

ME 3.6 Sheet 5
(ii)

One fixed point P.

If we start with $x>P$, we are attracted to P.

If we start with $x<P$, we are also attracted to P.
P is stable.
(iii)

2 fixed points $P \& Q$.

If we start between $P \& Q$, we are attracted to Q.
$1 /$ (iii)(ctd) ME3.6 Sheet 5

ME3.6 Sheet 5 Answers

1. See separate sheets.

2 (i) Fixed point X satisfies $X=\left(2 a-X^{3}\right) / X^{2} \Rightarrow 2 X^{3}=2 a \Rightarrow X=a^{1 / 3}$
$f(x)=\left(2 a-x^{3}\right) / x^{2} \Rightarrow f^{\prime}(x)=-\left(4 a / x^{3}\right)-1 \Rightarrow f^{\prime}(X)=-4 a / a-1=-5$
Thus $\left|f^{\prime}(X)\right|=5>1 \Rightarrow$ fixed point is unstable.
(ii) Fixed point X satisfies $X=\left(a+X^{3}\right) / 2 X^{2} \Rightarrow X^{3}=a \Rightarrow \underline{X=a^{1 / 3}}$
$f(x)=\left(a+x^{3}\right) / 2 x^{2} \Rightarrow f^{\prime}(x)=-a / x^{3}+1 / 2 \Rightarrow f^{\prime}(X)=-1+1 / 2=-1 / 2$
Thus $\left|f^{\prime}(X)\right|=1 / 2<1 \Rightarrow$ fixed point is stable.
(iii) $X=\left(a+2 X^{3}\right) / 3 X^{2} \Rightarrow X^{3}=a \Rightarrow \underline{X=a^{1 / 3}}$
$f(x)=a / 3 x^{2}+2 x / 3 \Rightarrow f^{\prime}(x)=-2 a / 3 x^{3}+2 / 3 \Rightarrow f^{\prime}(X)=-2 / 3+2 / 3=0$
Thus $\left|f^{\prime}(X)\right|=0 \Rightarrow$ fixed point is stable.
3 (i) Fixed point X satisfies $X=X^{2}+1 / 4-a$.
Solving the quadratic: $X=1 / 2 \pm \sqrt{a}$. Therefore we have 2 fixed points if $a>0$.
Call them X_{1}, X_{2}.
Let $g(x)=x^{2}+1 / 4-a \Rightarrow g^{\prime}(x)=2 x \Rightarrow\left|g^{\prime}\left(X_{1}\right)\right|=2|1 / 2+\sqrt{a}|>1$
$\Rightarrow X_{1}$ is unstable.
$\left|g^{\prime} \overline{\left(X_{2}\right)|=2| 1 / 2}-\sqrt{a}\right|<1$ for stability, i.e. we need $-1 / 2<1 / 2-\sqrt{a}<1 / 2 \Rightarrow 0<a<1$
So the fixed point at X_{2} is stable for $a<1$ and unstable for $a>1$. So $\underline{a_{1}=1}$.
(ii) Period 2 solutions satisfy $x=g(g(x))$.

Now $g(g(x))=(g(x))^{2}+1 / 4-a=x^{4}+(1 / 2-2 a) x^{2}+(1 / 4-a)^{2}+1 / 4-a$.
Therefore $x=g(g(x))$ can be rewritten as $x^{4}+(1 / 2-2 a) x^{2}-x+(1 / 4-a)(5 / 4-a)=0$.
We know that X_{1} and X_{2} are also roots of this equation, so we can take out the factor $\left(x^{2}-x+1 / 4-a\right)$. This leaves us with

$$
\left(x^{2}-x+1 / 4-a\right)\left(x^{2}+x+5 / 4-a\right)=0
$$

so that the period 2 solutions are the roots of $x^{2}+x+5 / 4-a=0$. (*)
Using quadratic equation formula: $X_{3,4}=-1 / 2 \pm \sqrt{a-1}$.
These solutions are real provided $a \geq 1$, which shows that the period 2 solution comes into existence at $a=a_{1}=1$.
The period 2 solution is stable provided

$$
\left|\frac{d}{d x} g(g(x))\right|_{x=X}<1,
$$

where X is either X_{3} or X_{4}. This simplifies to

$$
\left|g^{\prime}(X) g^{\prime}(g(X))\right|_{x=X}<1
$$

Now, $X_{3}=g\left(X_{4}\right)$ and $X_{4}=g\left(X_{3}\right)$,
so the criterion for stability of the period 2 solution can be rewritten as

$$
\left|g^{\prime}\left(X_{3}\right) g^{\prime}\left(X_{4}\right)\right|<1 .
$$

In this case $g^{\prime}(x)=2 x$ and so the condition for stability is $\left|4 X_{3} X_{4}\right|<1$.
From the quadratic equation (*) we can see that $X_{3} X_{4}=5 / 4-a$, so that stability is ensured provided $|5-4 a|<1 \Rightarrow 1<a<3 / 2$.
Thus the period 2 solution loses stability at $a=a_{2}=3 / 2$.
4. (i) We have $b=f(a) \Rightarrow f(b)=f(f(a))$. But $f(b)=c$, so we have $c=f(f(a)) \Rightarrow f(c)=f(f(f(a)))$.

But $a=f(c)$ and so we get $a=f^{(3)}(a)$.
Similarly for b and c starting with $c=f(b)$ and $a=f(c)$ respectively.
The 3-cycle is stable provided

$$
\left|\frac{d}{d x} f(f(f(x)))\right|_{x=X}<1
$$

where X is either a, b or c. The LHS simplifies to

$$
\left|\frac{d}{d x} f(f(x)) f^{\prime}(f(f(x)))\right|_{x=X}
$$

and further, to

$$
\left|f^{\prime}(x) f^{\prime}(f(x)) f^{\prime}(f(f(x)))\right|_{x=X}
$$

Setting $X=a$ (or b or c) we have

$$
\left|f^{\prime}(a) f^{\prime}(b) f^{\prime}(c)\right|<1
$$

as required.
(ii) We have that a, b, c satisfy $X=f^{(3)}(X)$.

Fixed points of f (i.e. points X such that $X=f(X)$ also satisfy $X=f^{(3)}(X)$.
These roots can therefore be removed by dividing by $x-f(x)$.
(iii) It is not recommended to do this by hand (although it is possible).

In Mathematica we could use the following commands to do this:
$f\left[x_{-}, \lambda_{-}\right]:=\lambda x(1-x)$
Collect $[$ Simplify $[$ Expand $[(x-f[f[f[x, \lambda]]]) /(x-f[x, \lambda])]], x]$
(iv) If you plot the polynomial you will see that for $\lambda<1+2 \sqrt{2}$ it lies above the x-axis, i.e. there are no real roots and therefore no 3-cycle is possible.

At $\lambda=1+2 \sqrt{2}$ the polynomial just touches the axis in three places
\Rightarrow three real roots are created. Thus the 3 -cycle is born at this value of λ.
For graphs and more information see the Mathematica notebook logisticmap3cycle.nb on the web page http : //www.ma.ic.ac.uk/~agw/me.html.
5. (i) If we separate the variables in the ODE we get

$$
\int \frac{d x}{x(3-4 x)}=\int 100 d t
$$

Then if we use partial fractions the RHS becomes

$$
\int \frac{1 / 3}{x}+\frac{4 / 3}{3-4 x} d x=\frac{1}{3} \ln x-\frac{1}{3} \ln (3-4 x)=\frac{1}{3} \ln \left(\frac{x}{3-4 x}\right)
$$

Taking exponentials of both sides:

$$
\frac{x}{3-4 x}=A \exp (300 t)
$$

where A is an arbitrary constant. Applying $x(0)=1 \Rightarrow A=-1$.
Solving for x we have

$$
x=\frac{3 \exp (300 t)}{4 \exp (300 t)-1} .
$$

It therefore follows that $x \rightarrow 3 / 4$ as $t \rightarrow \infty$.
(ii) Discretizing the ODE:

$$
\frac{x_{i+1}-x_{i}}{\Delta t}=100 x_{i}\left(3-4 x_{i}\right)
$$

$\Rightarrow x_{i+1}=100 \Delta t x_{i}\left(3-4 x_{i}\right)+x_{i}$. With $\Delta t=0.01$ this becomes

$$
x_{i+1}=4 x_{i}\left(1-x_{i}\right),
$$

as required. This is the logistic map with $\lambda=4$.
At this value of λ the solutions are chaotic, so the student will get a very strange answer! In particular the sequence does not tend to a limit as $i \rightarrow \infty$.

