M4A32: Vortex Dynamics
Problem Sheet 1

1. Fluid is barotropic which means p = p(p). The Euler equation, in presence
of a conservative body force, is
Du 1
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This can be written, on use of a vector identity,
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Take the curl:
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On use of a vector identity we get
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Now, V.w = 0 since div curl=0. Now use conservation of mass equation to
substitute for V.u:
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Dividing by p gives the final result
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2. Assume a barotropic fluid in a conservative force field. Let
P 7{ wdl. (1)
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But it is known that Ddl/Dt = du. Using this, together with the Euler

equation,
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But this can be written in the form
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which is the integral, around a closed loop, of a total spatial differential of
a single-valued function. It is therefore zero and yields Kelvin’s circulation
theorem for a barotropic fluid.

3. For a barotropic fluid, Euler’s equation can be written in the form

ou
ot

P1d
+ 4= V|u]2+w/\U——V/ ;d—p/p—VX (11)

First form of Bernoulli: Suppose the flow is steady. Taking the dot
product of the Euler equation with u yields

1 d 1
_u.v( ;—pdp/—w—iw) (12)

which means that the quantity
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i1s constant on streamlines.

Second form of Bernoulli: Suppose that the flow is irrotational. The
Euler equation then says that
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from which we deduce that
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is constant everywhere.

Third form of Bernoulli: Suppose the flow is unsteady, but irrotational
(note, by Q2, we still have the “persistence of irrotational flow” for a barotropic
fluid so this is a consistent statement). Then u = V¢ for some scalar ¢. Then
the Euler equation says that
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which means that
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for some function of time H ().

4. Let u; p and P be the velocity, density and pressure fields of any three-
dimensional steady solution of the incompressible Euler equation, i.e.,
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Consider now the velocity, density and pressure fields @;, p and P given by

R P
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where )\ is assumed to be such that
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Note: this corresponds to the fact that ) is constant on streamlines. It must
be shown that if (18), (19) and (23) hold then so do
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First, to show that (24) holds, note that by (20) and (22),
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where the last equality follows by (18) and provided (23) holds.



To show that (25) holds, note that
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where we have used both (19) and (23).
5. Assume an ideal fluid and a flow field of the form

u = (uq(r,z,t), 0, u,(r,z,t)).

Taking the curl, in cylindrical polar coordinates,
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The vorticity equation is

Ow
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Computation of the right hand side gives
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so only the azimuthal term gives a non-trivial equation i.e.,
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or, equivalently,
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But, the conservation of mass equation is V.u = 0 which, in cylindrical polar
coordinates, takes the form
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which can be used in the vorticity equation to reduce it to
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But, dividing this by r, it is simply

0 0 0 w

which is the required result.

Note that if the radius of a vortex ring increases then the vorticity equation
just derived shows that the dynamics is such that the vorticity w changes
linearly with the radius, thus as a ring is “stretched”, the vorticity intensifies.

6. In spherical polars, the condition V.u = 0 takes the form

19, , 1 9, .
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or, multiplying by r?sin 6,

%(TQ sinf u,) + %(r sinfd ug) = 0. (39)

Therefore, introduce a streamfunction ¥ such that

) o o

resinf u, = 30 rsinf ug = 2 (40)
Computing the vorticity field gives
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Substituting for u, and uy in terms of ¥ then gives the final result
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For irrotational uniform flow past a sphere, we have w = 0 while u, ~ U cos 6
and ug ~ —Usinf as r — oo. Therefore, as r — oo, ¥ ~ Ur?sin®f/2. This
suggests trying a separable solution of the form

U(r,0) = f(r)sin? 6. (44)



Substituting this ansatz into the vorticity equation just derived with w = 0
yields the ordinary differential equation

2f
0=f"(r) - o3 (45)
which can be solved to yield
B
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where A and B are constants. From the far-field conditions, we must pick
A =U/2. On r = a (the spherical boundary), we need ¥ to be constant.
Take U = 0 without loss of generality. This determines B and the final
solution is

3
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Note: We will see this solution again when considering the “Hill’s spherical
vortex”.

7. Seek the solution of
V3 = md(z — z,) (48)

that decays at infinity. Without loss of generality, take z, = 0. Multiply this
equation by e and integrate over all space (i.e. take a Fourier transform):

fereve= [ esemita = (49)

Green’s identity says that
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R3

R—o0 Sk =

where Sg is some radius- R spherical surface. The right side vanishes provided
everything decays sufficiently fast at infinity. Letting u = ¢ and v = ez
gives

[ ety -l (51)

where W(k) is the Fourier transform of v, that is
(k) = / eELdV. (52)
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Use of this in (48) gives the result
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Now, the easiest way to arrive at the result is to verify that the Fourier
transform of —m/(4nr) is —m/|k|*>. But the Fourier transform of —m/(47r)

is
1 ) T 2T o)
/ 3—me@dvz / / / — 4 etlklreosty.2 6in 0dOdgdr (54)
R 0 0 0

where we have adopted spherical polar coordinates to perform the integra-
tion. Carrying out the ¢ integration gives
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but this allows a further integration with respect to € yielding
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where C' is the contour consisting of the infinite ray along the positive real
z-axis. But €% is an analytic function of z in the first quadrant of the
z-plane, moreover it decays exponentially on the contour Cr consisting of a
large radius- R quarter-circle between the positive real and imaginary axes of
the first quadrant. This means that Cauchy’s theorem can be used to argue
that the required integral is the same as

|k:\1m/ eEz (57)

where C is the ray consisting of the positive imaginary axis of the z-plane.
Parametrizing this contour as z = iy for 0 < y < oo the integral becomes

I —IElY; =
|mm/‘ idy = |w (58)

which verifies that the Fourier transform of —1/(4nr) is —1/|k|? as required.

8. From the Biot-Savart integral in 3d,
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Now assume w = 0 everywhere off the plane z = 0 and assume that z lies in
this plane. Then
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so that, performing the z integration (using the hint),
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where 72 = |z — /| is the distance between two vectors z and 2’ in the plane

z = 0. This is precisely the 2d Biot-Savart result.



