Mechanical Engineering Mathematics ME3.6
 Sheet 5 Nonlinear Maps

1. Consider the following maps:

$$
\begin{aligned}
& \text { (i) } x_{n+1}=\alpha \ln x_{n}+1,(0<\alpha<1) \text {; } \\
& \text { (ii) } x_{n+1}=\cos x_{n} ; \\
& \text { (iii) } x_{n+1}=\frac{1}{3}\left(x_{n}^{2}+1\right)
\end{aligned}
$$

In each case determine graphically the number of fixed points of the map. Discuss the stability of each point by means of a cobweb diagram.
2. Consider the following three maps with $a>0$:

$$
\begin{aligned}
& \text { (i) } x_{n+1}=\frac{2 a-x_{n}^{3}}{x_{n}^{2}} ; \\
& \text { (ii) } x_{n+1}=\frac{a+x_{n}^{3}}{2 x_{n}^{2}} ; \\
& \text { (iii) } x_{n+1}=\frac{a+2 x_{n}^{3}}{3 x_{n}^{2}} .
\end{aligned}
$$

Show that each map has the same fixed point. In each case determine the stability by considering the derivative of the right-hand-side.
3. A map is given by

$$
x_{n+1}=x_{n}^{2}+\frac{1}{4}-a .
$$

(i) Show that there are two fixed points provided $a>0$, and show that one is unstable and one is stable for $a<a_{1}$, where a_{1} is to be found.
(ii) Show that a period 2 solution is born at $a=a_{1}$ and that this is stable until $a=a_{2}$ where a_{2} is to be determined.
4. The logistic map is given by

$$
x_{n+1}=f\left(x_{n}\right), \text { where } f\left(x_{n}\right)=\lambda x_{n}\left(1-x_{n}\right) .
$$

We wish to examine the existence of a 3-cycle for this map, i.e. to see whether real numbers a, b, c exist such that

$$
b=f(a), c=f(b), a=f(c) .
$$

(i) Show that a, b, c all satisfy $X=f^{(3)}(X)$. Show also that the cycle is stable provided

$$
\left|f^{\prime}(a) f^{\prime}(b) f^{\prime}(c)\right|<1
$$

(ii) Explain why, in order to find a, b, c we can consider the simpler equation

$$
\left(x-f^{(3)}(x)\right) /(x-f(x))=0
$$

instead.
(ii) (Optional) Show, with the help of a computer, that

$$
\begin{aligned}
\frac{x-f^{(3)}(x)}{x-f(x)}= & \lambda^{6} x^{6}-\left(3 \lambda^{6}+\lambda^{5}\right) x^{5}+\left(\lambda^{4}+4 \lambda^{5}+3 \lambda^{6}\right) x^{4} \\
& -\left(\lambda^{3}+3 \lambda^{4}+5 \lambda^{5}+\lambda^{6}\right) x^{3}+\left(\lambda^{2}+3 \lambda^{3}+3 \lambda^{4}+2 \lambda^{5}\right) x^{2} \\
& -\left(\lambda+2 \lambda^{2}+2 \lambda^{3}+\lambda^{4}\right) x+\left(1+\lambda+\lambda^{2}\right)
\end{aligned}
$$

(iii) Use a calculator or a computer package to plot this polynomial with $0 \leq x \leq 1$ for different values of λ. If $\lambda<1+2 \sqrt{2}$, how many roots are there? Show graphically that three real roots are created at $\lambda=1+2 \sqrt{2}$.
5. Two students are asked to find the solution as $t \rightarrow \infty$ of

$$
\frac{d x}{d t}=100 x(3-4 x) ; \text { with } x(0)=1
$$

(i) One student achieves this by solving the equation exactly. Show that this approach yields the solution $x \rightarrow 3 / 4$ as $t \rightarrow \infty$.
(ii) The second student is unaware of the exact solution. Instead they decide to solve the equation numerically using Euler's Method. This involves setting $x_{i}=x\left(t_{i}\right)$, evaluating the right-hand-side of the differential equation at $t=t_{i}$ and approximating

$$
\left.\frac{d x}{d t}\right|_{t=t_{i}} \simeq \frac{x_{i+1}-x_{i}}{\Delta t}
$$

The student uses a timestep $\Delta t=0.01$. Show that the resulting difference equation that the student obtains is

$$
x_{i+1}=4 x_{i}\left(1-x_{i}\right)
$$

and hence deduce that this method is doomed to failure.

