Mechanical Engineering Mathematics ME3.6
 Sheet 3 Fourier Transforms I

1. Find the Fourier transforms of the following functions: (with $a>0$)
(i) $f(t)=\exp (-a|t|)$;
(ii) $f(t)=\operatorname{sgn}(t) \exp (-a|t|) ;[\operatorname{sgn}(t)=1$ if $t>0$ and -1 if $t<0]$.
(iii) $f(t)=2 a /\left(a^{2}+t^{2}\right)$; (Hint: use the result of (i) and the symmetry formula from lectures)
(iv) $f(t)=1-t^{2}$ for $|t| \leq 1$ and zero otherwise;
(v) $f(t)=\sin (a t) /(\pi t)$; (Hint: use the transform of a rectangular pulse from the lectures and the symmetry formula).
2. If a function has Fourier transform $\widehat{f}(\omega)$, find the Fourier transform of $f(t) \sin (a t)$ in terms of \widehat{f}.
3. By applying the inversion formula to the transforms obtained in 1(i) and 1(iv), establish the following results:

$$
\text { (i) } \int_{0}^{\infty} \frac{\cos x}{x^{2}+a^{2}} d x=\frac{\pi e^{-a}}{2 a} \text { if } a>0 \text {; (ii) } \int_{-\infty}^{\infty} \frac{\sin x-x \cos x}{x^{3}} d x=\frac{\pi}{2} \text {. }
$$

4. Sketch the function given by

$$
f(t)=\left\{\begin{array}{cc}
2 d-|t| & \text { for }|t| \leq 2 d \\
0 & \text { otherwise }
\end{array}\right.
$$

and show that $\widehat{f}(\omega)=(4 / \omega)^{2} \sin ^{2}(\omega d)$.
Use the energy theorem (i.e. $2 \pi \rho_{f}(0)=\int_{-\infty}^{\infty} E(\omega) d \omega$), to demonstrate that

$$
\int_{-\infty}^{\infty}\left(\frac{\sin x}{x}\right)^{4} d x=\frac{2 \pi}{3}
$$

5. Show that the Fourier transform of $\exp (-c t) H(t)$, where H is the Heaviside function and c is a positive constant, is given by $1 /(c+i \omega)$. Hence use the convolution theorem to find the inverse Fourier transform of

$$
\frac{1}{(a+i \omega)(b+i \omega)}
$$

where $a>b>0$.
6. Use the symmetry rule to show that

$$
\operatorname{FT}[f(t) g(t)]=\frac{1}{2 \pi}(\widehat{f}(\omega) * \widehat{g}(\omega)) .
$$

7. Suppose that $f(t)$ is a function such that $\widehat{f}(\omega)=0$ for all ω with $|\omega|>M$, where M is a positive constant. Let $g(t)=\sin (a t) /(\pi t)$. Show that if the constant $a>M$:

$$
f(t) * g(t)=f(t)
$$

Hint: Use the transform of $g(t)$ from Q1(v).
8. By considering suitable integration formulae, establish the following results involving the Dirac delta function:
(i) $f(t) \delta\left(t-t_{0}\right)=f\left(t_{0}\right) \delta\left(t-t_{0}\right)$;
(ii) $t \delta^{\prime}(t)=-\delta(t)$;
(iii) $\delta(-t)=\delta(t)$.
[In each case multiply by an arbitrary test function $\phi(t)$ and integrate from $-\infty$ to ∞].

