

ME3.6 Sheet 5 Answers

1. See separate sheets.

2 (i) Fixed point X satisfies $X = (2a - X^3)/X^2 \Rightarrow 2X^3 = 2a \Rightarrow X = a^{1/3}$ $f(x) = (2a - x^3)/x^2 \Rightarrow f'(x) = -(4a/x^3) - 1 \Rightarrow f'(X) = -4a/a - 1 = -5$ Thus $|f'(X)| = 5 > 1 \Rightarrow$ fixed point is unstable. (ii) Fixed point X satisfies $X = (a + X^3)/2X^2 \Rightarrow X^3 = a \Rightarrow X = a^{1/3}$ $f(x) = (a + x^3)/2x^2 \Rightarrow f'(x) = -a/x^3 + 1/2 \Rightarrow f'(X) = -1 + 1/2 = -1/2$ Thus $|f'(X)| = 1/2 < 1 \Rightarrow$ fixed point is stable. (iii) $X = (a + 2X^3)/3X^2 \Rightarrow X^3 = a \Rightarrow X = a^{1/3}$ $f(x) = a/3x^2 + 2x/3 \Rightarrow f'(x) = -2a/3x^3 + 2/3 \Rightarrow f'(X) = -2/3 + 2/3 = 0$ Thus $|f'(X)| = 0 \Rightarrow$ fixed point is stable.

3 (i) Fixed point X satisfies $X = X^2 + 1/4 - a$. Solving the quadratic: $X = 1/2 \pm \sqrt{a}$. Therefore we have 2 fixed points if a > 0. Call them X_1, X_2 . Let $g(x) = x^2 + 1/4 - a \Rightarrow g'(x) = 2x \Rightarrow |g'(X_1)| = 2|1/2 + \sqrt{a}| > 1$ $\Rightarrow X_1$ is unstable. $|g'(X_2)| = 2|1/2 - \sqrt{a}| < 1$ for stability, i.e. we need $-1/2 < 1/2 - \sqrt{a} < 1/2 \Rightarrow 0 < a < 1$

So the fixed point at X_2 is stable for a < 1 and unstable for a > 1. So $\underline{a_1} = 1$.

(ii) Period 2 solutions satisfy x = g(g(x)). Now $g(g(x)) = (g(x))^2 + 1/4 - a = x^4 + (1/2 - 2a)x^2 + (1/4 - a)^2 + 1/4 - a$. Therefore x = g(g(x)) can be rewritten as $x^4 + (1/2 - 2a)x^2 - x + (1/4 - a)(5/4 - a) = 0$. We know that X_1 and X_2 are also roots of this equation, so we can take out the factor $(x^2 - x + 1/4 - a)$. This leaves us with

$$(x^2 - x + 1/4 - a)(x^2 + x + 5/4 - a) = 0,$$

so that the period 2 solutions are the roots of $x^2 + x + 5/4 - a = 0$. (*) Using quadratic equation formula: $X_{3,4} = -1/2 \pm \sqrt{a-1}$. These solutions are real provided $a \ge 1$, which shows that the period 2 solution comes into existence at $a = a_1 = 1$.

The period 2 solution is stable provided

$$\left|\frac{d}{dx}g(g(x))\right|_{x=X} < 1,$$

where X is either X_3 or X_4 . This simplifies to

$$|g'(X)g'(g(X))|_{x=X} < 1.$$

Now, $X_3 = g(X_4)$ and $X_4 = g(X_3)$, so the criterion for stability of the period 2 solution can be rewritten as

$$|g'(X_3)g'(X_4)| < 1.$$

In this case g'(x) = 2x and so the condition for stability is $|4X_3X_4| < 1$. From the quadratic equation (*) we can see that $X_3X_4 = 5/4 - a$, so that stability is ensured provided $|5 - 4a| < 1 \Rightarrow 1 < a < 3/2$. Thus the period 2 solution loses stability at $a = a_2 = 3/2$.

4. (i) We have
$$b = f(a) \Rightarrow f(b) = f(f(a))$$
. But $f(b) = c$, so we have $c = f(f(a)) \Rightarrow f(c) = f(f(f(a)))$.

But a = f(c) and so we get $\underline{a = f^{(3)}(a)}$. Similarly for *b* and *c* starting with c = f(b) and a = f(c) respectively. The 3-cycle is stable provided

$$\left|\frac{d}{dx}f(f(f(x)))\right|_{x=X} < 1,$$

where X is either a, b or c. The LHS simplifies to

$$\left|\frac{d}{dx}f(f(x))f'(f(f(x)))\right|_{x=X}$$

and further, to

$$|f'(x)f'(f(x))f'(f(f(x)))|_{x=X}$$

Setting X = a (or b or c) we have

$$|f'(a)f'(b)f'(c)| < 1,$$

as required.

(ii) We have that a, b, c satisfy $X = f^{(3)}(X)$. Fixed points of f (i.e. points X such that X = f(X) also satisfy $X = f^{(3)}(X)$.

These roots can therefore be removed by dividing by x - f(x).

(iii) It is not recommended to do this by hand (although it is possible). In Mathematica we could use the following commands to do this: $f[x_{-}, \lambda_{-}] := \lambda x(1 - x)$ $Collect[Simplify[Expand[(x - f[f[f[x, \lambda]]])/(x - f[x, \lambda])]],x]$

(iv) If you plot the polynomial you will see that for $\lambda < 1 + 2\sqrt{2}$ it lies above the *x*-axis, i.e. there are no real roots and therefore no 3-cycle is possible.

At $\lambda = 1 + 2\sqrt{2}$ the polynomial just touches the axis in three places

 \Rightarrow three real roots are created. Thus the 3-cycle is born at this value of λ .

For graphs and more information see the Mathematica notebook logisticmap3cycle.nb on the web page http://www.ma.ic.ac.uk/~agw/me.html.

5. (i) If we separate the variables in the ODE we get

$$\int \frac{dx}{x(3-4x)} = \int 100 \, dt$$

Then if we use partial fractions the RHS becomes

$$\int \frac{1/3}{x} + \frac{4/3}{3-4x} \, dx = \frac{1}{3} \ln x - \frac{1}{3} \ln(3-4x) = \frac{1}{3} \ln\left(\frac{x}{3-4x}\right).$$

Taking exponentials of both sides:

$$\frac{x}{3-4x} = A\exp(300t)$$

where *A* is an arbitrary constant. Applying $x(0) = 1 \Rightarrow A = -1$. Solving for *x* we have

$$x = \frac{3\exp(300t)}{4\exp(300t) - 1}.$$

It therefore follows that $x \to 3/4$ as $t \to \infty$.

(ii) Discretizing the ODE:

$$\frac{x_{i+1} - x_i}{\Delta t} = 100x_i(3 - 4x_i)$$

 $\Rightarrow x_{i+1} = 100\Delta t x_i (3 - 4x_i) + x_i$. With $\Delta t = 0.01$ this becomes

$$x_{i+1} = 4x_i(1-x_i),$$

as required. This is the logistic map with $\lambda = 4$.

At this value of λ the solutions are chaotic, so the student will get a very strange answer! In particular the sequence does not tend to a limit as $i \to \infty$.