −

√
z2 − 4αβ

)
. (31)

But from Q1,

α =
a+ b

2
, β =

a− b
2

. (32)

Therefore

Ci(z) = −
(
a− b
a+ b

+
2ε

ω

)
z (33)

Co(z) =
2ab

a2 − b2
(
z −

√
z2 − 4αβ

)
. (34)

As verification, note that

Ci(z) = − 1

2πi

∮
∂D

(
z′ +

2ε

ω
z′
)

dz′

z′ − z
(35)

First consider
1

2πi

∮
∂D

2ε

ω

z′dz′

z′ − z
=

2εz

ω
(36)

by the residue theorem.

Next consider

1

2πi

∮
∂D

z′dz′

z′ − z
= − 1

2πi

∮
|ζ|=1

z(ζ−1)

z(ζ)− z
dz(ζ)

dζ
dζ. (37)

Now with

z(ζ) =
α

ζ
+ βζ,

dz(ζ)

dζ
= − α

ζ2
+ β, z(ζ−1) = αζ +

β

ζ
(38)
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then

− 1

2πi

∮
|ζ|=1

(
αζ +

β

ζ

)(
− α
ζ2

+ β

)
1

z(ζ)− z
dζ. (39)

The term 1/(z(ζ) − z) has no singularity inside |ζ| < 1 because z ∈ D and
|ζ| < 1 corresponds to the exterior of D. Hence the only pole is at ζ = 0.
Computing the residue leads to

− 1

2πi

∮
|ζ|=1

[
−αβ
ζ3
− α2

ζ
+ αβζ +

β2

ζ

]
ζdζ

α− zζ + βζ2

= − 1

2πi

∮
|ζ|=1

[
(β2 − α2) + αβζ2 − αβ

ζ2

](
1

α
+

(zζ − βζ2)
α2

+O(ζ2)

)
dζ

=
βz

α
(40)

Addition of (36) and (40) as in (35) yields

Ci(z) = −
(
β

α
+

2ε

ω

)
z = −

(
a− b
a+ b

+
2ε

ω

)
z (41)

4. Let
z(ζ) =

α

ζ
+ βζ + γζ2 (42)

Now we must have

∂ψ

∂z
=

{
−(ω/4)z − (ω/4)Ci(z) z ∈ D
−(ω/4)Co(z) z /∈ D (43)

Continuity of velocity implies

−z = Ci(z)− Co(z) (44)

On ∂D

z = αζ +
β

ζ
+
γ

ζ2
(45)

But
1

ζ
=
z

α
− β

α
ζ − γ

α
ζ2 (46)
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so

z = αζ + β

[
z

α
− β

α
ζ − γ

α
ζ2
]

+ γ

[
z

α
− β

α
ζ − γ

α
ζ2
]2

= αζ +
βz

α
− β2ζ

α
− γβζ2

α
+
γz2

α2
+
γβ2ζ2

α2

+
γ3ζ4

α2
− 2βγ(zζ)

α2
− 2γ2(zζ)ζ

α2
+

2βγ2ζ3

α2

(47)

Now use
zζ = α + βζ2 + γζ3 (48)

to substitute for zζ:

z =
βz

α
+
γz2

α2
+ ζ

(
α− β2

α

)
+

(
γβ2

α2
− γβ

α

)
ζ2 +

γ3ζ4

α2
+

2βγ2ζ

α2

− 2βγ

α2

(
α + βζ2 + γζ3

)
− 2γ2

α2

(
αζ + βζ3 + γζ4

) (49)

We recognize

Ci(z) =
2βγ

α
− βz

α
− γz2

α2
,

Co(z) =

(
α− β2

α
− 2γ2

α

)
ζ −

(
βγ

α
+
β2γ

α2

)
ζ2 − 2βγ2ζ3

α2
− γ3ζ4

α2
.

(50)

5. Consider a conformal map from a unit disc |ζ| < 1 to the exterior of a
time-evolving ellipse. Assuming its centroid remains fixed at the origin the
map will have the form

z(ζ, t) =
α(t)

ζ
+ β(t)ζ (51)

To use the rotational degree of freedom in the Riemann mapping theorem,
instead of insisting the α is real (as we do in the case of a mapping to a
steady ellipse in a corotating frame) we will insist instead that ζ = 1 always
maps to the same point (call it A) at the end of one of the principal axes of
the ellipse with distance a from the origin. Then

α + β = aeiθ, α− β = beiθ (52)
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where θ is the angle made by this principal axis to the real axis. Since the
ellipse is a uniform vortex patch and since 2i∂ψ/∂z → (iε+ γ)z as |z| → ∞
we can write

∂ψ

∂z
=

{
−(ω/4)z − (ω/4)Ci(z) z ∈ D,
−(ω/4)Co(z) + (ε− iγ)/2z z /∈ D, (53)

where Ci(z) is analytic inside the patch, Co(z) is analytic outside the patch
and decaying in the far-field. Continuity of velocity on the boundary of the
patch implies that on ∂D

z +

(
2ε

ω
− 2iγ

ω

)
z = Co(z)− Ci(z) (54)

Solving in the usual way gives

Ci(z) = −
(
β

α
+

(
2ε

ω
− 2iγ

ω

))
z,

Co(z) =

(
α− |β|

2

α

)
ζ(z).

(55)

This means that, on ∂D,

u− iv = 2i
∂ψ

∂z
= − iω

2

(
α− |β|

2

α

)
ζ(z) + (iε+ γ)

(
α

ζ
+ βζ

)
(56)

Use of this in the kinematic condition that the normal velocity of the patch
equals the normal fluid velocity leads to

Re

[
∂z

∂t
ζz′(ζ)

]
= Re[(u− iv)ζz′(ζ)]. (57)

But
∂z

∂t
=
α̇

ζ
+ β̇ζ, ζz′(ζ) = −α

ζ
+ βζ (58)

so the boundary condition is

Re

[(
α̇

ζ
+ β̇ζ

)(
−α
ζ

+ βζ

)]
= Re

[(
αX

ζ
+ Y ζ

)(
−α
ζ

+ βζ

)]
(59)

where

X = iε+ γ, Y = βX − iω

2

(
α− β2/α

)
. (60)
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This becomes

−αα̇ + ββ̇ − αβ̇

ζ2
− α̇βζ2 − αα̇ + ββ̇ − αβ̇ζ2 +

α̇β

ζ2

= −α
2X

ζ2
− αY + βY ζ2 + αβX − α2Xζ2 − αY +

βY

ζ2
+ αβX.

(61)

The constant term gives

d

dt

(
|β|2 − |α|2

)
= 0 (62)

which is a statement of conservation of area of the patch. The coefficients of
ζ2 gives

βY − α2X = −αβ̇ + α̇β = β2 d

dt

(
α

β

)
. (63)

This implies

−α2X + β2X − iωβ

2

(
α− |β|

2

α

)
= β2 d

dt

(
α

β

)
. (64)

Now let
α

β
=

(
a+ b

a− b

)
e−2iθ = Reiφ (65)

so R = (a+ b)/(a− b) and φ = −2θ. Then

d

dt

(
Reiφ

)
= X − α2

β2
X − iω

2

(
α

β
− β

α

)
(66)

which implies

Ṙeiφ + iRφ̇eiφ = X −R2Xe2iφ − iω

2

(
R− 1

R

)
eiφ. (67)

Now divide by eiφ:

Ṙ + iRφ̇ = Xe−iφ −R2Xeiφ − iω

2

(
R− 1

R

)
. (68)

Thus

Ṙ−2iRθ̇ = (γ+iε)(cos 2θ+i sin 2θ)−R2(γ−iε)(cos 2θ−i sin 2θ)− iω

2

(
R− 1

R

)
.

(69)
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The imaginary part of this equation gives

−2Rθ̇ = ε(1 +R2) cos 2θ + γ(1 +R2) sin 2θ − ω

2

(
R− 1

R

)
. (70)

Now using the facts that

1 +R2 =
2(a2 + b2)

(a− b)2
, 1− 1

R2
=

4ab

(a+ b)2
(71)

then

θ̇ =
ωab

(a+ b)2
− ε
(
a2 + b2

a2 − b2

)
cos 2θ − γ

(
a2 + b2

a2 − b2

)
sin 2θ. (72)

This is as required.

The real part of (69) gives

Ṙ = γ(1−R2) cos 2θ − ε(1−R2) sin 2θ. (73)

But

Ṙ =
2(aḃ− bȧ)

(a− b)2
(74)

thus
ȧb− ḃa = 2ab (γ cos 2θ − ε sin 2θ) (75)

But πab = constant so
ȧb+ aḃ = 0 (76)

hence
2ȧb = 2ab (γ cos 2θ − ε sin 2θ) (77)

or
ȧ = a (γ cos 2θ − ε sin 2θ) (78)

Similarly
ḃ = −b (γ cos 2θ − ε sin 2θ) (79)

This means that

aȧ− bḃ = (a2 + b2) (γ cos 2θ − ε sin 2θ) , (80)

as required.
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6. From the lecture notes, the velocity field for the Kirchhoff ellipse in a
fixed frame is u− iv = 2i∂ψ/∂z where

∂ψ

∂z
=

{
−(ω/4)z + (ω/4)βz/α, z ∈ D,
−(ω/4)[α− β2/α]ζ(z), z /∈ D. (81)

From Q1,

α =
a+ b

2
, β =

a− b
2

(82)

and the limit b→ 0 corresponds to β → α. Thus

∂ψ

∂z
=

{
−(ω/4)z + (ω/4)(a− b)z/(a+ b), z ∈ D,
−(ω/4)[2ab/(a+ b)]ζ(z), z /∈ D. (83)

The angular velocity is

Ω =
ωab

(a+ b)2
→ κ

2a
(84)

in the limit. Therefore the velocity on the boundary of the patch in a coro-
tating frame is

u− iv = 2i
∂ψ

∂z
=

ikz

2a
− iωab

a+ b
ζ (85)

In the limit β → α the conformal map tends to the slit mapping

z(ζ) =
a

2

(
ζ + ζ−1

)
. (86)

This means that, if x is real,

ζ =
x

a
±
√

(x/a)2 − 1 (87)

where the two signs correspond to the top and bottom of the slit. Substituting
this into the velocity field on the boundary gives

u− iv = ∓ iκ

2

√
(x/a)2 − 1 (88)

But x2/a2 < 1 so

u− iv = ∓κ
2

√
1− (x/a)2. (89)

Therefore v = 0 everywhere on the slit (as expected) and the jump in tan-
gential velocity (i.e., the vortex sheet strength) is

κ
√

1− (x/a)2. (90)
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The angular velocity of the sheet is Ω = κ/(2a).

7. If
ψ = log(coshy − ε cosx) (91)

Then
∂ψ

∂x
=

ε sinx

coshy − ε cosx
(92)

and
∂2ψ

∂x2
=

ε cosx

coshy − ε cosx
− ε2 sin2 x

(coshy − ε cosx)2
(93)

This can be simplified to

∂2ψ

∂x2
=

ε cosxcoshy − ε2

(coshy − ε cosx)2
(94)

Similarly it can be shown that

∂2ψ

∂y2
=

1− εcoshy cosx

(coshy − ε cosx)2
(95)

Therefore

∂2ψ

∂x2
+
∂2ψ

∂y2
=

1− ε2

(coshy − ε cosx)2
= (1− ε2)e−2ψ. (96)

When ε = 1

ψ = log (cosh y − cosx) = log

[
cosh

(
z − z

2i

)
− cos

(
z + z

2

)]
.

= log(sin(z/2)) + log(sin z/2) + cst

= Im [w(z)]

(97)

where
w(z) = 2i log(sin(z/2)) (98)

Since the complex potential for a singly periodic row of circulation Γ point
vortices at z = na is known to be

w(z) = − iΓ

2π
log(sin(πz/a)) (99)

11



then we recognize the ε = 1 solution as a row of point vortices all of circulation
Γ = −4π at z = 2nπ.

Verification that ψ satisfies

∇2ψ = −
(

1− ε2

2

)
sinh(2ψ) (100)

is by direct differentiation as above.

When ε = 1

ψ = log(coshy − ε cosx)− log(coshy + ε cosx)

= log (2 sin(z/2) sin(z/2))− log (2 cos(z/2) cos(z/2))

= Im[ŵ(z)]

(101)

where
ŵ(z) = 2i log(sin(z/2))− 2i log(sin((z + π)/2)) (102)

which corresponds to an alternating street of vortices of strengths ±4π sep-
arated by distance π.
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