M4A32: Vortex Dynamics
 Problem Sheet 3 SOLUTIONS

(Kirchhoff-Routh theory)
1.(a) Consider the conformal map

$$
z(\zeta)=\frac{1-\zeta}{1+\zeta}
$$

Since it is a Möbius map, it maps cirles/straight lines to circles/straight lines. Note that $\zeta=-1$ maps to $z=\infty$ and $\zeta=1$ maps to $z=0$. On $|\zeta|=1$, note that

$$
\bar{z}=\frac{1-\bar{\zeta}}{1+\bar{\zeta}}=\frac{1-\zeta^{-1}}{1+\zeta^{-1}}=\frac{\zeta-1}{\zeta+1}=-z
$$

where we have used the fact that $\bar{\zeta}=\zeta^{-1}$ for ζ on the unit circle. Hence $|\zeta|=1$ maps to the imaginary z-axis. Finally, since $\zeta=0$ maps to $z=1$, it follows that $|\zeta|<1$ maps to $\operatorname{Re}[z]>0$.
(b) Note that

$$
z(\zeta)=-1+\frac{2}{\zeta+1}
$$

so that

$$
z_{\zeta}(\zeta)=-\frac{2}{(\zeta+1)^{2}}
$$

On use of the transformation rule,

$$
H^{(z)}\left(z_{\alpha}, \bar{z}_{\alpha}\right)=\frac{\Gamma^{2}}{4 \pi} \log \left|\frac{2(1-\alpha \bar{\alpha})}{(\alpha+1)^{2}}\right|
$$

But some simple algebra reveals that if

$$
z_{\alpha}=\frac{1-\alpha}{1+\alpha}
$$

then

$$
\alpha=\frac{1-z_{\alpha}}{1+z_{\alpha}}
$$

and

$$
1-\alpha \bar{\alpha}=\frac{2\left(z_{\alpha}+\bar{z}_{\alpha}\right)}{\left(1+z_{\alpha}\right)\left(1+\bar{z}_{\alpha}\right)} .
$$

Also,

$$
|\alpha+1|^{2}=(\alpha+1)(\bar{\alpha}+1)=\frac{4}{\left(1+z_{\alpha}\right)\left(1+\bar{z}_{\alpha}\right)} .
$$

Therefore

$$
H^{(z)}\left(z_{\alpha}, \bar{z}_{\alpha}\right)=\frac{\Gamma^{2}}{4 \pi} \log \left|\left(\frac{4\left(z_{\alpha}+\bar{z}_{\alpha}\right)}{\left(1+z_{\alpha}\right)\left(1+\bar{z}_{\alpha}\right)}\right)\left(\frac{\left(1+z_{\alpha}\right)\left(1+\bar{z}_{\alpha}\right)}{4}\right)\right|
$$

which gives the required answer after cancellations.
(c) Trajectories of a single vortex are contours of $H^{(z)}$, i.e.,

$$
z_{\alpha}+\bar{z}_{\alpha}=\text { constant }
$$

which are straight lines parallel to the imaginary axis.
2.(a) The Green's function $G(\zeta ; \alpha, \bar{\alpha})$ must satisfy the requirements that (a) it is a harmonic function (i.e. satisfies Laplace's equation) everywhere in the upper-half ζ-plane except that, near $\zeta=\alpha$, it behaves like

$$
G=-\frac{1}{2 \pi} \log |\zeta-\alpha|+\text { regular terms. }
$$

It must also satisfy the boundary condition that G is equal to zero everywhere on the real ζ-axis.
(b) Consider

$$
G=-\frac{1}{2 \pi} \log \left|\frac{\zeta-\alpha}{\zeta-\bar{\alpha}}\right|
$$

Notice that

$$
G=\operatorname{Im}\left[-\frac{i}{2 \pi} \log \left(\frac{\zeta-\alpha}{\zeta-\bar{\alpha}}\right)\right]
$$

so it is the imaginary part of an analytic function of ζ; hence it is harmonic everywhere except at $\zeta=\alpha, \bar{\alpha}$ (which are the singularities of the analytic function). Only $\zeta=\alpha$ is in the upper-half ζ-plane so G only has one singularity in the upper-half plane as required. Note also that

$$
G=-\frac{1}{2 \pi} \log |\zeta-\alpha|+\frac{1}{2 \pi} \log |\zeta-\bar{\alpha}|
$$

so G also has the correct local behaviour at $\zeta=\alpha$ since the function

$$
+\frac{1}{2 \pi} \log |\zeta-\bar{\alpha}|
$$

is regular at $\zeta=\alpha$. Also, let

$$
R(\zeta ; \alpha, \bar{\alpha})=\frac{\zeta-\alpha}{\zeta-\bar{\alpha}}
$$

On $\zeta \in \mathbb{R}$,

$$
\bar{R}=\frac{\zeta-\bar{\alpha}}{\zeta-\alpha}=\frac{1}{R}
$$

which means that $R \bar{R}=1$ so that, on $\zeta \in \mathbb{R}$,

$$
G=-\frac{1}{2 \pi} \log |R|=-\frac{1}{2 \pi} \log 1=0
$$

as required.
(c) For a single vortex, the Hamiltonian is

$$
H^{(\zeta)}(\alpha, \bar{\alpha})=\frac{\Gamma^{2}}{2} g(\alpha ; \alpha, \bar{\alpha})
$$

where g is defined by

$$
G(\zeta ; \alpha, \bar{\alpha})=-\frac{1}{2 \pi} \log |\zeta-\alpha|+g(\zeta ; \alpha, \bar{\alpha})
$$

Hence, from above, it follows that in this case

$$
g(\zeta ; \alpha, \bar{\alpha})=\frac{1}{2 \pi} \log |\zeta-\bar{\alpha}|
$$

so

$$
H^{(\zeta)}(\alpha, \bar{\alpha})=\frac{\Gamma^{2}}{2 \pi} \log |\alpha-\bar{\alpha}| .
$$

(d) The conformal mapping from the ζ-plane to the z-plane given by

$$
z=-i \zeta
$$

clearly takes the upper-half ζ-plane to the right half z-plane since multiplication by $-i$ rotates everything clockwise by $\pi / 2$.
(e) It follows from the transformation property of the Hamiltonians that

$$
\begin{aligned}
H^{(z)}\left(z_{\alpha}, \bar{z}_{\alpha}\right) & =\frac{\Gamma^{2}}{4 \pi} \log \left|\alpha\left(z_{\alpha}\right)-\overline{\alpha\left(z_{\alpha}\right)}\right|+\frac{\Gamma^{2}}{4 \pi} \log 1 \\
& =\frac{\Gamma^{2}}{4 \pi} \log \left|z_{\alpha}+\bar{z}_{\alpha}\right|
\end{aligned}
$$

where we have used the fact that $\alpha=i z_{\alpha}$.
3. (a) From Q2,

$$
H^{(\zeta)}(\alpha, \bar{\alpha})=\frac{\Gamma^{2}}{4 \pi} \log |\alpha-\bar{\alpha}|
$$

(b) The required conformal mapping is

$$
z(\zeta)=\zeta^{2 / 3}
$$

since the positive real ζ-axis maps to the positive real z-axis while the line $\arg [\zeta]=\pi$ maps to $\arg [z]=2 \pi / 3$.
(c) On use of the transformation rule for Hamiltonians

$$
H^{(z)}\left(z_{\alpha}, \bar{z}_{\alpha}\right)=\frac{\Gamma^{2}}{4 \pi} \log \left|\left(\alpha\left(z_{\alpha}\right)-\overline{\alpha\left(z_{\alpha}\right)}\right) z_{\zeta}(\alpha)\right| .
$$

But $z_{\alpha}=\alpha^{2 / 3}$ and $\alpha=z_{\alpha}^{3 / 2}$ while

$$
z_{\zeta}(\zeta)=\frac{2}{3 \zeta^{1 / 3}}
$$

Combining all this yields

$$
H^{(z)}\left(z_{\alpha}, \bar{z}_{\alpha}\right)=\frac{\Gamma^{2}}{4 \pi} \log \left|\left(z_{\alpha}^{3 / 2}-\bar{z}_{\alpha}^{3 / 2}\right) \frac{2}{3 z_{\alpha}^{1 / 2}}\right|
$$

(d) The trajectories are given by

$$
\left|\left(z_{\alpha}^{3 / 2}-\bar{z}_{\alpha}^{3 / 2}\right) \frac{2}{3 z_{\alpha}^{1 / 2}}\right|=\text { constant } .
$$

Let

$$
z_{\alpha}=r e^{i \theta}
$$

Then equation for trajectories becomes

$$
\begin{aligned}
\left|\frac{\left(z_{\alpha}^{3 / 2}-\bar{z}_{\alpha}^{3 / 2}\right)\left(\bar{z}_{\alpha}^{3 / 2}-z_{\alpha}^{3 / 2}\right)}{r}\right| & =\text { constant } \\
\text { or } \quad\left|r^{2}(2-2 \cos 3 \theta)\right| & =\text { constant } \\
\text { or } \quad r \sin (3 \theta / 2) & =\text { constant. }
\end{aligned}
$$

4. (a) First note that $\zeta_{1}(z)$ maps the first quadrant of the z-plane within the unit circle to the interior of the upper-half semi-disc in the ζ_{1}-plane. This is because squaring a complex number doubles its argument. Next, from Q1, the Möbius mapping $\zeta_{2}\left(\zeta_{1}\right)$ maps the interior of the unit ζ_{1}-disc to the righthalf ζ_{2}-plane. It is easy to verify that the upper-half semi-disk in the ζ_{1}-plane maps to the first quadrant of the ζ_{2}-plane while the lower-half semi-disc in the ζ_{1}-plane maps to the fourth quadrant in the ζ_{2}-plane. Finally, squaring again, maps the first quadrant of the ζ_{2}-plane to the whole of the upper-half ζ-plane.
(b) It follows from the transformation property of Hamiltonians that

$$
H^{(z)}\left(z_{\alpha}, \bar{z}_{\alpha}\right)=\frac{\Gamma^{2}}{4 \pi} \log \left|(\alpha-\bar{\alpha}) z_{\zeta}(\alpha)\right| .
$$

But

$$
z_{\zeta}(\alpha)=\frac{1}{\zeta_{z}\left(z_{\alpha}\right)}
$$

hence the result follows.
(c) First note that

$$
\zeta(z)=\left(\frac{1-z^{2}}{1+z^{2}}\right)^{2}=\left(1-\frac{2}{z^{2}+1}\right)^{2}=1-\frac{4}{z^{2}+1}+\frac{4}{\left(z^{2}+1\right)^{2}} .
$$

Hence, on differentiation with respect to z,

$$
\zeta_{z}=\frac{8 z}{\left(z^{2}+1\right)^{2}}-\frac{16 z}{\left(z^{2}+1\right)^{3}}=\frac{8 z\left(z^{2}-1\right)}{\left(z^{2}+1\right)^{3}}
$$

Now let

$$
\alpha=\left(\frac{1-z_{\alpha}^{2}}{1+z_{\alpha}^{2}}\right)^{2}=1-\frac{4}{z_{\alpha}^{2}+1}+\frac{4}{\left(z_{\alpha}^{2}+1\right)^{2}}
$$

so that

$$
\alpha-\bar{\alpha}=-\frac{4}{z_{\alpha}^{2}+1}+\frac{4}{\left(z_{\alpha}^{2}+1\right)^{2}}+\frac{4}{\bar{z}_{\alpha}^{2}+1}-\frac{4}{\left(\bar{z}_{\alpha}^{2}+1\right)^{2}} .
$$

Simplifying this, we get

$$
\alpha-\bar{\alpha}=\frac{4\left(z_{\alpha}^{2}-\bar{z}_{\alpha}^{2}\right)\left(z_{\alpha}^{2} \bar{z}_{\alpha}^{2}-1\right)}{\left(z_{\alpha}^{2}+1\right)^{2}\left(\bar{z}_{\alpha}^{2}+1\right)^{2}} .
$$

The trajectories are given by

$$
\frac{(\alpha-\bar{\alpha})(\bar{\alpha}-\alpha)}{\zeta_{z}\left(z_{\alpha}\right) \overline{\zeta_{z}\left(z_{\alpha}\right)}}=\text { constant }
$$

Let $z_{\alpha}=r e^{i \theta}$. This becomes

$$
\frac{\left(r^{4}-1\right)^{2}\left(z_{\alpha}^{2}-\bar{z}_{\alpha}^{2}\right)\left(\bar{z}_{\alpha}^{2}-z_{\alpha}^{2}\right)}{r^{2}\left(z_{\alpha}^{2}+1\right)\left(\bar{z}_{\alpha}^{2}+1\right)\left(z_{\alpha}^{2}-1\right)\left(\bar{z}_{\alpha}^{2}-1\right)}=\text { constant }
$$

or

$$
\frac{\left(r^{4}-1\right)^{2}\left(z_{\alpha}^{2}-\bar{z}_{\alpha}^{2}\right)\left(\bar{z}_{\alpha}^{2}-z_{\alpha}^{2}\right)}{r^{2}\left(z_{\alpha}^{4}-1\right)\left(\bar{z}_{\alpha}^{4}-1\right)}=\text { constant } .
$$

This can be written in the form

$$
\frac{\left(r^{4}-1\right)^{2} r^{2}(2-2 \cos 4 \theta)}{\left(r^{8}-2 r^{4} \cos 4 \theta+1\right)}=\mathrm{constant}
$$

which, on use of a trigonometric identity, gives the required result.

