M4A32: Vortex Dynamics
Problem Sheet 2

1. The equations of motion, for j = 1,..., N, are
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where the notation ), ’ denotes the sum for £k = 1,..., N with k # j. Let
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It follows (using dots to denote time derivatives) that
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But the first and third terms in the square brackets cancel (after summation),
as do the second and fourth terms. Therefore
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where the last equality follows because on changing j to k in the summation,
we get the negative of the same sum. The sum is therefore zero.
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Taking the time derivative yields
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where the last equality follows because, on swapping indices j and k in the
sum, we get the negative of the same sum implying that sum is zero.

2. The equations of point vortex motion, in Hamiltonian form, are
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where ¢; = /I';z; and p; = /I';y;. Now
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The equation g, = [yx, H] follows analogously.
Next, note that
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where the last equality follows by swapping 7 and k in the sum.
The proof that [P, H] = 0 is similar.
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where, again, the last equality follows by swapping indices in the sum.
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where the last equality follows by swapping indices in the sum.
3. Let n line vortices be at points
2 = Z(t)e?™I/m (24)

where j = 0,1,...,n—1 and where Z(t) is a complex parameter. We will show
that z(t) = ae™? for some constant w.

Consider only Zy = Z(¢). The complex potential is
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The motion of Z; is given by the non-self-induced velocity, that is
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where we have used the factorization
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However, it is easy to check that
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Letting 2(t) = a(t)e??® and substituting yields
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from which, on equating real and imaginary parts, it follows that
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4. Let there be point vortices of circulation I'" at z = 0, &1 at some instant.
The instantaneous complex potential is

d {logz +log(z — 1) + log(z + 1)] : (34)
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Assume the configuration is in solid body rotation with angular velocity (2.
Consider the point vortex at z =1 (call it z;).
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This simplifies to
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Let z; = x; + 1y, so that
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then #; = 0 and y; = 3['/47 so the angular velocity is 2 = 3T" /4.
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To examine the linear stability, move to a frame of reference co-rotating with
angular velocity ). The complex velocity in the co-rorating frame is
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where the point vortices are supposed to be at z.(t), z4(t). For small depar-
tures from equilibrium, suppose
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where z., 2, 24,23, 2— and z* are all taken to be independent quantities.

Consider the evolution of z (t):
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By symmetry, the linearized evolution equations for z_(t) follow by swapping
+ and — in the above equations:

gy . il .
=0z 27T( —2_)— 8_7T(Z+ —Z) (45)
and T T
i i
— i 4 (g — ), 46
o 02+ 27r< Z0) + 87T( ) (46)
The evolution equation for z.(t) is
I 1 1
eaz*e”t iQeZle ot _ ! - + - )
21 \ (€206t — 1 — €2,€7Y) | (€267t + 1 — e_et)

(47)



Linearizing in € gives
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The conjugate equation gives rise to
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Let

X = (Zc, 20,24, 20,22, 27 ), (51)
then the linearized equations (43), (44), (45), (46), (49) and (50) can be
written as the matrix eigenvalue problem

Ax = ox (52)

where

—3/2 =2 0 1 0 1

2 3/2 -1 0 -1 0
I 1 —3/2 —5/4 0 1/4
"o | -1 0 5/4 3/2 —1/4 0

0 1 0 1/4  —3/2 —5/4

-1 0 —=1/4 0 5/4  3/2

A (53)

A numerical calculation of the eigenvalues (e.g. using MATLAB) gives them as

T
;— (0,0,3/2, —3/2,2.598i, —2.598i) . (54)
7
The configuration is therefore linearly unstable because there is a positive

real eigenvalue.

5. A first guess at the complex potential is
i ay
=Uz+ —1 —2p) — —1 —Z0 29
w(z) o og(z — 29) o og(z — ) (55)
since this has the correct singularity structure in |z| > a. However, it does

not satisfy the streamline condition on |z| = a where it is required that
Im[w(z)] = 0. Consider instead

W(z,z) = w(z) + w(z). (56)

This is real everywhere, but it is not analytic. However, it is only required to
be real on |z| = a where z = a*/z. Therefore consider the analytic function

W(z) = w(z) +w(a®/2) (57)
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It can be verified that this satisfies all the required conditions and is therefore
the correct complex potential. To within an unimportant constant, it is given
by

2 1k I
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z 2m 2m
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i i
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If zy is to be in steady equilibrium, we require
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Dividing (60) and (61) to eliminate iI'/27U yields
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After some algebra, this reduces to

r? —a® = 2ry (63)

where 2y = z + iy and |zo| = r. Using (63) in (60) gives the second result
ol
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6. Let a circulation —I" point vortex be at z; = d(—1+1) and a point vortex
of circulation I' be at zp = d(1 +1). If

u=—azxr, v=ay (65)
then p
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Using the method of images,

w(z) = _%—i_;_w log(z—21) — ;_W log(z—22) +;_7r log(z—722) — ;—T log(z —(;i

The equation of motion for z is

dzy I 1 1 1
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The equation of motion for z, follows by swapping 1 and 2 and letting I" —

—TI', ie.,
dz T/ 1 1 1
2 a4+ Z—( — + ) (70)

dt 2\ 29— 21 29—21 29— 2y

For equilibrium, we require z; = Z = 0 so that
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and

2m \ 220 — 210 %20 — Z10 20 — 220

for the equilibrium positions z19 and zo9. It can be verified by direct substi-
tution into the previous two equations that the solutions are given by

210 = d(—l + Z), 290 = d(]. + 7,) (73)

where d> =T'/(87a).

To examine the linear stability, let

Z1 = 210 + €21€Ut,
— —-— sk _ot
Z1 = Z10 + €216, (74>
2o = Zog + €29€°",

Z9 = 220 + 62;6“

where 21, 2], 25 and Z; are considered to be independent quantities. Substi-
tution into (69) yields
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But
210 — R20 — —2d, 210 — 2_20 = —2d + 22d, 210 — Z_lo = 2id (76)
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so, the linearized equation at O(e) is

T [E—2 -5 2—z]
o = [ + - —aZ (77)
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or, using the relationship between o and I' for equilibrium,
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The conjugate equation similarly leads to
. A% i 2 o% 2 *
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By similar manipulations, the linearized equation for zj is
) . e U R
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and its conjugate equation is
1
0'22 = -« (2T — 22 — 5(21 — 2;)) — OéZ;. (81)
Now let
X= (21’21(72272;) (82)
then
ox = Ax (83)
where

—i =1/2 =1/2 i
—-1/2 i =i —1/2
-1/2  —i i —1/2

i —1/2 —1/2  —i

Using MATLAB, eigenvalues are found to be a, +2ia so configuration is lin-
early unstable.

A=a (84)

7. Let a street of vortices of circulation I' be positioned at z, = na and a
street of vortices of circulation —I" be positioned at z = na + ib. This is the
symmetric double vortex street. The effect on the vortex at zg = ib of the
vortices in the same street is zero. The lower street has complex potential

18
w(z) = —;—Wlog sin <%Z> . (85)
The effect of the lower street on zg is therefore
dzo i T2 r b
— = ——cot | — = ——coth | —
dt QCLC (a>' i QaCO <a) (86)

S0 zo moves to the left with speed [I'/(2a)] coth(mb/a).
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